
Proceedings of the 2nd Workshop on Statistical Parsing of Morphologically-Rich Languages (SPMRL 2011), pages 12–21,
Dublin, Ireland, October 6, 2011. c©2011 Association for Computational Linguistics

Morphological Features for Parsing Morphologically-rich Languages:
A Case of Arabic

Jon Dehdari
Department of Linguistics
The Ohio State University
jonsafari@ling.osu.edu

Lamia Tounsi
NCLT, School of Computing

Dublin City University
ltounsi@computing.dcu.ie

Josef van Genabith
CNGL, School of Computing

Dublin City University
josef@computing.dcu.ie

Abstract
We investigate how morphological features
in the form of part-of-speech tags impact
parsing performance, using Arabic as our
test case. The large, fine-grained tagset of
the Penn Arabic Treebank (498 tags) is dif-
ficult to handle by parsers, ultimately due to
data sparsity. However, ad-hoc conflations
of treebank tags runs the risk of discarding
potentially useful parsing information.

The main contribution of this paper is to de-
scribe several automated, language-indep-
endent methods that search for the optimal
feature combination to help parsing. We
first identify 15 individual features from the
Penn Arabic Treebank tagset. Either in-
cluding or excluding these features results
in 32,768 combinations, so we then apply
heuristic techniques to identify the combi-
nation achieving the highest parsing perfor-
mance.

Our results show a statistically significant
improvement of 2.86% for vocalized text
and 1.88% for unvocalized text, compared
with the baseline provided by the Bikel-
Bies Arabic POS mapping (and an im-
provement of 2.14% using product models
for vocalized text, 1.65% for unvocalized
text), giving state-of-the-art results for Ara-
bic constituency parsing.

1 Introduction

Parsing Arabic is challenging due to its morpho-
logical richness and syntactic complexity. In par-
ticular, the number of distinct word-forms, the
relative freedom with respect to word order, and
the information expressed at the level of words
make parsing Arabic a difficult task. Previous re-
search established that adapting constituency pars-
ing models developed from English to Arabic (and

other languages) is a non-trivial task. Significant
effort has been deployed to parse Chinese using
the unlexicalized parser of Klein and Manning
(2003a,b) with modest performance gains over
previous approaches. Due to the specification of
head rules, lexicalized parsing models also turned
out to be difficult to generalize to other languages:
Kulick et al. (2006) describe Arabic parsing re-
sults far below English or even Chinese using the
Collins parsing model as implemented in the Bikel
parser (Bikel, 2004).

In order to side-step the surface representations
involved in constituency parsing, several studies
have focused on Arabic dependency parsing. The
general assumption is that dependency structures
are better suited for representing syntactic infor-
mation for morphologically rich and free-word or-
der languages. However, the results of CoNLL
shared tasks on 18 different languages, including
Arabic (Nivre et al., 2007a) using either the Malt-
Parser (Nivre et al., 2007b) or the MSTParser (Mc-
Donald and Crammer, 2005) suggests that Arabic
is nonetheless quite a difficult language to parse1,
leaving open the question as to the effectiveness of
dependency parsing for Arabic.

One reason for this ineffectiveness is that many
parsers do not make much, if any, use of morpho-
logical information (Tsarfaty and Sima’an, 2008;
Bengoetxea and Gojenola, 2010; Marton et al.,
2010). In fact, many established parsing models
do not capture visible morphological information
provided by wordforms and thus fail to make im-
portant distributional distinctions.

In this paper, using a re-implementation of the
Berkeley latent-variable PCFG parser we study
how morphological features, as encoded in POS

1The quality and size of the treebanks certainly are impor-
tant issues.
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tags, can be learned automatically by modify-
ing the distributional restriction of initial gram-
mar symbols, and how they impact Arabic con-
stituency parsing. We have selected PCFG-LA
parsing models because they have been shown to
be relatively language-independent with state-of-
the-art performance for several languages (Petrov,
2009).

Kulick et al. (2006) reported that extending
POS tags with definiteness information helps Ara-
bic PCFG parsing2, Diab (2007) enriched the POS
tagset with gender, number and definiteness to im-
prove Arabic base phrase chunking, and Marton
et al. (2010) reported that definiteness, person,
number and gender were most helpful for Arabic
dependency parsing on predicted tag input. Our
method is comparable to this work in terms of the
investigation of the morphological features. How-
ever, the results are not comparable, as we use a
different parsing paradigm, a different form of the
treebank, and most importantly, we extend the in-
vestigation to use several automated feature selec-
tion methods.

Increasing the tagset size can lead to data
sparsity and generally exacerbates the problem
of unknown words (that is, word:POS pairs not
attested during training). To overcome this prob-
lem, we have experimented with the technique
presented in Attia et al. (2010) to handle unknown
words (out of vocabulary words – OOV) within a
generative parsing model. This method employs
a list of heuristics to extract morphological clues
from word forms and builds a set of word-classes.
Our results show that enriching basic POS tags
with morphological information, accompanied by
a method for handling unknown words, jointly
and statistically significantly improve upon the
parsing baseline, which uses the Bikel-Bies
collapsed POS tagset (Maamouri et al., 2009) and
does not employ morphological information to
handle unknown words.

This paper is organized as follows: In Section 2,
we review the PCFG-LA parsing model and the
dataset for our experiments. Section 3 addresses
the different techniques we have applied to explore
the morphological features space over the possi-
ble combinations, including a comparison with the

2By comparison, the case feature improved parsing for
Czech (Collins et al., 1999) and the combination of the num-
ber feature for adjectives and mode feature for verbs im-
proved results for Spanish (Cowan and Collins, 2005).

best morphological features of previous works. In
Section 4, we describe the results of applying the
parser.

2 General Background

2.1 Parsing Models

Johnson (1998) enriched treebank categories with
context information to improve the performance of
PCFG parsing, then Klein and Manning (2003b)
explored manual and automatic extensions of syn-
tactic categories into a richer category set to en-
hance PCFG parsing results. Later, Matsuzaki
et al. (2005) used unsupervised techniques, known
as PCFG-Latent Annotation (PCFG-LA), to learn
more fine-grained categories from the treebank.
This method involves splitting categories of the
grammar, leading to a better estimation of their
distributional properties. It uses a small amount
of random noise to break symmetries. Petrov et al.
(2006) proposed merging categories that produce a
loss in likelihood, and smoothing to prevent over-
fitting.

Petrov (2009) discussed efficient methods for
learning and parsing with these latent variable
grammars, and demonstrates that this formalism
can be adapted to a variety of languages and appli-
cations.

An important aspect of this approach is the use
of random seeds in the EM initialization points,
which was only recently treated in Petrov (2010).
Using 16 different seeds (1–16), he saw a range
of approximately 0.65% in the F -scores of the de-
velopment set, and a range of about 0.55% in the
F -scores of the test set for English. He also found
a Pearson correlation coefficient of 0.34 between
the accuracies of the development set of the Peen
Treebank and the test set, and therefore suggested
less of a reliance on any particular random seed
to yield better grammars. This led him to propose
combining grammars from several seeds to pro-
duce a higher-quality product model.

In this work, we use a re-implementation of the
Berkeley parser, which trains a PCFG-LA using
the split-merge-smooth procedure and parses us-
ing the max-rule algorithm (Petrov et al., 2006;
Petrov and Klein, 2007). For our experiments,
we apply the split-merge-smooth cycle five times3

3Petrov et al. (2006) reports that the best grammars for
English using the Penn Treebank are obtained by repeating
this cycle 5 or 6 times, depending on the test set. We opted
for five cycles due to the vast difference in training times: 2
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and we parse on sentences of less than or equal
to 40 words in length. For English, the Berke-
ley parser explores n-gram suffixes to distinguish
between unknown words ending with -ing, -ed, -
s, etc. to assign POS tags. The Berkeley parser
does not provide the same methodology to Arabic.
For Arabic, we apply the technique used by At-
tia et al. (2010) for the purpose of classification
of unknown words. The methodology uses sev-
eral heuristics based on the exploration of Arabic
prefixes, suffixes and templates, and then maps un-
known words onto 26 classes.

We present our final experiment on the test set
and all intermediate experiments on the develop-
ment set.

2.2 Corpus: Arabic Penn Treebank

We use the Penn Arabic Treebank (ATB Part3v3.2:
Maamouri et al., 2009) and apply the usual tree-
bank split (80% training, 10% development, 10%
test; Kulick et al. (2006)).4 The ATB uses written
Modern Standard Arabic newswire and follows
the style of the English Penn-II treebank (Marcus
et al., 1994). The ATB consists of 12,628 parsed
sentences which provides gold segmented, gold
vocalized and gold annotated text. More precisely,
a tokenized Arabic word is separated from its pre-
fixes and suffixes and it is also segmented to mor-
phemes. For example, the Arabic word �

Ð
�

ñ
�
J
 Ë @

is vocalized, segmented and transliterated us-
ing Buckwalter transliteration to Al+yawom+u
(the + day + NOM).

2.3 Part-Of-Speech Tagset

The POS tagset in the ATB covers nouns,
pronouns, adjectives, verbs, adverbs, prepo-
sitions, interjections, particles, conjunctions,
and subordinating conjunctions. This tagset
uses 78 atomic components, such as: ABBREV
for abbreviation, ACC for accusative case and
ADJ for adjective. While there are theoretically
hundreds of thousands of full ATB-style POS
tags (Habash and Rambow, 2005), only 498 full
tags occur in the above-mentioned version of the

hours vs. 8 hours, with F -scores being almost the same.
4Specifically for every 10 sentences, the first 8 go into the

training set, the 9th sentence go into the test set, and the 10th

sentence into the dev set.

ATB. For example, Al+dawol+atayoni
(“the states”) receives the following tag
DET+NOUN+NSUFF FEM DU GEN, annotating
a definite, feminine, dual noun in the genitive
case.

From this tagset we derive all our experi-
ments. We have identified 15 morphological fea-
tures from those present in the treebank5, and
our method, based on these features, searches for
the optimal POS tagset for parsing the ATB. Ta-
ble 1 lists these features used in our research. No
capitalization is used in Arabic orthography and
named entities are often tagged as regular nouns.
For this reason we consider “proper noun” as a
morphological feature (feature 11) .

1 Determiner Presence of the prefix al- for nouns
2 Person First person, second person, third person
3 Number Singular, dual, and plural
4 Aspect Perfective, imperfective and imperative
5 Voice Active and passive
6 Mood Indicative, subjunctive and jussive
7 Gender Masculine and feminine
8 State Construct state (id. āfa)
9 Case Nominative, accusative and genitive.

The ATB suffers from accusative-
genitive case under-specification for
feminine and masculine plurals

10 Definiteness Noun can be definite even if it does not
start with al-, e.g. proper nouns are as-
sumed to be inherently definite

11 Proper noun Name of people, places, and organizations
12 Genitive clitics Possessive pronouns
13 Negation Negative markers
14 Particles Emphatic, restrictive, negative, inter-

rogative, focus, connective, verbal, re-
sponse conditional

15 Future Presence of the future prefix sa- for verbs

Table 1: Morphological features in Arabic

We investigate two directions to find optimal
tagsets, as follows:

Direction 1: starts from ATB top tagset (|498|)
and reduces the size of the tagset by ex-
cluding the features that hurt parsing per-
formance. In our initial set of experiments,
we trained and parsed 15 different configu-
rations, each configuration starting from the
top tagset, then excluding one feature. For
instance, training and parsing after excluding
feature 9, case, produces the best results from
the first level, A>−1 (see Table 1).

5Annotation guidelines at http://projects.ldc.
upenn.edu/ArabicTreebank
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Direction 2: In order to produce the bottom ATB
tagset (|27|), we exclude all 15 features.
Then we include one feature at a time, giving
us another level A⊥+1. For instance, training
and parsing after including feature 12, gen-
itive clitics, gives the best results compared
with other individual features (see Table 1).

These approaches are further developed in Sec-
tion 3.

3 Part-Of-Speech and Morphological
Features

Since Arabic words are highly inflected, there is a
complex interaction between the morphology and
the syntax. Thus parsers that have morphologi-
cal information on hand can make better-informed
decisions regarding parse trees. The ATB repre-
sents morphological features in the form of com-
plex part-of-speech tags. Features representing ag-
glutinated morphemes are likewise agglutinated in
the POS tags, separated by a “+” symbol. Features
representing fused morphemes are likewise fused
in the POS tags, making feature extraction or con-
flation particularly challenging.

Due to the large size of the original ATB tagset
(|498|), many Arabic parsing systems use the
Bikel-Bies POS mapping (Bikel, 2004), which
maps the original ATB tagset onto a small, PTB-
style tagset of 37 tags, discarding almost all mor-
phological features that are not also present in the
English PTB.

But are some of the morphological features
helpful in parsing Arabic? Kulick et al. (2006)
showed this to be the case. They preserved two
morphological features (Determiner and Demon-
strative) that would otherwise have been lost in the
existing Bikel-Bies POS mapping, and achieved a
higher F -score. However, Arabic has many mor-
phological features. We have identified fifteen
sets of morphological features in the ATB, such
as voice, mood, and grammatical gender (see Ta-
ble 1).

Including or excluding these features allows for
32,768 combinations (215). Training and parsing
all of these combinations is prohibitively expen-
sive, so an alternative is to use various heuristics
on the powerset of the features, some of which
are described below. Many of these methods rely
on an initial heuristic function h⊥+1

(x), which is
derived by ranking the results of using individual
features. The antichain A⊥+1 in Figure 1 gives

A⊤-1

A⊥+1

Figure 1: The top node > represents the tagset con-
taining all ATB morphological features, and the bottom
node ⊥ represents the tagset excluding all morphologi-
cal features. Each node in the antichainA>−1 excludes
one morphological feature, and each node in the an-
tichain A⊥+1 includes one morphological feature.

h⊥+1
(x). Its dual, h>−1

(x), is derived by ranking
the results of not using individual features. The
antichain A>−1 in Figure 1 gives h>−1

(x).

We investigated the following automated meth-
ods to find the tagset giving the best parse results:

Non-iterative: A non-iterative best-first algo-
rithm that successively folds-in the next-
best feature. Thus if there are 5 fea-
tures ranked individually from best to worst
as 〈4, 1, 5, 3, 2〉, then there are 4 tagsets
to explore: {4, 1} {4, 1, 5} {4, 1, 5, 3}
{4, 1, 5, 3, 2} . After h⊥+1

(x) is defined, the
algorithm does not require results from previ-
ous steps, and thus can be run in parallel. At
most f–1 parses are run, where f is the num-
ber of features. The dual of this uses h>−1

(x)
to rank the results of excluding exactly one
feature.

Greedy-iterative: An iterative, greedy best-first
search algorithm with a single heuristic func-
tion throughout. We use the heuristic func-
tion h⊥+1

(x) to rank the results of includ-
ing exactly one feature, then iteratively fold-
in the next feature and retain it only if it
achieves a higher score. This requires f–
1 iterations after h⊥+1

(x) is obtained. This
method was used by Marton et al. (2010)
and Marton et al. (2011). The dual of this
uses h>−1

(x) to rank the results of excluding
exactly one feature.
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Merged: The previous two methods can instead
use a different heuristic function by merg-
ing the results of A⊥+1 with the results of
A>−1. This potentially provides more ro-
bust results than either one individually, with-
out requiring any additional iterations. The
merge function M(f) is defined as:

M(f) = (S> − S¬f ) + (Sf − S⊥)

where Sf is the F -score of including a given
feature f . The results ofM(f) are ordered to
provide the merged heuristic function hm(x).

Backtrack: An iterative, best-first backtracking
algorithm that updates its heuristic func-
tion at each iteration. Whereas the previ-
ous algorithm uses a single heuristic function
throughout (such as h⊥+1

(x)), for this algo-
rithm the next feature chosen is decided by
hi(x), which is based upon the results of the
current iteration i. The most helpful feature
at each iteration is chosen. After exhaust-
ing this path, it will backtrack, discarding the
most-recently added feature and instead re-
visit hi−1(x). The dual of this uses h>−1

(x)
to rank the results of excluding exactly one
feature, and starts from the top.

Like beam-stack search (Zhou and Hansen,
2005), this algorithm has the advantage of
being an anytime search algorithm, which
quickly finds good solutions while still find-
ing a globally optimal solution. However,
this algorithm is much simpler conceptually
than beam-stack search, it proceeds best-first,
and the beam width is determined by the
number of unused features.

4 Experimental Results

We have experimented with the strategies pre-
sented in section 3. All our feature selection exper-
iments are based on the results of vocalized no-tag
parsing on the development set where the parser
assigns the tags learned during the training phase.
However we also provide the results of gold tag
and unvocalized no-tag parsing in our final exper-
iments. We measure quality and coverage of the
output trees using the standard EVALB (Satoshi
and Collins, 1997).

The initial results on parsing are presented in
Table 2. These results describe the first stage of

traversing the powerset of features. Only one fea-
ture is included (in A⊥+1) or excluded (in A>−1)
at a time. The Bikel-Bies POS tagset included in
the Penn Arabic Treebank part 3 v3.2 represents
our baseline.6 At this stage, we use the obtained
F -scores to derive our initial h(x) for all meth-
ods, since we are interested in measuring relative
improvements when changing POS tagsets.

Bikel-Bies POS 81.33
> 81.99
⊥ 81.98

Features A>−1 A⊥+1

1 Determiner 81.52 82.33
2 Person 81.80 81.46
3 Number 81.64 81.56
4 Aspect 82.00 81.81
5 Voice 81.99 82.57
6 Mood 82.21 82.27
7 Gender 82.06 82.15
8 State 81.60 82.07
9 Case 83.00 81.68
10 Definiteness 82.10 82.41
11 Proper noun 82.13 82.27
12 Genitive clitics 82.26 82.69
13 Negation 81.71 82.42
14 Particles 81.20 82.61
15 Future 81.70 82.25

Table 2: Parsing results (F -score) for including features
1–15 in A⊥+1 and excluding features 1–15 in A>−1.

The results presented in Table 3 correspond to
the non-iterative method. Line 6 shows that the
improvement for this configuration is mainly due
to adding feature 1 (determiner) and lines 7–8
show that feature 11 (proper noun) is helpful only
when it is associated with feature 6 (mood).

Table 4 presents the results of the greedy-
iterative method using a single heuristic function
(left) and a merged heuristic function (right). The
method using single heuristic function was also
employed by Marton et al. (2010). Grey rows
indicate that the feature decreased the F -score,
and thus was discarded. The number of iterations
with this algorithm is fixed at f–1 after the initial
heuristic function is obtained, where f is the num-
ber of morphological features. We can observe
that the features 11,13 (proper noun & negation)
work together to produce the highest jump in the
score.

In contrast with the results of Marton et al.
6This tagset has 37 unique tags in the treebank.
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⊥ 81.98
{12} 82.69
{12, 14} 82.36
{12, 14, 5} 82.48
{12, 14, 5, 13} 82.20
{12, 14, 5, 13, 10} 82.49
{12, 14, 5, 13, 10, 1} 82.94
{12, 14, 5, 13, 10, 1, 11} 82.78
{12,14,5,13,10,1,11,6} 83.02
{12, 14, 5, 13, 10, 1, 11, 6, 15} 82.54
... ...

Table 3: Parsing results for the non-iterative method. The
tagset with highest F -score contains genitive clitics, parti-
cles, voice, negation, definiteness, determiner, proper noun,
and mood. The improvement over the baseline is statistically
significant.

(2010), the so-called φ-features (person, number,
gender) did not contribute to a higher score in
our experiments. We believe this is in part be-
cause morphological features are represented as
atomic tags in the Penn Arabic Treebank. Gen-
erative parsers that use this style of treebank typi-
cally do not analyze individual features and make
use of them in determining agreement relation-
ships. On the other hand, the CoNLL-X format7

provides a field where morphological features are
specified individually. This encourages depen-
dency parsers to inspect individual components of
a tag, and make use of specific features when help-
ful. The CoNLL-X format is used by most de-
pendency parsers, including the MaltParser used
in Marton et al. (2010).

The landscape of the search space contains
many local maxima, which can prevent (non-
backtracking) greedy algorithms from exploring
paths that eventually lead to high scores. Consider
the case below:

1,10,11,14
82.01

1,4,10,11,14
81.46

1,4,8,10,11,14
82.11

1,8,10,11,14
81.68

1,10,11,13,14
81.98

A greedy algorithm arriving at feature combina-
tion 1,10,11,14 moving upward will pursue an un-

7http://nextens.uvt.nl/˜conll/#dataformat

⊥ 81.98
{12} 82.69
{12, 14} 82.36
{12, 5} 82.44
{12, 13} 82.24
{12, 10} 81.79
{12, 1} 81.80
{12,11} 82.87
{12, 11, 6} 82.33
{12, 11, 15} 82.59
{12, 11, 7} 81.83
{12, 11, 8} 82.01
{12, 11, 4} 81.98
{12, 11, 9} 82.19
{12, 11, 3} 82.40
{12, 11, 2} 81.92

⊥ 81.98
{10} 82.41
{10, 13} 82.97
{10, 13, 14} 82.38
{10, 13, 1} 82.65
{10, 13, 8} 82.44
{10, 13, 3} 82.22
{10, 13, 7} 82.48
{10, 13, 5} 82.00
{10,13,11} 83.07
{10, 13, 11, 12} 82.378
{10, 13, 11, 6} 82.38
{10, 13, 11.2} 82.45
{10, 13, 11, 4} 82.89
{10, 13, 11, 15} 82.30
{10, 13, 11, 9} 82.56

Table 4: Parsing results for the greedy-best-first method
with a single heuristic, using h⊥+1(x) in the left table and
hm(x) in the right table. The tagset with highest F -score
on the left contains genitive clitics and proper noun markers.
However, the improvement over the baseline is not statisti-
cally significant. The tagset with highest F -score on the right
contains definiteness, negation and proper noun markers. In
this case, the improvement over the baseline is statistically
significant.

fruitful 1,10,11,13,14 , never arriving at the high-
est feature combination 1,4,8,10,11,14 . Features
4 (aspect) and 8 (state) may work together to pro-
vide a useful distinction for parsing that individu-
ally would otherwise only increase sparsity.

Table 5 gives the results of using the best-
first with backtracking algorithm. We join the
highest-ranked individual feature (12: genitive cli-
tics) with all other individual features (i.e. {12, 1}
{12, 2} {12, 3} . . . ), and select the combination
achieving the highest F -score ({12, 11}). The
initial heuristic function h⊥+1

(x) is used only in
the first iteration (to select feature 12 in our
case). Afterward, we join the resulting set
with all other remaining individual features (i.e.
{12, 11, 1} {12, 11, 2} {12, 11, 3} . . . ), and select
the combination achieving the highest score. With
each iteration, the number of remaining features is
decremented by one. While this algorithm is ex-
haustive, we have not explored all possible combi-
nations.

We also investigated a probabilistic search al-
gorithm to see how well it could overcome the
challenges posed by many local maxima. Using
simulated annealing (Kirkpatrick et al., 1983), we
performed 50 experiments, with 50 cycles each.
The mean of the final dev-set F -scores was 82.84,
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⊥ 81.98
{12} 82.69
. . .
{12, 11} 82.87
. . .
{12, 11, 13} 82.60
. . .
{12,11,13,1} 83.16
. . .

Table 5: Parsing results for the best-first with backtrack-
ing method. The improvement of the score over the base-
line is statistically significant. The best feature combina-
tion includes the following features: genitive clitics, proper
noun, negation, and determiner. The cardinality of the best-
performing tagset is 41.

with a standard deviation of 0.21 . As is usually
the case, the cooling schedule played an important
role in the results. We evaluated three different
cooling schedules, and found that the slowest one
resulted in many low scores, given the same num-
ber of cycles. This was due to the higher proba-
bility of jumping to a higher energy state later in
the experiment. This is often advantageous given
a large number of cycles, however we are limited
to fewer cycles due to the high cost of performing
each training/parsing cycle.

We observed that simulated annealing usually
required many more cycles to find a good score
(e.g. higher than 82.40) than the previous search
methods described. This was due to their dif-
ferences in starting points and movement strate-
gies. The previous methods started from the bot-
tom and added potentially helpful features, in var-
ious ways. On the other hand, simulated anneal-
ing started at a random location in the powerset,
and moved stochastically. The differences in the
results indicate that many of the high scores lie
relatively near the bottom, whereas there is much
greater uncertainty in the middle of the feature
powerset.

For comparative purposes, Table 6 presents the
results obtained by using the most helpful features
proposed in two previous works.8 The Determiner
feature in the first row was added by Kulick et al.
(2006) to the Bikel-Bies POS tagset, using the
Bikel parser. The features in the last two rows
were determined by using the MaltParser with the
Columbia Arabic Treebank (CATiB: Habash and
Roth, 2009) and discussed in Marton et al. (2010).

8Using the same setup as in the other experiments in this
paper (eg. PCFG-LA parser and ATB3v3.2).

While the case feature (9) helped their gold-tag
parsing, it was not helpful for either vocalized
or unvocalized parsing in our experiments. Case
markings in Arabic exhibit ambiguity with certain
noun forms—there are particular instances where
both the genitive and accusative endings are the
same, such as the duals and masculine plurals. Re-
lated to this is the imperfect alignment in Arabic
between true grammatical function and morpho-
logical case markings (in vocalized and to a lesser
extent unvocalized text).

As expected, these features do not achieve the
highest overall F -score. Given the variability with
different parsers, annotation schemes, evaluation
metrics, etc., it should not be surprising that there
is no “universally-best” tagset for a language, but
rather a tagset optimized for a given task. For ex-
ample, while the gender feature has not benefited
PCFG-LA parsing in our experiments, it could be
vitally important for MT applications. But these
systems must be able to readily access these indi-
vidual features, or they may not be utilized.

Kulick +Determiner {1} 82.33
Marton best predicted tags {1, 2, 3, 7} 79.23
Marton best gold tags {8, 9} 82.40

Table 6: F -scores on tag combinations proposed by
previous investigations, using the PCFG-LA parser.

Tables 7 and 8 present the final results on the
vocalized development set and test set. We applied
significance tests on all the results in these tables,
and significantly-improved F -scores are indicated
with asterisks. The no-tag column gives F -scores
when the parser was not given any part-of-speech
information in the test (or dev) set at all—just the
text to be parsed. Tables 9 and 10 present the final
results on the unvocalized development set and test
set.

We have also investigated multiple, automatic-
ally-learned grammars that differ only in the ran-
dom seed used to initialize the EM learning algo-
rithm. We explored seeds 1–50, and found a sta-
tistically significant difference of 1.24% between
the highest EM initialization seed and the lowest,
and decided to pursue combining seeds into prod-
uct models (Petrov, 2010). We explored differ-
ent seed combinations (rather than feature com-
binations, as before) to form the product models
of the baseline and the highest feature combina-
tion found in the development set. Using the non-
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iterative search method described in section 3, we
took the highest-scoring 16 seeds from seeds 1–
50 and successively folded-in the next-best seed.
Figure 2 shows that the F -scores of the vocal-
ized models tend to level off after incorporating
the four highest-scoring seeds. The unvocalized
counterparts see continued gradual improvements
with larger product models, possibly due to less
data sparsity.

Tagset No-tag Gold
Bikel-Bies Baseline 81.33 85.36
Bikel-Bies + OOV 82.23∗∗ 85.59∗

{12, 11, 13, 1} + OOV 83.16∗∗∗ 85.94∗∗∗

Bikel-Bies Baseline + product models 83.70 87.02
{12, 11, 13, 1}+OOV+product models 84.40∗∗∗ 87.52∗∗∗

Table 7: Final F -scores on the vocalized development
set for the best feature combination, and handling un-
known words. The best feature combination included
the following features: genitive clitics, proper noun,
negation, and determiner. Statistically significant with
*=p < 0.05, **=p < 0.01, ***= p < 0.001

Tagset No-tag Gold
Bikel-Bies Baseline 80.69 85.03
Bikel-Bies + OOV 82.45∗∗∗ 85.29
{12, 11, 13, 1} + OOV 83.55∗∗∗ 85.89∗

Bikel-Bies Baseline + product models 82.89 87.10
{12, 11, 13, 1}+OOV+product models 85.03∗∗∗ 87.57∗∗∗

Table 8: Final F -scores on the vocalized test set for
the best feature combination, and handling unknown
words. Statistically significant with *=p < 0.05, **=p <
0.01, ***= p < 0.001

Tagset No-tag Gold
Bikel-Bies Baseline 80.08 85.12
Bikel-Bies + OOV 81.44∗∗∗ 85.42
{12, 11, 13, 1} + OOV 82.30∗∗∗ 86.67∗∗

Bikel-Bies Baseline + product models 82.33 87.49
{12, 11, 13, 1}+OOV+product models 84.10∗∗∗ 87.89

Table 9: Final F -scores on the unvocalized develop-
ment set for the best feature combination, and han-
dling unknown words. The best feature combination
included the following features: genitive clitics, proper
noun, negation, and determiner. Statistically significant
with *=p < 0.05, **=p < 0.01, ***= p < 0.001

Tagset No-tag Gold
Bikel-Bies Baseline 80.26 85.61
Bikel-Bies + OOV 80.72 85.83
{12, 11, 13, 1} + OOV 82.14∗∗∗ 86.20

Bikel-Bies Baseline + product models 81.69 87.23
{12, 11, 13, 1}+OOV+product models 83.34∗∗∗ 87.38

Table 10: Final F -scores on the unvocalized test set for
the best feature combination, and handling unknown
words. Statistically significant with *=p < 0.05, **=p <
0.01, ***= p < 0.001

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Seeds in Product Model

81

82

83

84

F-
S

co
re

Features 1,11,12,13 - unvocalized
Features 1,11,12,13 - vocalized
Bikel-Bies - unvocalized
Bikel-Bies - vocalized

F-Score on ATB Development Set

Figure 2: Development set F -scores using product
models from multiple grammars.

5 Conclusion

This paper focuses on finding the best use of mor-
phological features for PCFG-LA parsing. We
identify 15 morphological features and use the
original Penn Arabic Treebank POS tagset (|498|)
and a shallow version that excludes all morpho-
logical features (|27|), and apply feature inclusion
or exclusion to calculate the optimal feature com-
bination for Arabic parsing. We show that us-
ing morphological information helps parsing even
though it results in a larger tagset. In order to di-
minish the impact of the newly created POS tags
on unknown words, we use a list of Arabic sig-
natures to differentiate between these unknown
words when assigning POS tags based on string
examination.

We have applied several search methods to find
the feature combination that improves grammar
quality the most, using i) a non-iterative best-first
search algorithm, ii) an iterative, greedy best-first
search algorithm with a single heuristic function,
iii) an iterative, best-first with backtracking search
algorithm, and iv) simulated annealing.

The best-first with backtracking algorithm has
provided the best results, achieving state-of-the-art
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F -scores of 85.03 for vocalized ATB no-tag pars-
ing and 83.34 for unvocalized ATB no-tag pars-
ing, significant improvements of 2.17% and 1.88%
over the baseline. These results, together with the
scores of the other search algorithms, suggest that
the optimal morphological feature combination for
this task involves including just a few features.
Three out of the four features from our optimal
tagset occur in noun phrases. Since noun phrases
are so common9, features that can help parse just
these phrases appear to have a great impact on
overall F -scores.

We have also performed experiments using fea-
tures highlighted in previous studies on different
parsing models, and have shown that considering
only one tagset for a language does not provide
optimal scores.
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