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Abstract

Reducing size of dictionary and language
model is critical when applying them
to real world applications including ma-
chine translation and input method edi-
tors (IME). Especially for IME, we have
to drastically compress them without sac-
rificing lookup speed, since IMEs need to
be executed on local computers. This pa-
per presents novel lossless compression al-
gorithms for both dictionary and language
model based on succinct data structures.
Proposed two data structures are used in
our product “Google Japanese Input”1,
and its open-source version “Mozc”2.

1 Introduction

Statistical approaches to processing natural lan-
guage have become popular in recent years. Input
method editor is not an exception and stochastic
input methods have been proposed and rolled out
to real applications recently (Chen and Lee, 2000;
Mori et al., 2006; Yabin Zheng, 2011). Compared
to the traditional rule-based approach, a statistical
approach allows us to improve conversion qual-
ity more easily with the power of a large amount
of data, e.g., Web data. However, language mod-
els and dictionaries which are generated automat-
ically from the Web tend to be bigger than those
of manually crafted rules, which makes it hard to
execute IMEs on local computers.

The situation is the same in machine translation.
Language model compression is critical in statis-
tical machine translation. Several studies have
been proposed in order to scale language model to
large data. Example includes class-based models

1http://www.google.com/intl/ja/ime/
2http://code.google.com/p/mozc/

(Brown et al., 1992), entropy-based pruning (Stol-
cke, 1998), Golomb Coding (Church et al., 2007)
2007) and randomized lossy compression (Talbot
and Brants, 2008). The main focus of this research
is how efficiently the language model, especially
n-gram model, can be compressed. However, in
Japanese input methods, lexicon plays more im-
portant role in actual conversion than language
model, since users don’t always type Japanese
text by sentence, but by phrase or even by word.
Lexicon coverage is one of the key factors with
which to evaluate the overall usability of IMEs.
In addition, modern Japanese input methods need
to support a variety of features, including auto-
completion and reconversion, which accelerate in-
put speeds as well as help users to edit what they
typed before. It is non-trivial to implement a com-
pact dictionary storage which supports these com-
plicated use cases.

In this work, we propose novel lossless com-
pression algorithms for both dictionary and lan-
guage model based on succinct data structures.
Although the size of our dictionary storage ap-
proaches closer to the information-theoretic lower
bound, it supports three lookup operations: com-
mon prefix lookup, predictive lookup and reverse
lookup. Proposed two data structures are used
in our product “Google Japanese Input”, and its
open-source version “Mozc”.

2 Statistical approach to input method
editors

The model of statistical input method editor is ba-
sically the same as those of statistical machine
translation. An input is converted according to
the probability distribution P (W |S), where W
is target output and S is source user input char-
acters (e.g. Hiragana sequence). The probabil-
ity P (W |S) is usually decomposed as a prod-
uct of language model P (W ) and reading model
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P (S|W ), corresponding to the language model
and translation model in statistical machine trans-
lation.

Wopt = argmax
W

P (W |S) (1)

= argmax
W

P (W )P (S|W ) (2)

In Mozc, we use a class language model for rep-
resenting P (W ) to reduce overall memory foot-
print. The class corresponds to the part of speech
of Japanese.

P (W ) =
∏

i

P (wi|ci)P (ci|ci−1), (3)

where ci is a word class (part of speech) of wi. If
we assume that reading probabilities are mutually
independent, P (S|W ) could be rewritten as

P (S|W ) =
∏

i

P (si|wi), (4)

where P (si|wi) is the conditional probability that
a Japanese word wi is typed as Japanese Hira-
gana si. This probability can be estimated from
a tagged corpus and/or a manually crafted dictio-
nary. By combining P (W ) and P (S|W ), Wopt

can be rewritten as

Wopt = argmax
W

∏

i

P (si|wi)P (wi|ci)P (ci|ci−1). (5)

The first two terms P (si|wi)P (wi|ci) are con-
text independent. This part can be represented
as a tuple d = 〈s, w, c, cost〉, where cost is
− log(P (s|w)P (w|c)). P (ci|ci−1) is a transition
probability of the class language model. For our
convenience, we call the set of dictionary entries
d as dictionary and transition probability as lan-
guage model in this paper. Dictionary and lan-
guage model are compressed with different algo-
rithms.

3 Dictionary compression

3.1 General setting of dictionary lookup
We describe the general setting and structure of
dictionary for Japanese IME.

• Dictionary D is a set of dictionary entries di,
e.g., D = {d1, . . . , dn}

• Dictionary entry d is a tuple of reading, word,
part-of-speech id and cost. Part-of-speech id
and cost are 16 bit integers in Mozc.

To implement a Japanese IME, the dictionary stor-
age had better to support the following three oper-
ations.

• Common Prefix Lookup
Given a query s, returns all dictionary en-
tries whose reading parts are prefix of s. This
operation allows us to build a lattice (word
graph) for user input in O(n), where n is
the length of user input. A lattice represents
all candidate paths or all candidate sequences
of output token, where each token denotes a
word with its part of-speech.

• Predictive Lookup
Given a query s, returns all dictionary entries
which have s as a prefix of reading. Modern
Japanese IMEs, especially IMEs for mobile
devices, provide a suggestion feature which
predicts a word or phrase that the user wants
to type in without the user actually typing it
in completely. Predictive lookup is used in
implementation of the suggestion feature.

• Reverse Lookup
Basically the same as Common Prefix
Lookup and Predictive Lookup, but the direc-
tion of lookup is opposite. Reverse lookup
retrieves readings from words. Commercial
input methods implement a feature called re-
conversion with which user can re-convert
sentences or phrases already submitted to ap-
plications. To support this, Reverse Lookup
is necessary.

A trie is a useful data structure which supports
common prefix and predictive lookup in constant
time. Each node in the trie encodes a character,
and paths from the root to the leaf represent a
word. A trie encodes a set of words with a small
footprint when they share common prefixes.

3.2 Double Array

In the initial implementation of Mozc, we had used
the Double Array trie structure for dictionary stor-
age (Aoe, 1989). Double array is known to be
the fastest implementation for a trie and supports
every operation described in the previous section.
However, one critical issue of Double Array is
its scalability. Since Double Array uses an ex-
plicit pointer to represent a node in a trie, it uses
O(n log(n)) space to store a trie with n nodes.
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3.3 LOUDS

In Mozc, we use a succinct data structure LOUDS
trie for compact dictionary representation (Jacob-
son, 1989). The main idea of LOUDS is that
a trie is encoded in a succinct bit array string
which doesn’t use any pointers to represent nodes.
LOUDS stores an n-node ordinal tree as a bit array
of 2n + 1 bits.

A LOUDS bit string is constructed as follows.
Starting from the root nodes, we walk through a
trie in breadth-first order. When seeing a node
having d children (d > 0), d “1”s and one ” 0” are
emitted. In addition to that, “10” is added to the
prefix of the bit string, which represents an imagi-
nary super root node pointing to the root node. For
example, three “1”s and one “0” are emitted when
seeing the node “1” in Figure 1.

101110110010000

super-root

1

2 3 4

5 6 7

s 1 2 3 4 5 6 7

Figure 1: LOUDS trie representation

Navigation on the LOUDS trie is performed by
rank and select operations on the bit array.

• rank(k, i): Returns the number of k ∈
{0, 1} bits to the left of, and including, po-
sition i.

• select(k, i): Given an index i, returns the po-
sition of the ith k ∈ {0, 1} bit in the bit-
string.

Given a bit array of length k, rank and select can
be executed in O(1) time with o(k) space. With
rank and select operations, first child, next sibling
and parent of m-th node can be computed as fol-
lows.

• first child(m) = select(0, rank(1,m))+1

• next sibling(m) = m + 1

• parent(m) = select(1, 1 + rank(0,m))

3.4 Space efficient dictionary data structure
for Japanese IME

The key idea of Mozc’s dictionary structure is that
both readings and words are compressed in two
independent LOUDS tries. This structure helps us
not only to compress both readings and words by
merging the common prefixes but to enable the re-
verse lookup required for Japanese IME. Dictio-
nary entries associated with the pairs of reading
and word are stored in a token array. A token
stores part-of-speech id, cost and leaf node id as-
sociated with the word.

Figure 2 illustrates the dictionary data structure
which encodes the dictionary entries shown in Ta-
ble 1. Here we show how we perform forward
lookup and reverse lookup on this dictionary.

Reading Word Leaf node id in Leaf ndoe id in
reading trie word trie

a A 20 30
b B 10 40
b C 10 50

Table 1: Example of dictionary entries

Forward lookup (reading to word)
1. Given a query reading in Hiragana, retrieve a

set of key node ids by traversing the reading
trie.

2. By accessing the token array, obtain metadata
of dictionary entries, e.g. POS and emission
cost, and the set of word node ids.

3. By traversing the word trie from leaf to root,
we can retrieve the word string.

Reverse lookup (word to reading)
1. Given a query word, retrieve a set of reading

node ids by traversing the word trie

2. Unlike forward lookup, we cannot directly
access the token array. Instead, we perform
linear search over the token array to obtain
the set of reading node ids.

3. By traversing the reading trie from leaf to
root, we can retrieve the reading string.

Reverse lookup is generally slower than forward
lookup because of linear search. This issue can
easily be solved by caching the result of linear
search. Since reconversion is only occasionally
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(50)
(40)

(30)

10 20

(POS, cost), 40 (POS, cost), 50(POS, cost), 30

Reading Trie Word Trie

Token array

(20)

Reading b

Reading a Word C
Word B

Word A

Figure 2: Dictionary structure

used, the cache is created on-the-fly when recon-
version is requested to reduce the total amount of
memory usage.

3.5 Additional heuristics for further
compression

We combine the following three heuristics to per-
form further compression.

• String compression
Mozc uses UTF-8 as an internal string repre-
sentation, but not for storing the dictionary
and language model. The reason is that it
is not space-efficient to use UTF-8 directly,
because UTF-8 encoding needs 3 bytes to
encode Hiragana, Katakana and Kanji. In-
stead of UTF-8, we use a special encod-
ing in the dictionary which encodes common
Japanese characters, including Hiragana and
Katakana, in 1 byte. With our new encoding,
all Japanese characters are encoded in 1 or 2
byte.

• Token compression
Part of speech distribution tends to be biased,
since large portions of words are categorized
as noun. By using shorter codes to represent
frequent part-of-speech, we can compress the
token arrays. With this compression, we have
to encode the token array with variable length
coding. For this purpose, we use a rx library
3, which also uses a succinct bit array struc-
ture.

• Katakana bit
3http://sites.google.com/site/neonlightcompiler/rx/

Converting Hiragana word to Katakana word
is trivial in Japanese, as Hiragana and
Katakana character have one-to-one map-
ping. We can remove all Katakana words
from the word trie if a token have a Katakana
bit. If a dictionary entry is a Hiragana to
Katakana conversion, we set Katakana bit
and do not insert the word in the word trie.

3.6 Experiments and evaluations

We compared our LOUDS based dictionary struc-
ture and three additional heuristics. Table 2 shows
the total dictionary size and compression ratio
against the plain text dictionary. LOUDS + To-
ken is a LOUDS-based dictionary structure with
token compression. LOUDS + Token/Katakana is
a LOUDS-based dictionary with token compres-
sion and Katakana bit. LOUDS + all uses the all
heuristics described in the previous section. Table
2 also shows the size of reading trie, word trie and
token array in each dictionary.

The dictionary storage is reduced from 59.1MB
to 20.5MB with LOUDS. On the other hand, space
efficiency of Double Array trie is much worse
than LOUDS. It uses about 80MB to encode all
the words, which is larger than the original plain
text. By combining three additional heuristics, the
size of reading and word tries are drastically re-
duced. When using Katakana bit, the size of word
trie is reduced since the Hiragana to Katakana en-
tries are not registered into the word trie. The
most effective heuristics for compressing the dic-
tionary is string compression. Reading trie with
string compression is about 40% the size of the
original trie. Our succinct data structure encodes
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Dictionary type Size (Mbyte) Size / word (byte) detailed size (Mbyte)
plain text 59.1 46.0

Double Array 80.8 63.0
LOUDS+Token 20.5 16.0 Token: 8.5 Reading: 5.8 Word: 6.2

LOUDS+Token/Katakana 18.3 14.2 Token: 7.9 Reading: 5.8 Word: 4.6
LOUDS+all 13.3 10.4 Token: 7.9 Reading: 2.4 Word: 3.0

Table 2: Summary of dictionary compression

1,345,900 words in 13.3MByte (10.4 bytes per
word) and supports common prefix, predictive and
reverse lookup required for Japanese input meth-
ods.

4 Language model compression

4.1 Sparse matrix compression
As we described in the section 2, Mozc uses a
class language model as base language model for
conversion. The class basically corresponds to
the part of speech of Japanese. Because a naive
class language model is weak in capturing sub-
tle grammatical differences, all Japanese function
words (e.g. particles and auxiliary-verbs), fre-
quent verbs, and frequent adjectives are lexical-
ized, where the lexical entry itself is assigned to
unique class. With such an aggressive lexicaliza-
tion, the number of classes amounts to 3000. One
observation of the lexicalized transition probabil-
ities is that the transition matrix becomes surpris-
ingly sparse. More than 80% of transitions have 0
probability4.

Several methods have been proposed for com-
pressing a sparse matrix(Barrett et al., 1993).
These algorithm are not optimal in terms of space,
because they use a pointer to access to the indices.
Our proposed data structure is based on succinct
bit array which does not rely on any pointers.

Given a transition probabilities table M [i, j],
our succinct data structure is constructed as fol-
lows:

1. Converts the original two dimensional ma-
trix into a one dimensional array with a lin-
ear conversion of the indices, e.g. M [i, j] =
A[size · i + j], where size is the number of
classes.

2. Collects all probabilities and their indices
having non-zero probability.

4Since Mozc’s langauge model is generated from large
amount of web data, we found that language model smooth-
ing is not always necessary. We gave a reasonably big default
cost to the transition having 0 probability.

3. Represents the index in bit array.

4. Splits the bit array into sub bit arrays of size
3. Each split sub bits can represent 8 (23 = 8)
different states.

5. Insert the split sub-bits into a tree structure.
A node in the tree always has 8 children.

0 100 100 0

0 000 100 0 0 100 100 0

1 000 000 0 0 000 100 0 0 100 000 0

cost 1 cost 0

rank(1, 6)

rank(1, 16+2)

rank(1, 8+6)

level 0

level 1

level 2

cost 2costs

0 1 2 3 4 5 6 7

Figure 3: Succinct tree structure for class language
model

Figure 3 shows how 1-dimensional indices 434,
406 and 176 are represented in a tree with 8
branches. Here we assume that indices 434,
406 and 176 have a transition log probabil-
ity cost 0, cost1 and cost2 respectively. 434,
406 and 176 can be expressed as 110110010,
110010110, 010110000 in bit array. By split-
ting them into sub-arrays, they can be written
as [6,6,2] (=110,110,010), [6,2,6] (=110,010,110),
and [2,6,0] (=010,110,000). These sub arrays are
inserted into a tree of depth 3. For example, when
inserting the index 434 (6,6,2), the 6th bit of level
0 node, 6th bit of level 1 node, and 2nd bit of level
2 node are set to be 1. The leaf node stores the
actual cost.

A key characteristic of this tree structure is that
it is not necessary to store pointers (arrows in the
Figure 3) from parent to children. If we were to
create a bit array Bk by concatenating all nodes
at level k, the child node of mth bit at level k is
pointing to the rank(1, m)-th node at level (k+1).
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4.2 Caching the transition matrix
One problem of our succinct tree structure for lan-
guage model is that it requires huge numbers of
bit operations in lookup. Our preliminary experi-
ment showed that the lookup of matrix consumed
about 50% of total decoding time (IME conversion
time). To cope with this problem, we introduced a
simple cache for transition matrix. Figure 4 shows
a pseudocode of the cache. N is the size of cache.

argument: lid: class id of previous word
rid: class id of current word

returns: cached cost (log probability)

N ← 1024 // cache size
size← number of classes

// initialization
cache value[N ]← {−1, . . . ,−1}
cache index[N ]← {−1, . . . ,−1}

function GetCachedTransitionCost(lid, rid)
begin

// get the hash h from lid/rid.
h← (3 ∗ lid + rid) % N
// i is the one dimensional index.
i← (lid · size + rid)
if cache index[h] ! = i then

cache index[h]← i
cache value[h]←

GetRealTransitionCost(lid, rid)
endif
return cahce value[h]

end

Figure 4: Pseudocode of cache

4.3 Experiments and evaluations
Table 3 shows the size of language model with
different implementations. The size of class is
3019 and cost (transition probability) is encoded
in 2 byte integer. We found that 1,272,002 prob-
abilities are non-zero; i.e., around 86% elements
have zero probability. If we use a naive two di-
mensional matrix, 18 Mbyte storage is required
(3019 ·3019 ·2 = 18, 228, 722 byte). STL map re-
quires more memory than baseline. Our proposed
structure only uses 2.9 MB storage, where the suc-
cinct tree and cost tables consume 0.51 Mbyte and
2.4 Mbyte respectively. The “Random” is a theo-
retical lower bound of required storage, if we as-

sume that the indices of non-zero probability are
randomly selected. Our compact data structure is
only 16% the size of the original matrix. Also,
the size of our structure is close to the theoret-
ical lower bound. The reason why the size be-
comes even smaller than the lower bound is that
indices of non-zero probabilities are not actually
randomly distributed in a real language model.

Table 4 shows the effect of the cache for the
transition matrix. Even with a small cache size,
the conversion speed is drastically improved. In
practical, it is enough to set the cache size to be
512.

data structure Size (Mbyte)
Two dimensional matrix 17.4
STL map 39.8
Succinct Tree (8-branches tree) 2.9
Random 3.1

Table 3: summary of language model compression

Cache size conversion speed (sec/sentence)
0 0.0158

32 0.0115
128 0.0107
512 0.0102

1024 0.0099
4096 0.0097

Table 4: Cache size and conversion speed

5 Future work

This paper mainly focused on lossless algorithms.
However, it would be possible to achieve more ag-
gressive compression by introducing lossy com-
pression. Furthermore, Mozc encodes all costs
(log probabilities) in 2 byte integers. We would
like to investigate how the compression of costs
affects final conversion quality.

6 Conclusion

This paper presented novel lossless compression
algorithms for dictionary and language model.
Experimental results show that our succinct data
structures drastically reduce space requirements
by eschewing the space-consuming pointers used
in traditional storage algorithms. In dictionary
compression, we also proposed three methods to
achieve further compression: string compression,
token compression, and Katakana bit. In language
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model compression, we showed that a naive cache
algorithm can significantly improve lookup speed.
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