
Proceedings of Workshop on Language Resources, Technology and Services in the Sharing Paradigm, pages 67–74,
Chiang Mai, Thailand, November 12, 2011.

Open-Source Platform for Language Service Sharing

Yohei Murakami, Masahiro Tanaka,
Donghui Lin

National Institute of Information and
Communications Technology

{yohei, mtnk,
lindh}@nict.go.jp

Toru Ishida
Department of Social Informatics

Kyoto University
ishida@i.kyoto-u.ac.jp

Abstract

The Language Grid is an infrastructure for en-
abling users to share language services devel-
oped by language specialists and end user
communities. Users can also create new ser-
vices to support their intercultural/multilingual
activities by composing various language ser-
vices. In the Language Grid, there are several
stakeholders with different incentives: service
users, service providers, and a Language Grid
operator. For enhancing the language service
sharing, it is significant that the Language
Grid can coordinate them to match their incen-
tives. However, their incentives vary with the
operation model of the Language Grid. To
support the various operation models, the
Language Grid should employ not a general
platform dealing with various types of opera-
tion models, but a customizable platform. To
this end, we have developed an open-source
platform consisting of two types of compo-
nents: core components and optional compo-
nents. The former assures interoperability of
Language Grids, while the latter provides flex-
ibility of system configuration. It allows de-
velopers to extend the platform, and each op-
erator to adapt the platform to his/her opera-
tion model by selecting the components. To
validate the customizability, we have con-
structed the private Language Grid for Wiki-
media using the same platform as public Lan-
guage Grid.

1 Introduction

Although there are many language resources
(both data and programs) on the Internet (Chouk-
ri, 2004), most intercultural collaboration activi-
ties still lack multilingual support. To overcome

language barriers, we aim to construct a novel
language infrastructure to improve accessibility
and usability of language resources on the Inter-
net. To this end, the Language Grid has been
proposed (Ishida, 2006). The Language Grid
takes a service-oriented collective intelligence
approach to sharing language resources and cre-
ating new services to support intercultur-
al/multilingual activities by combining language
resources.

In previous work, many efforts have been ma-
de to combine language resources, such as UI-
MA (Ferrucci and Lally, 2004), GATE (Cun-
ningham et al., 2002), D-Spin (Boehlke, 2009),
Hart of Gold (Callmeier et al., 2004), and
CLARIN (Varadi et al., 2008). Their purpose is
to analyze a large amount of text data by linguis-
tic processing pipelines. These pipelines consist
of language resources, most of which are provid-
ed as open source by universities and research
institutes. Users can thus collect language re-
sources and freely combine them on those
frameworks without considering other stakehold-
ers.

Different from the above frameworks, the pur-
pose of the Language Grid is to multilingualize
texts for supporting intercultural collaboration by
service workflows. PANACEA (Toral et al.,
2011) is also a project to overcome language bar-
riers by automatically acquiring, producing, up-
dating, and maintaining language resources for
MT by service workflow. The difference of them
is that a workflow in the Language Grid com-
bines language resources associated with com-
plex intellectual property issues. These resources
are provided by service providers who want to
protect their ownership, and used by service us-
ers who need a part of the resources. Therefore,
the Language Grid must coordinate these stake-
holders’ motivations. However, their incentives

67

vary with the operation model of the Language
Grid. To support the various operation models,
we proposes open-source platform that enables
developers to implement several modules and
Language Grid operators to adapt their platforms
to their operation models by selecting the mod-
ules. Moreover, by connecting their platforms,
we can enhance language service sharing among
different platforms.

The rest of this paper is organized as follows.
Section 2 explains the design concept of the plat-
form considering stakeholders’ needs. Section 3
presents system architecture to satisfy require-
ments of the design concept. Section 4 illustrates
how to extend and customize the platform. Sec-
tion 5 introduces two types of system configura-
tions to realize a public Language Grid and a
private Language Grid. To validate the customi-
zability, we show the case study of constructing
the Language Grid for Wikimedia in Section 6.

2 Design Concept

The purpose of Language Grid is to accumulate
language services and compose them. To realize
Language Grid, system architecture should be
designed to satisfy requirements of different op-
eration models. Therefore, this section summa-
rizes requirements of each of the operation mod-
els, and clarifies the required functions of Lan-
guage Grid.

2.1 Requirements

Language Grid operators require flexibility of
system configuration so that they can adapt the
configuration to their two types of operation
models: public Language Grid and private Lan-
guage Grid. The former model is more open than
the latter one. Every stakeholder is different or-
ganization in the public one, while an operator
operates Language Grid for his/her use in the
private one. For example, an operator operates a
private Language Grid on a single cluster of ma-
chines and deploys on the cluster services, the
provision policies of which are relaxed. Mean-
while, another operator operates a public Lan-
guage Grid in a distributed environment by de-
ploying services on each provider’s server be-
cause the provision policies of the services are
too strict. In the former case, the operator places
high priority on performance of services. In the
latter case, the other operator puts priority on
resource security. Further, both of them may
want to expand available services by allowing

their users to access services on other Language
Grids.

2.2 Functions

The Language Grid platform should provide the
following functions extracted from the require-
ments in the previous subsection.
1. Modularization of system components:

Language Grid operators can change im-
plementations of each component in Lan-
guage Grid platform in order to build their
own Language Grids compliant with their
operation models. In particular, it is neces-
sary to switch communication components
so that they can operate the platform both
in a centralized environment and a distrib-
uted environment. The platform combines
implementations of each component based
on a configuration file defined by operators.

2. Language Grid composition: Language
Grid operators can compose several Lan-
guage Grids in order to increase the number
of language services. The Language Grid
platform realizes information sharing
among Language Grids, and service invo-
cation across Language Grids.

In designing the Language Grid architecture
that provides the above functions, there are sev-
eral technical constraints. For example, the archi-
tecture should be independent of service inter-
faces because language service interfaces vary
depending on operators. In addition, the architec-
ture should be independent of specifications of
service invocations because there are several
such specifications over HTTP, such as SOAP,
REST, JSON, and Protocol Buffers. Moreover, it
is necessary to distribute the platform to handle
physically distributed services if the services are
deployed on their providers’ severs. In the next
section, we explain the system architecture of the
Language Grid platform considering these con-
straints.

3 System Architecture

3.1 Overview

The Language Grid architecture consists of six
parts: Service Manager, Service Supervisor, Grid
Composer, Service Database, Composite Service
Container, and Atomic Service Container. Figure
1 (a) focuses on the first four parts, and Figure 1
(b) focuses on the last two parts.

68

Figure 1. Language Grid Architecture

The Service Manager manages domain definition,
grid information, node information, user infor-
mation, service information and resource infor-
mation registered in Language Grid. The service
information includes access control settings and
access logs. Since the information is registered
through the Service Manager, it plays a front-end
role for any functions other than service invoca-
tion. The Service Supervisor controls service in-
vocations according to the requirements of the
service providers. Before invoking the services
on the Composite Service Container and Atomic
Service Container, it validates whether the re-
quest satisfies providers’ policies. The Grid
Composer connects its Language Grid to other
Language Grids to realize Language Grid com-
position for operators. The connection target is
set through the Service Manager. The Service
Database is a repository to store various types of
information registered through the Service Man-
ager and service invocation logs. The Composite
Service Container provides composite service
deployment, composite service execution, and
dynamic service binding so that service users can
customize services. The Atomic Service Contain-

er provides several utilities that service providers
need in deploying atomic services.

In the remaining parts of this section, we
provide the details of the Service Manager, Ser-
vice Supervisor, Grid Composer, and Compo-
site/Atomic Service Container.

3.2 Service Manager

The Service Manager consists of components
managing various types of information necessary
for Language Grid, such as domain definition,
and grid, node, resource, service, and user infor-
mation.

The Domain Management handles a domain
definition that defines language service types,
standard interfaces of language services, and at-
tributes of language service profiles.

The Grid Management sets a target Language
Grid connected by the Grid Composer. Based on
the settings, the Grid Composer determines
available services on other Language Grids. The
Node Management handles information of nodes
constituting its Language Grid and the connected
Language Grid. Based on this information, the
Grid Composer decides whether to save infor-
mation registered on other nodes, and whether to
distribute information to other nodes.

The Resource Management and Service Man-
agement handle language resource and language
service information registered on Language Grid
and the connected Language Grid. The infor-
mation includes access control settings, service
endpoints, intellectual properties associated with
the language resources, and access logs. Based
on this information, the Service Supervisor vali-
dates service invocation, locates service end-
points, and attaches intellectual property infor-
mation to service responses.

Finally, the User Management manages user
information registered on Language Grid. Based
on this information, the Service Supervisor au-
thenticates users’ service requests.

3.3 Service Supervisor

The Service Supervisor controls service invoca-
tion by service users. The control covers access
control, endpoint locating, load balancing, and
access logging. To realize architecture inde-
pendent of service specifications such as SOAP
and REST, the Service Supervisor conducts such
service invocation control based on an HTTP
header.

The User Request Handler extracts infor-
mation necessary to invoke a service from the
service request over HTTP, and then authenti-

Service	 Database

Service	 Manager
Service	 Management	

Interface

Service	 Supervisor

Invocation	 Processor

Intra-‐Grid	 Executor

Web	 UI

Composite	
Service

Container

Atomic	
Service
Container

Application	 System

Resources

Web	 Browser

Access	
Control

Access	
Logging

SOAP	 API	

HTTP
Invoker

U
ser

M
anagem

ent
Service

M
anagem

ent
Resource

M
anagem

ent
N
ode

M
anagem

ent
G
rid

M
anagem

ent
Dom

ain
M
anagem

ent

(a)

Domain	 Definition Profile	 Repository
Access	 Log

Java
Method	
Invoker

User	 Request	 Handler

HTTP	 Request	 Handler Java	 Method	 Handler

Grid	 Composer
Inter-‐Grid	 Data	 AccessIntra-‐Grid	 Data	 Access

PostgreSQL
Data Access

Other	
Service	
Grid

JXTA	
Data	 Access

Inter-‐Grid	 Executor

HTTP	 Invoker

Profile	 Database
(Flexible)

Profile	 List
(Fixed)Definition	

Database

File	
Access

Composite	 Service	 Container
Service	

Component	
Executor

Service	 DecoratorService	 Request	
Handler

Service	 Workflow	
Executor

ProtocolBuffers
RPC Handler

Thread	 Control	
Decorator

Result	 Filter	
Decorator

Axis	 SOAP	
(RPC/ENC)	 Handler

BPEL	 Engine Axis	 SOAP	
(RPC/ENC)	
Invoker

ProtocolBuffers
RPC	 Invoker

Java	 Method	
Invoker

Service	 Container	 Framework

Java-‐Coded	
Workflow

Java	 Method
Handler

Resources

Atomic	 Service	 Container
Service	 DecoratorService	 Request	

Handler
Service	 Wrapper	

Executor

ProtocolBuffers	
RPC Handler

Thread	 Control	
Decorator

Result	 Filter	
Decorator

Axis	 SOAP	
(RPC/ENC)	 Handler

Java-‐Coded	
Wrapper

Service	 Container	 Framework

Java	 Method
Handler

Program

Data

Application
System

JavaScript	 Engine

Parameter	
Validation	 Decorator

Parameter	
Validation	 Decorator

WS-‐BPEL	 Workflow

JavaScript	 Workflow

HTTP SOAP P2P	 sharing
protocol

Protocol
Buffers

Java	 method
invocation

(b)

Other
protocols

Service
Supervisor

…

…

… … …

…

… … … …

… …

…

…

69

cates the requester. The extracted information is
sent to the Invocation Processor. Using the in-
formation, the Invocation Processor executes a
sequence of pre-process, service invocation,
post-process, and logging process. The access
control is implemented as the pre-process, or the
post-process.

After passing the access control, the Intra-
Grid Executor invokes the service within its
Language Grid. To invoke the service, the Intra-
Grid Executor locates the service endpoint using
the service ID. If there are multiple endpoints
associated with the service ID, it chooses the
endpoint with the lowest load. Finally, it invokes
the service using Java Method Invoker imple-
mentation or HTTP Invoker implementation,
which are selected according to the endpoint lo-
cation.

3.4 Grid Composer

The Grid Composer not only creates a P2P grid
network within its Language Grid, but also con-
nects to other Language Grids. The former is
needed to improve latency if the services are
physically distributed. The latter is necessary to
realize composition of Language Grids operated
by different operators.

The Intra-Grid Data Access provides
read/write interfaces for the Service Database
within its Language Grid. In writing data, the
Intra-Grid Data Access broadcasts the data to
other nodes using a P2P network framework so
that it can share the data with other nodes in the
same Language Grid. As a result, service users
can improve latency by sending their requests to
a node located near the service. In this way, us-
age of the P2P network framework contributes to
scalability of Language Grid.

On the other hand, the Inter-Grid Data Access
shares various types of information with other
Language Grids. The Inter-Grid Data Access
also uses the P2P network to share information
with other nodes across Language Grids. How-
ever, based on grid information registered
through the Service Manager, the Inter-Grid
Data Access saves only information related to
the connected Language Grids.

The Inter-Grid Executor invokes services reg-
istered on a different Language Grid. To invoke
a service across Language Grids, it replaces a
requester’s ID with the operator’s user ID be-
cause the different Language Grid does not store
user information of the requester, but rather of
the operator as a Language Grid user. In addition,
to control access to the services on a different

Language Grid, the Inter-Grid Executor inserts
the user ID of the requester into the request in
invoking the service. By separating Language
Grid that performs user authentication from the
different Language Grid that performs access
control, the two Language Grids do not have to
share users’ passwords.

3.5 Service Container

The Service Container executes composite ser-
vices and atomic services. The Composite Ser-
vice Container that executes composite services
provides service workflow deployment and exe-
cution, and dynamic service binding. The Atomic
Service Container that executes atomic services
wraps language resources of service providers as
language services with standard interfaces.

The Service Request Handler has multiple im-
plementations according to service invocation
protocols. If the Service Container is deployed
on the same server as the Service Supervisor, the
Java Method Handler implementation can be
selected. When receiving a service request, the
Service Request Handler receives from the Ser-
vice Container Framework a chain of Service
Decorator, Service Workflow/Wrapper Executor,
and Service Component Executor, and executes
the chain.

In invoking a component service of a compo-
site service, the Service Workflow Executor can
select a concrete service based on binding infor-
mation included in a service request. This dy-
namic service binding is realized because lan-
guage service interfaces are standardized.

4 Open Source Customization

The stakeholders’ incentives vary depending on
the operation model of Language Grid. If a Lan-
guage Grid operator operates a public Language
Grid, the operator promotes various users to join
the Language Grid and most service providers
may demand intellectual property protection. To
satisfy these requirements, services are deployed
on providers’ servers and the Language Grid
platform should provide access control functions.
That is, priority is placed on security of resources.
On the other hand, if a Language Grid operator
operates a private Language Grid, the operator
may gather language resources published under
open source license to reduce the operation cost.
To this end, services are aggregated and de-
ployed on a cluster of machines, and the Lan-
guage Grid platform does not have to provide

70

user authentication and access control. That is,
priority is placed on service performance.

Thus, the types of stakeholders rely on Lan-
guage Grid operators. This implies that it is im-
possible to develop a general platform dealing
with various types of operation models before-
hand. Therefore, we selected open-source style
customization so that each operator can adapt the
platform to his/her operation model.

We have published the source codes of the
Language Grid platform under an LGPL license
and begun an open source project wherein each
operator can freely customize the platform. In the
project, the source codes are classified into a
core component and optional component with
different development policies because unregu-
lated derivatives prevent interoperability of Lan-
guage Grids. The specifications of core compo-
nents are decided by core members in the open
source community. On the other hand, the speci-
fications of optional components can be freely
changed by developers in the open source project,
and derivatives can be created. This classifica-
tion is done to improve the interoperability of
Language Grids. As shown in Figure 1, the core
components are thick-frame rectangles, and op-
tional components thin-frame ones. In nested
rectangles, outside ones are APIs and in-side
ones are their implementations. These implemen-
tations can be changed.

The Intra-Grid Data Access, Inter-Grid Data
Access, Intra-grid Service Executor, and Inter-
Grid Service Executor are core components be-
cause they are used to communicate with other
Language Grids, and they share information with
other Language Grids. In addition to this, Service
Decorator, Service Workflow/Wrapper Executor,
Service Component Executor, and Service Con-
tainer Framework in Composite/Atomic Service
Container are also core components because the
implementations of the components are inter-
leaved in atomic services or composite services
by the Service Container Framework. On the
other hand, the Service Supervisor and Service
Manager are optional components so that opera-
tors can extend them according to their operation
model, because their functions are used only
within the single Language Grid.

5 Configuration of the Language Grid

In this section, we introduce the system configu-
ration of a public Language Grid and private
Language Grid. In the public Language Grid,
third parties are expected to join it and every

stakeholder is different from the operator. In the
private Language Grid, the operator uses lan-
guage services for its private use. The operator
often employs language resources published un-
der open source license to reduce the operation
cost and increase the performance. Moreover, the
operator of the private Language Grid may con-
nect the private Language Grid with a public
Language Grid in order to use more language
services on the private Language Grid.

5.1 Public Language Grid

The Department of Social Informatics in Kyoto
University operates a public Language Grid.
Service providers may have several provision
policies to protect their language resources.
Therefore, the Language Grid prefers security of
language resources to performance of language
services. For this reason, the Language Grid ena-
bles service providers to protect their resources
on their servers, and therefore should coordinate
the resources deployed on the providers’ servers.
To realize these functions on the Language Grid,
we construct it with two different types of server
nodes: the service node and core node.

The service node provides only atomic ser-
vices by deploying service wrappers to standard-
ize interfaces of language resources. The service
nodes are distributed to their service providers.
On the other hand, the core node controls access
to services and composes services. Moreover, it
communicates with other core nodes in other
Language Grids to realize federated operation of
the Language Grid.

Figure 2. System Configuration of Public Lan-
guage Grid

To instantiate the service node and core node,
the Language Grid is configured as shown in
Figure 2. The components surrounded by gray
lines in the figure are deployed on the same serv-

Service	 Database

Service	 Manager
Service	 Management	

Interface

Service	 Supervisor

Invocation	 Processor

Intra-‐Grid	 Executor

Web	 UI

Composite	
Service

Container

Atomic	
Service

Container

Application	 System

Resources

Web	 Browser

Access	
Control

Access	
Logging

SOAP	 API	

HTTP	 Invoker

U
ser

M
anagem

ent
Service

M
anagem

ent
Resource

M
anagem

ent
N

ode
M

anagem
ent

G
rid

M
anagem

ent
Dom

ain
M

anagem
ent

Domain	 Definition Profile	 Repository
Access	 Log

User	 Request	 Handler

HTTP	 Request	 Handler

Grid	 Composer
Inter-‐Grid	 Data	 AccessIntra-‐Grid	 Data	 Access

PostgreSQL Data	 Access
Other	
Service	
Grid

JXTA Data	 Access
Inter-‐Grid	 Executor

HTTP	 Invoker

Profile	 Database
(Flexible)

Definition	
Database

HTTP SOAP P2P	 sharing
protocol

Protocol
Buffers

Other
protocols

71

er. The server on which the Service Manager,
Service Supervisor, Composite Service Container,
Grid Composer, and Service Database are de-
ployed is called the core node, while that on
which the Atomic Service Container is deployed
is called the service node. This system configura-
tion employs an HTTP invoker as the Intra-Grid
Executor to communicate with language services
on the Atomic Service Container physically dis-
tributed. Furthermore, the core node includes the
Inter-Grid Data Access to share language ser-
vices with other Language Grids and the Inter-
Grid Executor to invoke language services on
other Language Grids.

5.2 Private Language Grid

Unlike the system configuration of the public
Language Grid, a private Language Grid priori-
tizing performance of language services is some-
times required.

Figure 3. System Configuration of Private Lan-
guage Grid

Figure 3 shows the system configuration of
private Language Grid to satisfy the operator
preferring performance and simplicity. The sys-
tem configuration excludes the Service Manager,
Access Control, and Access Logging components
because the private Language Grid handles only
language services associated with simple licenses.
The Inter-Grid Data Access and Inter-Grid Ex-
ecutor are also removed if necessary language
services can be aggregated into a single location.
Moreover, the system configuration employs
Java method invocation for communication be-
tween the Service Supervisor and Compo-
site/Atomic Service Container to improve the
latency of communication.

6 Case Study: Multilingual Environ-
ment for Wikimedia

In the case of employing a Language Grid to
multilingualize Wikipedia, one of Wikimedia
projects, by supporting multilingual discussion
for Wikipedia translation community, the per-
formance of language services should be given
higher priority due to the huge amount of articles
and users. Furthermore, the smaller the code size
of the platform is, the more the Wikipedia opera-
tor likes it due to the low maintenance cost. We
designed multilingual environment for Wiki-
media considering technical requirements of the
existing Wikimedia systems.

6.1 Technical Requirements

Numerous MediaWiki Extensions are available
to add new features or enhance the functionality
of the MediaWiki software from the users’ point
of view. Our goal in the development was that
the actual Wikipedia community, which has a
great number of users internationally, would ac-
cept the multilingual support system. From a
technical point of view, as in any system devel-
opment project, there are some technical re-
quirements raised by the open-source community.

The first one is performance. Because Wiki-
media projects such as Wikipedia are viewed by
a great number of people every day, in particular
a short response time is one of the very critical
elements of the system design.

The second is usability. MediaWiki has its
own look and feel, which should be consistent
throughout any other MediaWiki extensions.
Since Wikimedia projects are viewed by a varie-
ty of people of different age and computer skill,
usability is one of the key elements to attract us-
ers.

Lastly, neutrality and independence is im-
portant for the Wikipedia community. The com-
munity does not depend too much on specific
vendors, services or influence of third parties,
but employs open source software and services.

6.2 System Design

Figure 4 shows the system architecture of multi-
lingual environment using the Language Grid for
Wikimedia. From the software point of view, the
architecture consists of MediaWiki, the Lan-
guage Grid for Wikimedia, the Language Grid
Extension and Multilingual LiquidThreads Ex-
tension.

In order to develop a multilingual support sys-
tem for Wikipedia discussion, we have intro-

Service	 Database

Service	 Supervisor

Invocation	 Processor

Intra-‐Grid	 Executor

Composite	
Service

Container

Atomic	
Service

Container

Application	 System

Resources

Profile	 Repository

Java	 Method	 Invoker

User	 Request	 Handler

HTTP	 Request	 Handler Java	 Method	 Handler

Grid	 Composer
Intra-‐Grid	 Data	 Access

Profile	 List	 (Fixed)

File Access

Protocol
Buffers

Java	 method
invocation

Other
protocols

72

duced a private Language Grid, called Language
Grid for Wikimedia. This employs the same sys-
tem configuration as Figure 3 to prioritize per-
formance and maintainability described in the
first technical requirement. Wikimedia adminis-
trator operates the private Language Grid and
aggregates several language services provided by
volunteers for Wikimedia such as Microsoft and
Google. Locating the Language Grid between
MediaWiki and language services, we have pre-
vented strong dependency to the language ser-
vices described in the third technical requirement.
Since the Language Grid is a multilingual service
infrastructure, the Language Grid services should
allow access via Language Grid Extension by
any other MediaWiki extensions for general pur-
poses. By unifying the access to the Language
Grid, MediaWiki extensions can employ lan-
guage services by invoking PHP function on the
Language Grid Extension same as other Me-
diaWiki extensions. This allows MediaWiki de-
velopers to use language services with Me-
diaWiki’s look and feel, as described in the
second technical requirement.

Figure 4. Multilingual Environment for Wiki-
media

7 Conclusion

In this paper, we have proposed open source
platform to share and compose services while
satisfying various stakeholders’ needs. This plat-
form allows an operator to operate two types of
Language Grid: private Language Grid and pub-
lic Language Grid. The former prioritizes per-
formance and maintainability, while the latter
prioritizes intellectual property management.
Moreover, combination of two types of Lan-
guage Grid can complement language services
on the private Language Grid with language ser-
vices on the public Language Grid.

This diversity and interoperability of Lan-
guage Grids are realized by classifying system
architecture of Language Grid into two types of
components: core components that guarantee the
interoperability and optional components that
provide alternative implementations. An open
source project of Language Grid is expected to
accelerate the diversity of Language Grid and
produce other types of operation models of Lan-
guage Grid.

Acknowledgments
We acknowledge the considerable support of
National Institute of Information and Communi-
cations Technology, and Department of Social
Informatics, Kyoto University. A part of this
work was supported by Strategic Information and
Communications R&D Promotion Programme
from Ministry of Internal Affairs.

References
Volker Boehlke. 2009. A prototype infrastructure for

D-spin-services based on a flexible multilayer ar-
chitecture. Text Mining Services Conference
(TMS’09)

Ulrich Callmeier, Andreas Eisele, Ulrich Schäfer,
Melanie Siegel. 2004. The Deep Thought core ar-
chitecture frame-work. The Fourth International
Conference on Language Resources and Evaluation
(LREC’04): 1205-1208.

Khalid Choukri. 2004. European Language Resources
Association history and recent developments.
SCALLA Working Conference KC 14/20.

Hamish Cunningham, Diana Maynard, Kalina Bon-
techeva, Valentin Tablan. 2002. GATE: an archi-
tecture for devel-opment of robust HLT applica-
tions. The Fortieth Annual Meeting of the Associa-
tion for Computational Linguistics (ACL’02): 168-
175.

David Ferrucci, Adam Lally. 2004. UIMA: an archi-
tectural approach to unstructured information pro-
cessing in the corporate research environment.
Journal of Natural Language Engineering 10: 327-
348.

Toru Ishida. 2006. Language Grid: an infrastructure
for intercultural collaboration. The IEEE/IPSJ
Symposium on Applications and the Internet
(SAINT’06): 96-100.

Antonio Toral, Pavel Pecina, Andy Way, Marc Poch.
2011. Towards a User-Friendly Webservice Archi-
tecture for Statistical Machine Translation in the
PANACEA project. The 15th Conference of the Eu-
ropean Association for Machine Translation
(EAMT’11): 63-70.

73

Varadi T, Krauwer S,Wittenburg P, Wynne M,
Koskenniemi K. 2008. CLARIN: common lan-
guage resources and technology infrastructure. The
Sixth International Conference on Lan-guage Re-
sources and Evaluation (LREC’08): 1244-1248.

74

