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Abstract

Using semi-supervised EM, we learn fine-
grained but sparse lexical parameters of a
generative parsing model (a PCFG) initially
estimated over the Penn Treebank. Our lex-
ical parameters employ supertags, which
encode complex structural information at
the pre-terminal level, and are particularly
sparse in labeled data – our goal is to learn
these for words that are unseen or rare in
the labeled data. In order to guide esti-
mation from unlabeled data, we incorporate
both structural and lexical priors from the
labeled data. We get a large error reduction
in parsing ambiguous structures associated
with unseen verbs, the most important case
of learning lexico-structural dependencies.
We also obtain a statistically significant im-
provement in labeled bracketing score of
the treebank PCFG, the first successful im-
provement via semi-supervised EM of a
generative structured model already trained
over large labeled data.

1 Introduction

Computational models of natural language trained
on labeled data contain many parameters that are
not estimated accurately, due to the data spar-
sity inherent in labeled data. This is especially
true of complex structured models like parsers,
which contain a large number of parameters, and
where labeled training data is expensive to cre-
ate.These models employ various forms of param-
eter smoothing to deal with overfitting and with
unknown or low-frequency words. However, it is
desirable, and in many cases necessary, to aug-
ment supervised models using readily available
unlabeled data, such as raw news-wire or from the
web. Semi-supervised methods have therefore re-
ceived a lot of attention in recent years.

In this paper, we present a method for semi-
supervised training of a large-scale structured

model (a Penn Treebank PCFG) using the Expec-
tation Maximization algorithm (Dempster et al.,
1977). We focus on learning only those parame-
ters of the model that are particularly difficult or
impossible to obtain from labeled data, namely
parameters related to low-frequency and unseen
words (the Zipfian tail). Words are important de-
terminers of structural information for parsers; for
instance, verb subcategorization information im-
proved the Collins’ parser (Collins, 1997). How-
ever, this data is very sparse in even the largest
labeled dataset available today, i.e., the Penn Tree-
bank (Marcus et al., 1993). To illustrate the sever-
ity of the problem, consider the fact that close to
40% of verb types in the training sections of the
Penn Treebank have occurred only once therein.
Thus, modelling the structural properties of these
verbs that may be useful for disambiguation in
a parser (such as subcategorization properties) is
simply not possible from labeled data, and one has
to look to unlabeled data.

From the machine learning point of view,
semi-supervised learning in general, and semi-
supervised EM in particular, has been successful
for classification-based NLP tasks (e.g. Nigam
et al. (1998), Blum and Mitchell (1998), Yarowsky
(1995)). For more structured tasks such as part-
of-speech tagging and grammar learning, semi-
supervised learning has worked largely in the case
where the labeled data is small in size (Klein
and Manning, 2004; Steedman et al., 2003; Druck
et al., 2009a; Ganchev et al., 2010; Reichart and
Rappoport, 2007). There have been some in-
stances of successful large-scale semi-supervised
learning for structured models (McClosky et al.,
2006; Deoskar, 2008; Koo et al., 2008; Bansal and
Klein, 2011), where a grammar model trained on a
large amount of labeled data such as the full Penn
Treebank has shown further improvement from
unlabeled data. These methods have typically de-
pended on the complementarity of multiple views
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of the data (a discriminative reranking model over
a generative model as in (McClosky et al., 2006)),
and/or complex or heuristic objective functions (as
in Deoskar (2008); Koo et al. (2008)) or simply by
incorporating surface counts from unlabeled data
(as in a recent paper by Bansal and Klein (2011)).
A contribution of this paper is that we show that
using EM in a semi-supervised manner with a sim-
ple objective function can improve a parser, con-
trary to common belief in the field.

The PCFG model used in this paper is trained
on the Penn Treebank. It contains fine-grained
structural information marked on pre-terminal cat-
egories, making them similar in spirit to supertags
for strongly lexicalised formalisms like LTAG
(Bangalore and Joshi, 1999) and CCG (Steedman,
2000). A supertag encodes structure that is dis-
tributed over the tree and localises it onto a sin-
gle parameter of the model. Our learning prob-
lem is cast very simply as estimating the parame-
ters p(w|τ) (where w is a word and τ a supertag)
from labeled and unlabeled data. The problem is,
however, more complex than a sequence labeling
task because these supertags are highly ambiguous
and encode argument-adjunct distinctions as well
as long-distance dependencies (illustrated later in
examples). Semi-supervised EM is known to of-
ten give models that are worse than the supervised
model (Merialdo, 1994; Charniak, 1993; Ng and
Cardie, 2003). To address this, we incorporate
probabilistic constraints on unsupervised estima-
tion by using labeled data to derive prior knowl-
edge at two levels: (a) structural constraints in
the form of higher PCFG rules (b) preferences
over the distributions p(w|τ) themselves. We ob-
tain large improvements in assigning correct struc-
tures to unseen verbs, and also a statistically sig-
nificant improvement in labeled bracketing over a
smoothed supervised model.

The rest of the paper is structured as follows:
a description of the Treebank PCFG model and
its smoothing is in §2. §3 describes the semi-
supervised method, the constraints derived from
labeled data, and their theoretical interpretation.
§4 contains experiments and §5 evaluations. A dis-
cussion of related literature is in §6. §7 concludes.

2 The PCFG Model

We work with a probabilistic context-free gram-
mar (PCFG) model, since it is easy to analyse
and most other more sophisticated parsing mod-
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Figure 1: Some verbal supertags.

els can be understood as refinements of it (Char-
niak, 1997). The Penn Treebank PCFG used in
this work is based on Deoskar and Rooth (2008)
and Deoskar (2009) . It has pre-terminal cate-
gories that are complex and fine-grained, espe-
cially for open-class words. The PCFG is ob-
tained by a process that effectively results in node-
relabelling transformations of Penn Treebank II
trees (Johnson, 1998), and counting relative fre-
quencies of context-free rules in the transformed
trees. We illustrate the nature of complex pre-
terminal categories in the grammar with some ex-
amples below. These complex categories are in-
tended to encode structure selected by/associated
with a word onto the preterminal-tag of the word.
Fig. 1 shows fragments of Penn Treebank (hence-
forth, PTB) sentences along with their annotation
(empty categories are slightly simplified). In (a),
the verb add has two arguments – an NP four more
Boeings and a PP-CLR to the two units. The -
CLR label indicates that the PP is an argument.
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These arguments are encoded in the supertag on
the verb as n-p giving the new pre-terminal cat-
egory‘VB.n-p’, made of the original PTB POS-
tag VB, followed after a dot by its refinement
n-p indicating the NP and PP-CLR arguments.
The temporal PP (PP-TMP) is considered an ad-
junct and is not included in the supertag. Fig.
1(b) shows a more complex supertag on the verb
want – this supertag encodes the complement S
as s, the empty subject of the S as e and the
TO further down the tree as to, together forming
s.e.to. The e serves to distinguish this struc-
ture from others like expect them to communicate,
while the to distinguishes it from finite sub-
ordinate clauses like set the economy moving or
help meet increasing demand. The final example
in 1(c) shows an object relative clause. The verb
of interest is ‘created’, which has a transitive su-
pertag n indicating an NP complement. Notice
that this verb is assigned the transitive supertag
even though the complement NP is quite far re-
moved from its original position (indicated by *T-
NP*), thus capturing a long-distance dependency
between the verb created and the NP the many new
home-owners.

Our supertags are quite fine-grained – there are
81 sub-categories for verbs1. The additional mark-
ing on the original PTB POS tag is determined au-
tomatically and unambiguously by (solely) using
information available in the treebank tree, such as
the structure of the tree and functional tag mark-
ing. As seen above, these supertags distinguish ar-
guments from adjuncts and localise onto a single
parameter, long distance information that may be
spread across different levels of the tree.

For space reasons, we do not describe aspects of
the PCFG that are not directly relevant to this work
(but see Deoskar (2009)). Importantly, the PCFG
does not contain lexicalisation at higher levels of
the tree, except for function words such as preposi-
tions and determiners (as in (Klein and Manning,
2003)). As far as content-words (non-functional
words) are concerned, word or head-word infor-
mation is not part of any parameter of the PCFG
except pre-terminal rules. Thus the unlexicalised
PCFG has a clean division between complex lexi-
cal parameters (pre-terminal rules) and non-lexical
ones (the rest). We exploit this in our semi-

1This number holds for the case when lexicalized prepo-
sitions are not projected into the supertag. The complete list
is available in Deoskar (2009) (Appendix D).

supervised method to constrain unsupervised es-
timation (§3). Another consideration in using an
unlexicalised PCFG for this work is that it would
be significantly more computationally expensive
to use a lexicalized one, due to the larger number
of parameters.

The (smoothed) PCFG performs close to the
best reported results for a simple unlexicalised
Treebank PCFG (without splitting and merging of
categories as in Petrov and Klein (2007)), with a
labeled bracketing f-score of 87.4% (< 40 words)
and 86.5% (all sentences) on Section 23 of the
PTB. While this is not the highest-performing
grammar trained on the Penn Treebank (Petrov
and Klein, 2007; Charniak and Johnson, 2005),
note that it is trained on PTB trees that retain
all functional categories as well as empty cate-
gories originally present in the PTB. Most tree-
bank parsers remove functional tags and empty
categories, thereby reducing sparsity and improv-
ing scores. Including functional categories and
traces enables our PCFG to make finer distinc-
tions and recover traces, but makes our training
data much sparser than usual. Empty category re-
covery of the PCFG is 84%, at par with the state-
of-the-art (Schmid, 2006). Functional tag recov-
ery is comparable to Blaheta and Charniak (2000);
Blaheta (2004) (the only other reported results that
use all functional tags in the PTB 2). Our non-null
f-scores for the categories described in Blaheta’s
work are as follows (with the best scores from
Blaheta and Charniak (2000) or Blaheta (2004) in
brackets) – Grammatical: 94.78 (95.55), Seman-
tic: 77.96 (78.63), Topicalization: 96.26 (95.28),
Miscellaneous: 61.97 (58.99).

2.1 Smoothing the treebank PCFG based on
POS tagging: creating a baseline.

Most treebank parsers are required to smooth their
estimates to deal with over-fitting and with un-
known words. This is usually done by backing off
from a more articulated level (such as words) to
a less articulated one (such as POS-tags), or by
interpolating between the two. In the case of fine-
grained lexical categories (supertags), the problem
of smoothing becomes more severe. In some other
generative models containing fine-grained lexical
categories, such as CCG, smoothing is done by re-
placing unseen words and words below a cut-off

2Merlo and Musillo (2005)’s work uses a subset of the
functional tags in the PTB, and hence their results are not
comparable to ours.
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frequency with POS tags. This cut-off frequency
is in fact very high – for instance, Hockenmaier
and Steedman (2002) find that the optimal cut-
off is 30 for their generative parser. In our work,
such a method is not an option: we are interested
precisely in learning supertags for low frequency
and unseen words from the unlabeled corpus. Sec-
ondly, POS tags are not a parameter of the PCFG,
only supertags are.

We adopt a smoothing method first described in
Deoskar (2008), that specifically aims at introduc-
ing parameters for unseen words from the unla-
beled corpus into the PCFG3. In this method, ev-
ery word from the unlabeled corpus is assigned
with all those supertags that have been seen in
the labeled corpus with the POS tag of the word.
Thus, each verb is assigned all supertags that are
associated with verbs in the labeled corpus. This
applies both to words that are seen and unseen
in the labeled data, thus taking care of the case
where a word may have been seen in the labeled
data, but may not have been seen with all rele-
vant categories (an issue when dealing with fine-
grained categories). A small probability mass is
taken from the supervised distribution and redis-
tributed amongst the newly introduced parameters.
Equations and more details are in Deoskar (2008).

The unlabeled corpus is first POS-tagged by an
off-the-shelf POS tagger to give counts of words
and POS-tags. The count of a (word, POS-tag)
pair from the unlabeled corpus is divided amongst
all supertags (for that POS-tag) based on the ratio
of supertags in the labeled data. For unseen words,
this gives an initial estimate that is informed by
marginal counts, counted over all words (with the
given POS tag) in the labeled data. For instance,
in the case of an unseen verb, the method will
result, say, in the transitive supertag being more
common than a ditransitive one, since transitive
supertags are overall more common than ditransi-
tive ones across all verbs in the labeled data. This
model thus gives us an informed baseline to eval-
uate models learnt from the semi-supervised pro-
cess, a baseline that is more informed than back-
ing off to the part-of-speech of the word. This
smoothed model also forms the initial model for
the EM estimation described in the section below.

3It is important for unsupervised estimation that the PCFG
contain non-zero lexical parameters for all words in the un-
labeled corpus. If not, sentences with unseen words will not
get an analysis and parameters for those words will never be
induced.

3 Semi-Supervised Learning of Lexical
Parameters

3.1 The Learning Problem
EM is notoriously fickle for learning struc-
tured models in semi-supervised settings, need-
ing tricky initialisation and careful constraining
(Mann and McCallum, 2010) (e.g. Charniak
(1993) for parsing, Merialdo (1994) for POS-
tagging). In our case, the initial model is a highly-
accurate, smoothed model obtained from labeled
data (§2.1). Our task is to retrieve an estimate
from the joint corpus of labelled and unlabeled
data that performs better than a smoothed esti-
mate from labeled data alone. In our unlexicalised
PCFG, grammatical parameters (i.e., non-lexical
rules) from the labeled data are fairly accurate 4.
We do not re-estimate these from unlabeled data
(following Deoskar (2008)). Instead, we solely
re-estimate lexical parameters, which are com-
plex and contain a lot of structural information lo-
calised onto the pre-terminal level of the tree (re-
call the examples in Fig. 1). This allows us to learn
syntactic information, while keeping the learning
problem adjacent to the lexical surface.

In the following sections, we describe two ways
in which we use the labeled data to constrain our
latent variable (preterminal supertag sequences):
structural constraints in the form of non-lexical
rules, and distributions over lexical parameters
p(w|τ) themselves. These constraints are included
in a well-founded manner: a structural probabilis-
tic prior over supertag sequences, and Dirichlet
priors over conditional distributions p(w|τ) (as
seen later in §3.5, by interpreting the learning pro-
cess as a maximum a posteriori unsupervised es-
timator). These priors direct the estimator to-
wards more promising parameter spaces, creating
a strong learning environment with a clear objec-
tive function.

3.2 A Prior Over Supertag Sequences
Notation:

w : terminal (word) TB : labeled corpus
τ : pre-terminal UC : unlabeled corpus
w : sequence of terminals
τ : sequence of pre-terminals
p(τ ) : distribution over τ
p̂(τ ) : relative frequency estimate of p(τ )

4This assumption is justified to a large extent in the case of
an unlexicalised grammar; however, grammar rules are also
subject to sparsity and may benefit from re-estimation.

83



τ := 〈T, ι〉 consists of a POS-tag T and a se-
quence of features ι.

A PCFG, apart from defining a language and
distribution over terminal strings, also does so for
strings of pre-terminal symbols 5. If we consider
derivations down to the level of pre-terminals, the
(syntactic part of the) PCFG provides a distribu-
tion p(τ ) over sequences of pre-terminals τ . If
T (τ ) is the set of trees with τ as their leaves, then
p(τ ) is the sum of probabilities of all such trees
p(τ ) =

∑
T ∈T (τ ) p(T ).

We are concerned with estimating the condi-
tional probabilities p(w|τ), i.e., the parameters of
the conditional model p(w|τ ). We use Maximum-
Likelihood Estimation (MLE) for this purpose.
For the labeled part of the data TB, MLE boils
down to simply getting the relative-frequency es-
timate. For the unlabeled data UC however, we
need to marginalise over all plausible pre-terminal
sequences τ . As a consequence, p(τ ) directly
emerges as a prior over the latent variable τ . The
likelihood of the concatenation of the two corpora
can then be written as follows, with θ the set of
lexical parameters p(w|τ):

L(TB,UC; θ, p(τ )) =
∏

〈w,τ〉∈TB

p(w|τ ; θ)p(τ ) ∗

∏
w∈UC

∑
τ

p(w|τ ; θ)p(τ ) (1)

In general, this approach allows semi-
supervised MLE training of a model conditioning
on a latent variable, by introducing a prior
over the latent variable which can be directly
estimated from the labeled part of the training
data. For our model, after computing a PCFG
relative-frequency estimate for the parameters
p̂(τ ) on TB, we can shift our focus away from
the syntactical analyses in TB and effectively
treat this part of the data as a corpus of sentences
labeled with pre-terminal sequences.

3.3 MLE with Semi-Supervised EM
We estimate the parameter set θ of the conditional
model p(w|τ ) by maximising the likelihood of the
concatenation of the labeled and unlabeled cor-
pus. During the estimation we employ the esti-
mate p̂(τ ) that we retrieve from the labeled corpus

5Most PCFGs used in parsing employ pre-terminals, i.e.,
non-terminals which are the only ones which expand to ter-
minal symbols and only terminal symbols. Even if a PCFG
does not satisfy this requirement, it can be converted to an
equivalent Chomsky Normal Form grammar which does so.
Without loss of generality, we will here confine ourselves to
a grammar making use of pre-terminals.

Initialise θ0

for i = 1 to N iterations do
E-step {Find expected complete-data log-
likelihood, given current estimate}
Q(θ|θi−1) =
E[log(L(TB, 〈UC,UCτ 〉; θ, p̂(τ )))|TB,UC, θi−1]

M-step {Maximise Q in respect to θ}
θi = arg max

θ
Q(θ|θi−1)

end for
Figure 2: The EM algorithm for the semi-supervised
learning of p(w|τ)

TB as a prior over τ , i.e., its parameters are not a
subject of the estimation process and remain con-
stant. On the contrary, p̂(τ ) guides the estimation
process, showing a strong preference towards su-
pertag sequences which are syntactically justified.

Since τ is a latent variable for the unla-
beled corpus UC, arg maxθ L(TB,UC; θ, p̂(τ ))
cannot be found analytically. Instead, we use
the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977). We start with an initial-
isation point θ0, which, since we have labeled data
available, is the (smoothed) relative-frequency es-
timate of these parameters on TB.

E-step In the Expectation step, we find the ex-
pected value Q(θ|θi−1) of the complete data log-
likelihood (with UC completed with missing pre-
terminal sequences UCτ ) with respect to the miss-
ing data (pre-terminal sequences), given the ob-
served data (sentences in UC, 〈w, τ 〉 pairs in TB)
and the current estimate of the parameters θi−1.
Since the sentences in TB already have supertags,
in practice this step relates only to UC.

M-step In the Maximization step, the new esti-
mate θi is retrieved by maximising the expectation
of the E-step. The M-step under the constraints∑

w p(w|τ) = 1 can be performed analytically.
This involves computing the expected counts of
word-supertag pairs ci−1(w, τ) over the combined
corpus of labeled and unlabeled data, given θi−1.
This is equivalent to adding the observed word-
supertag counts from the labeled data to the ex-
pected counts from the unlabeled part, which can
be efficiently computed using the Inside-Outside
algorithm (Lari and Young, 1990). The update rule
for the parameters of the new estimate θi are:

θi(w|τ) =
cUCi−1(w, τ) + cTBi−1(w, τ)∑
w′ cUCi−1(w′, τ) + cTBi−1(w′, τ)

(2)
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3.4 Corpora Scaling Factors and Additional
Constraints

The impact of the labeled part of the data can be
fine-tuned as follows: since the training data is
seen as a concatenation of the labeled and unla-
beled part, we can scale them before concatenat-
ing them, i.e., take a ‘copies’ of the unlabeled data
together with b ‘copies’ of the labeled data. This
operation can be understood as merely altering the
input training corpus and has no effect on the exist-
ing analysis. In the new update formula, the scal-
ing factors of the corpora trickle down as scaling
factors of the (expected) counts:

θi(w|τ) =
a ∗ cUCi−1(w, τ) + b ∗ cTBi−1(w, τ)∑
w′ a ∗ cUCi−1(w′, τ) + b ∗ cTBi−1(w′, τ)

(3)
Secondly, we might also want to constrain the

estimation objective by limiting the number of
parameters of the conditional model p(w|τ ) to
be estimated. Many lexical parameters are es-
timated accurately from the treebank (for exam-
ple, those related to function words and other
high-frequency words), and estimation from unla-
beled data might hurt them. For each distribution
p(w|τ), we choose to retain values from TB for
some of the parameters which we assume are less
affected by sparsity issues (i.e., we keep these pa-
rameters fixed) while estimating the rest. Under
the same analysis as above, we end up with a sim-
ilar update formula as before. For each conditional
distribution given τ , if πfixed is the sum of the fixed
probability values and W τ

free the set of words for
which we wish to estimate p(w|τ), the remaining
(i.e., not fixed) probability mass is (1−πfixed) and
is distributed to the free parameters in proportion
to the related (expected) counts c(w, τ). We skip
the proof due to space limitations.

θi(w|τ) =

(1−πfixed)
a ∗ cUCi−1(w, τ) + b ∗ cTBi−1(w, τ)∑

w′∈W τ
free

a ∗ cUCi−1(w
′, τ) + b ∗ cTBi−1(w

′, τ)

(4)

3.5 Semi-Supervised Learning as Maximum
A Posteriori Estimation

In this subsection, we discuss an interpretation of
our learning method (i.e. maximum-likelihood of
the concatenated labeled and unlabeled corpora)
as Maximum a Posteriori (MAP) estimation solely
on the unlabeled corpus employing a prior p(θ)
over the parameter set θ. This is useful in order to
understand the role that the labeled data plays in
guiding estimation from unlabeled data. For each
of the multinomials p(w|τ ), consider a Dirichlet

conjugate prior with hyper-parameters α provid-
ing a distribution over the possible multinomial
parameter sets.

p(w, τ ; θ) = p(w|τ ; θ)p(τ )p(θ) (5)

The hyper-parameters α of the Dirichlet can be
interpreted as prior counts of the events that the
multinomial tracks, with each ατw corresponding
to word w emitted by pre-terminal τ . We take
advantage of this feature6 to introduce relevant
counts from the labeled corpus in the Dirichlet
hyper-parameters, setting each ατw = cTB(w, τ)+
1.

Dempster et al. (1977) show that EM can also
be used under MAP to climb towards the poste-
rior mode of the parameter space θ. Due to the
Dirichlet being conjugate to the multinomial dis-
tribution, it is easy to show that the new quantity
that we wish to maximise has the same functional
form as Q(θ|θi−1). Interestingly, for the Dirich-
let priors in Eq. (5), MAP estimation boils down
to the same update formula as in (2), establishing
an equivalent interpretation of the estimation pro-
cess which clarifies how the labeled training data
‘guide’ EM estimation on the unlabeled part of the
corpus at two distinct levels: (a) a structural prior
p(τ ) preferring syntactically correct pre-terminal
sequences, considering the interdependencies be-
tween pre-terminals in a sentence and (b) priors
over the parameter space itself p(θ), considering
lexical choice for each pre-terminal separately.

4 Experiments

We report experiments using a treebank PCFG
trained on approximately 36,000 sentences from
sections 0-22 of the Wall Street Journal (WSJ) por-
tion of the PTB, with about 5000 sentences held-
out for testing and development. Semi-supervised
training is carried out using 4, 8, 12 and 16 mil-
lion words of unlabeled WSJ data, after limiting
sentence length to <25 words. Inside-outside esti-
mation is implemented in Bitpar (Schmid, 2004).
The corpus scaling factor for labeled data is set to
8 (i.e., a = 1 and b = 8 in Eq. 3; this value makes
our labeled data ( 1 million words) weigh about
twice as much as our smallest unlabeled corpus of
4 million words. We experimented with setting the
scaling factor to 4, making the labeled corpus of 1

6Starting from an uninformed Dirichlet prior p(θ) with
ατw = 1 for all w, τ , the posterior p(θ|TB) after observing
the labeled data TB also takes the form of a Dirichlet distri-
bution with updated hyper-parameters ατw = cTB(w, τ) + 1.
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4M 8M 12M 16M
tsmooth 29.86 29.86 29.86 29.86
tparse 27.80 27.82 27.80 27.80

It 1 28.44 28.12 27.16 27.64
2 27.72 27.08 26.13 25.73
3 27.40 26.53 25.89 25.34
4 27.40 26.21 25.97 25.18
5 27.24 25.89 25.66 24.7
6 27.08 26.05 25.81 24.78
7 27.08 26.05 25.50 24.7
8 - - 25.42 24.62
9 - - 25.42 24.62
10 - - 25.18 -
11 - - 25.42 -

% Err.reduc 9.31 12.76 15.67 17.5

Table 1: Supertag error for unseen verbs in test Viterbi
parses, for different sizes of unlabeled training data

million words effectively equal in size to the unla-
beled corpus of 4 million words; however, a value
of 8 gives better results, and we report only these.

5 Evaluations

Learning lexico-syntactic information
We evaluate the learning of lexico-syntactic de-
pendencies by measuring the accuracy of supertag
assignment in Viterbi (maximum-probability)
parses of test sentences. We report this num-
ber for verbs, since they are the most important
lexical determiners of structure in a sentence, as
well as the most ambiguous. To evaluate unseen
verbs, we created a separate testset of 1200 sen-
tences with about 1250 token occurrences of un-
seen verbs (about 110 types), by holding out all
sentences with occurrences of these verbs from the
labeled data. These verbs have a wide variety of
ambiguous subcategorization frames and are thus
representative of typical verbs in the lexicon of
a language. This evaluation is a parsing-based
evaluation and gives us a focused way of measur-
ing the learning of syntactic structures associated
with unseen words (verbs in this case). Note that
each supertag is associated with a local or non-
local structure, and hence counting supertag accu-
racy in effect measures the accuracy of getting this
subtree-structure right. Since these supertags en-
code empty categories and functional tags, it is not
possible to compare other standard state-of-the-art
parsers on this metric, since they do not contain
either in their output. Table 1 shows the error in
identifying the correct supertag for these unseen
verbs in Viterbi parses of test sentences, for unla-
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Figure 3: Supertag error for unseen verbs in Viterbi
parses, for different sizes of unlabeled training data.

beled training data of sizes 4, 8, 12 and 16 mil-
lion words. The baseline model is the smoothed
treebank PCFG tsmooth (§2.1), with an error of
29.86%. This model does not contain lexical in-
formation specific to these verbs (being unseen).
Thus, in about 70% of the cases the parser as-
signs a correct supertag without verb-specific in-
formation. We create a second baseline by pars-
ing the unlabeled corpus with the model tsmooth
and obtaining Viterbi parses – this parsed corpus
is merged with the labeled data, keeping corpus
scaling factors same as before, and a PCFG tparse
extracted from it. This model is thus a self-trained
model – it improves the supertag error over tsmooth
to 27.8%, and does not change subsequently.

Semi-supervised EM training improves the er-
ror rate over tsmooth in the first iteration, and tparse
in the second. This improvement is already signif-
icant (p < 0.01, using McNemar’s test). The error
rate goes on to further improve in subsequent itera-
tions. The error rate also improves with increasing
sizes of unlabeled data. The best obtained error is
24.62% with 16M words (p < 0.0001), a substan-
tial error reduction of 17.5% over the smoothed
supervised model. Since these verbs have not oc-
curred in the labeled data, the improvements are
solely the result of learning from unlabeled data.
We also evaluated seen but low-frequency verbs
(frequency 1 to 5 in the training corpus). We see
a benefit for these as well, with an error reduction
of 8.97% (from 23.51 for the baseline tsmooth to
21.40 for 16M words of unlabeled data).

Figure 3 shows the learning curves for differ-
ent sizes of unlabeled data. The distance between
the 12M and 16M curves suggests that further im-
provements may be obtained by adding even more

86



tsmooth It 1 2 3 4 5 6 7 8
Recall 86.49 86.74 ***86.83 86.79 86.79 86.78 86.80 86.79 86.79

Precision 86.84 86.84 **86.90 **86.90 86.83 86.86 86.88 86.88 86.87
f-score 86.56 86.79 **86.87 86.83 86.82 86.82 86.82 86.84 86.83

Table 2: Labeled bracketing f-scores on Sec. 23 of PTB (4M words, f < 5). *** p<0.001, ** p<0.01

unlabeled data.

Labeled bracketing
The PARSEVAL metric is not the best metric for
evaluating the lexico-syntactic learning that is the
focus of this paper, for two reasons. Firstly, it
is a coarse metric, known to be insensitive to
lexico-syntactic (i.e. subcategorization) informa-
tion (Briscoe et al., 1998), in addition to not count-
ing argument/adjunct distinctions, functional tags
or empty categories. Secondly, and more impor-
tantly, our method is targeted towards the learning
of rare/low-frequency events, which do not have
enough of a token count in Section 23 to make a
big impact. However, we do see a statistically sig-
nificant improvement in labeled bracketing scores
on Section 23 of the PTB (Table 2) (statistical sig-
nificance calculated using a randomised version of
the paired-sample t-test).

The improvements are not large, however they
are the first improvements to be obtained using
semi-supervised EM for a large-scale Penn Tree-
bank grammar. This is the result solely of learning
lexical parameters of low-frequency words (f <
5). It is not surprising that the improvements are
small – the total token count of words that our
method impacts (i.e., words with a frequency less
than 5 in the training data) constitute only 6.1%
tokens in Section 23 (excluding numbers, but in-
cluding proper nouns, for which it is not useful to
learn structural dependencies). However, they cor-
respond to about 34.2% types, relevant for a ob-
taining a broad-coverage lexicon, but not relevant
for a token-based evaluation like labelled bracket-
ing. It should be noted that while models in later
iterations are not better than the baseline, nor are
they significantly worse.

Another important point is that the f-score on
Section 23 remains stable when the value of the
cut-off frequency f is increased, and when unla-
beled data size is increased to 16M words (not
shown in table). Thus, although we obtain large
improvements in learning about unseen words (as
shown in the previous evaluation), the overall
quality of the models, as measured by labeled
bracketing does not degrade. This is an important
consideration for semi-supervised learning, since

It f < 5 f < 10 f < 20 f < 50 f < 1000

tsmooth 18.13 18.13 18.13 18.13 18.13
1 17.78 17.82 17.79 17.68 17.65
2 18.14 17.63 17.63 17.65 17.65
3 18.43 17.65 17.70 17.67 17.65
4 18.14 17.74 17.75 17.67 17.70
5 17.53 17.72 17.74 17.81 17.68
6 17.65 17.81 17.84 17.79 17.75
7 17.68 17.81 17.87 17.84 17.84

Table 3: Overall verbal supertag error, 4M words unla-
beled data. (It=iteration)

adding large amounts of unlabeled data tends to
have a negative impact on the supervised model.

Making more parameters free
We experimented with making more and more lex-
ical parameters free, by changing the cut-off fre-
quency f7. Surprisingly, this does not affect the
learning process much. The best model is ob-
tained with f < 5, in terms of labeled bracketing
scores, supertag accuracy for unseen verbs, as well
as overall supertag accuracy for verbs (seen and
unseen). Table 3 shows the overall supertag error
for all verbs (seen and unseen) for different values
of f . When high-frequency parameters are sub-
ject to unsupervised estimation, the error rate de-
grades by a small amount, but not much, even for
f < 1000. Thus, the structural constraints plus the
current corpus scaling factor (of eight) that scales
up the size of labeled data are together sufficient to
keep these estimates in the right ballpark, with the
cut-off frequency not playing much of a role. This
will be relevant to future work since it opens up the
possibility of learning even mid-to-high frequency
lexical items using this methodology.

5.1 Analysis

We present some examples of incorrect parses by
the baseline model tsmooth, and corresponding im-
proved parses by a semi-supervised EM-trained
model (10 iterations, 12M words unlabeled data).
These examples also serve to illustrate exactly
what is captured by measuring supertag accuracy
(our main evaluation). Fig. 4 shows improve-

7f is the occurrence freq. of words in TB above which
parameters are fixed i.e. estimates from unlabeled data are
not used.
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(a) Incorrect parse from baseline model
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(b) Correct parse from EM-estimated model

Figure 4: Improvement in PP attachment.
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VBZ.d
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PP-DIR
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PP-MNR

by selling borrowed shares
(a) Incorrect parse from baseline model
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aims

S

*NP* VP

TO

to

VP

VB.z

profit

PP-MNR

by selling borrowed shares
(b) Correct parse from EM-estimated model

Figure 5: Detection of an S structure for aims

ments in a common PP attachment case (some cat-
egories are simplified for clarity). This improve-
ment is due to learning a distribution for the un-
seen verb exceeding that represents its subcatego-
rization preference for ‘NP’ rather than ‘NP PP’
(VBG.n supertag in (b) as opposed to VBG.n-p
in (a)). Fig. 5 shows the improvement in assign-
ing a more complex supertag. In (a), to profit
is incorrectly parsed as a directional PP, and the
verb aims is assigned an incorrect supertag VBZ.d
(directional complement). The EM-trained gram-
mar gives the correct parse – the correct supertag
VBZ.s.e.to is assigned to aims, with the asso-
ciated structure of an S with a empty subject *NP*
and an infinitival (to) VP. Additionally, profit is
now correctly detected as a verb and assigned an
intransitive supertag (VB.z in our notation).

6 Related Work

We compare our work to prior research along sev-
eral dimensions: for instance, the use of semi-
supervised EM for a complex structured model,
the aspect of using labeled data to constrain or
guide estimation from unlabeled data, and the use
of unlabeled data to improve an already accurate,
high baseline treebank parser.

Semi-supervised learning for a generative
model employing the EM-algorithm was already
introduced in (Miller and Uyar, 1996). It has been
applied to text classification before (Nigam et al.,
1998, 2006) (we derive our inspiration from this
work), but has not been successful with more com-
plex NLP tasks such as parsing. In contrast to text
classification, where the latent variable is the doc-
ument class (amongst a few tens of classes), our
latent variable (pre-terminal supertag sequences)
is much richer in nature and takes an unbounded
number of values. While in Nigam et al. (2006)
a simple multinomial prior over document classes
is part of the joint model and is itself trained, we
have a rich structural prior obtained from labeled
data which is kept fixed. In addition, Nigam et al.
(2006) make use of a uniform Dirichlet prior over
the model parameters. Instead, we utilise the la-
beled corpus to impose an informed Dirichlet prior
over model parameters with a preference for con-
figurations closer to the relative-frequency esti-
mate of the labeled data.

Recently, there has been a lot of focus on semi-
supervised methods that can incorporate con-
straints on latent variables based on prior knowl-
edge, either in the form of labeled data or by
other forms of indirect supervision. Ganchev
et al. (2010); Graca et al. (2007) present the Pos-
terior Regularization framework, which incorpo-
rates data-dependent constraints encoded as model
posteriors on the observed data. The Generalized
Expectation criteria (Mann and McCallum, 2010,
2007) incorporates weakly labeled data or ‘side-
information’ such as marginal label distributions
to inform estimation from unlabeled data. These
methods have been shown to work for some struc-
tured tasks but have not been applied to a large
scale grammar yet, and whether they can be used
to improve a high baseline model is an open ques-
tion.

There is also a substantial body of work on su-
pertagging (Bangalore and Joshi (1999); Clark and
Curran (2004), amongst several others), but their
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focus has been on improving parsing efficiency.
Some other work focuses on unsupervised learn-
ing, but not for high-baseline supervised models
(for instance, Dridan and Baldwin (2010); Ravi
et al. (2010)).

The current work is most similar to Deoskar
(2008) who used a treebank PCFG with Inside-
outside to obtain ML estimates from an unlabeled
corpus with an intention similar to ours: to learn
lexico-syntactic dependencies. Their method gave
improved results, with error reductions of up to
31.6% on the supertag detection task (we are not
able to compare absolute numbers, since their tree-
bank model is different from ours). Their ap-
proach was based on frequency transformations of
inside-outside counts at each iteration: these trans-
formations ensured that unsupervised estimates
did not diverge far from the original treebank esti-
mates, playing the same role as our priors. Their
method did not have an interpretation in terms of a
well-understood objective function; it is therefore
not clear whether it has general applicability, or
will extend to larger unlabeled data. The current
work, although it shows somewhat more modest
improvements, overcomes these shortcomings.

McClosky et al. (2006) enhance the perfor-
mance of a state-of-the-art parser-reranker combi-
nation by self-training on large amounts of unla-
beled data. Much of the improvement in their case
comes from the ability of an external maximum-
entropy Parse Reranker (Charniak and Johnson,
2005) to select parses from the parser’s output for
the unannotated sentences. Our work differs from
McClosky et al. (2006) in that, firstly, they employ
a fully lexicalized parser, whereas our parser is un-
lexicalised with supertags as pre-terminals. We
are thus isolating lexico-syntactic dependencies,
rather than word-word dependencies. All our im-
provements come from enhancing the lexical com-
ponent of the PCFG. They find in their analysis
that lexical learning does not play a large role in
the improvements they obtain. Secondly, in con-
trast with their somewhat complex self-training
objective, we retrain the parser under a well known
and simple Maximum-likelihood objective. Koo
et al. (2008) improved a dependency parser by us-
ing word clusters learnt from unlabeled data (an
idea similar in some ways to learning supertag-
word dependencies, since supertags form finer
classes of words that POS tags do, but coarser than
words), showing the utility of learning such statis-

tics from unlabeled data. Most recently, Bansal
and Klein (2011) improved the Berkeley parser
(Petrov and Klein, 2007) by using surface counts
from Google n-grams. The method proved very
useful for some cases of parser disambiguation,
but it is unlikely that surface counts alone can be
used to learn long-distance or complex structural
properties.

7 Conclusions

We have used semi-supervised EM to learn com-
plex, ambiguous lexico-structural dependencies,
obtaining large improvements for the hardest case
of unseen verbs, as well as low-frequency verbs.
We used a parser that uses all the information in
the Penn Treebank, viz functional tags and empty
categories. Learning such information is crucial
for semantic analysis, besides being useful for
syntactic disambiguation, but falls in the long Zip-
fian tail of linguistic events for which unlabeled
data is the only learning source. We used labeled
data to derive priors that guided estimation from
unlabeled data to both the structural and lexical
level in a principled manner. Our structural prior
took the form of a PCFG; however it may be re-
placed by alternative, more complex models em-
ploying a different view on the labeled data.

This is the first instance of semi-supervised EM
improving a complex structured model, and we be-
lieve the success is due to tightly constraining esti-
mation from unlabeled data, as well as due to our
complex lexical parameters that isolate structural
information spread across a tree onto localised pa-
rameters of the model. The method has direct ap-
plicability to statistical grammars for strongly lex-
icalised formalisms like CCG and LTAG, of which
statistical models suffer from severe sparsity and
have not been successfully trained using semi-
supervised methods. Another area of future work
will be to incorporate supertags that encode other
forms of lexico-structural dependencies, such as
noun subcategorization or adverb attachment.
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