
Proceedings of the 13th European Workshop on Natural Language Generation (ENLG), pages 284–289,
Nancy, France, September 2011. c©2011 Association for Computational Linguistics

The Bremen System for the GIVE-2.5 Challenge

Nina Dethlefs
University of Bremen

dethlefs@uni-bremen.de

Abstract

This paper presents the Bremen system for
the GIVE-2.5 challenge. It is based on deci-
sion trees learnt from new annotations of the
GIVE corpus augmented with manually spec-
ified rules. Surface realisation is based on
context-free grammars. The paper will ad-
dress advantages and shortcomings of the ap-
proach and discuss how the present system can
serve as a baseline for a future evaluation with
an improved version using hierarchical rein-
forcement learning with graphical models.

1 Introduction

Decision making in NLG systems for situated do-
mains needs to be sensitive to a number of features
concerning the spatial context, the user and the his-
tory of the interaction. Related work to situated
NLG has explored different approaches to this prob-
lem. Stoia et al. (2006) use decision trees to learn
a set of rules for referring expression generation
(REG) in a virtual environment very similar to GIVE
(Byron, 2005). Similarly, Dale and Viethen (2008)
and Viethen (2010) use decision trees to inform REG
in a spatial setting. Garoufi and Koller (2010) use
AI planning for GIVE to principally guide the user
to positions where unambiguous referring expres-
sions (RE) can be generated. Denis (2010) uses
an algorithm based on Reference Domain Theory
to generate REs for GIVE based on context. Fi-
nally, Benotti and Denis (2011) use a corpus-based
selection method to choose utterances from a hu-
man corpus to present to the user. In Dethlefs et al.

(2011), we suggested to use Hierarchical Reinforce-
ment Learning (HRL) for GIVE and compared it
against decision trees. While results (based on simu-
lation and human ratings) showed that the HRL sys-
tem achieved significantly better performance, this
paper presents a system that behaves based on de-
cision trees learnt from human data. The system is
developed as a reliable baseline for a comprehensive
evaluation of an HRL-based system in the future (as
part of the author’s PhD thesis).

2 The GIVE Task

The GIVE task involves the generation of navigation
instructions and REs in a virtual 3D world (Koller et
al., 2010), where two participants go on a ‘treasure
hunt’. One participant instructs the other in navigat-
ing through the world, pressing a sequence of but-
tons and completing the task by obtaining a trophy.

2.1 GIVE-2 Corpus Annotation

While typically the task of instruction giver is taken
by an NLG system, the GIVE-2 corpus (Gargett et
al., 2010) provides 63 English and 45 German tran-
scripts of human-human dialogues for the task. To
design an NLG system for GIVE and automatically
induce a set of rules to inform its design, the English
dialogues were complemented with a set of seman-
tic annotations. They include the string of words
and time of an utterance as well as its type. Ut-
terance types includedestination, direction, orien-
tation, pathand ‘straight’ for navigation andma-
nipulation, confirmandstopotherwise. High-level
navigation (e.g., ‘go back to the previous room’)
and low-level navigation (e.g., ‘go straight, then

284

Utterance
string=“turn left and press the blue button left of the yellow”,time=‘20:54:55’

Utterance type
content=‘orientation,manipulation’ [straight, path, direction, destination, confirm, stop]
navigationlevel=‘low’ [high]

Referring Expression
first mention=‘true’ [false], within field of vision=‘true’ [false]
discriminativecolour distractor=‘true’ [false], mentiondistractor colour=‘true’ [false]
discriminativecolour referent=‘false’ [true], mentionreferentcolour=‘true’ [false]
mentiondistractor=‘true’ [false] , mentionlandmark=‘false’ [true]
spatial relation=‘lateral projection’ [none, distance, middle, proximal, functional control,
functional containment, nonprojectionaxial, frontalprojection, verticalprojection]

User
userposition=‘on track’ [off track],
user reaction=‘perform desiredaction’ [performundesiredaction, wait, requesthelp]

Figure 1: Sample annotation for a navigation instruction followed by a referring expression. Alternative annotation
values are given in square brackets behind the actual values.

left and turn right’) is distinguished. The former
refers to contractions of the later. In terms of re-
ferring expressions (ormanipulationutterances), an-
notations include whether a referent has been men-
tioned before, whether it has a discriminating colour,
whether it has a distractor with a discriminating
colour, whether a distractor or landmark was in-
cluded in an utterance, whether the referent is visible
and the type of spatial relation between a distractor
or landmark and the referent. Spatial relations were
annotated according to Bateman et al. (2010). Please
see Figure 1 for an example annotation.

2.2 Generation Tasks

The NLG system was designed to perform four main
tasks.(1) High-level behaviour generation is con-
cerned with deciding what type of utterance to gen-
erate next among navigation instructions, referring
expressions, confirmations or stop instructions.(2)
Navigation instruction generation chooses a level
of navigation (high or low), according to the degree
of confusion of the user and their prior knowledge
of the virtual world. (3) REG includes deciding to
mention a referent’s colour or not, mention a dis-
tractor (and its colour) or not, mention a landmark
or not, and deciding what spatial relation to use (if
any). (4) Surface Realisation produces a string of
words for presentation to the user from the seman-
tics determined by the previous components.

3 Algorithms for Content Selection

3.1 Learning Decision Trees

To learn a set of rules from the annotated GIVE cor-
pus, Weka’s (Witten and Frank, 2005) J48 classi-
fier was used. We learnt one decision tree per an-
notated attribute. Rules for navigation instructions
were learnt based on utterance type and user fea-
tures, and RE rules were learnt based on the RE
and user features. On average, the decision trees
reached an accuracy of91% in a 10-fold cross val-
idation. The obtained rules were integrated into the
algorithms designed for each behaviour.

3.2 High-level Behaviour

The high-level behaviour of the system was entirely
hand-crafted. Whenever a game is started, the sys-
tem greets the user and introduces them to the main
task of the game. A first warning is then presented
to the user to not step on any red tiles. After this first
warning, additional warnings are generated when-
ever an alarm tile is visible and near to the user (so
there is eminent danger of activating an alarm) or
when a tile is visible and less than five warnings
have been generated during the whole interaction.
The objective of generating multiple warnings was
to raise a strong awareness of their danger. More-
over, the system confirms successful manipulation
actions of the user (to convey a notion of progress in
the game), but not for successful navigation instruc-

285

Algorithm 1 Algorithm for generating navigation instructions.
1: function GENERATENAVIGATION (userConfusionsc, nextGoalg, booleanleaving room) return navigation

2: instruction type← instruction type ofdestination, path, direction, orientation andstraight
3: navigation level← instruction level ofhigh andlow
4: while navigation is not generateddo
5: if next room is known and userConfusionsc = 0 then
6: navigation level = high
7: else
8: navigation level = low
9: end if

10: if user isleaving room is true and number of doors>1 then
11: instruction type = path + direction
12: else if user isleaving room is true and number of doors = 1then
13: instruction type = path
14: else if the user isleaving room is true and the nextGoalg is in the same roomthen
15: instruction type = destination towardsobject
16: if a salient landmark is present near the next goalthen
17: object = landmark
18: else if a door is presentthen
19: object = door
20: else
21: object = nextGoalg
22: end if
23: else if the user is leaving the room over a corridorthen
24: instruction type = path
25: else if the user is changing their orientationthen
26: instruction type = orientation
27: else if the user is going straightthen
28: instruction type = straight
29: else if the user is heading to another directionthen
30: instruction type = direction
31: end if
32: end while
33: end function

tions (to not interrupt smooth interactions). When-
ever the user requests help (by pressing the help but-
ton), the system either repeats the previous utterance
or generates a paraphrase. The same behaviour is
shown for user confusions (which we assume after
five seconds that users do not do anything).

3.3 Navigation Instructions

Navigation instruction generation is partially learnt
from decision trees and partially hand-crafted. It
specifies that the agent should try to use high-level
navigation behaviour whenever this is likely to be
successful (i.e. when the user is not confused and
the next room is already known). High-level instruc-
tions in this case could encourage shorter and more

efficient interactions. Whenever the user leaves a
room and a door needs to be mentioned, the di-
rection of the door is included when there is more
than one in the room. If a destination instruction to
some object is given, the system prefers instructions
to salient landmarks of the environment over but-
tons (since landmarks tend to be less ambiguous).
Whenever no landmarks are present and a destina-
tion instruction to a button is generated, using the
next referent as a destination is preferred over us-
ing a distractor. The resulting algorithm is shown in
Algorithm 2. The behaviour specified in lines 5-9
(on high-level navigation) and in lines 16-22 (about
choosing a salient object) were hand-crafted, the re-
maining behaviour was learnt.

286

Algorithm 2 Algorithm for generating referring expressions.
1: function GENERATERE(referentr, distractorsd0...n, landmarksl0...m) return RE

2: int reminders← reminders to the user of getting close tor when pressing
3: while RE is not generateddo
4: if r is visible and nearthen
5: if utterance is of typerepair andcolour of r is discriminatingthen
6: includecolour of r
7: else if utterance is not of typerepair then
8: includecolour of r
9: else

10: don’t includecolour of r
11: end if
12: if colour of r is not discriminating and number of distractorsd0...n is not0 then
13: for di in d0...n do
14: if colour of distractordi is discriminating anddi is adjacent tor then
15: includedi andcolour of di

16: else if spatial relation betweendi andr is verticalthen
17: includedi but notcolour of di

18: else if spatial relation betweendi andr is lateral or horizontalthen
19: includedi but notcolour of di

20: end if
21: end for
22: else if colour of r is not discriminating and number of landmarksl0...m is not0 then
23: includelj that is closest tor
24: end if
25: else if di is visible and near butr is notthen
26: RE = ‘Not this one, I mean the other button.’
27: else
28: RE = ‘Try to find a button somewhere near.’
29: end if
30: if reminders<5 then
31: RE = RE + ‘Remember to get really close to press it.’
32: end if
33: end while
34: end function

3.4 Referring Expressions

The REG behaviour is again partially learnt and par-
tially hand-crafted. The system mentions the colour
of a referent whenever the current utterance type is
not a repair or if the referent’s colour is discriminat-
ing. If it is not, the system’s next best choice is to
use a distractor with a discriminating colour that is
adjacent to the referent. Otherwise, it prefers to lo-
cate the referent using a vertical spatial relation over
using a lateral or horizontal one. If no suitable dis-
tractor is present, a referent can be located with re-
spect to a landmark. This set of rules was entirely
learnt from decision trees (lines 6-25 in Algorithm
3). The remaining behaviour was designed manu-

ally. Whenever a distractor is near to the user and
the only button visible, it was assumed that the user
had the intention of pressing it. A warning is gener-
ated in this case that this was the wrong button. If no
button is visible or near, the user is told to look for
one in the vicinity. In addition, the system initially
generates a set of reminders (up to five) to the user
to get close enough to a button before pressing.

4 CFGs for Surface Realisation

The generation spaces of the system were repre-
sented as CFGs so that several alternative realisa-
tions of a semantic concept could be captured and al-
ternated for more variable system output. In order to

287

CFG Generation Space for destination instructions
destination1→ desVerb1 desPrep1 desRel1
destination2→ desVerb1 desPrep2 desRel2
destination3→ desVerb2 desRel1|desRel2
desVerb1→ go | keepgoing| walk | continue| empty
desVerb2→ you need| you want| get
desPrep1→ to | towards| until
desPrep2→ into | in
desRel1→ pointRelatum
desRel2→ roomRelatum

Figure 2: Example CFG for destination instruction. Non-
terminal symbols represent semantic constituents, termi-
nal symbols possible surface realisations.

obtain CFGs, we used the ABL algorithm (van Zaa-
nen, 2000), which aligns strings based on Minimum
Edit Distance and induces a CFG automatically from
the aligned examples. The annotated GIVE corpus
examples were used as input to the algorithm based
on their instruction type, so that separate generation
spaces were obtained for destination, direction, ori-
entation, path and ‘straight’ instructions as well as
REs. As an example, the CFG for destination in-
structions is shown in Figure 2. Here, a destination
instruction can be phrased in three different ways.
Type 1 generates instructions such as ‘Go to the
sofa’ (referring to point-like destinations) and type
2 generates instructions such as ‘Go into the next
room’ (referring to room-like destinations). Type
3 destination instructions use verb forms which are
followed directly by either type of relatum. We use
these CFGs to generate variation in surface forms.1

5 Results

The GIVE-2.5 evaluation revealed advantages as
well as drawbacks of the presented approach. Some
of the drawbacks that users commented on involved
ambiguities with respect to doors or button refer-
ents, which were not identified uniquely, or the dis-
ambiguation occurred too late (e.g. when the sys-
tem first generated an ambiguous phrase and then re-
paired it with an unambiguous paraphrase). This as-
pect would usually not affect task success measures,
but can deteriorate user satisfaction scores. In terms

1This variation is random in that it is not based on the like-
lihoods with which different forms appear in the human data.

of task success, the system reached roughly56%
which is a better number than any system achieved
in the 2010 challenge, but is a bad number in com-
parison to the 2011 systems. This low number pro-
vides strong evidence that the generated tile warn-
ings were insufficient, since a number of users lost
the game here. Both points of criticism can be traced
back to a lack in flexibility in system behaviour. A
system with better (more adaptive) troubleshooting
strategies to lead the user around tiles (instead of
warning them) and avoiding ambiguous phrases at
any time would likely have reached higher task suc-
cess scores. This also affects positive feedback that
users provided on the high-level navigation strate-
gies. Several users stated that they wished the sys-
tem had employed this strategy more globally.

6 Discussion and Conclusion

The reason for the system’s lack of troubleshooting
strategies and limited flexibility is likely found in the
method itself: the human corpus data from which
the decision trees were learned presented data spar-
sity problems with respect to learning troubleshoot-
ing strategies. This is because human users in the
corpus react very flexibly to individual problematic
situations which may stretch over several turns and
therefore not be captured by the annotations.2

A powerful alternative to decision trees is re-
inforcement learning (or HRL for large systems)
which has been applied to situated interaction
(Cuayáhuitl and Dethlefs, 2011; Dethlefs et al.,
2011) with promising results. Since RL agents are
able to learn flexible behaviour strategies from a lim-
ited amount of data (using simulations), they of-
ten do not face the same data sparsity problems as
supervised learning accounts. Rule-based systems
may present a viable alternative for small and lim-
ited domains, but will not scale to complex real-
world problems because of the large amount of man-
ual work they require. Corpus-based selection meth-
ods that have been proposed recently (Benotti and
Denis, 2011) appear to yield good results for clearly
pre-specified tasks but will not present an alternative
for tasks involving uncertainty or the need to gener-

2A more comprehensive annotation scheme could possibly
improve performance in this case, but would probably not solve
the data sparsity problems on the whole.

288

alise to new circumstances.

7 Future Directions

The presented system suffered from a number of
drawbacks that future work will address. We ob-
served a lack of flexibility in the system’s be-
haviour especially when sophisticated troubleshoot-
ing strategies were needed. A hypothesis is that a
system based on hierarchical RL could adapt more
flexibly to different (unseen) conditions and pro-
vide better support to individual users. In addi-
tion, graphical models such as Bayesian Networks
(Dethlefs and Cuayáhuitl, 2011a) or HMMs (Deth-
lefs and Cuayáhuitl, 2011b) can be used to formulate
more sophisticated generation spaces based on cor-
pus probabilities and support more coherent surface
realisation. Both claims will be tested and evaluated
against the baseline established in this paper.

Acknowledgments

Thanks to the German Research Foundation DFG
and the Transregional Collaborative Research Cen-
tre SFB/TR8 ‘Spatial Cognition’ for partial support.

References

John A. Bateman, Joana Hois, Robert Ross, and Thora
Tenbrink. 2010. A linguistic ontology of space for
natural language processing.Artificial Intelligence,
174(14):1027 – 1071.

Luciana Benotti and Alexandre Denis. 2011. Giving in-
structions in virtual environments by corpus based se-
lection. In Proceedings of the 12th Annual SIGdial
Meeting on Discourse and Dialogue.

Donna Byron. 2005. The osu quake 2004 corpus of two-
party situated problem-solving dialogs. InTechnical
Report OSU-CISRC-805-TR57, The Ohio State Uni-
versity Computer Science and Engineering Depart-
ment.

Heriberto Cuayáhuitl and Nina Dethlefs. 2011.
Spatially-aware dialogue control using hierarchical re-
inforcement learning.ACM Transactions on Speech
and Language Processing (Special Issue on Machine
Learning for Robust and Adaptive Spoken Dialogue
Systems, 7(3).

Robert Dale and Jette Viethen. 2009. Referring expres-
sion generation through attribute-based heuristics. In
Proceedings of the 12th European Workshop on Natu-
ral Language Generation, ENLG ’09, pages 58–65.

Alexandre Denis. 2010. Generating referring expres-
sions with reference domain theory. InProceeding of
the 6th International Conference on Natural Language
Generation (INLG).

Nina Dethlefs and Heriberto Cuayáhuitl. 2011a.
Combining hierarchical reinforcement learning and
bayesian networks for situated dialogue. InProceed-
ings of the 13th European Workshop on Natural Lan-
guage Generation (ENLG), Nancy, France.

Nina Dethlefs and Heriberto Cuayáhuitl. 2011b. Hier-
archical Reinforcement Learning and Hidden Markov
Models for Task-Oriented Natural Language Genera-
tion. In Proceedings of ACL-HLT 2011, Portland, OR,
USA.

Nina Dethlefs, Heriberto Cuayáhuitl, and Jette Viethen.
2011. Optimising Natural Language Generation De-
cision Making for Situated Dialogue. InProceedings
of the 12th Annual SIGdial Meeting on Discourse and
Dialogue.

Andrew Gargett, Konstantina Garoufi, Alexander Koller,
and Kristina Striegnitz. 2010. The GIVE-2 corpus
of giving instructions in virtual environments. InPro-
ceedings of the 7th International Conference on Lan-
guage Resources and Evaluation (LREC).

Konstantina Garoufi and Alexander Koller. 2010. Au-
tomated planning for situated natural language gener-
ation. InProceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, Upp-
sala, Sweden, July.

Alexander Koller, Kristina Striegnitz, Donna Byron, Jus-
tine Cassell, Robert Dale, Johanna Moore, and Jon
Oberlander. 2010. The first challenge on generat-
ing instructions in virtual environments. In M. The-
une and E. Krahmer, editors,Empirical Methods
on Natural Language Generation, pages 337–361,
Berlin/Heidelberg, Germany. Springer.

Laura Stoia, Darla Magdalene Shockley, Donna K. By-
ron, and Eric Fosler-Lussier. 2006. Noun phrase
generation for situated dialogs. InProceedings of
the Fourth International Natural Language Genera-
tion Conference, INLG ’06, pages 81–88, Morristown,
NJ, USA.

Menno van Zaanen. 2000. Bootstrapping syntax and
recursion using alginment-based learning. InPro-
ceedings of the Seventeenth International Conference
on Machine Learning (ICML), pages 1063–1070, San
Francisco, CA, USA.

Jette Viethen. 2010.Generating Natural Descriptions:
Corpus-Based Referring Expression Generation in Vi-
sual Domains. Ph.D. thesis, Macquarie University,
Sydney, Australia.

Ian H. Witten and Eibe Frank. 2005.Data Mining: Prac-
tical Machine Learning Tools and Techniques. Mor-
gan Kaufmann, San Francisco, CA, 2. edition.

289

