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Abstract

This paper shows how glue rules can be used
to increase the robustness of statistical chart
realization in a manner inspired by depen-
dency realization. Unlike the use of glue rules
in MT—but like previous work with XLE
on improving robustness with hand-crafted
grammars—they are invoked here as a fall-
back option when no grammatically com-
plete realization can be found. The method
works with Combinatory Categorial Gram-
mar (CCG) and has been implemented in
OpenCCG. As the techniques are not overly
tied to CCG, they are expected to be appli-
cable to other grammar-based chart realizers
where robustness is a common problem. Un-
like an earlier robustness technique of greed-
ily assembling fragments, glue rules enable n-
best outputs and are compatible with disjunc-
tive inputs. Experimental results indicate that
glue rules yield improved realizations in com-
parison to greedy fragment assembly, though
a sizeable gap remains between the quality of
grammatically complete realizations and frag-
mentary ones.

1 Introduction

Robustness continues to be a problem for broad cov-
erage chart realizers. Since Kay’s (1996) pioneering
work on chart realization with unification grammars,
broad coverage chart realizers have been developed
for LFG (Shemtov, 1997; Cahill and van Genabith,
2006; Hogan et al., 2007), HPSG (Velldal et al.,
2004; Nakanishi et al., 2005; Velldal and Oepen,
2005; Carroll and Oepen, 2005) and CCG (White,

2006b; White, 2006a; Espinosa et al., 2008; White
and Rajkumar, 2009), but none of these realizers
come near 100% coverage. For example, both Cahill
and van Genabith (2006) and White and Rajkumar
(2009) report coverage below 90% for all Penn Tree-
bank test section sentences (despite coverage near
100% for parsers with comparable grammars), and
consequently both also report results with fragment
concatenation for increased robustness. Earlier work
with hand-crafted grammars for the XLE realizer
has also made it possible to specify fragment conca-
tentation rules.1 Failure to generate a grammatically
complete realization can be expected to become an
even greater issue in surface realization shared tasks,
where realizers must cope with non-native “common
ground” inputs.

In contrast to grammar-based chart realization
approaches, recent dependency-based approaches
(Guo et al., 2008; Gali and Venkatapathy, 2009; Guo
et al., 2010), which have eschewed explicit gram-
matical constraints, easily achieve 100% coverage
by simply ensuring that each input word in a depen-
dency structure ends up in the output. As the adage
goes, if you can’t beat ’em, join ’em, and thus in this
paper we take a step in this direction by investigat-
ing the use of MT-inspired glue rules (Chiang, 2007)
for enhanced robustness. The idea is that by using
glue rules as a fall-back option, in the limit chart
realization simply degenerates into dependency re-
alization. The catch, of course—beyond computa-
tional concerns—is that in unmodified form, real-
ization ranking models for grammar-based realiza-

1http://www2.parc.com/isl/groups/nltt/
xle/doc/xle.html#SECG5
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tion are unlikely to work as well as ones designed
explicitly for dependency-based realization.

Our approach to employing glue rules in chart
realization is cached out in Combinatory Catego-
rial Grammar (Steedman, 2000, CCG) and imple-
mented in OpenCCG,2 though as the techniques are
not overly tied to CCG, we expect them to be ap-
plicable to other grammatical frameworks as well.
To date, OpenCCG has made use of a greedy ap-
proach to assembling fragments when no grammati-
cally realization is found within a time limit, which
starts with the largest fragment and greedily adds
non-overlapping fragments to one end or the other
in a way that locally maximizes the realization rank-
ing model score. In comparison to this earlier
method, glue rules enable a much larger space of
fragment concatenations to be explored, and since
these rules are integrated into the general chart re-
alization framework, they remain compatible with
returning n-best outputs and allowing disjunctively
specified inputs, in contrast to the earlier greedy con-
catenation method.3

2 Background

OpenCCG is a parsing/generation library for CCG
which includes a hybrid symbolic-statistical chart
realizer (White, 2006b). The chart realizer takes as
input (quasi-) logical forms (LFs) represented us-
ing Hybrid Logic Dependency Semantics (HLDS),
a dependency-based approach to representing lin-
guistic meaning (Baldridge and Kruijff, 2002); see
White (2006b) for discussion. Semantic dependency
graphs are derived from the CCGbank (Hocken-
maier and Steedman, 2007), modified to incorporate
Propbank roles (Boxwell and White, 2008), where
semantically empty function words such as comple-
mentizers, relativizers, infinitival-to, and expletive
subjects are adjusted to reflect their purely syntac-
tic status. Lexical category assignments are statis-
tically filtered in a hypertagging step (Espinosa et

2http://openccg.sf.net
3While the greedy approach to fragment assembly could

conceivably be generalized to a beam search that respected dis-
junctive constraints, doing so would introduce considerable re-
dundancy with the core chart realization algorithm; indeed, gen-
eralizing the greedy approach by reusing the existing chart real-
ization algorithm is essentially what the glue rules are designed
to do.
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Figure 1: Semantic dependency graph from the CCGbank
for He has a point he wants to make [. . . ], along with
gold-standard supertags (category labels)

al., 2008); Figure 1 illustrates the desired output of
the hypertagger. As in Clark & Curran’s (2007) ap-
proach to integrating supertagging and parsing, an
adaptive strategy is employed, whereby a β-best list
of supertags is returned for each lexical predication,
and the hypertagger’s β setting is progressively re-
laxed until a complete realization is found or the
space/time limits are exceeded. Alternative realiza-
tions are ranked using an averaged perceptron model
(White and Rajkumar, 2009) that makes use of three
kinds of features: (1) the log probability of the can-
didate realization’s word sequence according to a
trigram word model and a factored language model
over part-of-speech tags and supertags; (2) integer-
valued syntactic features, representing counts of oc-
currences in a derivation, from Clark & Curran’s
normal form model; and (3) discriminative n-gram
features (Roark et al., 2004), which count the occur-
rences of each n-gram in the word sequence. Sec-
tion 4 of this paper also explores the use of a basic
dependency model, with head-dependent and sibling
dependent ordering features.

3 Glue Rules for Chart Realization

As in Chiang’s (2007) approach to using glue rules
in synchronous context-free grammars and the XLE
approach to fragment rules in hand-crafted gram-
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continue through four (traffic) lights

sb\np s\s/np n/n ∅ n
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Figure 2: Syntactic derivation for continue through four
lights using the glue rule (G) and opt-completion rule
(OC), where traffic is left out for lack of a matching
category, and four lights cannot be promoted to an NP
because of a missing determiner semantic feature in the
input.

mars, the basic idea is to concatenate top-level con-
stituents that have been combined using other rules.
As the example derivation (discussed further be-
low) in Figure 2 shows, the glue rule (G) here is
X Y[¬frag] ⇒ frag, where any two categories can
be combined into a fragment category—except that
only the left category may itself be a fragment, to
avoid spurious ambiguities in how fragments are
concatenated.

There are three twists to this basic story. First,
on the assumption that derivations that follow the
grammar are to be preferred to ones employing the
glue rule, glue rules are only invoked after the chart
has been completed with no grammatically complete
derivation found to cover the input, and then only
when the glue rule fills in an empty cell (i.e. set of
covered elementary predications, or EPs). Addition-
ally, to aid in the search for a fragment that covers
the input completely, edges on the realizer’s agenda
are sorted first by the number of covered EPs, and
secondarily by their model score.

The second twist concerns the LF chunking con-
straints in the realizer. In order to address the prob-
lem of proliferating semantically incomplete con-
stituents (Kay, 1996), OpenCCG requires all the EPs
in an LF chunk—by default, a non-trivial subtree in
the input—to be covered by an edge before combi-
nation is allowed with another edge with EPs out-
side the chunk (White, 2006b). To effectively re-
lax these constraints, if there are elementary predi-
cations within an LF chunk which are not covered by
any lexical items or instantiated unary rules, those
EPs are made optional; similarly, the EPs for instan-
tiated unary rules are made optional, so that they can

Input LF:
@c(continue ˆ

<Actor>(p ˆ pro2) ˆ
<Path>(t1 ˆ through ˆ

<Ref>(l ˆ light ˆ <num>pl ˆ
<Card>(f ˆ four) ˆ
<Mod>(t2 ˆ traffic))))

Preds:
ep[0]: @p(pro2)
ep[1]: @c(continue)
ep[2]: @c(<Actor>p)
ep[3]: @c(<Path>t1)
ep[4]: @t1(through)
ep[5]: @t1(<Ref>l)
ep[6]: @f(four)
ep[7]: @t2(traffic)
ep[8]: @l(light)
ep[9]: @l(<num>pl)
ep[10]: @l(<Card>f)
ep[11]: @l(<Mod>t2)

LF chunks:
chunk[0]: {6-11}
chunk[1]: {4-11}
chunk[2]: {0-11}

LF optional parts:
opt[0]: {0}
opt[1]: {7,11}

Figure 3: Broken HLDS LF input for continue through
four traffic lights, where traffic is given with the wrong
relation and the determiner feature is missing. The ele-
mentary predications (EPs) for traffic are made optional,
for lack of a matching category, and the EP for the im-
plicit you, introduced by a unary rule, is also made op-
tional. The sub-tree chunks for four traffic lights, through
four traffic lights and all the entire input are also shown.

be checked off as covered by relevant fragments.4

As a third and final twist, to allow glue rules to be
applied recursively, fragments that complete an LF
chunk or disjunction are marked as completed frag-
ments (fragc), so that they may be used with the glue
rule as the right category (where fragments are nor-
mally disallowed). Note that it is the recursive use
of glue rules, along with the connection to depen-
dency realization discussed next, that perhaps most
distinguishes the present approach from the use of
fragment rules in hand-crafted grammars with XLE.

4Experiments with relaxed relation matching, which is sim-
ilar to the use of relaxed unification constraints in grammar-
based error detection (Schwind, 1988), have been inconclusive
to date. In future work, it would be interesting to further explore
the use of constraint relaxation and possibly other techniques
from error detection, such as the use of mal-rules (Schneider
and McCoy, 1998).
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As glue rules are applied, LF chunking constraints
are applied as usual, and thus the fragment glu-
ing phase becomes tantamount to exploring differ-
ent permutations of heads and phrases headed by
their dependents, much as in dependency-based re-
alization approaches. That is, since fragment edges
are constructed by assembling existing edges in ei-
ther order, all permutations of edges whose EPs fall
within an LF chunk will eventually be tried (subject
so search constraints), with preference given to the
orderings with the best model scores. Note that with
glue rules, tracking of disjunctive alternatives and
optional EPs continues as usual too, so that n-best
generation and realization from disjunctive logical
forms can remain enabled.

To illustrate how glue rules enhance robustness,
consider the input for the derivation in Figure 2
given in Figure 3, which shows a broken LF in-
put for continue through four traffic lights using
OpenCCG’s routes sample grammar. Here, traf-
fic is specified using the Mod relation instead of the
HasProp relation required by the grammar, and the
semantic feature for a zero determiner has been left
out. Nevertheless, the realizer is able to generate
continue through four lights, as follows. Initially, a
nominal constituent (n) four lights is derived using
the forward application rule, and the unary rule for
promoting a bare verb phrase to an imperative sen-
tence (simp) is applied to continue. As no further
constituents can be formed, glue rules are enabled.
At this point, continue and through combine via the
glue rule (with X instantiated to simp and Y instan-
tiated to s\s/np), and the opt-completion rule (OC)
is invoked so that four lights can be considered to
cover the now optional EPs for traffic as well.5 Fi-
nally, continue through and four lights combine via
the glue rule to cover all the input EPs, making a
completed fragment (fragc).6 If this clause were em-
bedded in a larger sentence—e.g., he said continue
through four lights—the completed fragment could
again combine via the glue rule with he said to form
a complete sentence.

5That is, since EPs 7 and 11 are optional, the edge for four
lights can be promoted to one that covers all of the EPs 6–11
(White, 2006a).

6In n-best generation, other variants are generated as well,
such as you continue through four lights, continue through four
lights you, etc.

perceptron perceptron oracle
−deps +deps +deps

all: greedy 0.8133 0.8237 0.9409
all: glue rules 0.8198 0.8308 0.9570

gramm. complete 0.8686 0.8795 0.9747
greedy fragments 0.6039 0.6170 0.8158
glued fragments 0.6408 0.6523 0.8924

Table 2: Development set BLEU scores, CCGbank Sec-
tion 00 (1575 grammatically complete sentences; 322
fragmentary ones)

perceptron
+deps

all incl. greedy fragments 0.8402
all incl. glue rule fragments 0.8462

grammatically complete 0.8879
greedy fragments 0.6116

glue rule fragments 0.6477

Table 3: Test set BLEU scores, CCGbank Section 23
(1932 grammatically complete sentences; 328 fragmen-
tary ones)

4 Experimental Results

To further explore the connection to dependency re-
alization, the dependency features illustrated in Ta-
ble 1 were added to the baseline averaged perceptron
realization ranking model.7 These features, which
depend on the input LF and candidate realization
but not the CCG categories, count the occurrences
of head-dependent and sibling dependent ordering
configurations in a derivation. The features listed
at the top record whether the head precedes the de-
pendent or vice-versa, grouped by the broad part of
speech (POS) of the head and the relation between
the head and the dependent, with different combi-
nations of words and POS tags. The features at the
bottom record the order of sibling dependent words
appearing on the same side of the head word, simi-
larly grouped by the broad POS of the head and at
different granularities of word or POS tag, and addi-
tionally with relation-relation orderings.

Table 2 shows the results of reverse realization
with OpenCCG on the development section of the

7Features incorporating named entity classes (Rajkumar et
al., 2009) and targeting agreement errors (Rajkumar and White,
2010) were not used in the experiments reported here.

197



Feature Type Example
HeadBroadPos + Rel + Precedes + HeadWord + DepWord 〈VB, Arg0, dep, wants, he〉

. . . + HeadWord + DepPOS 〈VB, Arg0, dep, wants, PRP〉

. . . + HeadPOS + DepWord 〈VB, Arg0, dep, VBZ, he〉

. . . + HeadWord + DepPOS 〈VB, Arg0, dep, VBZ, PRP〉
HeadBroadPos + Side + DepWord1 + DepWord2 〈NN, left, an, important〉

. . . + DepWord1 + DepPOS2 〈NN, left, an, JJ〉

. . . + DepPOS1 + DepWord2 〈NN, left, DT, important〉
. . . + DepPOS1 + DepPOS2 〈NN, left, DT, JJ〉

. . . + Rel1 + Rel2 〈NN, left, Det, Mod〉

Table 1: Basic head-dependent and sibling dependent ordering features

CCGbank, Section 00, using a perceptron model
with and without the dependency features as well
as an oracle model using an n-gram precision score
(approximating BLEU) against the reference sen-
tence, which provides a topline result. Grammati-
cally complete realizations were found for 83% of
the development sentences within a 15-second time
limit; in the remaining cases, outputs were con-
structed from the current chart either using the glue
rules or the earlier greedy fragment assembly. With
the glue rules, the realizer was run with packing
enabled with a new 15-second limit, and complete
edges were unpacked; with greedy fragment assem-
bly, the realizer was run in best-first mode up to the
new time limit, and then the available edges were
greedily assembled. As the table shows, on the frag-
mentary cases the glue rules yield more than a three
and a half point improvement in BLEU scores over
greedy fragment assembly when using the percep-
tron scorer, both with the dependency features (from
0.6170 for 0.6523) and without them (from 0.6039
to 0.6408), showing that the modeling benefit of the
dependency features carries over to the fragmentary
cases. With the oracle scorer, the improvement is
over 7.5 BLEU points, indicating that the glue rules
may be capable of yielding even larger improve-
ments with better ranking models.

Table 3 confirms the results of the averaged per-
ceptron model with dependency features on the test
section of the CCGbank, Section 23. As is evident in
the table, the gap between the BLEU scores for the
grammatically complete sentences and the fragmen-
tary ones is quite large (more than 20 BLEU points).
Thus, although the overall improvement in BLEU
scores is modest (0.6-0.7 of a BLEU point) since
the glue rules apply in only 15-17% of the cases,

their effect is clearly noticeable with these sentences
where the outputs remain generally mediocre.

5 Conclusions and Future Work

This paper has shown how glue rules can be used in
OpenCCG as a fall-back option when no grammati-
cally complete realization can be found, thereby in-
creasing the robustness of chart realization. Unlike
an earlier robustness technique of greedily assem-
bling fragments, glue rules enable n-best outputs,
are compatible with disjunctive inputs, and explore
a larger space of possible fragment concatenations.
They also differ from the fragment concatenation
rules used in hand-crafted grammars for the XLE
realizer in applying recursively, enabling the glue
rules to emulate dependency realization. The exper-
imental results indicate that by enabling this larger
space of assembled fragments to be explored, glue
rules can yield improved realizations in comparison
to greedy fragment assembly, though a sizeable gap
remains between the quality of grammatically com-
plete realizations and fragmentary ones.

In future work, we plan to experiment with
realization ranking models incorporating richer
dependency-based features, with the aim of fur-
ther reducing the quality gap between grammatically
complete and fragmentary realizations. We also plan
to examine the impact of such models and the glue
rules on Generation Challenges shared task results.
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