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Abstract

We present a framework for text simplification
based on applying transformation rules to a
typed dependency representation produced by
the Stanford parser. We test two approaches
to regeneration from typed dependencies: (a)
gen-light, where the transformed dependency
graphs are linearised using the word order and
morphology of the original sentence, with any
changes coded into the transformation rules,
and (b)gen-heavy, where the Stanford depen-
dencies are reduced to a DSyntS representa-
tion and sentences are generating formally us-
ing the RealPro surface realiser. The main
contribution of this paper is to compare the
robustness of these approaches in the presence
of parsing errors, using both a single parse and
an n-best parse setting in an overgenerate and
rank approach. We find that the gen-light ap-
proach is robust to parser error, particularly in
the n-best parse setting. On the other hand,
parsing errors cause the realiser in the gen-
heavy approach to order words and phrases in
ways that are disliked by our evaluators.

1 Introduction

In this paper, we present a system, REGENT, for
text regeneration tasks such as text simplification,
style modification or paraphrase. Our system applies
transformation rules specified in XML files, to a
typed dependency representation obtained from the
Stanford Parser (De Marneffe et al., 2006). There
are currently rule files for simplifying coordination
(of verb phrases and full clauses), subordination, ap-
position and relative clauses, as well as conversion
of passive to active voice; for instance, simplifying:

The original police inquiry, which led to
Mulcaire being jailed in 2007, also dis-
covered evidence that he has successfully
intercepted voicemail messages belonging
to Rebekah Brooks, who was editor of the
Sun when Mulcaire was working exclu-
sively for its Sunday stablemate.

to:

The original police inquiry led to Mulcaire
being jailed in 2007. The police inquiry
also discovered evidence that he has suc-
cessfully intercepted voicemail messages
belonging to Rebekah Brooks. Rebekah
Brooks was editor of the Sun. This was
when Mulcaire was working exclusively
for its Sunday stablemate.

The main aim of this paper is to describe and com-
pare two methods for generating sentences from the
transformed dependency graphs:

1. gen-heavy:We use RealPro (Lavoie and Ram-
bow, 1997), a statistical realiser to generate,
making all decisions related to morphology and
word ordering.

2. gen-light: We reuse word order and morphol-
ogy from the original sentence, and specify any
changes to these as part of each transformation
rule.

Both options have pros and cons. In the gen-light
approach described in detail in Siddharthan (2010)
and summarised in§3.1, we can reuse information
from the input sentence as much as possible, lead-
ing to very efficient generation. The downside is
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that we need to encode some generation decisions
within transfer rules, making them cumbersome to
write and difficult to learn automatically. A case can
be made, particularly for the issue of subject-verb
agreement, for such issues to be handled by a gen-
erator. This would make the transfer rules simpler
to write, and indeed easier to learn automatically in
a supervised setting. While many syntactic simplifi-
cation rules are quite easy to formulate by hand, this
might be an important consideration if we were try-
ing to learn stylistic improvements or other general
paraphrase rules from corpora. To explore the feasi-
bility of using a full surface realiser for text simpli-
fication, we implemented a module that converts the
Stanford dependencies to a DSyntS representation,
and used RealPro (Lavoie and Rambow, 1997) to
generate sentences. This module is briefly described
in §3.2, before we evaluate both approaches in§4.

Summary: To summarise our findings, we find
that that the gen-light approach is fairly robust to
parsing errors, particularly when the n-best parses
are used in an overgenerate-and-rank approach.
However, the gen-heavy approach fares less well,
since the process of applying transformation rules
to an incorrect analysis and then generating with a
statistical realiser often leads to garbled output. The
gen-heavy approach can be made slightly more ro-
bust by using the n-best parses, but the judges in
our evaluation still find its word and phrase order-
ing decisions much less acceptable. Based on our
evaluation, we conclude that the preferred solution
to regeneration tasks would use a gen-heavy ap-
proach for verb features (tense, mood, voice, agree-
ment etc.) and argument ordering, while otherwise
reusing word and phrase order from the input.

2 Related work

Text simplificationis the process of reducing the
grammatical and lexical complexity of a text, while
retaining its information content and meaning. The
main goal of simplification is to make informa-
tion more accessible to the large numbers of peo-
ple with reduced literacy. The National Liter-
acy Trust (http://www.literacytrust.org.uk) estimates
that one in six adults in the UK have poor liter-
acy skills; other potential beneficiaries include non-
native speakers and children. While there is a large

body of evidence that manual text simplification is
an effective intervention, there has been relatively
little work on automatic simplification.

2.1 Vocabulary, Syntax and Comprehension

There is a large body of research that suggests that
there are differences in the way highly skilled and
poor readers read. The most striking difference is
perhaps at the word level, and people for whom
mapping words to meanings requires effort tend
to be bad readers (Anderson and Freebody, 1981).
However, various studies also highlight the role
of syntax in comprehension; for instance, splitting
complex sentences into several shorter ones results
in better comprehension for less skilled readers (Ma-
son and Kendall, 1979). Similarly, students’ read-
ing comprehension has shows to improve when texts
have been manually rewritten to make the language
more accessible (L’Allier, 1980), or to make the con-
tent more transparent (Beck et al., 1991). L’Allier
(1980) found that text revision brought low ability
readers above the performance level of middle abil-
ity readers on the original text and Linderholm et
al. (2000) also found that reformulating causal re-
lations for relatively difficult texts had a significant
facilitatory effect for readers with low reading skills.
However, manually revising texts to fit readers’ level
of expertise is expensive in terms of both time and
money, and there is a need for automatic text simpli-
fication systems.

2.2 Automatic Text Simplification

Previous work on automatic syntactic simplification
has applied transformation rules to phrasal parse
trees. In early work, Chandrasekar and Srinivas
(1997) induced simplification rules from a compar-
ison of the structures of the chunked parses of the
original and hand-simplified text. The learning al-
gorithm worked by flattening subtrees that were the
same on both sides of the rule, replacing identi-
cal strings of words with variables and then com-
puting tree→trees transformations to obtain rules in
terms of these variables. This work simplified rel-
ative clauses, apposition and subordination. The
PSET project (Devlin and Tait, 1998; Carroll et al.,
1998), which aimed at simplifying news reports for
aphasics, followed the approach of Chandrasekar
and Srinivas (1997) for syntactic simplification and
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focused mainly on lexical simplification (replacing
difficult words with easier ones). The PSET project
usedWordNet(Miller et al., 1993) to identify syn-
onyms and the Oxford Psycholinguistic Database
(Quinlan, 1992) to determine the relative difficulty
of words (Devlin and Tait, 1998).

In more recent work, we have examined syntac-
tic simplification and, in particular, the way syntac-
tic rewrites interact with discourse structure and text
cohesion (Siddharthan, 2003; Siddharthan, 2006).
This work has spurred subsequent research in us-
ing text simplification for second language acqui-
sition (Petersen, 2007) and for increasing access to
the web for people with low literacy (Gasperin et al.,
2010). However, all these approaches are limited in
the kinds of simplification they can perform. For
instance, Petersen (2007) found through compari-
son with manually simplified text that while 87% of
split points identified by the Siddharthan (2006) sys-
tem were correct, these accounted for only 37% of
the simplification operations identified in the manu-
ally simplified text. Siddharthan (2010) developed
a framework that can potentially handle a much
wider range of lexico-syntactic simplification oper-
ations using transformation rules over type depen-
dency structures, demonstrating their approach us-
ing rules to reformulate sentences expressing causal-
ity (e.g., “ The cause of the explosion was an incen-
diary device” to “ The explosion occurred because
of an incendiary device”). In this paper, we build on
that work and focus on the issue of robustness in the
face of incorrect parser analyses.

2.3 Other text regeneration tasks

Sentence compression is a related research area that
aims to shorten sentences for the purpose of sum-
marising the main content. There are similarities
between our interest in reformulation and existing
work in sentence compression. Sentence compres-
sion has usually been addressed in a generative
framework, where transformation rules are learnt
from parsed corpora of sentences aligned with man-
ually compressed versions. The compression rules
learnt are therefore tree-tree transformations (Knight
and Marcu, 2000; Galley and McKeown, 2007;
Riezler et al., 2003) of some variety. These ap-
proaches focus ondeletionoperations, mostly per-
formed low down in the parse tree to remove modi-

fiers. Further they make assumptions about isomor-
phism between the aligned tree, which means they
cannot be readily applied to more complex refor-
mulation operations such asinsertion and reorder-
ing. Cohn and Lapata (2009) provide an approach
based on Synchronous Tree Substitution Grammar
(STSG) that in principle can handle the range of
reformulation operations. However, given their fo-
cus on sentence compression, they restricted them-
selves to local transformations near the bottom of
the parse tree. Siddharthan (2010) compared differ-
ent representations and concluded that phrasal parse
trees were inadequate for learning complex lexico-
syntactic transformation rules and that dependency
structures were more suited. Indeed dependency
structures are now increasingly popular for other text
regeneration tasks, such as sentence fusion (Krah-
mer et al., 2008; Marsi and Krahmer, 2005; Barzilay
and McKeown, 2005).

3 Simplification using typed dependencies

We now summarise REGENT, our system for regen-
erating text, including two approached to genera-
tion: gen-light (§3.1) andgen-heavy(§3.2).

As mentioned before, we use the Stanford parser
(De Marneffe et al., 2006) to obtain a typed depen-
dency representation of the input sentence. These
are triplets consisting of a relation-type and two ar-
guments. We will use the following sentence to il-
lustrate the process (note that the parser provides
word position and part-of-speech tags in addition to
dependency relations):

The/DT cat/NN was/VBD chased/VBN
by/IN the/DT dog/NN ./.

det(cat-2, The-1)
nsubjpass(chased-4, cat-2)
auxpass(chased-4, was-3)
det(dog-7, the-6)
agent(chased-4, dog-7)
punct(chased-4, .-8)

To generate, we note that these dependencies rep-
resent a tree1 (we have not shown the punctuation

1In fact, the typed dependencies are only ‘almost’ acyclic.
There are a small number of (predictable) relations that intro-
duce cycles .
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arc for simplicity):

chased:4
nsubjpass

auxpass
agent

cat:2

det

was:3 dog:7

det

The:1 the:6

To generate from a dependency tree, we need to
know the order in which to process nodes - in gen-
eral tree traversal will be “inorder”; i.e, left subtrees
will be processed before the root and right subtrees
after. These are generation decisions that would usu-
ally be guided by the type of dependency and statis-
tical preferences for word and phrase order. How-
ever, using a gen-light approach, we could simply
use the word positions (1–7) from the original sen-
tence, noting that theagent relation introduces the
word “by”.

As typed dependencies can be represented as a
flat list, we can write transformation rules quite eas-
ily. For instance, a transformation rule to convert the
above to active voice would require three deletions
and two insertions:

1. Match and Delete:

(a) nsubjpass(??X0, ??X1)

(b) auxpass(??X0, ??X2)

(c) agent(??X0, ??X3)

2. Insert:

(a) nsubj(??X0, ??X3)

(b) dobj(??X0, ??X1)

Applying this transformation to the dependency
list above creates a new dependency tree:

chased:4
dobj nsubj

cat:2

det

dog:7

det

The:1 the:6

We can no longer rely on the original word order
to determine the order in which to traverse the tree
for generation. Now, to generate from this structure,
we have two options: gen-light and gen-heavy, sum-
marised below.

3.1 The gen-light approach

If we choose the gen-light approach, our transfor-
mation rules, in addition to Deletion and Insertion
operations, also need to provide rules for tree traver-
sal order. These only need to be provided for nodes
where the transform has reordered subtrees (“??X0”,
which instantiates to “chased:4” in the trees above).
Our rule would thus include:

3. Traversal Order Specifications:

(a) Node ??X0: [??X3, ??X0, ??X1]

This states that for node ??X0, the traversal or-
der should be subtree ??X3 followed by current node
??X0 followed by subtree ??X1. Using this specifi-
cation would allow us to traverse the tree using the
original word order for nodes with no order specifi-
cation, and the specified order where a specification
exist. In the above instance, this would lead us to
generate:

The dog chased the cat.

Our transfer rule is still incomplete and there is
one further issue that needs to be addressed – opera-
tions to be performed on nodes rather than relations.
There are two node-level operation that might be re-
quired for sentence reformulation:
Lexical substitution: We still need to ensure num-
ber agreement for the verb “chase” (??X0). By
changing voice, the verb now has to agree with ??X3
(the dog) rather than ??X1 (the cat). Further the
tense of ??X0 was encoded in the auxiliary verb
??X2 (was) that has been deleted from the depen-
dency list. Neither of these matter in the above ex-
ample, but consider instead a rule for simplifying
“The cat is chased by the dogs” to “the dogs chase
the cat”. We need the transfer rule to encode the lex-
ical substitution required for node ??X0:

4. Lexical substitution:

(a) Node ??X0: Get tense from ??X2 and
number agreement from X3.

Other lexical substitution are easier to specify;
for instance to reformulate “John jumped because
David shouted.” as “David’s shouting caused John
to jump”, the following lexical substitution rule is
required for node ??Xn representing “shout” that re-
places its suffix “ed” with “ing”:
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Lexical substitution: Node ??Xn: Suffix=“ing”

Node deletion: This is an operation that removes a
node from the tree. Any subtrees are moved to the
parent node. If a root node is deleted, one of the
children adopts the rest. By default, the right-most
child takes the rest as dependents, but we allow the
rule to specify the new parent. In the above exam-
ple, we want to remove the node ??X2 (“was”) (note
that deleting a relation does not necessarily remove
a node – there might be other nodes connected to
??X2 in the graph). We would like to move these to
the node ??X0 (“cause”):

5. Node Deletion:

(a) Node ??X2: Target=??X0

Node deletion is easily implemented using search
and replace on sets of GRs. It is central to any re-
formulations that alter syntactic categories; for in-
stance, to reformulate “The cause of X is Y” as “Y
causes X”, we need to delete the verb “is” and move
its dependents to the new verb “causes”.

To summarise, the gen-light approach requires
transfer rules to specify five lists:

1. CONTEXT: Transform only proceeds if this
list of GRs can be unified with the input GRs.

2. DELETE: List of GRs to delete from input.

3. INSERT: List of GRs to insert into input.

4. ORDERING: List of nodes with subtree order
specified

5. NODE-OPERATIONS: List of lexical substitu-
tions and deletion operations on nodes.

For most reformulations, the CONTEXT and
DELETE lists are one and the same, but one can
imagine reformulation tasks where extra context
needs to be specified to determine whether reformu-
lation is appropriate.

3.2 The gen-heavy approach

The alternative to specifying lists for changes in
word/phrase ordering and morphology is to use a
formal generator to make these decisions. We use
an existing widely used generator RealPro (Lavoie

and Rambow, 1997) that uses a typed dependency
formalism. For this purpose we have written a con-
vertor that translates the Stanford dependency types
into the DSyntS notation required by RealPro. The
DSyntS notation differs in two basic ways:

1. In DSyntS, words are presented as lemmas,
with tense, voice, aspect, mood, taxis, number,
person, gender, etc. represented as features.
This means we need to analyse part-of-speech
tags, auxilliary verbs and pronouns to provide
RealPro with the correct input.

2. Unlike the Stanford Dependencies that con-
tains 52 fine-grained types, DSyntS uses only
the following seven types: ‘I’, ‘II’, ‘III’, ‘IV’,
‘ATTR’, ‘DESC-ATTR’ and ‘APPEND’. Thus,
we need to map each of the Stanford depen-
dencies to one of these types. There are some
subtleties regarding coordination and relative
clauses, but the mapping is for the most part
straightforward.

The DSyntS representation created by tranform-
ing the Stanford Dependencies for “the dog chased
the cat” is:

DSYNTS:
"chase" [class:"verb" voice:"act"

tense:"past" aspect:"simple"
taxis:"nil" polarity:"nil"]

(
I "dog" [class:"common_noun"

number:"sg" article:"def"]
II "cat" [class:"common_noun"

number:"sg" article:"def"]
)

END:

The advantage of the gen-heavy approach is that
generation decisions such as ordering and agreement
no longer need to be encoded in the transformation
rules, making them easier to learn automatically.

3.3 Applying multiple transformation rules

One advantage of using typed dependencies as a rep-
resentation for applying transformation rules is that
we can iteratively apply multiple transformations on
the same set of dependency relations. As an illustra-
tion, consider:

The cat was chased by a dog that was
barking
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det(cat-2, The-1)
nsubjpass(chased-4, cat-2)
auxpass(chased-4, was-3)
det(dog-7, a-6)
agent(chased-4, dog-7)
nsubj(barking-10, dog-7)
aux(barking-10, was-9)
rcmod(dog-7, barking-10)

We apply two rules; the first simplifies relative
clauses:

1. Match and Delete: 2. Insert:
(a) rcmod(??X0, ??X1) (a) nsubj(??X1, ??X0)
(b) nsubj(??X1, ??X0)

This rule removes the embedding “rcmod” rela-
tion, when there is a subject available for the verb in
the relative clause. Then we apply the rule to convert
passive to active voice, as described in§3. Follow-
ing these two rule applications, we are left with the
following list of dependencies:

det(cat-2, The-1)
dobj(chased-4, cat-2)
det(dog-7, a-6)
nsubj(chased-4, dog-7)
aux(barking-10, was-9)
nsubj(barking-10, dog-7)

This list now represents two trees withchasedand
barkingas root nodes:

chased
dobj nsubj

cat

det

dog

det

the a

barking
aux nsubj

was dog

det

a

This generates (using either gen-light or gen-
heavy):

A dog chased the cat. The dog was bark-
ing.

Note that we employ a postprocessor for gener-
ating referring expressions when a noun phrase is
repeated. This includes the head noun and either a
definite article or a title (e.g.,Mr or President).

3.4 The n-best parse setting

During the development of the system, we found
that most of the errors in the output could be traced
back to inaccurate parsing. For instance, the top
parse for the sentence:

Cars and pick-up trucks with badly
twisted and still smouldering frames lit-
tered the three compounds, which housed
villas and four-storey blocks.

identifiedwhich housedas a relative clause, andvil-
las andblocksas verbs. This incorrect analysis got
simplified (using gen-light) as:

The three compounds housed. Cars and
pick-up trucks with badly twisted and
still smouldering frames littered the com-
pounds, villas and four-storey. And Cars
blocks.

We ask the question, can we use the n-best parses
and try to rank the simplified texts in some way?
And to what extent can this increase the robustness
of the system?

The question arises, how can we evaluate the
quality of the generated sentences? Our first at-
tempt calculated n-gram overlap with the original
sentence, but this was not found to be useful. Essen-
tially, every transformation of the input sentence re-
duces ngram overlap between the input and the out-
put, so this method penalises the application of any
transforms. This proved to be a problem even for
simple transforms such as coordination and subor-
dination that introduce sentence breaks. It proved a
bigger problem for embedded constructs such as rel-
ative clauses and apposition, and of course the met-
ric is almost meaningless for voice change and other
transformations that reorder constituents or change
words. Indeed a metric based on comparison with
the original would make little sense for text modifi-
cation applications.

Our final approach was to manually go through
the simplifications of the 50 best parses of 100 sen-
tences and identify patterns of infelicities in them.
We identified patterns such as:

1. Sentences ending in subject pronouns, preposi-
tions or conjunctions
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2. Word repetition (e.g., “is is” or “to to”)

3. Prepositions followed by subject pronouns
(e.g., “of he”)

4. Bad sequences of conjunctions and preposi-
tions (e.g., “because but” or “until for”)

Our metric deducted a point for each identified
infelicity. In addition we penalised very short sen-
tences (4 words or less) and simplifications that re-
sulted in many fewer words than the original.

In addition to the above penalties, we used the fol-
lowing positive scores:

1. Bigram and trigram overlap with original sen-
tence (as a fraction)

2. The number of sentences in the output (this is
to encourage the application of simplification
rules)

3. A bonus if the simplification was performed on
the top-ranked parse (as this is the most likely
to be correct)

In the next section on testing, we report results for
system settings using a single parse, and the n-best
parses, where we producen outputs and select the
best one according to the criterion described in this
section.

4 Evaluation of generation strategies

In this paper we have proposed a framework for
complex lexico-syntactic text regeneration. Our sys-
tem, REGENT, comes with 63 rules for simplifying
coordination, subordination, relative clauses, appo-
sition and passive voice. In addition, our system
offers two generation options (gen-light and gen-
heavy) in two settings (single and n-best parse).

We emphasise that our purpose in this paper is not
to evaluate the simplification rules for their effect
on comprehension for different categories of users,
but only to test the framework for robustness in the
face of parsing errors. We will focus on compar-
ing the four different system settings with respect
to how many simplifications have been performed
and whether these have been done correctly. Specif-
ically, we will not evaluate whether simplification is
found to be useful to different categories of users.
With these narrow goals, we report results using:

• Extent: The level of simplification achieved,
based on the number of transforms performed
and the average sentence length in the simpli-
fied text.

• Precision: The proportion of transformed sen-
tences for which the rules have been applied
accurately, so that the output is grammatical
with (a) correct verb agreement and inflexion
and (b) modifiers/complements appearing in
acceptable orders.

Measuring precision as defined above is tricky.
As a developer trying to evaluate the framework,
the pertinent question is whether the transformation
rules have been applied correctly. This however re-
quires knowledge of the transformation rules, which
only the developer has. However, we also need ex-
ternal unbiased judgements by testers not involved
with the development of the system. These would
necessarily conflate issues arising from the quality
of the transformation rules with issues arising from
the parsing and generation aspects of the system. We
present developer test results in§4.1, and an addi-
tional evaluation with external testers in§4.2.

4.1 Developer Testing

Our data is six news articles totalling 175 sen-
tences selected as follows: We picked the first
two news reports each from the main webpage of
three online British news sources (news.bbc.co.uk,
guardian.co.uk and thesun.co.uk) at a single time.

We summarise our testing results (with accuracy
judged by the developer) in Table 2. In addition,
Table 1 provides examples of accurate and inac-
curate transformations, as judged by the developer
(our judges in§4.2 did not always agree). As Ta-
ble 2 shows, using the n-best parse setting increases
the average number of simplification operations per-
formed by 9 % points and the number of sentences
modified by 5 % points. This reduces the average
sentence length of the output by around one word.
We attribute this improvement to the greater like-
lihood of a transformation rule matching a depen-
dency parse when multiple parses are considered.
More importantly, we also observe an improvement
in accuracy from using multiple parses, suggesting
that our approach to ranking (§3.4) is valid.
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Accurate and Inaccurate Transformations

1 I am very relieved to have won my appeal and for recognition Iwas treated unfairly and unlawfully.√
I am very relieved to have won my appeal. And for recognition Iwas unfairly and unlawfully treated.

× I am very relieved to have won my appeal. And I was unfairly andunlawfully treated for recognition.
2 One user of the social network, christonabike, tweeted...
×One user of the social network tweeted. The network is christonabike...

3 It is believed to include recordings Mulcaire made of messages left on Rice’s mobile phone, including several
from friends and families.√
It is believed to include recordings Mulcaire made of messages left on Rice’s mobile phone. This includes
several from friends and families.

× It is believed to include recordings Mulcaire, made of messages, left on Rice’s mobile phone. This includes
several from friends and families.

4 Lo and behold the taxpayers subsidised a $30,000 kitchen and he’s refusing to give all the details.√
The taxpayers lo and behold subsidised a $30,000 kitchen. And he is refusing to give all the details.

5 On Thursday, Serbian TV showed footage of the former general wearing a baseball cap and walking slowly as
he appeared in court in Belgrade for the first time.√
Serbian TV showed footage of the former general wearing a baseball cap and slowly walking on Thursday.
This is as he appeared in court in Belgrade for the first time.

Table 1: Examples of automatic reformulations.

System SettingAv S Len #Trans/S%S Trans%Acc

Original 20.9
gen-l/1 parse 15.3 0.65 50.2 83.9
gen-l/50 parses 14.3 0.74 55.4 87.9
gen-h/1 parse 14.8 0.65 50.2 70.8
gen-h/50 parses 14.0 0.74 55.4 77.7

Table 2: Test results for four configurations of the sys-
tem: gen-light andgen-heavy in single parse and 50-
best parses modes. The columns report average sentence
length in words, average number of transformations per-
formed on each input sentence, percentage of input sen-
tences with at least one transformation, the correctness of
the transformations.

Manual inspection of the mistakes reveals that for
the gen-light approach with n-best parses, these are
mostly due to relative clause attachment errors by
the parser – these result in incorrect simplification,
but no disfluency in the output (cf. Ex 2 in Table 1).

The gen-heavy approach makes many more er-
rors; these are usually due to mis-parses (cf. Ex 1
and 3 in Table 1; in 3, while the word order is fine,
the parser has incorrectly detected a reduced relative
clause, and RealPro has placed this within commas).
In addition, the gen-heavy approach often results in
different phrase orders that might be harder to read,
for instance in Ex 4 and 5. These have been treated
as accurate in this evaluation.

4.2 Acceptability measurements

In the previous section, the developer was testing
whether the rules have been applied accurately. This
is different from evaluating the acceptability of the
output. We selected 50 sentences from our test set
at random and asked two native speakers to label
each of the four reformulations (gen-light and gen-
heavy in single and 50-best parse settings) as either
acceptable or unacceptable. The judges were shown
both the original sentence and reformulations, with-
out being provided information about system set-
tings. We found quite a low pair-wise agreement
(kappa < 0.55) between the two judges and also
with the developer’s judgements for these sentences
(Table 3). Table 4 shows the acceptability results are
lower than the developer’s assessments in the previ-
ous section, particularly for the gen-heavy approach.
The two judges deemed sentences unacceptable for
a variety of reasons that were not penalised by the
developer in his testing (e.g., disfluencies that were
carried over from the input, incorrect capitalisation,
lack of punctuation, bad sentence order, etc.).

In addition, the judges also deemed examples
such as 5 in Table 1 unacceptable because of the cop-
ula being in present tense. The “this is” construct is
introduced by the transformation rules for subordi-
nation; however, this fact is only known to the de-
veloper (who thus deemed the transformation accu-
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Judge 1 Judge 2 κ % Agreement

A B .55 78%
A Developer .52 79%
B Developer .32 68%

Table 3: Pairwise agreement on acceptability

System % Acceptable
J1 J2 Developer Majority

gen-l/1 parse .59 .66 .79 .69
gen-l/50 parses .62 .69 .86 .78
gen-h/1 parse .19 .40 .62 .40
gen-h/50 parses .20 .45 .71 .43

Table 4: The percentage of transformed sentences accept-
able to the three raters (the developer and two judges) for
4 reformulations each of 50 sentences. The final column
treats a transformation as acceptable if at least 2 raters
find it acceptable.

rate) and not to the two judges (who thus deemed the
output unacceptable).

We believe that these two evaluation provide a
good indication of the performance of our system
and its different settings, as well as the quality of the
transformation rules. The main conclusion that we
draw from these tests is that users can be quite in-
tolerant towards suboptimal word ordering, and that
using an off-the shelf sentence realiser is not a good
option for text regeneration tasks, unless it can reuse
ordering information from the input in some way.

5 Conclusions and future work

We have presented a system for text simplification
based on applying transformation rules to typed de-
pendencies. The main contribution of this paper
is to demonstrate that the robustness of the system
to parsing errors can be improved by using the n-
best dependency parses in a overgenerate-and-rank
approach. In addition, we explore the question of
whether an existing surface realiser can be used for
text regeneration tasks. We find that this approach
is brittle, and misanalyses by the parser can result
in unacceptable word and constituent orders in the
generated texts. This problem would, we believe,
be overcome if the generator could make use of
word and phrase order in the input sentence, using
deep generation only for verb features (mood, tense,
voice, etc.), number agreement and argument order.
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