
Proceedings of the GEMS 2011 Workshop on Geometrical Models of Natural Language Semantics, EMNLP 2011, pages 43–51,
Edinburgh, Scotland, UK, July 31, 2011. c©2011 Association for Computational Linguistics

Encoding syntactic dependencies by vector permutation

Pierpaolo Basile
Dept. of Computer Science

University of Bari
Via Orabona, 4

I-70125, Bari (ITALY)
basilepp@di.uniba.it

Annalina Caputo
Dept. of Computer Science

University of Bari
Via Orabona, 4

I-70125, Bari (ITALY)
acaputo@di.uniba.it

Giovanni Semeraro
Dept. of Computer Science

University of Bari
Via Orabona, 4

I-70125, Bari (ITALY)
semeraro@di.uniba.it

Abstract

Distributional approaches are based on a sim-
ple hypothesis: the meaning of a word can be
inferred from its usage. The application of that
idea to the vector space model makes possi-
ble the construction of a WordSpace in which
words are represented by mathematical points
in a geometric space. Similar words are rep-
resented close in this space and the definition
of “word usage” depends on the definition of
the context used to build the space, which can
be the whole document, the sentence in which
the word occurs, a fixed window of words,
or a specific syntactic context. However, in
its original formulation WordSpace can take
into account only one definition of context at
a time. We propose an approach based on
vector permutation and Random Indexing to
encode several syntactic contexts in a single
WordSpace. Moreover, we propose some op-
erations in this space and report the results
of an evaluation performed using the GEMS
2011 Shared Evaluation data.

1 Background and motivation

Distributional approaches usually rely on the
WordSpace model (Schütze, 1993). An overview
can be found in (Sahlgren, 2006). This model is
based on a vector space in which points are used to
represent semantic concepts, such as words.

The core idea behind WordSpace is that words
and concepts are represented by points in a math-
ematical space, and this representation is learned
from text in such a way that concepts with sim-
ilar or related meanings are near to one an-

other in that space (geometric metaphor of mean-
ing). The semantic similarity between concepts can
be represented as proximity in an n-dimensional
space. Therefore, the main feature of the geomet-
ric metaphor of meaning is not that meanings can
be represented as locations in a semantic space, but
rather that similarity between word meanings can be
expressed in spatial terms, as proximity in a high-
dimensional space.

One of the great virtues of WordSpaces is that
they make very few language-specific assumptions,
since just tokenized text is needed to build semantic
spaces. Even more important is their independency
of the quality (and the quantity) of available train-
ing material, since they can be built by exploiting an
entirely unsupervised distributional analysis of free
text. Indeed, the basis of the WordSpace model is
the distributional hypothesis (Harris, 1968), accord-
ing to which the meaning of a word is determined by
the set of textual contexts in which it appears. As a
consequence, in distributional models words can be
represented as vectors built over the observable con-
texts. This means that words are semantically related
as much as they are represented by similar vectors.
For example, if “basketball” and “tennis” occur fre-
quently in the same context, say after “play”, they
are semantically related or similar according to the
distributional hypothesis.

Since co-occurrence is defined with respect to a
context, co-occurring words can be stored into ma-
trices whose rows represent the terms and columns
represent contexts. More specifically, each row cor-
responds to a vector representation of a word. The
strength of the semantic association between words

43



can be computed by using cosine similarity.
A weak point of distributional approaches is that

they are able to encode only one definition of con-
text at a time. The type of semantics represented in
WordSpace depends on the context. If we choose
documents as context we obtain a semantics differ-
ent from the one we would obtain by selecting sen-
tences as context. Several approaches have inves-
tigated the above mentioned problem: (Baroni and
Lenci, 2010) use a representation based on third-
order tensors and provide a general framework for
distributional semantics in which it is possible to
represent several aspects of meaning using a sin-
gle data structure. (Sahlgren et al., 2008) adopt
vector permutations as a means to encode order in
WordSpace, as described in Section 2. BEAGLE
(Jones and Mewhort, 2007) is a very well-known
method to encode word order and context informa-
tion in WordSpace. The drawback of the BEAGLE
model is that it relies on a complex model to build
vectors which is computational expensive. This
problem is solved by (De Vine and Bruza, 2010)
in which the authors propose an approach similar
to BEAGLE, but using a method based on Circu-
lar Holographic Reduced Representations to com-
pute vectors.

All these methods tackle the problem of repre-
senting word order in WordSpace, but they do not
take into account syntactic context. A valuable at-
tempt in this direction is described in (Padó and La-
pata, 2007). In this work, the authors propose a
method to build WordSpace using information about
syntactic dependencies. In particular, they consider
syntactic dependencies as context and assign dif-
ferent weights to each kind of dependency. More-
over, they take into account the distance between
two words into the graph of dependencies. The re-
sults obtained by the authors support our hypothesis
that syntactic information can be useful to produce
effective WordSpace. Nonetheless, their methods
are not able to directly encode syntactic dependen-
cies into the space.

This work aims to provide a simple approach to
encode syntactic relations dependencies directly into
the WordSpace, dealing with both the scalability
problem and the possibility to encode several con-
text information. To achieve that goal, we devel-
oped a strategy based on Random Indexing and vec-

tor permutations. Moreover, this strategy opens new
possibilities in the area of semantic composition as
a result of the inherent capability of encoding rela-
tions between words.

The paper is structured as follows. Section 2
describes Random Indexing, the strategy for build-
ing our WordSpace, while details about the method
used to encode syntactic dependencies are reported
in Section 3. Section 4 describes the formal defi-
nition of some operations over the WordSpace and
shows a first attempt to define a model for semantic
composition. Finally, the results of the evaluation
performed using the GEMS 2011 Shared Evaluation
data1 is presented in Section 5, while conclusions
are reported in Section 6.

2 Random Indexing

We exploit Random Indexing (RI), introduced by
Kanerva (Kanerva, 1988), for creating a WordSpace.
This technique allows us to build a WordSpace with
no need for (either term-document or term-term)
matrix factorization, because vectors are inferred by
using an incremental strategy. Moreover, it allows
to solve efficiently the problem of reducing dimen-
sions, which is one of the key features used to un-
cover the “latent semantic dimensions” of a word
distribution.

RI is based on the concept of Random Projection
according to which high dimensional vectors chosen
randomly are “nearly orthogonal”.

Formally, given an n ×m matrix A and an m ×
k matrix R made up of k m-dimensional random
vectors, we define a new n× k matrix B as follows:

Bn,k = An,m·Rm,k k << m (1)

The new matrix B has the property to preserve
the distance between points. This property is known
as Johnson-Lindenstrauss lemma: if the distance be-
tween two any points of A is d, then the distance dr

between the corresponding points in B will satisfy
the property that dr = c · d. A proof of that property
is reported in (Dasgupta and Gupta, 1999).

Specifically, RI creates a WordSpace in two steps
(in this case we consider the document as context):

1Available on line:
http://sites.google.com/site/geometricalmodels/shared-
evaluation

44



1. a context vector is assigned to each document.
This vector is sparse, high-dimensional and
ternary, which means that its elements can take
values in {-1, 0, 1}. A context vector contains a
small number of randomly distributed non-zero
elements, and the structure of this vector fol-
lows the hypothesis behind the concept of Ran-
dom Projection;

2. context vectors are accumulated by analyzing
terms and documents in which terms occur. In
particular, the semantic vector for a term is
computed as the sum of the context vectors for
the documents which contain that term. Con-
text vectors are multiplied by term occurrences.

Formally, given a collection of documents D
whose vocabulary of terms is V (we denote with
dim(D) and dim(V ) the dimension of D and V ,
respectively) the above steps can be formalized as
follows:

1. ∀di ∈ D, i = 0, .., dim(D) we built the cor-
respondent randomly generated context vector
as:

−→rj = (ri1, ..., rin) (2)

where n � dim(D), ri∗ ∈ {−1, 0, 1} and −→rj
contains only a small number of elements dif-
ferent from zero;

2. the WordSpace is made up of all term vectors−→
tj where:

−→
tj = tfj

∑
di∈D
tj∈di

−→ri (3)

and tfj is the number of occurrences of tj in
di;

By considering a fixed window W of terms as
context, the WordSpace is built as follows:

1. a context vector is assigned to each term;

2. context vectors are accumulated by analyzing
terms in which terms co-occur in a window W .
In particular, the semantic vector for each term
is computed as the sum of the context vectors
for terms which co-occur in W .

It is important to point out that the classical RI
approach can handle only one context at a time, such
as the whole document or the window W .

A method to add information about context in RI
is proposed in (Sahlgren et al., 2008). The authors
describe a strategy to encode word order in RI by the
permutation of coordinates in random vector. When
the coordinates are shuffled using a random permu-
tation, the resulting vector is nearly orthogonal to the
original one. That operation corresponds to the gen-
eration of a new random vector. Moreover, by apply-
ing a predetermined mechanism to obtain random
permutations, such as elements rotation, it is always
possible to reconstruct the original vector using the
reverse permutations. By exploiting this strategy it is
possible to obtain different random vectors for each
context2 in which the term occurs. Let us consider
the following example “The cat eats the mouse”. To
encode the word order for the word “cat” using a
context window W = 3, we obtain:

< cat >= (Π−1the) + (Π+1eat)+

+(Π+2the) + (Π+3mouse)
(4)

where Πnx indicates a rotation by n places of the
elements in the vector x. Indeed, the rotation is per-
formed by n right-shifting steps.

3 Encoding syntactic dependencies

Our idea is to encode syntactic dependencies, in-
stead of words order, in the WordSpace using vector
permutations.

A syntactic dependency between two words is de-
fined as:

dep(head, dependent) (5)

where dep is the syntactic link which connects
the dependent word to the head word. Gener-
ally speaking, dependent is the modifier, object or
complement, while head plays a key role in de-
termining the behavior of the link. For example,
subj(eat, cat) means that “cat” is the subject of
“eat”. In that case the head word is “eat”, which
plays the role of verb.

The key idea is to assign a permutation function
to each kind of syntactic dependencies. Formally,

2In the case in point the context corresponds to the word
order

45



let D be the set of all dependencies that we take into
account. The function f : D → Π returns a schema
of vector permutation for each dep ∈ D. Then, the
method adopted to construct a semantic space that
takes into account both syntactic dependencies and
Random Indexing can be defined as follows:

1. a context vector is assigned to each term, as de-
scribed in Section 2 (Random Indexing);

2. context vectors are accumulated by analyzing
terms which are linked by a dependency. In
particular the semantic vector for each term ti
is computed as the sum of the permuted con-
text vectors for the terms tj which are depen-
dents of ti and the inverse-permuted vectors
for the terms tj which are heads of ti. The
permutation is computed according to f . If
f(d) = Πn the inverse-permutation is defined
as f−1(d) = Π−n: the elements rotation is per-
formed by n left-shifting steps.

Adding permuted vectors to the head word and
inverse-permuted vectors to the corresponding de-
pendent word allows to encode the information
about both heads and dependents into the space.
This approach is similar to the one investigated by
(Cohen et al., 2010) to encode relations between
medical terms.

To clarify, we provide an example. Given the fol-
lowing definition of f :

f(subj) = Π+3 f(obj) = Π+7 (6)

and the sentence “The cat eats the mouse”, we obtain
the following dependencies:

det(the, cat) subj(eat, cat)

obj(eat,mouse) det(the,mouse)
(7)

The semantic vector for each word is computed as:

• eat:

< eat >= (Π+3cat) + (Π+7mouse) (8)

• cat:
< cat >= (Π−3eat) (9)

• mouse:

< mouse >= (Π−7eat) (10)

In the above examples, the function f does not
consider the dependency det.

4 Query and vector operations

In this section, we propose two types of queries
that allow us to compute semantic similarity be-
tween two words exploiting syntactic dependencies
encoded in our space. Before defining query and
vector operations, we introduce a small set of nota-
tions:

• R denotes the original space of random vectors
generated during the WordSpace construction;

• S is the space of terms built using our strategy;

• rti ∈ R denotes the random vector of the term
ti;

• sti ∈ S denotes the semantic vector of the term
ti;

• sim(v1, v2) denotes the similarity between two
vectors; in our approach we adopt cosine simi-
larity;

• Πdep is the permutation returned from f(dep).
Π−dep is the inverse-permutation.

The first family of queries is dep(ti, ?). The idea
is to find all the dependents which are in relation
with the head ti, given the dependency dep. The
query can be computed as follows:

1. retrieve the vector sti from S;

2. for each rtj ∈ R compute the similarity be-
tween sti and < Πdeprtj >:

sim(sti , < Πdeprtj >);

3. rank in descending order all tj according to the
similarity computed in step 2.

The idea behind this operation is to compute how
each possible dependent tj contributes to the vector
ti, which is the sum of all the dependents related to
ti. It is important to note that we must first apply the
permutation to each rtj in order to take into account
the dependency relation (context). This operation
has a semantics different from performing the query
by applying first the inverse permutation to ti in R
and then computing the similarity with respect to all
the vectors tj in S. Indeed, the last approach would

46



compute how the head ti contributes to the vector tj ,
which differs from the goal of our query.

Using the same approach it is possible to compute
the query dep(?, tj), in which we want to search all
the heads related to the dependent tj fixed the de-
pendency dep. In detail:

1. retrieve the vector stj from S;

2. for each rti ∈ R compute the similarity be-
tween stj and the inverse-permutation of rti ,
< Π−deprti >: sim(stj , < Π−deprti >);

3. rank in descending order all ti according to the
similarity computed in step 2.

In this second query, we compute how the inverse-
permutation of each ti (head) affects the vector stj ∈
S. In the following sub-section we provide some
initial idea about semantic composition.

4.1 Compositional semantics
Distributional approaches represent words in isola-
tion and they are typically used to compute similar-
ities between words. They are not able to represent
complex structures such as phrases or sentences. In
some applications, such as Question Answering and
Text Entailment, representing text by single words is
not enough. These applications would benefit from
the composition of words in more complex struc-
tures. The strength of our approach lies on the ca-
pability of codify syntactic relations between words
overcoming the “word isolation” issue.

A lot of recent work argue that tensor product (⊗)
could be useful to combine word vectors. In (Wid-
dows, 2008) some preliminary investigations about
product and tensor product are provided, while an
interesting work by Clark and Pulman (Clark and
Pulman, 2007) proposes an approach to combine
symbolic and distributional models. The main idea
is to use tensor product to combine these two as-
pects, but the authors do not describe a method to
represent symbolic features, such as syntactic de-
pendencies. Conversely, our approach is able to en-
code syntactic information directly into the distri-
butional model. The authors in (Clark and Pulman,
2007) propose a strategy to represent a sentence like
“man reads magazine” by tensor product:

man⊗ subj ⊗ read⊗ obj ⊗magazine (11)

They also propose a solid model for composition-
ality, but they do not provide a strategy to repre-
sent symbolic relations, such as subj and obj. They
wrote: “How to obtain vectors for the dependency
relations - subj, obj, etc. - is an open question”. We
believe that our approach can tackle this problem by
encoding the dependency directly in the space, be-
cause each semantic vector in our space contains in-
formation about syntactic roles.

The representation based on tensor product is
useful to compute sentence similarity. Given the
previous sentence and the following one “woman
browses newspaper”, we want to compute the sim-
ilarity between the two sentences. The sentence
“woman browses newspaper”, using the composi-
tional model, is represented by:

woman⊗subj⊗browse⊗obj⊗newspaper (12)

Computing the similarity of two representations
by inner product is a complex task, but exploiting
the following property of the tensor product:

(w1⊗w2) ·(w3⊗w4) = (w1 ·w3)×(w2 ·w4) (13)

the similarity between two sentences can be com-
puted by taking into account the pairs in each depen-
dency and multiplying the inner products as follows:

man · woman× read · browse×
×magazine · newspaper

(14)

According to the property above mentioned, we
can compute the similarity between sentences with-
out using the tensor product. However, some open
questions arise. This simple compositional strategy
allows to compare sentences which have similar de-
pendency trees. For example, the sentence “the dog
bit the man” cannot can be compared to “the man
was bitten by the dog”. This problem can be easily
solved by identifying active and passive forms of a
verb. When two sentences have different trees, Clark
and Pulman (Clark and Pulman, 2007) propose to
adopt the convolution kernel (Haussler, 1999). This
strategy identifies all the possible ways of decom-
posing the two trees, and sums up the similarities be-
tween all the pairwise decompositions. It is impor-
tant to point out that, in a more recent work, Clark

47



et al. (Clark et al., 2008) propose a model based
on (Clark and Pulman, 2007) combined with a com-
positional theory for grammatical types, known as
Lambek’s pregroup semantics, which is able to take
into account grammar structures. It is important to
note that this strategy is not able to encode gram-
matical roles into the WordSpace. This peculiarity
makes our approach completely different. In the fol-
lowing section we provide some examples of com-
positionality.

5 Evaluation

The goal of the evaluation is twofold: proving the
capability of our approach by means of some exam-
ples and providing results of the evaluation exploit-
ing the “GEMS 2011 Shared Evaluation”, in particu-
lar the compositional semantics dataset. We propose
two semantic spaces built from two separate corpora
using our strategy. To achieve the first goal we pro-
vide several examples for each family of queries de-
scribed in Section 4. Concerning the second goal,
we evaluate our approach to compositional seman-
tics using the dataset proposed by Mitchell and Lap-
ata (Mitchell and Lapata, 2010), which is part of the
“GEMS 2011 Shared Evaluation”. The dataset is a
list of two pairs of adjective-noun combinations or
verb-object combinations or compound nouns. Hu-
mans rated pairs of combinations according to simi-
larity. The dataset contains 5,833 rates which range
from 1 to 7. Examples of pairs follow:

support offer help provide 7

old person right hand 1

where the similarity between offer-support and
provide-help (verb-object) is higher than the one be-
tween old-person and right-hand (adjective-noun).
As suggested by the authors, the goal of the eval-
uation is to compare the system performace against
humans scores by means of Spearman correlation.

5.1 System setup
The system is implemented in Java and relies on
some portions of code publicly available in the
Semantic Vectors package (Widdows and Ferraro,
2008). For the evaluation of the system, we build
two separate WordSpaces using the following cor-
pora: ukWaC (Baroni et al., 2009) and TASA.

ukWaC contains 2 billion words and it is constructed
from the Web by limiting the crawling to the .uk
domain and using medium-frequency words from
the BNC corpus as seeds. We use only a por-
tion of ukWaC corpus consisting of 7,025,587 sen-
tences (about 220,000 documents). The TASA cor-
pus (compiled by Touchstone Applied Science As-
sociates) was kindly made available to us by Prof.
Thomas Landauer from the University of Colorado.
The TASA corpus contains a collection of English
texts that is approximately equivalent to what the av-
erage college-level student has read in his/her life-
time. The TASA corpus consists of about 800,000
sentences.

To extract syntactic dependencies, we adopt
MINIPAR3 (Lin, 2003). MINIPAR is an efficient
English parser, which is suitable for parsing a large
amount of data. The total amount of extracted de-
pendencies is about 112,500,000 for ukWaC and
8,850,000 for TASA.

Our approach involves some parameters. We set
the random vector dimension to 4,000 and the num-
ber of non-zero elements in the random vector equal
to 10. We restrict the WordSpace to the 40,000 most
frequent words4. Another parameter is the set of de-
pendencies that we take into account. In this prelim-
inary investigation we consider the four dependen-
cies described in Table 1, that reports also the kind
of permutation5 applied to vectors.

5.2 Results

In this section we report some results of queries per-
formed in ukWaC and TASA corpus.

Table 2 and Table 3 report the results respectively
for the queries dep(ti, ?) and dep(?, tj). The effects
of encoding syntactic information is clearly visible,
as can be inferred by results in the tables. Moreover,
the results with the two corpora are different, as ex-
pected, but in many cases the first result of the query
is the same.

Our space can be also exploited to perform classi-
cal queries in which we want to find “similar” words.
Tables 4 and 5 report results for TASA and ukWaC

3MINIPAR is available at
http://webdocs.cs.ualberta.ca/∼lindek/minipar.htm

4Word frequency is computed taking into account the se-
lected dependencies.

5The number of rotations is randomly chosen.

48



Dependency Description Permutation
obj object of verbs Π+7

subj subject of verbs Π+3

mod the relationship between a word and its adjunct modifier Π+11

comp complement Π+23

Table 1: The set of dependencies used in the evaluation.

corpus, respectively. The results obtained by similar
test are not the typical results expected by classical
WordSpace. In fact, in Table 5 the word most simi-
lar to “good” is “bad”, because they are used in the
same syntactic context, but have opposite meaning.
The similarity between words in our space strongly
depends on their syntactic role. For example, the
words similar to “food” are all the nouns which are
object/subject of the same verbs in syntactic relation
with “food”.

Finally, we provide the results of semantic com-
position. Table 6 reports the Spearman correlation
between the output of our system and the mean
similarity scores given by the humans. The table
shows results for each types of combination: verb-
object, adjective-noun and compound nouns. To per-
form the experiment on compound nouns, we re-
build the spaces encoding the “nn” relation provided
by MINIPAR which refers to compound nouns de-
pendency. Table 6 shows the best result obtained
by Mitchell and Lapata (Mitchell and Lapata, 2008)
using the same dataset. Our method is able to out-
perform MLbest and obtains very high results when
adjective-noun combination is involved.

Corpus Combination ρ

TASA

verb-object 0.260
adjective-noun 0.637
compound nouns 0.341
overall 0.275

ukWaC

verb-object 0.292
adjective-noun 0.445
compound nouns 0.227
overall 0.261

- MLbest 0.190

Table 6: GEMS 2011 Shared Evaluation results.

The experiments reported in this preliminary eval-
uation are only a small fraction of the experiments

that are required to make a proper evaluation of the
effectiveness of our semantic space and to compare
it with other approaches. This will be the main fo-
cus of our future research. The obtained results seem
to be encouraging and the strength of our approach,
capturing syntactic relations, allows to implement
several kind of queries using only one WordSpace.
We believe that the real advantage of our approach,
that is the possibility to represent several syntactic
relations, has much room for exploration.

6 Conclusions

In this work, we propose an approach to encode syn-
tactic dependencies in WordSpace using vector per-
mutations and Random Indexing. In that space, a set
of operations is defined, which relies on the possibil-
ity of exploiting syntactic dependencies to perform
some particular queries, such as the one for retriev-
ing all similar objects of a verb. We propose an early
attempt to use that space for semantic composition
of short sentences. The evaluation using the GEMS
2011 shared dataset provides encouraging results,
but we believe that there are open points which de-
serve more investigation. We planned a deeper eval-
uation of our WordSpace and a more formal study
about semantic composition.

Acknowledgements

This research was partially funded by MIUR (Min-
istero dell’Università e della Ricerca) under the
contract Fondo per le Agevolazioni alla Ricerca,
DM19410 “Laboratorio” di Bioinformatica per la
Biodiversità Molecolare (2007-2011).

49



obj(provide, ?) mod(people, ?)

TASA ukWaC TASA ukWaC
information 0.344 information 0.351 young 0.288 young 0.736
food 0.208 service 0.260 black 0.118 with 0.360
support 0.143 you 0.176 old 0.089 other 0.223
energy 0.143 opportunity 0.141 conquered 0.086 handling 0.164
job 0.142 support 0.127 deaf 0.086 impressive 0.162

Table 2: Examples of query dep(ti, ?).

obj(?, food) mod(?, good)

TASA ukWaC TASA ukWaC
eat 0.604 eat 0.429 idea 0.350 practice 0.510
make 0.389 serve 0.256 place 0.320 idea 0.363
grow 0.311 provide 0.230 way 0.269 news 0.274
need 0.272 have 0.177 friend 0.246 for 0.269
store 0.161 buy 0.169 time 0.234 very 0.228

Table 3: Examples of query dep(?, tj).

food provide good
food 1.000 provide 1.000 good 0.999
foods 0.698 make 0.702 best 0.498
meat 0.654 restructure 0.693 excellent 0.471
meal 0.651 ready 0.680 wrong 0.453
bread 0.606 leave 0.673 main 0.430
wheato 0.604 mean 0.672 nice 0.428
thirty percent 0.604 work 0.672 safe 0.428
mezas 0.604 offer 0.671 new 0.428
orgy 0.604 relate 0.667 proper 0.400
chocolatebar 0.604 gather 0.667 surrounded 0.400

Table 4: Find similar words, TASA corpus.

food provide good
food 1.000 provide 0.999 good 1.000
meal 0.724 offer 0.855 bad 0.603
meat 0.656 supply 0.819 best 0.545
pie 0.578 deliver 0.801 anti-discriminatory 0.507
tea 0.576 give 0.787 nice 0.478
fresh food 0.576 contain 0.786 reflective 0.470
supper 0.556 require 0.784 brilliant 0.464
porridge 0.553 present 0.782 great 0.462
entertainment 0.533 gather 0.778 evidence-based 0.453
soup 0.532 work 0.777 unsafe 0.444

Table 5: Find similar words, ukWaC corpus.

50



References

M. Baroni and A. Lenci. 2010. Distributional mem-
ory: A general framework for corpus-based semantics.
Computational Linguistics, 36(4):673–721.

M. Baroni, S. Bernardini, A. Ferraresi, and E. Zanchetta.
2009. The WaCky Wide Web: A collection of very
large linguistically processed Web-crawled corpora.
Language Resources and Evaluation, 43(3):209–226.

S. Clark and S. Pulman. 2007. Combining symbolic and
distributional models of meaning. In Proceedings of
the AAAI Spring Symposium on Quantum Interaction,
pages 52–55.

S. Clark, B. Coecke, and M. Sadrzadeh. 2008. A com-
positional distributional model of meaning. In Pro-
ceedings of the Second Quantum Interaction Sympo-
sium (QI-2008), pages 133–140.

T. Cohen, D. Widdows, R.W. Schvaneveldt, and T.C.
Rindflesch. 2010. Logical leaps and quantum con-
nectives: Forging paths through predication space. In
AAAI-Fall 2010 Symposium on Quantum Informatics
for Cognitive, Social, and Semantic Processes, pages
11–13.

S. Dasgupta and A. Gupta. 1999. An elementary proof of
the Johnson-Lindenstrauss lemma. Technical report,
Technical Report TR-99-006, International Computer
Science Institute, Berkeley, California, USA.

L. De Vine and P. Bruza. 2010. Semantic Oscillations:
Encoding Context and Structure in Complex Valued
Holographic Vectors. Quantum Informatics for Cog-
nitive, Social, and Semantic Processes (QI 2010).

Z. Harris. 1968. Mathematical Structures of Language.
New York: Interscience.

D. Haussler. 1999. Convolution kernels on discrete
structures. Technical Report UCSC-CRL-99-10.

M.N. Jones and D.J.K. Mewhort. 2007. Representing
word meaning and order information in a composite
holographic lexicon. Psychological review, 114(1):1–
37.

P. Kanerva. 1988. Sparse Distributed Memory. MIT
Press.

D. Lin. 2003. Dependency-based evaluation of MINI-
PAR. Treebanks: building and using parsed corpora.

J. Mitchell and M. Lapata. 2008. Vector-based models
of semantic composition. In Proceedings of ACL-08:
HLT, pages 236–244, Columbus, Ohio, June. Associa-
tion for Computational Linguistics.

J. Mitchell and M. Lapata. 2010. Composition in distri-
butional models of semantics. Cognitive Science. To
appear.

S. Padó and M. Lapata. 2007. Dependency-based con-
struction of semantic space models. Computational
Linguistics, 33(2):161–199.

M. Sahlgren, A. Holst, and P. Kanerva. 2008. Permu-
tations as a means to encode order in word space. In
Proceedings of the 30th Annual Meeting of the Cogni-
tive Science Society (CogSci’08).

M. Sahlgren. 2006. The Word-Space Model: Us-
ing distributional analysis to represent syntagmatic
and paradigmatic relations between words in high-
dimensional vector spaces. Ph.D. thesis, Stockholm:
Stockholm University, Faculty of Humanities, Depart-
ment of Linguistics.

H. Schütze. 1993. Word space. In Stephen José Hanson,
Jack D. Cowan, and C. Lee Giles, editors, Advances in
Neural Information Processing Systems, pages 895–
902. Morgan Kaufmann Publishers.

D. Widdows and K. Ferraro. 2008. Semantic Vectors: A
Scalable Open Source Package and Online Technology
Management Application. In Proceedings of the 6th
International Conference on Language Resources and
Evaluation (LREC 2008).

D. Widdows. 2008. Semantic vector products: Some
initial investigations. In The Second AAAI Symposium
on Quantum Interaction.

51


