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Abstract

We present a system for extracting biomedical
events (detailed descriptions of biomolecular
interactions) from research articles. This sys-
tem was developed for the BioNLP’11 Shared
Task and extends our BioNLP’09 Shared Task
winning Turku Event Extraction System. It
uses support vector machines to first detect
event-defining words, followed by detection
of their relationships. The theme of the
BioNLP’11 Shared Task is generalization, ex-
tending event extraction to varied biomedical
domains. Our current system successfully pre-
dicts events for every domain case introduced
in the BioNLP’11 Shared Task, being the only
system to participate in all eight tasks and all
of their subtasks, with best performance in
four tasks.

1 Introduction

Biomedical event extraction is the process of auto-
matically detecting statements of molecular interac-
tions in research articles. Using natural language
processing techniques, an event extraction system
predicts relations between proteins/genes and the
processes they take part in. Manually annotated cor-
pora are used to evaluate event extraction techniques
and to train machine-learning based systems.

Event extraction was popularised by the
BioNLP’09 Shared Task on Event Extraction
(Kim et al., 2009), providing a more detailed
alternative for the older approach of binary inter-
action detection, where each pair of protein names
co-occurring in the text is classified as interacting or

not. Events extend this formalism by adding to the
relations direction, type and nesting. Events define
the type of interaction, such as phosphorylation,
and commonly mark in the text a trigger word
(e.g. “phosphorylates”) describing the interaction.
Directed events can define the role of their protein
or gene arguments as e.g. cause or theme, the agent
or the target of the biological process. Finally,
events can act as arguments of other events, creating
complex nested structures that accurately describe
the biological interactions stated in the text. For
example, in the case of a sentence stating “Stat3
phosphorylation is regulated by Vav”, a phospho-
rylation-event would itself be the argument of a
regulation-event.

We developed for the BioNLP’09 Shared Task the
Turku Event Extraction System, achieving the best
performance at 51.95% F-score (Björne et al., 2009).
This system separated event extraction into multiple
classification tasks, detecting individually the trig-
ger words defining events, and the arguments that
describe which proteins or genes take part in these
events. Other approaches used in the Shared Task in-
cluded e.g. joint inference (Riedel et al., 2009). An
overall notable trend was the use of full dependency
parsing (Buyko et al., 2009; Van Landeghem et al.,
2009; Kilicoglu and Bergler, 2009).

In the following years, event extraction has been
the subject of continuous development. In 2009, af-
ter the BioNLP’09 Shared Task, we extended our
system and improved its performance to 52.85%
(Björne et al., 2011). In 2010, the system introduced
by Miwa et. al. reached a new record performance of
56.00% (Miwa et al., 2010a).
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Figure 1: Event extraction. In most tasks named entities
are given (A). Sentences are parsed (B) to produce a de-
pendency parse. Entities not given are predicted through
trigger detection (C). Edge detection predicts event argu-
ments between entities (D) and unmerging creates events
(E). Finally, event modality is predicted (F). When the
graph is converted to the Shared Task format, site argu-
ments are paired with core arguments that have the same
target protein.

In 2010, we applied the Turku Event Extrac-
tion System to detecting events in all 18 million
PubMed abstracts, showing its scalability and gener-
alizability into real-world data beyond domain cor-
pora (Björne et al., 2010). In the current BioNLP’11
Shared Task1 (Kim et al., 2011), we demonstrate its
generalizability to different event extraction tasks by
applying what is, to a large extent, the same system
to every single task and subtask.

2 System Overview

Our system divides event extraction into three main
steps (Figure 1 C, D and E). First, entities are
predicted for each word in a sentence. Then, ar-
guments are predicted between entities. Finally,
entity/argument sets are separated into individual
events.

1http://sites.google.com/site/bionlpst/
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Figure 2: Site argument representation. Site arguments
add detail to core arguments. (A) In most tasks we
link both core and site arguments to given protein nodes.
This minimizes the number of outgoing edges per trigger
node, simplifying unmerging, but loses the connection
between site and core arguments. (B) In the EPI task, all
events with site-arguments have a single core argument,
so linking sites to the trigger node preserves the site/core
connection. (C) To both limit number of arguments in
trigger nodes and preserve site information, event argu-
ments using sites could be linked to protein nodes through
the site entity. However, in this approach the core argu-
ment would remain undetected if the site wasn’t detected.

2.1 Graph Representation

The BioNLP’11 Shared Task consists of eight sep-
arate tasks. Most of these follow the BioNLP’09
Shared Task annotation scheme, which defines
events as having a trigger entity and one or more ar-
guments that link to other events or protein/gene en-
tities. This annotation can be represented as a graph,
with trigger and protein/gene entities as nodes, and
arguments (e.g. theme) as edges. In our graph repre-
sentation, an event is defined implicitly as a trigger
node and its outgoing edges (see Figure 1 F).

Most of the BioNLP’11 Shared Task tasks define
task-specific annotation terminology, but largely fol-
low the BioNLP’09 definition of events. Some new
annotation schemes, such as the bracket notation in
the CO-task can be viewed simply as alternative rep-
resentations of arguments. The major new feature
is relations or triggerless events, used in the REL,
REN, BB and BI tasks. In our graph representation,
this type of event is a single, directed edge.

Some event arguments have a matching site ar-
gument that determines the part of the protein the
argument refers to (Figure 2). To allow detection of
core arguments independently of site arguments, in
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most tasks we link site arguments directly to pro-
teins (Figure 2 A). This maximises extraction per-
formance on core events, but losing the connection
between site and core arguments limits performance
on site arguments.

To further simplify event extraction all sentences
are processed in isolation, so events crossing sen-
tence boundaries (intersentence events, Table 2) can-
not be detected. This also limits the theoretical max-
imum performance of the system (see Figure 3).

In the provided data an event is annotated only
once for a set of equivalent proteins. For example, in
the sentence “Ubiquitination of caspase 8 (casp8)”
a ubiquitination event would be annotated only for
“caspase 8”, “casp8” being marked as equivalent
to “caspase 8”. To improve training data consis-
tency, our system fully resolves these equivalences
into new events, also recursively when a duplicated
event is nested in another event (Table 2). Resolved
equivalences were used for event extraction in the
BioNLP’11 GE, ID, EPI and BB tasks, although
based on tests with the GE dataset their impact on
performance was negligible.

2.2 Machine Learning

The machine learning based event detection com-
ponents classify examples into one of the positive
classes or as negatives, based on a feature vector
representation of the data. To make these classifi-
cations, we use the SVMmulticlass support vector
machine2 (Tsochantaridis et al., 2005) with a linear
kernel. An SVM must be optimized for each classi-
fication task by experimentally determining the reg-
ularization parameter C. This is done by training the
system on a training dataset, and testing a number of
C values on a development dataset. When producing
predictions for the test set, the classifier is retrained
with combined training and development sets, and
the test data is classified with the previously deter-
mined optimal value of C.

Unlike in the BioNLP’09 Shared Task where
the three main parameters (trigger-detector, recall-
adjustment and edge-detector) were optimized in an
exhaustive grid search against the final metric, in
the new system only the recall-adjustment param-

2http://svmlight.joachims.org/svm_
multiclass.html

eter (see Section 2.5) is optimized against the final
metric, edge and trigger detector parameters being
optimized in isolation to speed up experiments.

2.3 Syntactic Analyses

The machine learning features that are used in
event detection are mostly derived from the syntac-
tic parses of the sentences. Parsing links together
related words that may be distant in their linear or-
der, creating a parse tree (see Figure 1 B).

We used the Charniak-Johnson parser (Char-
niak and Johnson, 2005) with David McClosky’s
biomodel (McClosky, 2010) trained on the GENIA
corpus and unlabeled PubMed articles. The parse
trees produced by the Charniak-Johnson parser were
further processed with the Stanford conversion tool
(de Marneffe et al., 2006), creating a dependency
parse (de Marneffe and Manning, 2008).

In the supporting tasks (REL, REN and CO) this
parsing was done by us, but in the main tasks the
organizers provided official parses which were used.
All parses for tasks where named entities were given
as gold data were further processed with a pro-
tein name splitter that divides at punctuation tokens
which contain named entities, such as “p50/p65” or
“GATA3-binding”.

2.4 Feature Groups

To convert text into features understood by the clas-
sifier, a number of analyses are performed on the
sentences, mostly resulting in binary features stating
the presence or absence of some feature. Applica-
ble combinations of these features are then used by
the trigger detection, edge detection and unmerging
steps of the event extraction system.

Token features can be generated for each word
token, and they define the text of the token, its
Porter-stem (Porter, 1980), its Penn treebank part-
of-speech-tag, character bi- and trigrams, presence
of punctuation or numeric characters etc.

Sentence features define the number of named
entities in the sentence as well as bag-of-words
counts for all words.

Dependency chains follow the syntactic depen-
dencies up to a depth of three, starting from a token
of interest. They are used to define the immediate
context of these words.
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Dependency path N-grams, are built from the
shortest undirected path of tokens and dependencies
linking together two entities, and are used in edge
detection. N-grams join together a token with its two
flanking dependencies as well as each dependency
with its two flanking tokens. While these N-grams
follow the direction of the entire path, the governor-
dependent directions of individual dependencies are
used to define token bigrams.

Trigger features can be built in cases where trig-
gers are already present, such as edge detection and
event construction. These features include the types
and supertypes of the trigger nodes, and combina-
tions thereof.

External features are additional features based
on data external to the corpus being processed. Such
features can include e.g. the presence of a word in
a list of key terms, Wordnet hypernyms, or other
resources that enhance performance on a particular
task. These are described in detail in Section 3.

2.5 Trigger Detection
Trigger words are detected by classifying each token
as negative or as one of the positive trigger classes.
Sometimes several triggers overlap, in which case
a merged class (e.g. phosphorylation–regulation) is
used. After trigger prediction, triggers of merged
classes are split into their component classes.

Most tasks evaluate trigger detection using ap-
proximate span, so detecting a single token is
enough. However, this token must be chosen consis-
tently for the classifier to be able to make accurate
predictions. For multi-token triggers, we select as
the trigger word the syntactic head, the root token of
the dependency parse subtree covering the entity.

When optimizing the SVM C-parameter for trig-
ger and edge detection, it is optimized in isolation,
maximizing the F-score for that classification task.
Edges can be predicted for an event only if its trig-
ger has been detected, but often the C-parameter that
maximizes trigger detection F-score has too low re-
call for optimal edge detection. A recall adjustment
step is used to fit together the trigger and edge de-
tectors. For each example, the classifier gives a con-
fidence score for each potential class, and picks as
the predicted class the one with the highest score. In
recall adjustment, the confidence score of each neg-
ative example is multiplied with a multiplier, and if

the result falls below the score of another class, that
class becomes the new classification. This multiplier
is determined experimentally by optimizing against
overall system performance, using the official task
metric for cases where a downloadable evaluator is
available (GE and BB).

2.6 Edge Detection

Edge detection is used to predict event arguments or
triggerless events and relations, all of which are de-
fined as edges in the graph representation. The edge
detector defines one example per direction for each
pair of entities in the sentence, and uses the SVM
classifier to classify the examples as negatives or as
belonging to one of the positive classes. As with the
trigger detector, overlapping positive classes are pre-
dicted through merged classes (e.g. cause–theme).
Task-specific rules defining valid argument types for
each entity type are used to considerably reduce the
number of examples that can only be negatives.

2.7 Unmerging

In the graph representation, events are defined
through their trigger word node, resulting in over-
lapping nodes for overlapping events. The trigger
detector can however predict a maximum of one trig-
ger node per type for each token. When edges are
predicted between these nodes, the result is a merged
graph where overlapping events are merged into a
single node and its set of outgoing edges. Taking
into account the limits of trigger prediction, the edge
detector is also trained on a merged graph version of
the gold data.

To produce the final events, these merged nodes
need to be “pulled apart” into valid trigger and argu-
ment combinations. In the BioNLP’09 Shared Task,
this was done with a rule-based system. Since then,
further research has been done on machine learning
approaches for this question (Miwa et al., 2010b;
Heimonen et al., 2010). In our current system, un-
merging is done as an SVM-classification step. An
example is constructed for each argument edge com-
bination of each predicted node, and classified as a
true event or a false event to be removed. Tested on
the BioNLP’09 Shared Task data, this system per-
forms roughly on par with our earlier rule-based sys-
tem, but has the advantage of being more general
and thus applicable to all BioNLP’11 Shared Task
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Figure 3: Ranking of the systems participating in the
BioNLP’11 Shared Task. Our system is marked with
black dots and the dotted line shows its theoretical maxi-
mum performance (see Section 2.1) with all correct clas-
sifications.

tasks. The unmerging step is not required for trig-
gerless events which are defined by a single edge.

All of the tasks define varied, detailed limits on
valid event type and argument combinations. A final
validation step based on task-specific rules is used to
remove structurally incorrect events left over from
preceding machine learning steps.

2.8 Modality Detection

Speculation and negation are detected indepen-
dently, with binary classification of trigger nodes.
The features used are mostly the same as for trigger
detection, with the addition of a list of speculation-
related words based on the BioNLP’09 ST corpus.

3 Tasks and Results

The BioNLP’11 Shared Task consists of five main
tasks and three supporting tasks. Additionally, many
of these tasks specify separate subtasks. Except
for the GE-task, which defines three main evalua-
tion criteria, all tasks have a single primary evalua-
tion criterion. All evaluations are based on F-score,
the harmonic mean of precision and recall. Perfor-
mance of all systems participating in the BioNLP’11
Shared Task is shown in Figure 3. Our system’s per-
formance on both development and test sets of all
tasks is shown in Table 1.

Corpus Devel F Test F
GE’09 task 1 56.27 53.15
GE’09 task 2 54.25 50.68
GE task 1 55.78 53.30
GE task 2 53.39 51.97
GE task 3 38.34 26.86
EPI 56.41 53.33
ID 44.92 42.57
BB 27.01 26
BI 77.24 77
CO 36.22 23.77
REL 65.99 57.7
REN 84.62 87.0

Table 1: Devel and test results for all tasks. The perfor-
mance of our new system on the BioNLP’09 ST GENIA
dataset is shown for reference, with task 3 omitted due to
a changed metric. For GE-tasks, the Approximate Span
& Recursive matching criterion is used.

3.1 GENIA (GE)

The GENIA task is the direct continuation of the
BioNLP’09 Shared Task. The BioNLP’09 ST cor-
pus consisted only of abstracts. The new version ex-
tends this data by 30% with full text PubMed Central
articles.

Our system applied to the GE task is the most
similar to the one we developed for the BioNLP’09
Shared Task. The major difference is the replace-
ment of the rule-based unmerging component with
an SVM based one.

The GE task has three subtasks, task 1 is detection
of events with their main arguments, task 2 extends
this to detection of sites defining the exact molecu-
lar location of interactions, and task 3 adds the de-
tection of whether events are stated in a negated or
speculative context.

For task 3, speculation and negation detection, we
considered the GE, EPI and ID task corpora simi-
lar enough to train a single model on. Compared
to training on GE alone, example classification F-
score decreased for negation by 8 pp and increased
for speculation by 4 pp. Overall task 3 processing
was considerably simplified.

Our system placed third in task 1, second in task 2
and first in task 3. Task 1 had the most participants,
making it the most useful for evaluating overall per-
formance. Our F-score of 53.30% was within three
percentage points of the best performing system (by
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Corpus sentences events equiv events nesting events intersentence events neg/spec events
GE’09 8906 11285 7.9% 38.8% 6.0% 12.1%
GE 11581 14496 6.6% 37.2% 6.0% 13.3%
EPI 7648 2684 9.1% 10.2% 9.3% 10.1%
ID 3193 2931 5.3% 21.3% 3.9% 4.9%
BB 1762 5843 79.4% N/A 86.0% 0%
BI 120 458 0% N/A 0% 0%
CO 8906 5284 0% N/A 8.5% N/A
REL 8906 2440 4.2% N/A 0% 0%
REN 13235 373 0% N/A 2.4% 0%

Table 2: Corpus statistics. Numbers are for all available annotated data, i.e. the merged training and development sets.

team FAUST), indicating that our chosen event de-
tection approach still remains competitive. For ref-
erence, we ran our system also on the BioNLP’09
data, reaching an F-score of 53.15%, a slight in-
crease over the 52.85% we previously reported in
Björne et al. (2011).

3.2 Epigenetics and Post-translational
Modifications (EPI)

All events in the EPI task that have additional argu-
ments (comparable to the site-arguments in the GE-
task) have a single core argument. We therefore use
for this task a slightly modified graph representation,
where all additional arguments are treated as core ar-
guments, linking directly to the event node (Figure 2
B). The number of argument combinations per pre-
dicted event node remains manageable for the un-
merging system and full recovery of additional ar-
guments is possible.

Eight of the EPI event types have correspond-
ing reverse events, such as phosphorylation and de-
phosphorylation. Many of these reverse events are
quite rare, resulting in too little training data for the
trigger detector to find them. Therefore we merge
each reverse event type into its corresponding for-
ward event type. After trigger detection, an addi-
tional rule-based step separates them again. Most of
the reverse classes are characterized by a “de”-prefix
in their trigger word. On the EPI training dataset,
the rule-based step determined correctly whether an
event was reversed in 99.6% of cases (1698 out of
1704 events). Using this approach, primary criterion
F-score on the development set increased 1.33 per-
centage points from 55.08% to 56.41%. Several pre-
viously undetectable small reverse classes became
detectable, with e.g. deubiquitination (8 instances in

the development set) detected at 77.78% F-score.
Our system ranked first on the EPI task, outper-

forming the next-best system (team FAUST) by over
18 percentage points. On the alternative core metric
our system was also the first, but the FAUST system
was very close with only a 0.27 percentage point dif-
ference. Since the core metric disregards additional
arguments, it may be that our alternative approach
for representing these arguments (Figure 2 B) was
important for the primary criterion difference.

3.3 Infectious Diseases (ID)

The annotation scheme for the ID task closely fol-
lows the GE task, except for an additional process
event type that may have no arguments, and for five
different entity types in place of the protein type.
Our approach for the ID task was identical to the
GE task, but performance relative to the other teams
was considerably lower. Primary evaluation metric
F-score was 42.57% vs. 43.44% for the core metric
which disregards additional arguments, indicating
that these are not the reason for low performance.

3.4 Bacteria Biotopes (BB)

The BB task considers detection of events describ-
ing bacteria and their habitats. The task defines only
two event types but a large number of entity types
which fall into five supertypes. All entities must be
predicted and all events are triggerless.

Unlike in the other main tasks, in the BB task ex-
act spans are required for Bacterium-type entities,
which usually consist of more than one token (e.g.
B. subtilis). After trigger detection, a rule-based step
attempts to extend predicted trigger spans forwards
and backwards to cover the correct span. When ex-
tending the spans of BB training set gold entity head
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tokens, this step produced the correct span for 91%
(399 out of 440) of Bacterium-type entities.

To aid in detecting Bacterium-entities a list of
bacteria names from the List of Prokaryotic names
with Standing in Nomenclature3 was used (Euzéby,
1997) as external features. To help in detecting the
heterogeneous habitat-entities, synonyms and hy-
pernyms from Wordnet were used (Fellbaum, 1998).
The development set lacked some event classes, so
we moved some documents from the training set to
the development set to include these.

Our F-score was the lowest of the three partici-
pating systems, and detailed results show a consis-
tently lower performance in detecting the entities.
The large number of intersentence events (Table 2)
also considerably limited performance (Figure 3).

3.5 Bacteria Gene Interactions (BI)

The BI-task considers events related to genetic pro-
cesses of the bacterium Bacillus subtilis. This task
defines a large number of both entity and event
types, but all entities are given as gold-standard data,
therefore we start from edge detection (Figure 1 D).
All BI events are triggerless.

In this task manually curated syntactic parses are
provided. As also automated parses were available,
we tested them as an alternative. With the Charniak-
Johnson/McClosky parses overall performance was
only 0.65 percentage points lower (76.59% vs.
77.24%). As with the BB task, we moved some doc-
uments from the training set to the development set
to include missing classes.

Despite this task being very straightforward com-
pared to the other tasks we were the only participant.
Therefore, too many conclusions shouldn’t be drawn
from the performance, except to note that a rather
high F-score is to be expected with all the entities
being given as gold data.

3.6 Protein/Gene Coreference (CO)

In the CO supporting task the goal is to extract
anaphoric expressions. Even though our event ex-
traction system was not developed with corefer-
ence resolution in mind, the graph representation
can be used for the coreference annotation, making
coreference detection possible. Anaphoras and An-

3http://www.bacterio.cict.fr/

tecedents are both represented as Exp-type entities,
with Coref -type edges linking Anaphora-entities to
Antecedent-entities and Target-type edges linking
Protein-type entities to Antecedent-entities.

In the CO-task, character spans for detected enti-
ties must be in the range of a full span and minimum
span. Therefore in this task we used an alternative
trigger detector. Instead of predicting one trigger per
token, this component predicted one trigger per each
syntactic phrase created by the Charniak-Johnson
parser. Since these phrases don’t cover most of the
CO-task triggers, they were further subdivided into
additional phrases, e.g. by cutting away determiners
and creating an extra phrase for each noun-token,
with the aim of maximizing the number of included
triggers and minimizing the number of candidates.

Our system placed fourth out of six, reaching an
F-score of 23.77%. Coreference resolution being a
new subject for us and our system not being devel-
oped for this domain, we consider this an encour-
aging result, but conclude that in general dedicated
systems should be used for coreference resolution.

3.7 Entity Relations (REL)
The REL supporting task concerns the detection of
static relationships, Subunit-Complex relations be-
tween individual proteins and protein complexes and
Protein-Component relations between a gene or pro-
tein and its component, such as a protein domain or
gene promoter. In the graph representation these re-
lations are defined as edges that link together given
protein/gene names and Entity-type entities that are
detected by the trigger detector.

To improve entity detection, additional features
are used. Derived from the REL annotation, these
features highlight structures typical for biomolecular
components, such as aminoacids and their shorthand
forms, domains, motifs, loci, termini and promot-
ers. Many of the REL entities span multiple tokens.
Since the trigger detector predicts one entity per to-
ken, additional features are defined to mark whether
a token is part of a known multi-token name.

Our system had the best performance out of four
participating systems with an F-score of 57.7%, over
16 percentage points higher than the next. Develop-
ment set results show that performance for the two
event classes was very close, 66.40% for Protein-
Component and 65.23% for Subunit-Complex.
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3.8 Bacteria Gene Renaming (REN)

The REN supporting task is aimed at detecting state-
ments of B. Subtilis gene renaming where a syn-
onym is introduced for a gene. The REL task defines
a single relation type, Renaming, and a single entity
type, Gene. All entities are given, so only edge de-
tection is required. Unlike the other tasks, the main
evaluation criterion ignores the direction of the rela-
tions, so they are processed as undirected edges in
the graph representation.

Edge detection performance was improved with
external features based on two sources defining
known B. Subtilis synonym pairs: The Uniprot B.
Subtilis gene list “bacsu”4 and SubtiWiki5, the B.
Subtilis research community annotation wiki.

For the 300 renaming relations in the REN train-
ing data, the synonym pair was found from the
Uniprot list in 66% (199 cases), from SubtiWiki in
79% (237 cases) and from either resource in 81.3%
(244 cases). For the corresponding negative edge
examples, Uniprot or SubtiWiki synonym pairs ap-
peared in only 2.1% (351 out of 16640 examples).

At 87.0% F-score our system had the highest per-
formance out of the three participants, exceeding the
next highest system by 17.1 percentage points. If
Uniprot and SubtiWiki features are not used, perfor-
mance on the development set is still 67.85%, close
to the second highest performing system on the task.

4 Conclusions

We have developed a system that addresses all tasks
and subtasks in the BioNLP’11 Shared Task, with
top performance in several tasks. With the modular
design of the system, all tasks could be implemented
with relatively small modifications to the processing
pipeline. The graph representation which covered
naturally all different task annotations was a key fea-
ture in enabling fast system development and test-
ing. As with the Turku Event Extraction System de-
veloped for the BioNLP’09 Shared Task, we release
this improved system for the BioNLP community
under an open source license at bionlp.utu.fi.

Of all the tasks, the GE-task, which extends the
BioNLP’09 corpus, is best suited for evaluating ad-
vances in event extraction in the past two years.

4http://www.uniprot.org/docs/bacsu
5http://subtiwiki.uni-goettingen.de/

Comparing our system’s performance on the GE’09
corpus with the current one, we can assume that the
two corpora are of roughly equal difficulty. There-
fore we can reason that overall event extraction
performance has increased about three percentage
points, the highest performance on the current GE-
task being 56.04% by team FAUST. It appears that
event extraction is a hard problem, and that the im-
mediate easy performance increases have already
been found. We hope the BioNLP’11 Shared Task
has focused more interest in the field, hopefully
eventually leading to breakthroughs in event extrac-
tion and bringing performance closer to established
fields of BioNLP such as syntactic parsing or named
entity recognition.

That our system could be generalized to work on
all tasks and subtasks, indicates that the event extrac-
tion approach can offer working solutions for several
biomedical domains. A potential limiting factor cur-
rently is that most task-specific corpora annotate a
non-overlapping set of sentences, necessitating the
development of task-specific machine learning mod-
els. Training on multiple datasets could mean that
positives of one task would be unannotated on text
from the other task, confusing the classifier. On the
other hand, multiple overlapping task annotations on
the same text would permit the system to learn from
the interactions and delineations of different annota-
tions. System generalization has been successfully
shown in the BioNLP’11 Shared Task, but has re-
sulted in a number of separate extraction systems. It
could well be that the future of event extraction re-
quires also the generalization of corpus annotations.

As future directions, we intend to further improve
the scope and usability of our event extraction sys-
tem. We will also continue our work on PubMed-
scale event extraction, possibly applying some of the
new extraction targets introduced by the BioNLP’11
Shared Task.

Acknowledgments

We thank the Academy of Finland for funding, CSC
— IT Center for Science Ltd for computational re-
sources and Filip Ginter and Sofie Van Landeghem
for help with the manuscript.

190



References
Jari Björne, Juho Heimonen, Filip Ginter, Antti Airola,

Tapio Pahikkala, and Tapio Salakoski. 2009. Extract-
ing complex biological events with rich graph-based
feature sets. In Proceedings of the BioNLP 2009 Work-
shop Companion Volume for Shared Task, pages 10–
18, Boulder, Colorado. Association for Computational
Linguistics.

Jari Björne, Filip Ginter, Sampo Pyysalo, Jun’ichi Tsu-
jii, and Tapio Salakoski. 2010. Scaling up biomed-
ical event extraction to the entire PubMed. In Pro-
ceedings of the 2010 Workshop on Biomedical Natural
Language Processing, pages 28–36, Uppsala, Sweden,
July. Association for Computational Linguistics.

Jari Björne, Juho Heimonen, Filip Ginter, Antti Airola,
Tapio Pahikkala, and Tapio Salakoski. 2011. Extract-
ing contextualized complex biological events with rich
graph-based feature sets. Computational Intelligence,
Special issue on Extracting Bio-molecular Events from
Literature. To appear, accepted in 2009.

Ekaterina Buyko, Erik Faessler, Joachim Wermter, and
Udo Hahn. 2009. Event extraction from trimmed de-
pendency graphs. In Proceedings of the BioNLP 2009
Workshop Companion Volume for Shared Task, pages
19–27. ACL.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05),
pages 173–180. Association for Computational Lin-
guistics.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher Manning. 2006. Generating typed depen-
dency parses from phrase structure parses. In Proceed-
ings of LREC-06, pages 449–454.
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