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Abstract

This paper describes our event extraction sys-
tem that participated in the bacteria biotopes
task in BioNLP Shared Task 2011. The sys-
tem performs semi-supervised named entity
recognition by leveraging additional informa-
tion derived from external resources including
a large amount of raw text. We also perform
coreference resolution to deal with events hav-
ing a large textual scope, which may span over
several sentences (or even paragraphs). To
create the training data for coreference resolu-
tion, we have manually annotated the corpus
with coreference links. The overall F-score of
event extraction was 33.2 at the official eval-
uation of the shared task, but it has been im-
proved to 33.8 thanks to the refinement made
after the submission deadline.

1 Introduction

In this paper, we present a machine learning-based
approach for bacteria biotopes extraction of the
BioNLP Shared Task 2011 (Bossy et al. , 2011).
The task consists of extracting bacteria localization
events, namely, mentions of given species and the
place where it lives. Places related to bacteria lo-
calization events range from plant or animal hosts
for pathogenic or symbiotic bacteria to natural envi-
ronments like soil or water1. This task also targets
specific environments of interest such as medical en-
vironments (hospitals, surgery devices, etc.), pro-
cessed food (dairy) and geographical localizations.

1https://sites.google.com/site/bionlpst/
home/bacteria-biotopes

The task of extracting bacteria biotopes involves
two steps: Named Entity Recognition (NER) and
event detection. The current dominant approach to
NER problems is to use supervised machine learning
models such as Maximum Entropy Markov Models
(MEMMs), Support Vector Machines (SVMs) and
Conditional Random Fields (CRFs). These models
have been shown to work reasonably well when a
large amount of training data is available (Nadeau
and Sekine, 2007). However, because the anno-
tated corpus delivered for this particular subtask in
the shared task is very small (78 documents with
1754 sentences), we have decided to use a semi-
supervised learning method in our system. Our NER
module uses a CRF model with enhanced features
created from external resources. More specifically,
we use additional features created from the output
of HMM clustering performed on a large amount of
raw text, and word senses from WordNet for tag-
ging.

The target events in this shared task are divided
into two types. The first is Localization events
which relates a bacterium to the place where it lives.
The second is PartOf events which denotes an or-
gan that belongs to an organism. As in Bossy et
al. (2010), the largest possible scope of the men-
tion of a relation is the whole document, and thus
it may span over several sentences (or even para-
graphs). This observation motivated us to perform
coreference resolution as a pre-processing step, so
that each event can be recognized within a narrower
textual scope. There are two common approaches to
coreference resolution: one mainly relies on heuris-
tics, and the other employs machine learning. Some
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instances of the heuristics-based approach are de-
scribed in (Harabagiu et al., 2001; Markert and
Nissim, 2005; Yang and Su, 2007), where they
use lexical and encyclopedic knowledge. Machine
learning-based methods (Soon and Ng, 2001; Ng
and Cardie, 2002; Yang et al. , 2003; Luo et al.
, 2004; Daume and Marcu, 2005) train a classi-
fier or search model using a corpus annotated with
anaphoric pairs. In our system, we employ the sim-
ple supervised method presented in Soon and Ng
(2001). To create the training data, we have man-
ually annotated the corpus with coreference infor-
mation about bacteria.

Our approach, consequently, has three processes:
NER, coreference resolution of bacterium entities,
and event extraction. The latter two processes can be
formulated as classification problems. Coreference
resolution is to determine the relation between can-
didate noun phrases and bacterium entities, and the
event extraction is to detect the relation between two
entities. It should be noted that our official submis-
sion in the shared task was carried out without using
a coreference resolution module, and the system has
been improved after the submission deadline.

Our contribution in this paper is two-fold. In the
methodology aspect, we use an unsupervised learn-
ing method to create additional features for the CRF
model and perform coreference resolution to narrow
the scope of events. In the resource aspect, the man-
ual annotations for training our coreference resolu-
tion module will be made available to the research
community.

The remainder of this paper is organized as fol-
lowed. Section 2, 3 and 4 describe details about the
implementation of our system. Section 5 presents
the experimental results with some error analysis.
Finally, we conclude our approach and discuss fu-
ture work in section 6.

2 Semi-supervised NER

According to the task description, the NER task
consists of detecting the phrases that denote bacte-
rial taxon names and localizations which are bro-
ken into eight types: Host, HostPart, Geographical,
Food, Water, Soil, Medical and Environment. In
this work, we use a CRF model to perform NER.
CFRs (Lafferty et. al., 2001) are a sequence model-

ing framework that not only has all the advantages
of MEMMs but also solves the label bias problem
in a principled way. This model is suitable for la-
beling sequence data, especially for NER. Based on
this model, our CRF tagger is trained with a stochas-
tic gradient descent-based method described in Tsu-
ruoka et al. (2009), which can produce a compact
and accurate model.

Due to the small size of the training corpus and
the complexity of their category, the entities cannot
be easily recognized by standard supervised learn-
ing. Therefore, we enhance our learning model by
incorporating related information from other exter-
nal resources. On top of the lexical and syntactic
features, we use two additional types of information,
which are expected to alleviate the data sparseness
problem. In summary, we use four types of features
including lexical and syntactic features, word clus-
ter and word sense features as the input for the CRF
model.

2.1 Word cluster features

The idea of enhancing a supervised learning model
with word cluster information is not new. Kamaza
et. al. (2001) use a hidden Markov model (HMM)
to produce word cluster features for their maximum
entropy model for part-of-speech tagging. Koo et al.
(2008) implement the Brown clustering algorithm
to produce additional features for their dependency
parser. For our NER task, we use an HMM to pro-
duce word cluster features for our CRF model.

We employed an open source library2 for learn-
ing HMMs with the online Expectation Maximiza-
tion (EM) algorithm proposed by Liang and Klein
(2009). The online EM algorithm is much more ef-
ficient than the standard batch EM algorithm and al-
lows us to use a large amount of data. For each hid-
den state, words that are produced by this state with
the highest probability are written. We use this result
of word clustering as a feature for NER. The optimal
number of hidden states is selected by evaluating its
effectiveness on NER using the development set.

To prepare the raw text for HMM clustering, we
downloaded 686 documents (consisting of both full
documents and abstracts) about bacteria biotopes

2http://www-tsujii.is.s.u-tokyo.ac.jp/

˜hillbig/ohmm.htm
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Figure 1: Sample of HMM clustering result.

from MicrobeWiki, JGI Genome Portal, Genoscope,
2Can bacteria pages at EBI and NCBI Genome
Project (the training corpus is also downloaded from
these five webpages). In addition, we use the
100,000 latest MEDLINE abstracts containing the
string “bacteri” in our clustering. In total, the raw
text consists of more than 100,000 documents with
more than 2 million sentences.

A part of the result of HMM clustering is shown
in Figure 1. According to this result, the word “Bi-
fidobacterium” belongs to cluster number 9, and its
feature value is “Cluster-9”. The word cluster fea-
tures of the other words are extracted in the same
way.

2.2 Word sense features

We used WordNet to produce additional features on
word senses. Although WordNet3 is a large lexi-
cal database, it only comprises words in the general
genre, to which only the localization entities belong.
Since it does not contain the bacterial taxon names,
the most important entities in this task, we used an-
other dictionary for bacteria names. The dictionary
was extracted from the genomic BLAST page of
NCBI 4. To connect these two resources, we simply
place all entries from the NCBI dictionary under the
‘bacterium’ sense of WordNet. Table 1 illustrates
some word sense features employed in our model.

2.3 Pre-processing for bacteria names

In biomedical documents, the bacteria taxon names
are written in many forms. For example, they are

3http://wordnet.princeton.edu/
4http://www.ncbi.nlm.nih.gov/sutils/

genom_table.cgi

Word POS Sense
chromosome NN body
colonize VBP social
detected VBN perception
fly NN animal
gastrointestinal JJ pert
infant NN person
longum FW bacterium
maintaining VBG stative
milk NN food
onion NN plant
proterins NNS substance
USA NNP location

Table 1: Sample of word sense features given by Word-
Net and NCBI dictionary.

presented in a full name like “Bacillius cereus”, or
in a short form such as “B. cereus”, or even in an ab-
breviation as “GSB” (green sulfur bacteria). More-
over, the bacteria names are often modified with
some common strings such as “strain”, “spp.”, “sp.”,
etc. “Borrelia hermsii strain DAH”, “Bradyrhizo-
bium sp. BTAi1”, and “Spirochaeta spp.” are ex-
amples of this kind. In order to tackle this prob-
lem, we apply a pre-processing step before NER. Al-
though there are many previous studies solving this
kind of problem, in our system, we apply a simple
method for this step.

• Retrieving the full form of bacteria names. We
assume that (a) both short form and full form
must occur in the same document; (b) a token
is considered as an abbreviation if it is writ-
ten in upper case and its length is shorter than
4 characters. When a token satisfies condition
(b) (which means it is an abbreviation), the pro-
cessing retrieves its full form by identifying all
sequences containing tokens initialized by its
abbreviated character. In case of short form
like “B. cereus”, the selected sequence must in-
clude the right token (which is “cereus” in “B.
cereus”).

• Making some common strings transparent. As
our observation on the training data, there are
8 common strings in bacteria names, including
“strain”, “str”, “str.”, “subsp”, “spp.”, “spp”,
“sp.”, “sp”. All of these strings will be removed
before NER and recovered after that.
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3 Coreference Resolution as Binary
Classification

Coreference resolution is the process of determin-
ing whether different nominal phrases are used to
refer to the same real world entity or concept. Our
approach basically follows the learning method de-
scribed in Soon and Ng (2001). In this approach,
we build a binary classifier using the coreferring en-
tities in the training corpus. The classifier takes a
pair of candidates and returns true if they refer to
the same real world entity and false otherwise. In
this paper, we limit our module to detecting the bac-
teria’s coreference, and hence the candidates consist
of noun phrases (NPs) (starting by a determiner),
pronouns, possessive adjective and name of bacte-
ria.

In addition to producing the candidates, the pre-
processing step creates a set of features for each
anaphoric pair. These features are used by the clas-
sifier to determine if two candidates have a corefer-
ence relation or not.

The following features are extracted from each
candidate pair.

• Pronoun: 1 if one of the candidates is a pro-
noun; 0 otherwise.

• Exact or Partial Match: 1 if the two strings of
the candidates are identical, 2 if they are partial
matching; 0 otherwise.

• Definite Noun Phrase: 1 if one of the candi-
dates is a definite noun phrases; 0 otherwise.

• Demonstrative Noun Phrase: 1 if one of the
candidates is a demonstrative noun phrase; 0
otherwise.

• Number Agreement: 1 if both candidates are
singular or plural; 0 otherwise.

• Proper Name: 1 if both candidates are bac-
terium entities or proper names; 0 otherwise.

• Character Distance: count the number of the
characters between two candidates.

• Possessive Adjective: 1 if one of the candidates
is possessive adjective; 0 otherwise.

Figure 2: Example of annotating coreference resolution.
T16 is a bacterium which is delivered in *.a2 file, T24
and T25 are anaphoric expressions. There are two coref-
erence relations of T16 and T24, T16 and T25.

• Exist in Coreference Dictionary: 1 if the candi-
date exists in the dictionary extracted from the
training data; 0 otherwise. This feature aims to
remove noun phrases which are unlikely to be
related to the bacterium entities.

The first five features are exactly the same as those
in Soon and Ng (2001), while the others are refined
or added to make it suitable for our specific task.

In the testing phase, we used the best-first
clustering as in Ng and Cardie (2002). Rather
than performing a right-to-left search from each
anaphoric NP for the first coreferent NP, a right-to-
left search for a highly likely antecedent was per-
formed. Hence, the classifier was modified to select
the antecedent of NP with the coreference likelihood
score above a threshold. This threshold was tuned by
evaluating it on the development set.

3.1 Corpus annotation

To create the training data for coreference resolu-
tion, we have manually annotated the corpus based
on the gold-standard named entity annotations deliv-
ered by the organizer. Due to our decision to focus
on bacteria names, only the coreference of these en-
tities are labeled. We use a format similar to those of
the organizer, i.e. the standoff presentation and text-
bound annotations. The coreference annotation file
consists of two parts, one part for anaphoric expres-
sions and the other for coreference relation. Figure 2
shows an example of a coreference annotation with
the original text.
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4 Event Extraction

The bacteria biotopes, as mentioned earlier, are di-
vided into two types. The first type of events,
namely localization events, relates a bacterium to
the place where it lives, and has two mandatory ar-
guments: a Bacterium type and a localization type.
The second type of events, i.e. PartOf events, de-
note an organ that belongs to an organism, and has
two mandatory arguments of type HostPart and Host
respectively. We view this step as determining the
relationship between two specific entities. Because
of no ambiguity between the two types of event, the
event extraction can be solved as the binary classifi-
cation of pairs of entities. The classifier is trained on
the training data with four types of feature extracted
from the context between two entities: distance in
sentences, the number of entities, the nearest left and
right verbs.

Generating Training Examples. Given the
coreference information on bacterium entities, the
system considers all the entities belonging to the
coreference chains as real bacteria and generates
event instances. Since about 96% of all annotated
events occur in the same paragraph, we restrict our
method to detecting events within one paragraph.

• Localization Event. The system creates a rela-
tionship between a bacterium and a localization
entity with minimum distance between them
by the following priorities:

(1) The bacterium precedes the localization en-
tity in the same sentence.

(2) The bacterium precedes the localization en-
tity in the same paragraph.

• PartOf Event. All possible relationships be-
tween Host and HostPart entities are generated
if they are in the same paragraph.

5 Experiments and Discussion

The training and evaluation data used in these exper-
iments are provided by the shared task organizers.
The token and syntactic information are extracted
from the supporting resources (Stenetorp et. al. ,
2011). More detail, the tokenized text was done by
GENIA tools, and the syntactic analyses was cre-
ated by the McClosky-Charinak parser (McClosky

Experiment Acc. Pre. Re. F-score
Baseline 94.28 76.32 35.51 48.47
Word cluster 94.46 78.23 39.59 52.57
Word sense 94.63 74.15 44.49 55.61
All Features 94.70 77.62 45.31 57.22

Table 2: Performance of Named Entity Recognition in
terms of Accuracy, Precision, Recall and F-score with
different features on the development set.

and Charniak, 2008), trained on the GENIA Tree-
bank corpus (Tateisi et al., 2005), which is one of the
most accurate parsers for biomedical documents.

For both classification of anaphoric pairs in coref-
erence resolution and determining relationship of
two entites, we used the SVMlight library 5, a state-
of-the-art classifier, with the linear kernel.

In order to find the best parameters and features
for our final system, we conducted a series of exper-
iments at each step of the approach.

5.1 Named Entity Recognition

We evaluated the impact of additional featues on
NER by running four experiments. The Baseline ex-
periment was conducted by using the original CRF
tagger, which did not use any additional features de-
rived from external resources. The other three ex-
periments were conducted by incrementally adding
more features to the CRF tagger. Table 2 shows the
results on the development set6.

Through these experiments we have realized that
using the external resources is very effective. The
word cluster and word sense features are used like
a dictionary. The first one can be considered as the
dictionary of specific classes of entity in the same
domain with this task, which mainly supports the
precision, whereas the latter is a general dictionary
boosting the recall. With regard to F-score, the word
sense features outperform the word cluster features.
When we combine all of them, the F-score is im-
proved significantly by nearly 9 points.

The detailed results of individual classes in Ta-
ble 3 show that the Environment entities are the
hardest to recognize. Because of their general char-
acteristic, these entities are often confused with Host

5http://svmlight.joachims.org/
6These scores were generated by using the CoNLL 2000

evaluation script.
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Class Gold Pre. Re. F-score
Bacterium 86 70.00 40.23 51.09
Host 78 78.57 56.41 65.67
HostPart 44 91.67 50.00 64.71
Geographical 8 71.43 62.50 66.67
Environment 8 0.00 0.00 0.00
Food 0 N/A N/A N/A
Medical 2 100.00 50.00 66.67
Water 17 100.00 17.65 30.00
Soil 1 100.00 100.00 100.00
All 244 77.62 45.31 57.22

Table 3: Results of NER using all features on the de-
velopment set. The “Gold” column shows the number
of entities of that class in the gold-standard corpus. The
score of Food entities is not available because there is no
positive instance in the development set.

Detection Linking
Precision 24.18 20.48
Recall 91.36 33.71
F-score 38.24 25.48

Table 4: Result of coreference resolution on the develop-
ment set achieved with gold-standard named entity anno-
tations.

or Water. In contrast, the Geographical category is
easier than the others if we have gazetteers and ad-
ministrative name lists.

5.2 Coreference Resolution
We next evaluated the accuracy of coreference reso-
lution for bacterium entities. The evaluation7 is car-
ried out in two steps: evaluation of mention detec-
tion, and evaluation of mention linking to produce
coreference links. The exact matching criterion was
used when evaluating the accuracy of the two steps.
Table 4 shows the performance of the coreference
resolution module when taking annotated entites as
input. As mentioned in section 3, the first step of this
module considers all NPs beginning with a deter-
miner and bacterium entities as candidates. There-
fore, the number of the candidate NPs is vastly larger
than that of the positive ones. This is the reason
why the precision of mention detection is low, while
the recall is high. This high recall leads to a large
number of generated linkings and raises the com-

7http://sites.google.com/site/bionlpst/
home/protein-gene-coreference-task

Experiment Pre. Re. F-score
No Coref. 42.11 27.34 33.15
With Coref. 43.40 27.64 33.77

Table 5: Comparative results of event extraction with and
without coreference information on the test set.

Type of event Num. of addition Num. of ruled out
True False True False

Localization 17 1 6 20
PartOf 6 5 1 0
Total 29 27

Table 6: Contribution of coreference resolution to event
extraction.

plexity of linking detection. In order to obtain more
accurate results, we had to remove weak linkings
whose classification score is under 0.7 (this is the
best threshold on the development set). However, as
shown in Table 4, the performance of mention link-
ing was not satisfactory.

5.3 Event Extraction
Finally, we carried out two experiments on the test
set to investigate the effect of coreference resolution
on event extraction. The results shown in Table 5 in-
dicate that the contribution of coreference resolution
in this particular experiment is not significant. The
coreference information helps the module to add 29
more events (23 true and 6 false events) and rule out
27 events (20 false and 7 true events) compared with
the experiment with no coreference resolution. De-
tail about this contribution is presented in Table 6.

We further analyzed the result of event extraction
and found that there exist two kinds of Localization
events, which we call direct and indirect events. The
direct events are the ones that are easily recogniz-
able on the surface level of textual expressions. The
three Localization events in Figure 3 belong to this
type. Our module is able to detect most of the di-
rect events, especially when we have the coreference
information on bacteria – it is straight-forward be-
cause the two arguments of the event occur in the
same sentence. In constrast, the indirect events
are more complicated. They appear implicitly in the
document and we need to infer them through an in-
termediate agent. For example, a bacterium causes
a disease, and this disease infects the humans or an-
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Figure 3: Example of direct events. The solid line is the
Localization event, the dash line is the PartOf event.

Figure 4: Example of indirect events. The solid line is
the Localization event, the arrow shows the causative re-
lation.

imals. Therefore, it can be considered that the bac-
terium locates in the humans or animals. Figure 4
illustrates this case. In this example, the Bacillus
anthracis causes Anthrax, Humans contract the dis-
ease (which refers to Anthrax), and the Bacillus an-
thracis locates in Humans. These events are very
difficult to recognize since, in this context, we do
not have any information about the disease. Events
of this type provide an interesting challenge for bac-
teria biotopes extraction.

6 Conclusion and Future Work

We have presented our machine learning-based ap-
proach for extracting bacteria biotopes. The system
is implemented with modules for three tasks: NER,
coreference resolution and event extraction.

For NER, we used a CRF tagger with four types
of features: lexical and syntactic features, the word
cluster and word sense extracted from the external
resources. Although we achieved a significant im-
provement by employing WordNet and the HMM
clustering on raw text, there is still much room for
improvement. For example, because all extracted
knowledge used in this NER module belongs to the
general knowlegde, its performance is not as good as
our expectation. We envisage that the performance
of the module will be improved if we can find useful
biological features.

We have attempted to use the information ob-
tained from the coreference resolution of bacteria to
narrow the event’s scope. On the test set, although it
does not improve the system significantly, the coref-

erence information has shown to be useful in event
extraction. 8

In this work, we simply used binary classifiers
with standard features for both coreference resolu-
tion and event detection. More advanced machine
learning approaches for structured prediction may
lead to better performance, but we leave it for future
work.
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Hal Daumé III and Daniel Marcu. 2005. A Large-scale
Exploration of Effective Global Features for a Joint
Entity Detection and Tracking Model. In Proceedings
of HLT-EMNLP 2005, pp. 97-104.

Sanda M. Harabagiu, Razvan C. Bunescu and Steven J.
Maiorano. 2001. Text and Knowlegde Mining for Co-
reference Resolution. In Proceedings of NAACL 2001,
pp. 1-8.

Jun’ichi Kazama, Yusuke Miyao, and Jun’ichi Tsujii.
2001. A Maximum Entropy Tagger with Unsuper-
vised Hidden Markov Models. In Proceedings of NL-
PRS 2001, pp. 333-340.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple Semi-supervised Dependency Parsing. In Pro-
ceedings of ACL-08: HLT, pp. 595-603.

John Lafferty, Andrew McCallum and Fernando Pereira.
2001. Conditional Random Fields: Probabilistic Mod-
els for Segmenting and Labeling Sequence Data. In
Proceedings of ICML’01, pp. 282-289.

Percy Liang and Dan Klein. 2009. Online EM for Unsu-
pervised Models. In Proceedings of NAACL 2009, pp.
611-619.

Xiaoqiang Luo, Abe Ittycheriah, Hongyan Jing, Nanda
Kambhatla and Salim Roukos. 2004. A
Mention-Synchronous Co-reference Resolution Algo-
rithm based on the Bell Tree. In Proceedings of ACL
2004, pp. 135-142.

Katja Markert and Malvina Nissim. 2005. Comparing
Knowledge Sources for Nominal Anaphora Resolu-
tion. In Computational Linguistics, Volume 31 Issue
3, pp. 367-402.
8If you are interesting in the annotated corpus used for our

coreference resolution model, please request us by email.

100



David McClosky and Eugene Charniak. 2008. Self-
Training for Biomedical Parsing. Proceedings of the
Association for Computational Linguistics (ACL 2008,
short papers), Columbus, Ohio, pp. 101-104.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Linguisti-
cae Investigationes, Volume 30(1), pp. 326.

Vincent Ng and Claire Cardie. 2002. Improving Ma-
chine Learning Approach to Co-reference Resolution.
In Proceedings of ACL 2002, pp. 104-111.

Wee Meng Soon and Hwee Tou Ng. 2001. A Ma-
chine Learning Approach to Co-reference Resolution
of Noun Phrases. Computational Linguistics 2001,
Volume 27 Issue 4, pp. 521-544.

Pontus Stenetorp, Goran Topić, Sampo Pyysalo, Tomoko
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