
Proceedings of the Sixth Workshop on Innovative Use of NLP for Building Educational Applications, pages 180–189,
Portland, Oregon, 24 June 2011. c©2011 Association for Computational Linguistics

High-Order Sequence Modeling for Language Learner Error Detection

Michael Gamon

Microsoft Research

One Microsoft Way

Redmond, WA 98052

mgamon@microsoft.com

Abstract

We address the problem of detecting Eng-

lish language learner errors by using a dis-

criminative high-order sequence model.

Unlike most work in error-detection, this

method is agnostic as to specific error

types, thus potentially allowing for higher

recall across different error types. The ap-

proach integrates features from many

sources into the error-detection model,

ranging from language model-based fea-

tures to linguistic analysis features. Evalua-

tion results on a large annotated corpus of

learner writing indicate the feasibility of

our approach on a realistic, noisy and in-

herently skewed set of data. High-order

models consistently outperform low-order

models in our experiments. Error analysis

on the output shows that the calculation of

precision on the test set represents a lower

bound on the real system performance.

1. Introduction

Systems for automatic detection and correction of

errors in native writing have been developed for

many decades. Early in the development of these

systems, the approach was exclusively based on

knowledge engineering. Hand-crafted grammars

would analyze a sentence and would contain spe-

cial mechanisms for rule or constraint relaxation

that allow ungrammatical sentences to produce a

parse, while at the same time indicating that a

grammatical error is present. More recently, data-

driven methods have assumed prominence and

there has been an emerging area of research into

the challenge of detecting and correcting errors in

learner language (for an overview see Leacock et

al. 2010). Data-driven methods offer the familiar

set of advantages: they can be more flexible than a

manually maintained set of rules and they tend to

cope better with noisy input. Drawbacks include

the inability to handle linguistically more complex

errors that involve long distance dependencies such

as subject-verb agreement. Learner errors as a tar-

get for error detection and correction pose a partic-

ular challenge but also offer some unique

opportunities. The challenge lies in the density of

errors (much higher than in native writing), the

variety of errors (a superset of typical native er-

rors) and the generally more non-idiomatic writing.

On the other hand, the availability of annotated

corpora, often comprised of manually corrected

learner essays or scripts, provides a big advantage

for the evaluation and training of data-driven sys-

tems.

Data-driven systems for English learner error

detection and correction typically target a specific

set of error types and contain a machine learned

component for each error type. For example, such

a system may have a classifier that determines the

correct choice of preposition given the lexical and

syntactic part-of-speech (POS) context and hence

can aid the learner with the notoriously difficult

problem of identifying an appropriate preposition.

Similarly, a classifier can be used to predict the

correct choice of article in a given context. Such

targeted systems have the advantage that they often

achieve relatively high precision at, of course, the

cost of recall. However, while there are a few ma-

jor learner error categories, such as prepositions

and articles, there is also a long tail of content

word and other errors that is not amenable to a tar-

geted approach.

In this paper, we depart from the error-specific

paradigm and explore a sequence modeling ap-

proach to general error detection in learner writing.

This approach is completely agnostic as to the er-

ror type. It attempts to predict the location of an

180

error in a sentence based on observations gathered

from a supervised training phase on an error-

annotated learner corpus. Features used here are

based on an n-gram language model, POS tags,

simple string features that indicate token length

and capitalization, and linguistic analysis by a con-

stituency parser. We train and evaluate the method

on a sizeable subset of the corpus. We show the

contribution of the different feature types and per-

form a manual error analysis to pinpoint shortcom-

ings of the system and to get a more accurate idea

of the system’s precision.

2. Related work

Error-specific approaches comprise the majority of

recent work in learner error detection. Two of the

most studied error types in learner English are

preposition and article errors since they make up a

large percentage of errors in learner writing (16%

and 13% respectively in the Cambridge Learner

Corpus, without considering spelling and punctua-

tion errors). The most widely used approach for

detecting and correcting these errors is classifica-

tion, with lexical and POS features gleaned from a

window around the potential preposition/article

site in a sentence. Some recent work includes Cho-

dorow et al. (2007), De Felice and Pulman (2008),

Gamon (2010), Han et al. (2010), Izumi et al.

(2004), Tetreault and Chodorow (2008), Ro-

zovskaya and Roth (2010a, 2010b). Gamon et al.

(2008) and Gamon (2010) used a language model

in addition to a classifier and combined the classi-

fier output and language model scores in a meta-

classifier. These error-specific methods achieve

high precision (up to 80-90% on some corpora) but

only capture highly constrained error types such as

preposition and determiner errors.

There has also been research on error-detection

methods that are not designed to identify a specific

error type. The basic idea behind these error-

agnostic approaches is to identify an error where

there is a particularly unlikely sequence compared

to the patterns found in a large well-formed corpus.

Atwell (1986) used low-likelihood sequences of

POS tags as indicators for the presence of an error.

Sjöbergh (2005) used a chunker to detect unlikely

chunks in native Swedish writing compared to the

chunks derived from a large corpus of well-formed

Swedish writing. Bigert and Knutsson (2002) em-

ployed a statistical method to identify a variety of

errors in Swedish writing as rare sequences of

morpho-syntactic tags. They significantly reduced

false positives by using additional methods to de-

termine whether the unexpected sequence is due to

phrase or sentence boundaries or due to rare single

tags. Chodorow and Leacock (2000) utilized mutu-

al information and chi-square statistics to identify

typical contexts for a small set of targeted words

from a large well-formed corpus. Comparing these

statistics to the ones found in a novel sentence,

they could identify unlikely contexts for the target-

ed words that were often good indicators of the

presence of an error. Sun et al. (2007) mined for

patterns that consist of POS tags and function

words. The patterns are of variable length and can

also contain gaps. Patterns were then combined in

a classifier to distinguish correct from erroneous

sentences. Wagner et al. (2007) combined parse

probabilities from a set of statistical parsers and

POS tag n-gram probabilities in a classifier to de-

tect ungrammatical sentences. Okanohara and Tsu-

jii (2007) differed from the previous approaches in

that they directly used discriminative language

models to distinguish correct from incorrect sen-

tences, without the direct modeling of error-

indicating patterns. Park and Levy (2011) use a

noisy channel model with a base language model

and a set of error-specific noise models for error

detection and correction.

In contrast to previous work, we cast the task as

a sequence modeling problem. This provides a

flexible framework in which multiple statistical

and linguistic signals can be combined and cali-

brated by supervised learning. The approach is er-

ror-agnostic and can easily be extended with

additional statistical or linguistic features.

3. Error detection by sequence modeling

Errors consist of a sub-sequence of tokens in a

longer token sequence. They can be identified by a

combination of internal and contextual features,

the latter requiring a notion of Markov window (a

window around a token in which relevant infor-

mation is likely to be found). This is similar to

tasks such as named entity recognition (NER) or

part-of-speech tagging, where sequence modeling

has proven to be successful.

We choose a Maximum Entropy Markov Model

(MEMM, McCallum et al. 2000) as the modeling

technique. In NER, the annotation convention uses

181

three labels for a token “O” (outside of NE), “B”

(beginning of NE), and “I” (inside of NE). For our

purpose we reduced the set of labels to just “O”

and “I” since most of the errors are relatively short.

Conditional Random Fields (Lafferty et al.

2001) are considered to be superior to MEMMs in

learning problems affected by label bias (Bottou

1991). In our scheme, however, there are only two

states “O” and “I”, and both states can transition to

each other. Since there are no states with asymmet-

ric transition properties that would introduce a bias

towards states with fewer transitions, label bias is

not a problem for us.

Figure 1 shows the structure of our MEMM with

a Markov order of five (the diagram only shows

the complete set of arcs for the last state). The in-

put sentence contains the token sequence the past

year I was stayed … with the error was stayed. In-

stead of using the tokens themselves as observa-

tions, we chose to use POS tags assigned by an

automatic tagger (Toutanova et al. 2003). This

choice was motivated by data sparseness. Learning

a model that observes individual lexical items and

predicts a sequence of error/non-error tags would

be ideal, but given the many different error types

and triggering contexts for an error, such a model

would require much more training data. A large set

of features that serve as constraints on the state

transition models are extracted for each state. The-

se features are described in Section 5.

Note that the model structure would lend itself

to a factorial conditional random field (McCallum

et al. 2003) which allows the joint labeling of POS

tags and state labels. This would, however, require

training data that is labeled for both errors and

POS tags.

Figure 1: MEMM model for error detection, the

full set of dependencies is only shown for the last

state.

4. Detecting errors in the Cambridge

Learner Corpus

The learner corpus used to train and evaluate the

system is the Cambridge Learner Corpus (CLC). It

consists of essays (scripts) written as part of the

University of Cambridge English for Speakers of

Other Languages (ESOL) examinations. The cor-

pus contains about 30 million words of learner

English. All errors are annotated and include, when

possible, a single suggested correction. Errors are

categorized into 87 error types.

We performed a number of preprocessing steps

on the data. On the assumption that learners have

access to a spell checker, errors that were marked

as spelling errors were corrected based on the an-

notations. Confused words (their/there) were treat-

ed in the same way, given that they are corrected

by a modern proofing tool such as the one in Mi-

crosoft Word. In addition, British English spelling

conventions were changed to those of American

English. Sentences containing errors that had no

suggested rewrite were eliminated. Finally, only

lexical errors are covered in this work. For punctu-

ation and capitalization we removed the error an-

notations, retaining the original (erroneous)

punctuation and capitalization.

We grouped the remaining 60 error classifica-

tions into eight categories: Content word, Inflec-

tional morphology, Noun phrase errors,

Preposition errors, Multiple errors, Other errors

involving content words, Other errors involving

function words and Derivational morphology. The

distribution of error categories is shown in Table 1.

Error Class Freq Pct

Content word insertion, dele-

tion or choice
185,201 21%

Inflectional morphology and

agreement of content words
157,660 18%

Noun phrase formation: De-

terminers and quantifiers
130,829 15%

Preposition error 124,902 14%

Multiple: Adjacent and nested

annotations
113,615 13%

Other content word errors 79,596 9%

Other function word errors:

anaphors and conjunctions
65,034 7%

Derivational morphology of

content words
39,213 4%

Table 1: Error types in the CLC.

182

The multiple error class includes any combination

of error types where the error annotations are either

nested or adjacent. The other categories are more

focused: the errors are of a particular class and

their adjacent context is correct, although there

may be another error annotation a single token

away. Content word errors involve the insertion,

deletion and substitution of nouns, verbs, adjec-

tives and adverbs. Further analysis of this error

category on a random sample of 200 instances re-

veals that the majority (72%) of content word er-

rors involve substitutions, while deletions account

for 10% of the errors and insertions for 18%. Most

substitutions (63%) involve the wrong choice of a

word that is somewhat semantically related to the

correct choice. Inflectional morphology includes

all inflection errors for content words as well as

subject-verb agreement errors. The inflectional

errors include many cases of what might be con-

sidered spelling errors, for example *dieing/dying.

Similarly, the derivational morphology errors in-

clude all derivational errors for content words –

and also include many errors that may be consid-

ered as spelling errors. Noun formation errors in-

clude all annotations involving determiners and

quantifiers: inflection, derivation, countability,

word form and noun-phrase-internal agreement.

Preposition errors include all annotations that in-

volve prepositions: insertion, deletion, substitution

and a non-preposition being used in place of a

preposition. There are two other categories: those

involving the remaining function words (anaphors

and conjunctions) and those involving remaining

content words (collocation, idiom, negative for-

mation, argument structure, word order, etc.).

It is important to highlight the challenges inher-

ent in this data set. First of all, the problem is high-

ly skewed since only 7.3% of tokens in the test set

are involved in an error. Second, since we included

correct learner sentences in the development and

test sets in the proportion they occur in the overall

corpus, only 47% of sentences in the test set con-

tain error annotations, greatly increasing the likeli-

hood of false positives.

5. Features

5.1 Language model features

The language model (LM) features comprise a

total of 29 features. Each of these features is calcu-

lated from n-gram probabilities observed at and

around the current token. All LM features are

based on scores from a 7-gram language model

with absolute discount smoothing built from the

Gigaword corpus (Gao et al. 2001, Nguyen et al.

2007).

We group the language model features concep-

tually into five categories: basic features, ratio fea-

tures, drop features, entropy delta features and

miscellaneous. All probabilities are log probabili-

ties, and n in the n-grams ranges from 1 to 5. All

features are calculated for each token w of the to-

kens w0…wi in a sentence.

Basic LM features consist of two features: the

unigram probability of w and the average n-gram

probability of all n-grams in the sentence that con-

tain w.

Ratio features are based on the intuition that er-

rors can be characterized as involving tokens that

have a very low ratio of higher order n-gram prob-

abilities to lower order n-gram probabilities. In

other words, these are tokens that are part of an

unlikely combination of otherwise likely smaller n-

grams. These features are calculated as the ratio of

the average x-gram probability of all x-grams con-

taining w to the average y-gram probability of all

y-grams containing w. The values for x and y are: 5

and 1, 4 and 1, 3 and 1, 2 and 1, 5 and 4, 4 and 3, 3

and 2.

Drop features measure either the drop or in-

crease in n-gram probability across token w. For

example, the bigram drop at wi is the delta between

the bigram probability of the bigram starting at i-1

to the bigram probability of the bigram starting at i.

Drop features are calculated for n-grams with 2 ≤ n

≤ 5.

Entropy delta features offer another way to look

at the changes of n-gram probability across a token

w. Forward entropy for wi is defined as the entropy

of the string wi…wn where n is the index of the last

token in the sentence. We calculate the entropy of

an n-gram as the language model probability of

string wi…wn divided by the number of tokens in

that string. Backward entropy is calculated analo-

gously for w0…wi. For n-grams with 1 ≤ n ≤ 5, we

also calculate, at each index i into the token array,

the delta between the n-gram entropy of the n-gram

starting at i and the n-gram starting at i+1 (forward

sliding entropy). Similarly the delta between the n-

gram entropy of the n-gram starting at i and the n-

gram starting at i-1 (backward sliding entropy) is

calculated.

183

There are four miscellaneous language model

features. Three of them, minimum ratio to random,

average ratio to random, and overall ratio to ran-

dom address the fact that a “good” n-gram is likely

to have a much higher probability than an n-gram

with the same tokens in random order. For all n-

grams where 2 ≤ n ≤ 5 we calculate the ratio be-

tween the n-gram probability and the sum of the

unigram probabilities. For a token wi we produce

the minimum ratio to random (the minimum ratio

of all n-grams including w) and the average ratio

to random (the average of all ratios of the n-grams

including w). Overall ratio to random is obtained

by looping through each n-gram where 2 ≤ n ≤ 5

that includes wi and summing the n-gram proba-

bilities (sum1) as well as the unigram probabilities

of all unigrams in these n-grams (sum2). The ratio

feature is then sum1/sum2. The final feature ad-

dresses the intuition that an erroneous word may

cause n-grams that contain the word to be less like-

ly than adjacent but non-overlapping n-grams.

Overlap to adjacent ratio is the sum of probabili-

ties of n-grams including wi, divided by the sum of

probabilities of n-grams that are adjacent to wi but

do not include it.

Note that this use of a host of language model

features is substantially different from using a sin-

gle language model score on hypothesized error

and potential correction to filter out unlikely cor-

rection candidates as in Gamon et al. (2008) and

Gamon (2010).

5.2 String features

String features capture information about the char-

acters in a token and the tokens in a sentence. Two

binary features indicate whether a token is capital-

ized (initial capitalization or all capitalized), one

feature indicates the token length in characters and

one feature measures the number of tokens in the

sentence.

5.3 Linguistic Analysis features

Each sentence is linguistically analyzed by a

PCFG-LA parser (Petrov et al., 2006) trained on

the Penn Treebank (Marcus et al., 1993). A num-

ber of features are extracted from the constituency

tree to assess the syntactic complexity of the whole

sentence, the syntactic complexity of the local en-

vironment of a token, and simple constituency in-

formation for each token. These features are: label

of the parent and grandparent node, number of sib-

ling nodes, number of siblings of the parent, pres-

ence of a governing head node, label of the

governing head node, and length of path to the

root. An additional feature indicates whether the

POS tag assigned by the parser does not match the

tag assigned by the POS tagger, which may indi-

cate a tagging error.

6. Experiments

6.1 Design

For our experiments we use three different mutual-

ly exclusive random subsets of CLC. 50K sentenc-

es are used for training of the models (larger data

sets exceeded the capabilities of our MEMM train-

er). In this set, we only include sentences that con-

tain at least one annotated error. We also

experimented using a mix of error-free and errone-

ous sentences, but the resulting models turned out

to be extremely skewed towards always predicting

the majority state “O” (no error). 20K sentences

(including both erroneous and correct sentences)

are used for parameter tuning and testing, respec-

tively.

Each token in the data is annotated with one of

the states “O” or “I”. Performance is measured on

a per token basis, i.e. each mismatch between the

predicted state and the annotated state is counted as

an error, each match is counted as a correct predic-

tion.

We use the development set to tune two parame-

ters: the size of the Markov window and a prior to

prevent overfitting. The latter is a Gaussian prior

(or quadratic regularizer) where the mean is fixed

to zero and the variance is left as a free parameter.

We perform a grid search to find values for the

parameters that optimize the model’s F1 score on

the development data.

In order to be able to report precision and recall

curves, we use a technique similar to the one de-

scribed in Minkov et al. (2010): we introduce an

artificial feature with a constant value at training

time. At test time we perform multiple runs, modi-

fying the weight on the artificial feature. This

weight variation influences the model’s prior pro-

pensity to assign each of the two states, allowing

us to measure a precision/recall tradeoff.

184

6.2 Performance of feature sets

Figure 2 illustrates the performance of three differ-

ent feature sets and combinations. The baseline is

using only language model features and standard

POS tags, which tops out at about 20% precision.

Adding the string features discussed in the previ-

ous section, and partially lexicalized (PL) POS

tags, where we used POS tags for content word

tokens and the lexicalized token for function

words, we get a small but consistent improvement.

We obtain the best performance when all features

are used, including the linguistic analysis features

(DepParse). We found that a high-order model

with a Markov window size of 14 performed best

for all experiments with a top F1 score. F1 at low-

er orders was significantly worse. Training time for

the best models was less than one hour.

6.3 Predicting error types

In our next experiment, we tried to determine how

the sequence modeling approach performs for in-

dividual error types. Here we trained eight differ-

ent models, one for each of the error types in Table

1. As in the previous experiments, the development

and test files contained error-free sentences. The

optimal Markov window size ranged from 8 to 15.

Note that our general sequence model described in

the previous sections does not recognize different

error types, so it was necessary to train one model

per error type for the experiments in this section.

Figure 3 shows the results from this series of

experiments. We omit the results for other content

word error, other function word and multiple er-

rors in this graph since these relatively ill-defined

error classes performed rather poorly. As Figure 3

illustrates, derivational errors and preposition er-

rors achieve by far the best results. The fact that

the individual precision never reaches the level of

the general sequence model (Figure 2) can be at-

tributed to the much smaller overall set of errors in

each of the eight training sets. In Figure 4 we com-

pare the sequence modeling results for prepositions

with results from the preposition component of the

current version of the system described in Gamon

(2010) on the same test set. That system consists of

a preposition-specific classifier, a language model

and a meta-classifier that combines evidence from

the classifier and the language model. The se-

quence model approach outperforms the classifier

of that system, but the full system including lan-

guage model and meta-classifier achieves much

higher precision than the sequence modeling ap-

proach.

6.4 Learning curve experiments

An obvious question that arises is how much train-

ing data we need for an error detection sequence

model, i.e. how does performance degrade as we

decrease the amount of training data from the 50K

error-annotated sentences that were used in the

previous experiments. To this end we produced

random subsets of the training data in 20% incre-

ments. For each of these training sets, we deter-

mined the resulting F1 score by first performing

parameter tuning on the development set and then

measuring precision and recall of the best model

on the test set. Results are shown in Figure 5: at

20% of training data, precision starts to increase at

the cost of recall. At 80% of the training data, re-

call starts to trend up as well. This upward trend of

both precision and recall indicates that increasing

the amount of training data is likely to further im-

prove results.

6.5 Error analysis

The precision values obtained in our experi-

ments are low, but they are also based on the

strictest possible measure of accuracy: an error

prediction is only counted as correct if it exactly

matches a location and annotation in the CLC. A

manual analysis of 400 randomly selected sentenc-

es containing “false positives”, where the system

had 29% precision and 10% recall, by the strictest

calculation, showed that 14% of the “false posi-

tives” identified an error that was either not anno-

tated in CLC or was an error type not covered by

the system such as punctuation or case (recall from

Section 4 that for these errors we removed the er-

ror annotations but retained the original string). An

additional 16% were adjacent to an error annota-

tion. 12% had error annotations within 2-4 tokens

from the predicted error. Foreign language and

other unknown proper names comprised an addi-

tional 6%. Finally, 9% were due to tokenization

problems or all-upper case input that throws off the

POS tagger. Thus the precision reported in Figure

2 through Figure 6 is really a lower bound. 30% of

the “false positives” either identify, or are adjacent

to, an error.

185

Sentence length has a strong influence on the

accuracy of the sequence model. For sentences less

than 7 tokens long, average precision is approxi-

mately 7%, whereas longer sentences average at

29% precision. This observation fits with the fact

that high-order models perform best in the task, i.e.

the more context a model can access, the more re-

liable its predictions are. Shorter sentences are also

less likely to contain an error: only 12% of short

sentences contain an error, as opposed to 46% of

sentences of seven tokens or longer.

For sentences that are at least 7 tokens long, er-

ror predictions on the first and last two tokens (the

last token typically being punctuation) have an av-

erage precision of 22% as compared to an average

of 30% at all other positions. Other unreliable error

predictions include those involving non-alphabetic

characters (quotes, parentheses, symbols, numbers)

with 1% precision and proper name tags with 10%

precision. Many of the predictions on NNP tags

identify, by and large, unknown or foreign names

(Cricklewood, Cajamarca). Ignoring system flags

on short sentences, symbols and NNP tags would

improve precision with little cost to recall.

We also experimented with a precision/recall

metric that is less harsh but at the same time realis-

tic for error detection. For this “soft metric” we

count correct and incorrect predictions at the error

level instead of the token level. An error is defined

as a consecutive sequence of n error tags, where n

≥ 1.

Figure 2: Precision and recall of different feature sets.

Figure 3: Precision and recall of different error models.

0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
re

c
is

io
n

recall

Precision and recall

LM LM+ String + PL LM + String + PL + DepParse

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

p
re

c
is

io
n

recall

Precision and Recall per Error Type

content deriv inflect nounphrase preposition

186

Figure 4: Preposition precision and recall.

Figure 5: Learning curve.

Figure 6: Precision and recall for adjacent annotated error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

p
re

c
is

io
n

recall

Precision and Recall Prepositions

sequence model full system Gamon (2010) classifier only Gamon (2010)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80 90 100
percent of training data

Precision, recall and amount of training data

Precision Recall

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re

c
is

io
n

recall

Precision and recall: soft metric and per sentence accuracy

exact match soft metric
per sentence soft metric, short sentences excluded
per sentence, short sentences excluded exact match, short sentences excluded

187

A predicted error counts as being correct with re-

spect to an annotated error if the following two

criteria are met:

a) At least one predicted error token is part of

an annotated error or is directly adjacent to

an annotated error

b) No more than two predicted error tokens

fall outside the annotated error.

Criterion (a) establishes that predicted and annotat-

ed error are overlapping or at least directly adja-

cent. Criterion (b) ensures that the predicted error

is “local” enough to the annotated error and does

not include too much irrelevant context, but it still

allows an annotated error to be flanked by predict-

ed error tokens. Figure 6 illustrates the preci-

sion/recall characteristics of the best model when

using this soft metric as compared to the strict met-

ric. We also included a “per sentence” metric in

Figure 6, where we measure precision and recall at

the level of identifying a sentence as containing an

error or not, in other words when using the model

as a detector for ungrammatical sentences. In addi-

tion we show for each of the three metrics how the

results change if short sentences (shorter than 7

tokens) are excluded from the evaluation.

7. Conclusion and future work

We have shown that a discriminative high order

sequence model can be used to detect errors in

English learner writing. This enables a general ap-

proach to error detection, at the cost of requiring

annotated data. High-order models outperform

lower order models significantly for this problem.

It is obvious that there are several avenues to

pursue in order to improve upon these initial re-

sults. Two possibilities that we would like to high-

light are the model structure and the feature set. As

mentioned in Section 3, instead of using a separate

POS tagger we could follow McCallum et al.

(2003) and design a model that jointly predicts two

sequences: POS tags and error tags. As for feature

sets, we conducted some preliminary additional

experiments where we added a second set of lan-

guage model features, based on a different lan-

guage model, namely the Microsoft web n-gram

model (Wang et al. 2010). The addition of these

features raised both precision and recall.

Finally, an error detection system is only of

practical use if it is combined with a component

that suggests possible corrections. For future work,

we envision a combination of generic error detec-

tion with a corpus-based lookup system that finds

alternative strings that have been observed in simi-

lar contexts. All these alternatives can then be

scored by a language model in the original context

of the user input, allowing only those suggestions

to be shown to the user that achieve a better lan-

guage model score than the original input. This

combination of error detection and error correction

has the advantage that the error detection compo-

nent can be used to provide recall, i.e. it can be

allowed to operate at a lower precision level. The

error correction component, on the other hand,

then reduces the number of false flags by vetting

potential corrections by language model scores.

Acknowledgments

We would like to thank Claudia Leacock for the

manual error analysis, Michel Galley for detailed

comments on an earlier draft and Chris Quirk for

discussions and help around the MEMM model

implementation. The idea of the ratio to random

language model features is Yizheng Cai’s. We also

greatly benefited from the comments of the anon-

ymous reviewers.

References

Eric Steven Atwell. 1986. How to detect grammatical

errors in a text without parsing it. In Proceedings of

EACL, pp. 38-45.

Léon Bottou. 1991. Une approche théorique de

l’apprentissage connexionniste: Applications à la re-

connaissance de la parole. Doctoral dissertation,

Université de Paris XI.

Johnny Bigert and Ola Knutsson. 2002. Robust error

detection: a hybrid approach combining unsupervised

error detection and linguistic knowledge. In Proceed-

ings of the Second Workshop on Robust Methods in

Analysis of Natural Language Data, pp. 10-19.

Martin Chodorow and Claudia Leacock. 2000. An un-

supervised method for detecting grammatical errors.

In Proceedings of NAACL, pp. 140-147.

Martin Chodorow, Joel Tetreault and Na-Rae Han.

2007. Detection of grammatical errors involving

prepositions. In Proceedings of the Fourth ACL-

SIGSEM Workshop on Prepositions, pp. 25-30.

Rachele De Felice and Stephen G. Pulman. 2008. A

classifier-based approach to preposition and deter-

188

miner error correction in L2 English. In Proceedings

of COLING, pp. 169-176.

Michael Gamon, Jianfeng Gao, Chris Brockett, Alexan-

dre Klementiev, William Dolan, Dmitriy Belenko

and Lucy Vanderwende. 2008. Using Contextual

Speller Techniques and Language Modeling for ESL

Error Correction. In Proceedings of IJCNLP.

Michael Gamon. 2010. Using mostly native data to cor-

rect errors in learners’ writing. In Proceedings of

NAACL.

Jianfeng Gao, Joshua Goodman, and Jiangbo Miao.

2001. The use of clustering techniques for language

modeling--Application to Asian languages. Computa-

tional Linguistics and Chinese Language Processing,

6(1), 27-60.

Na-Rae Han, Joel Tetreault, Soo-Hwa Lee and Jin-

Young Ha. 2010. Using error-annotated ESL data to

develop an ESL error correction system. In Proceed-

ings of LREC.

Emi Izumi, Kiyotaka Uchimoto and Hitoshi Isahara.

2004. SST speech corpus of Japanese learners’ Eng-

lish and automatic detection of learners’ errors. In-

ternational Computer Archive of Modern English

Journal, 28:31-48.

John Lafferty, Andrew McCallum and Fernando Perei-

ra. 2001. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. In

Proceedings of ICWSM, pp. 282-289.

Claudia Leacock, Martin Chodorow, Michael Gamon

and Joel Tetreault. 2010. Automated Grammatical

Error Detection for Language Learners. Morgan and

Claypool.

Mitchell P. Marcus, Beatrice Santorini and Mary Ann

Marcinkiewicz. 1993. Building a large annotated

corpus of English: The Penn Treebank. Computa-

tional Linguistics 19:313-330.

Andrew McCallum, Dayne Freitag and Fernando Perei-

ra. 2000. Maximum entropy Markov models for in-

formation extraction and segmentation. In

Proceedings of ICML, pp. 591-598.

Andrew McCallum, Khashayar Rohanimanesh and

Charles Sutton. 2003. Dynamic Conditional Random

Fields for jointly labeling multiple sequences. In

Proceedings of NIPS Workshop on Syntax, Semantics

and Statistics.

Einat Minkov, Richard C. Wang, Anthony Tomsaic and

William C. Cohen. 2010. NER systems that suit us-

er’s preferences: Adjusting the Recall-Precision

trade-off for entity extraction. In Proceedings of

NAACL, pp. 93-96.

Patrick Nguyen, Jianfeng Gao, and Milind Mahajan.

2007. MSRLM: A scalable language modeling

toolkit (MSR-TR-2007-144). Redmond, WA: Mi-

crosoft.

Daisuke Okanohara and Jun’ichi Tsujii. 2007. A dis-

criminative language model with pseudo-negative

samples. In Proceedings of ACL, pp. 73-80.

Y. Albert Park and Roger Levy. 2011. Automated

whole sentence grammar correction using a Noisy

Channel Model. In Proceedings of ACL 2011.

Slav Petrov, Leon Barrett, Romain Thibaux and Dan

Klein. 2006. Learning accurate, compact, and inter-

pretable tree annotation. In Proceedings of

COLING/ACL, pp. 443-440.

Alla Rozovskaya and Dan Roth. 2010a. Training Para-

digms for correcting errors in grammar and usage. In

Proceedings of NAACL-HLT.

Alla Rozovskaya and Dan Roth. 2010b. Generating con-

fusion sets for context-sensitive error correction. In

Proceedings of EMNLP.

Jonas Sjöbergh. 2005. Chunking: An unsupervised

method to find errors in text. In Proceedings of the

15
th

 NODALIDA conference.

Guihua Sun, Xiaohua Liu, Gao Cong, Ming Zhou,

Zhongyang Xiong, John Lee and Chin-Yew Lin.

2007. Detecting erroneous sentences using automati-

cally mined sequential patterns. In Proceedings of

ACL, pp. 81-88.

Joel Tetreault and Martin Chodorow. 2008. The ups and

downs of preposition error detection in ESL writing.

In Proceedings of COLING, pp. 865-872.

Kristina Toutanova, Dan Klein, Chris Manning, and

Yoram Singer. 2003. Feature-rich part-of-speech tag-

ging with a cyclic dependency network. In Proceed-

ings of NAACL, pp. 252-259.

Joachim Wagner, Jennifer Foster, and Josef van

Genabith. 2007. Judging grammaticality: Experi-

ments in sentence classification. In Proceedings of

EMNLP & CONLL, pp 112-121.

Kuansan Wang, Christopher Thrasher, Evelyne Viegas,

Xialong Li, and Paul Hsu. 2010. An Overview of

Microsoft web n-gram corpus and applications. In:

Proceedings of NAACL 2010.

189

