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Abstract 

We address the problem of detecting Eng-

lish language learner errors by using a dis-

criminative high-order sequence model. 

Unlike most work in error-detection, this 

method is agnostic as to specific error 

types, thus potentially allowing for higher 

recall across different error types.  The ap-

proach integrates features from many 

sources into the error-detection model, 

ranging from language model-based fea-

tures to linguistic analysis features. Evalua-

tion results on a large annotated corpus of 

learner writing indicate the feasibility of 

our approach on a realistic, noisy and in-

herently skewed set of data. High-order 

models consistently outperform low-order 

models in our experiments. Error analysis 

on the output shows that the calculation of 

precision on the test set represents a lower 

bound on the real system performance. 

1. Introduction 

Systems for automatic detection and correction of 

errors in native writing have been developed for 

many decades. Early in the development of these 

systems, the approach was exclusively based on 

knowledge engineering. Hand-crafted grammars 

would analyze a sentence and would contain spe-

cial mechanisms for rule or constraint relaxation 

that allow ungrammatical sentences to produce a 

parse, while at the same time indicating that a 

grammatical error is present. More recently, data-

driven methods have assumed prominence and 

there has been an emerging area of research into 

the challenge of detecting and correcting errors in 

learner language (for an overview see Leacock et 

al. 2010). Data-driven methods offer the familiar 

set of advantages: they can be more flexible than a 

manually maintained set of rules and they tend to 

cope better with noisy input. Drawbacks include 

the inability to handle linguistically more complex 

errors that involve long distance dependencies such 

as subject-verb agreement. Learner errors as a tar-

get for error detection and correction pose a partic-

ular challenge but also offer some unique 

opportunities. The challenge lies in the density of 

errors (much higher than in native writing), the 

variety of errors (a superset of typical native er-

rors) and the generally more non-idiomatic writing. 

On the other hand, the availability of annotated 

corpora, often comprised of manually corrected 

learner essays or scripts, provides a big advantage 

for the evaluation and training of data-driven sys-

tems.  

Data-driven systems for English learner error 

detection and correction typically target a specific 

set of error types and contain a machine learned 

component for each error type. For example, such 

a system may have a classifier that determines the 

correct choice of preposition given the lexical and 

syntactic part-of-speech (POS) context and hence 

can aid the learner with the notoriously difficult 

problem of identifying an appropriate preposition. 

Similarly, a classifier can be used to predict the 

correct choice of article in a given context. Such 

targeted systems have the advantage that they often 

achieve relatively high precision at, of course, the 

cost of recall. However, while there are a few ma-

jor learner error categories, such as prepositions 

and articles, there is also a long tail of content 

word and other errors that is not amenable to a tar-

geted approach. 

In this paper, we depart from the error-specific 

paradigm and explore a sequence modeling ap-

proach to general error detection in learner writing. 

This approach is completely agnostic as to the er-

ror type. It attempts to predict the location of an 
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error in a sentence based on observations gathered 

from a supervised training phase on an error-

annotated learner corpus. Features used here are 

based on an n-gram language model, POS tags, 

simple string features that indicate token length 

and capitalization, and linguistic analysis by a con-

stituency parser. We train and evaluate the method 

on a sizeable subset of the corpus. We show the 

contribution of the different feature types and per-

form a manual error analysis to pinpoint shortcom-

ings of the system and to get a more accurate idea 

of the system’s precision. 

2. Related work 

Error-specific approaches comprise the majority of 

recent work in learner error detection. Two of the 

most studied error types in learner English are 

preposition and article errors since they make up a 

large percentage of errors in learner writing (16% 

and 13% respectively in the Cambridge Learner 

Corpus, without considering spelling and punctua-

tion errors). The most widely used approach for 

detecting and correcting these errors is classifica-

tion, with lexical and POS features gleaned from a 

window around the potential preposition/article 

site in a sentence. Some recent work includes Cho-

dorow et al. (2007), De Felice and Pulman (2008), 

Gamon (2010), Han et al. (2010), Izumi et al. 

(2004), Tetreault and Chodorow (2008), Ro-

zovskaya and Roth (2010a, 2010b). Gamon et al. 

(2008) and Gamon (2010) used a language model 

in addition to a classifier and combined the classi-

fier output and language model scores in a meta-

classifier. These error-specific methods achieve 

high precision (up to 80-90% on some corpora) but 

only capture highly constrained error types such as 

preposition and determiner errors. 

There has also been research on error-detection 

methods that are not designed to identify a specific 

error type. The basic idea behind these error-

agnostic approaches is to identify an error where 

there is a particularly unlikely sequence compared 

to the patterns found in a large well-formed corpus. 

Atwell (1986) used low-likelihood sequences of 

POS tags as indicators for the presence of an error. 

Sjöbergh (2005) used a chunker to detect unlikely 

chunks in native Swedish writing compared to the 

chunks derived from a large corpus of well-formed 

Swedish writing. Bigert and Knutsson (2002) em-

ployed a statistical method to identify a variety of 

errors in Swedish writing as rare sequences of 

morpho-syntactic tags. They significantly reduced 

false positives by using additional methods to de-

termine whether the unexpected sequence is due to 

phrase or sentence boundaries or due to rare single 

tags. Chodorow and Leacock (2000) utilized mutu-

al information and chi-square statistics to identify 

typical contexts for a small set of targeted words 

from a large well-formed corpus. Comparing these 

statistics to the ones found in a novel sentence, 

they could identify unlikely contexts for the target-

ed words that were often good indicators of the 

presence of an error. Sun et al. (2007) mined for 

patterns that consist of POS tags and function 

words. The patterns are of variable length and can 

also contain gaps. Patterns were then combined in 

a classifier to distinguish correct from erroneous 

sentences. Wagner et al. (2007) combined parse 

probabilities from a set of statistical parsers and 

POS tag n-gram probabilities in a classifier to de-

tect ungrammatical sentences. Okanohara and Tsu-

jii (2007) differed from the previous approaches in 

that they directly used discriminative language 

models to distinguish correct from incorrect sen-

tences, without the direct modeling of error-

indicating patterns. Park and Levy (2011) use a 

noisy channel model with a base language model 

and a set of error-specific noise models for error 

detection and correction. 

In contrast to previous work, we cast the task as 

a sequence modeling problem. This provides a 

flexible framework in which multiple statistical 

and linguistic signals can be combined and cali-

brated by supervised learning. The approach is er-

ror-agnostic and can easily be extended with 

additional statistical or linguistic features. 

3. Error detection by sequence modeling 

Errors consist of a sub-sequence of tokens in a 

longer token sequence. They can be identified by a 

combination of internal and contextual features, 

the latter requiring a notion of Markov window (a 

window around a token in which relevant infor-

mation is likely to be found). This is similar to 

tasks such as named entity recognition (NER) or 

part-of-speech tagging, where sequence modeling 

has proven to be successful.  

We choose a Maximum Entropy Markov Model 

(MEMM, McCallum et al. 2000) as the modeling 

technique. In NER, the annotation convention uses 
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three labels for a token “O” (outside of NE), “B” 

(beginning of NE), and “I” (inside of NE). For our 

purpose we reduced the set of labels to just “O” 

and “I” since most of the errors are relatively short. 

Conditional Random Fields (Lafferty et al. 

2001) are considered to be superior to MEMMs in 

learning problems affected by label bias (Bottou 

1991). In our scheme, however, there are only two 

states “O” and “I”, and both states can transition to 

each other. Since there are no states with asymmet-

ric transition properties that would introduce a bias 

towards states with fewer transitions, label bias is 

not a problem for us. 

Figure 1 shows the structure of our MEMM with 

a Markov order of five (the diagram only shows 

the complete set of arcs for the last state). The in-

put sentence contains the token sequence the past 

year I was stayed … with the error was stayed. In-

stead of using the tokens themselves as observa-

tions, we chose to use POS tags assigned by an 

automatic tagger (Toutanova et al. 2003). This 

choice was motivated by data sparseness. Learning 

a model that observes individual lexical items and 

predicts a sequence of error/non-error tags would 

be ideal, but given the many different error types 

and triggering contexts for an error, such a model 

would require much more training data. A large set 

of features that serve as constraints on the state 

transition models are extracted for each state. The-

se features are described in Section 5.  

Note that the model structure would lend itself 

to a factorial conditional random field (McCallum 

et al. 2003) which allows the joint labeling of POS 

tags and state labels. This would, however, require 

training data that is labeled for both errors and 

POS tags. 

 
Figure 1: MEMM model for error detection, the 

full set of dependencies is only shown for the last 

state. 

4. Detecting errors in the Cambridge 

Learner Corpus  

The learner corpus used to train and evaluate the 

system is the Cambridge Learner Corpus (CLC). It 

consists of essays (scripts) written as part of the 

University of Cambridge English for Speakers of 

Other Languages (ESOL) examinations. The cor-

pus contains about 30 million words of learner 

English. All errors are annotated and include, when 

possible, a single suggested correction. Errors are 

categorized into 87 error types. 

We performed a number of preprocessing steps 

on the data. On the assumption that learners have 

access to a spell checker, errors that were marked 

as spelling errors were corrected based on the an-

notations. Confused words (their/there) were treat-

ed in the same way, given that they are corrected 

by a modern proofing tool such as the one in Mi-

crosoft Word. In addition, British English spelling 

conventions were changed to those of American 

English. Sentences containing errors that had no 

suggested rewrite were eliminated. Finally, only 

lexical errors are covered in this work. For punctu-

ation and capitalization we removed the error an-

notations, retaining the original (erroneous) 

punctuation and capitalization. 

We grouped the remaining 60 error classifica-

tions into eight categories: Content word, Inflec-

tional morphology, Noun phrase errors, 

Preposition errors, Multiple errors, Other errors 

involving content words, Other errors involving 

function words and Derivational morphology. The 

distribution of error categories is shown in Table 1. 

Error Class Freq Pct 

Content word insertion, dele-

tion or choice 
185,201 21% 

Inflectional morphology and 

agreement of content words 
157,660 18% 

Noun phrase formation: De-

terminers and quantifiers 
130,829 15% 

Preposition error 124,902 14% 

Multiple: Adjacent and nested 

annotations 
113,615 13% 

Other content word errors 79,596 9% 

Other function word errors: 

anaphors and conjunctions 
65,034 7% 

Derivational morphology of 

content words 
39,213 4% 

Table 1: Error types in the CLC. 
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The multiple error class includes any combination 

of error types where the error annotations are either 

nested or adjacent. The other categories are more 

focused: the errors are of a particular class and 

their adjacent context is correct, although there 

may be another error annotation a single token 

away. Content word errors involve the insertion, 

deletion and substitution of nouns, verbs, adjec-

tives and adverbs. Further analysis of this error 

category on a random sample of 200 instances re-

veals that the majority (72%) of content word er-

rors involve substitutions, while deletions account 

for 10% of the errors and insertions for 18%. Most 

substitutions (63%) involve the wrong choice of a 

word that is somewhat semantically related to the 

correct choice. Inflectional morphology includes 

all inflection errors for content words as well as 

subject-verb agreement errors. The inflectional 

errors include many cases of what might be con-

sidered spelling errors, for example *dieing/dying. 

Similarly, the derivational morphology errors in-

clude all derivational errors for content words – 

and also include many errors that may be consid-

ered as spelling errors. Noun formation errors in-

clude all annotations involving determiners and 

quantifiers: inflection, derivation, countability, 

word form and noun-phrase-internal agreement. 

Preposition errors include all annotations that in-

volve prepositions: insertion, deletion, substitution 

and a non-preposition being used in place of a 

preposition. There are two other categories: those 

involving the remaining function words (anaphors 

and conjunctions) and those involving remaining 

content words (collocation, idiom, negative for-

mation, argument structure, word order, etc.). 

It is important to highlight the challenges inher-

ent in this data set. First of all, the problem is high-

ly skewed since only 7.3% of tokens in the test set 

are involved in an error. Second, since we included 

correct learner sentences in the development and 

test sets in the proportion they occur in the overall 

corpus, only 47% of sentences in the test set con-

tain error annotations, greatly increasing the likeli-

hood of false positives. 

5. Features 

5.1 Language model features 

The language model (LM) features comprise a 

total of 29 features. Each of these features is calcu-

lated from n-gram probabilities observed at and 

around the current token. All LM features are 

based on scores from a 7-gram language model 

with absolute discount smoothing built from the 

Gigaword corpus (Gao et al. 2001, Nguyen et al. 

2007). 

We group the language model features concep-

tually into five categories: basic features, ratio fea-

tures, drop features, entropy delta features and 

miscellaneous. All probabilities are log probabili-

ties, and n in the n-grams ranges from 1 to 5. All 

features are calculated for each token w of the to-

kens w0…wi in a sentence. 

Basic LM features consist of two features: the 

unigram probability of w and the average n-gram 

probability of all n-grams in the sentence that con-

tain w. 

Ratio features are based on the intuition that er-

rors can be characterized as involving tokens that 

have a very low ratio of higher order n-gram prob-

abilities to lower order n-gram probabilities. In 

other words, these are tokens that are part of an 

unlikely combination of otherwise likely smaller n-

grams. These features are calculated as the ratio of 

the average x-gram probability of all x-grams con-

taining w to the average y-gram probability of all 

y-grams containing w. The values for x and y are: 5 

and 1, 4 and 1, 3 and 1, 2 and 1, 5 and 4, 4 and 3, 3 

and 2. 

Drop features measure either the drop or in-

crease in n-gram probability across token w. For 

example, the bigram drop at wi is the delta between 

the bigram probability of the bigram starting at i-1 

to the bigram probability of the bigram starting at i. 

Drop features are calculated for n-grams with 2 ≤ n 

≤ 5. 

Entropy delta features offer another way to look 

at the changes of n-gram probability across a token 

w. Forward entropy for wi is defined as the entropy 

of the string wi…wn where n is the index of the last 

token in the sentence. We calculate the entropy of 

an n-gram as the language model probability of 

string wi…wn divided by the number of tokens in 

that string. Backward entropy is calculated analo-

gously for w0…wi. For n-grams with 1 ≤ n ≤ 5, we 

also calculate, at each index i into the token array, 

the delta between the n-gram entropy of the n-gram 

starting at i and the n-gram starting at i+1 (forward 

sliding entropy). Similarly the delta between the n-

gram entropy of the n-gram starting at i and the n-

gram starting at i-1 (backward sliding entropy) is 

calculated.  
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There are four miscellaneous language model 

features. Three of them, minimum ratio to random, 

average ratio to random, and overall ratio to ran-

dom address the fact that a “good” n-gram is likely 

to have a much higher probability than an n-gram 

with the same tokens in random order. For all n-

grams where 2 ≤ n ≤ 5 we calculate the ratio be-

tween the n-gram probability and the sum of the 

unigram probabilities. For a token wi we produce 

the minimum ratio to random (the minimum ratio 

of all n-grams including w) and the average ratio 

to random (the average of all ratios of the n-grams 

including w). Overall ratio to random is obtained 

by looping through each n-gram where 2 ≤ n ≤ 5 

that includes wi and summing the n-gram proba-

bilities (sum1) as well as the unigram probabilities 

of all unigrams in these n-grams (sum2). The ratio 

feature is then sum1/sum2. The final feature ad-

dresses the intuition that an erroneous word may 

cause n-grams that contain the word to be less like-

ly than adjacent but non-overlapping n-grams. 

Overlap to adjacent ratio is the sum of probabili-

ties of n-grams including wi, divided by the sum of 

probabilities of n-grams that are adjacent to wi but 

do not include it.  

Note that this use of a host of language model 

features is substantially different from using a sin-

gle language model score on hypothesized error 

and potential correction to filter out unlikely cor-

rection candidates as in Gamon et al. (2008) and 

Gamon (2010).  

5.2 String features 

String features capture information about the char-

acters in a token and the tokens in a sentence. Two 

binary features indicate whether a token is capital-

ized (initial capitalization or all capitalized), one 

feature indicates the token length in characters and 

one feature measures the number of tokens in the 

sentence. 

5.3 Linguistic Analysis features 

Each sentence is linguistically analyzed by a 

PCFG-LA parser (Petrov et al., 2006) trained on 

the Penn Treebank (Marcus et al., 1993). A num-

ber of features are extracted from the constituency 

tree to assess the syntactic complexity of the whole 

sentence, the syntactic complexity of the local en-

vironment of a token, and simple constituency in-

formation for each token. These features are: label 

of the parent and grandparent node, number of sib-

ling nodes, number of siblings of the parent, pres-

ence of a governing head node, label of the 

governing head node, and length of path to the 

root. An additional feature indicates whether the 

POS tag assigned by the parser does not match the 

tag assigned by the POS tagger, which may indi-

cate a tagging error. 

6. Experiments 

6.1 Design 

For our experiments we use three different mutual-

ly exclusive random subsets of CLC. 50K sentenc-

es are used for training of the models (larger data 

sets exceeded the capabilities of our MEMM train-

er). In this set, we only include sentences that con-

tain at least one annotated error. We also 

experimented using a mix of error-free and errone-

ous sentences, but the resulting models turned out 

to be extremely skewed towards always predicting 

the majority state “O” (no error). 20K sentences 

(including both erroneous and correct sentences) 

are used for parameter tuning and testing, respec-

tively. 

Each token in the data is annotated with one of 

the states “O” or “I”. Performance is measured on 

a per token basis, i.e. each mismatch between the 

predicted state and the annotated state is counted as 

an error, each match is counted as a correct predic-

tion. 

We use the development set to tune two parame-

ters: the size of the Markov window and a prior to 

prevent overfitting. The latter is a Gaussian prior 

(or quadratic regularizer) where the mean is fixed 

to zero and the variance is left as a free parameter. 

We perform a grid search to find values for the 

parameters that optimize the model’s F1 score on 

the development data. 

In order to be able to report precision and recall 

curves, we use a technique similar to the one de-

scribed in Minkov et al. (2010): we introduce an 

artificial feature with a constant value at training 

time. At test time we perform multiple runs, modi-

fying the weight on the artificial feature. This 

weight variation influences the model’s prior pro-

pensity to assign each of the two states, allowing 

us to measure a precision/recall tradeoff.  
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6.2 Performance of feature sets 

Figure 2 illustrates the performance of three differ-

ent feature sets and combinations. The baseline is 

using only language model features and standard 

POS tags, which tops out at about 20% precision. 

Adding the string features discussed in the previ-

ous section, and partially lexicalized (PL) POS 

tags, where we used POS tags for content word 

tokens and the lexicalized token for function 

words, we get a small but consistent improvement. 

We obtain the best performance when all features 

are used, including the linguistic analysis features 

(DepParse). We found that a high-order model 

with a Markov window size of 14 performed best 

for all experiments with a top F1 score. F1 at low-

er orders was significantly worse. Training time for 

the best models was less than one hour. 

6.3 Predicting error types 

In our next experiment, we tried to determine how 

the sequence modeling approach performs for in-

dividual error types. Here we trained eight differ-

ent models, one for each of the error types in Table 

1. As in the previous experiments, the development 

and test files contained error-free sentences. The 

optimal Markov window size ranged from 8 to 15. 

Note that our general sequence model described in 

the previous sections does not recognize different 

error types, so it was necessary to train one model 

per error type for the experiments in this section. 

Figure 3 shows the results from this series of 

experiments. We omit the results for other content 

word error, other function word and multiple er-

rors in this graph since these relatively ill-defined 

error classes performed rather poorly. As Figure 3 

illustrates, derivational errors and preposition er-

rors achieve by far the best results. The fact that 

the individual precision never reaches the level of 

the general sequence model (Figure 2) can be at-

tributed to the much smaller overall set of errors in 

each of the eight training sets. In Figure 4 we com-

pare the sequence modeling results for prepositions 

with results from the preposition component of the 

current version of the system described in Gamon 

(2010) on the same test set. That system consists of 

a preposition-specific classifier, a language model 

and a meta-classifier that combines evidence from 

the classifier and the language model. The se-

quence model approach outperforms the classifier 

of that system, but the full system including lan-

guage model and meta-classifier achieves much 

higher precision than the sequence modeling ap-

proach. 

6.4 Learning curve experiments 

An obvious question that arises is how much train-

ing data we need for an error detection sequence 

model, i.e. how does performance degrade as we 

decrease the amount of training data from the 50K 

error-annotated sentences that were used in the 

previous experiments. To this end we produced 

random subsets of the training data in 20% incre-

ments. For each of these training sets, we deter-

mined the resulting F1 score by first performing 

parameter tuning on the development set and then 

measuring precision and recall of the best model 

on the test set. Results are shown in Figure 5: at 

20% of training data, precision starts to increase at 

the cost of recall. At 80% of the training data, re-

call starts to trend up as well. This upward trend of 

both precision and recall indicates that increasing 

the amount of training data is likely to further im-

prove results. 

6.5 Error  analysis 

The precision values obtained in our experi-

ments are low, but they are also based on the 

strictest possible measure of accuracy: an error 

prediction is only counted as correct if it exactly 

matches a location and annotation in the CLC. A 

manual analysis of 400 randomly selected sentenc-

es containing “false positives”, where the system 

had 29% precision and 10% recall, by the strictest 

calculation, showed that 14% of the “false posi-

tives” identified an error that was either not anno-

tated in CLC or was an error type not covered by 

the system such as punctuation or case (recall from 

Section 4 that for these errors we removed the er-

ror annotations but retained the original string). An 

additional 16% were adjacent to an error annota-

tion. 12% had error annotations within 2-4 tokens 

from the predicted error. Foreign language and 

other unknown proper names comprised an addi-

tional 6%. Finally, 9% were due to tokenization 

problems or all-upper case input that throws off the 

POS tagger. Thus the precision reported in Figure 

2 through Figure 6 is really a lower bound. 30% of 

the “false positives” either identify, or are adjacent 

to, an error. 
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Sentence length has a strong influence on the 

accuracy of the sequence model. For sentences less 

than 7 tokens long, average precision is approxi-

mately 7%, whereas longer sentences average at 

29% precision. This observation fits with the fact 

that high-order models perform best in the task, i.e. 

the more context a model can access, the more re-

liable its predictions are. Shorter sentences are also 

less likely to contain an error: only 12% of short 

sentences contain an error, as opposed to 46% of 

sentences of seven tokens or longer. 

For sentences that are at least 7 tokens long, er-

ror predictions on the first and last two tokens (the 

last token typically being punctuation) have an av-

erage precision of 22% as compared to an average 

of 30% at all other positions. Other unreliable error 

predictions include those involving non-alphabetic 

characters (quotes, parentheses, symbols, numbers) 

with 1% precision and proper name tags with 10% 

precision. Many of the predictions on NNP tags 

identify, by and large, unknown or foreign names 

(Cricklewood, Cajamarca). Ignoring system flags 

on short sentences, symbols and NNP tags would 

improve precision with little cost to recall. 

We also experimented with a precision/recall 

metric that is less harsh but at the same time realis-

tic for error detection. For this “soft metric” we 

count correct and incorrect predictions at the error 

level instead of the token level. An error is defined 

as a consecutive sequence of n error tags, where n 

≥ 1.  

 

 
Figure 2: Precision and recall of different feature sets. 

 
Figure 3: Precision and recall of different error models. 
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Figure 4: Preposition precision and recall. 

 
Figure 5: Learning curve. 

 
Figure 6: Precision and recall for adjacent annotated error 
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A predicted error counts as being correct with re-

spect to an annotated error if the following two 

criteria are met: 

a) At least one predicted error token is part of 

an annotated error or is directly adjacent to 

an annotated error 

b) No more than two predicted error tokens 

fall outside the annotated error.  

Criterion (a) establishes that predicted and annotat-

ed error are overlapping or at least directly adja-

cent. Criterion (b) ensures that the predicted error 

is “local” enough to the annotated error and does 

not include too much irrelevant context, but it still 

allows an annotated error to be flanked by predict-

ed error tokens. Figure 6 illustrates the preci-

sion/recall characteristics of the best model when 

using this soft metric as compared to the strict met-

ric. We also included a “per sentence” metric in 

Figure 6, where we measure precision and recall at 

the level of identifying a sentence as containing an 

error or not, in other words when using the model 

as a detector for ungrammatical sentences. In addi-

tion we show for each of the three metrics how the 

results change if short sentences (shorter than 7 

tokens) are excluded from the evaluation. 

7. Conclusion and future work 

We have shown that a discriminative high order 

sequence model can be used to detect errors in 

English learner writing. This enables a general ap-

proach to error detection, at the cost of requiring 

annotated data. High-order models outperform 

lower order models significantly for this problem. 

It is obvious that there are several avenues to 

pursue in order to improve upon these initial re-

sults. Two possibilities that we would like to high-

light are the model structure and the feature set. As 

mentioned in Section 3, instead of using a separate 

POS tagger we could follow McCallum et al. 

(2003) and design a model that jointly predicts two 

sequences: POS tags and error tags. As for feature 

sets, we conducted some preliminary additional 

experiments where we added a second set of lan-

guage model features, based on a different lan-

guage model, namely the Microsoft web n-gram 

model (Wang et al. 2010). The addition of these 

features raised both precision and recall.  

Finally, an error detection system is only of 

practical use if it is combined with a component 

that suggests possible corrections. For future work, 

we envision a combination of generic error detec-

tion with a corpus-based lookup system that finds 

alternative strings that have been observed in simi-

lar contexts. All these alternatives can then be 

scored by a language model in the original context 

of the user input, allowing only those suggestions 

to be shown to the user that achieve a better lan-

guage model score than the original input. This 

combination of error detection and error correction 

has the advantage that the error detection compo-

nent can be used to provide recall, i.e. it can be 

allowed to operate at a lower precision level. The 

error correction component, on the other hand, 

then reduces the number of false flags by vetting 

potential corrections by language model scores. 
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