
ACL HLT 2011

Workshop on Innovative Use of NLP for Building
Educational Applications

24 June 2011
Portland, Oregon, USA

Proceedings of the Workshop



Production and Manufacturing by
Omnipress, Inc.
2600 Anderson Street
Madison, WI 53704 USA

c©2011 The Association for Computational Linguistics

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii

Order copies of this and other ACL proceedings from:

ISBN-13 9781937284039



Introduction

Research in NLP applications for education continues to progress using innovative NLP techniques.
New technologies have made it possible to include speech in both assessment and in Intelligent Tutoring
Systems (ITS). NLP techniques are also being used to generate assessments and tools for curriculum
development of reading materials, as well as tools to support assessment and test development. As
a community, we continue to improve existing capabilities and to identify and generate innovative
and creative ways to use NLP in applications for writing, reading, speaking, critical thinking, and
assessment.

In this workshop, we focus on contributions to core educational problem spaces: development of
curriculum and assessment (e.g., applications that help teachers develop reading materials), delivery
of curriculum and assessments (e.g., applications where the student receives instruction and interacts
with the system), and reporting of assessment outcomes (e.g., automated essay scoring). The need for,
and the rapid development of, language-based capabilities have been driven by increased requirements
for state and national assessments and a growing population of foreign and second language learners.

This is the sixth in a series of workshops on Building NLP Applications for Education that began
at NAACL/HLT 2003 (Edmonton), and continued at ACL 2005 (Ann Arbor), ACL/HLT 2008
(Columbus), NAACL/HLT 2009 (Boulder), NAACL/HLT 2010 (Los Angeles), and now ACL/HLT
2011 (Portland). Research in this area continues to grow, and there is ever-increasing interest and
practical application that was evidenced this year, again, by the large number of submissions.

We received a record 35 submissions and accepted 8 full papers as oral presentations and 14 papers
as poster presentations. Each paper was carefully reviewed by at least three members of the Program
Committee. We selected reviewers most appropriate for each paper so as to give more helpful feedback
and comments. This workshop offers an opportunity to present and publish work that is highly relevant
to ACL, but is also specialized, so the workshop is often a more appropriate venue. The decision to
have a poster session this year was made so as to offer more breadth in terms of topics related to NLP
and education and to reinstate the original concept of a workshop as a venue for fully developed work
as well as work in progress. Also, we continue to have a strong policy with respect to conflicts of
interest and made a concerted effort to not assign papers to reviewers if the paper had an author from
their institution.

The papers accepted to this workshop were selected on the basis of several factors: the relevance to a
core educational problem space, the novelty of the approach or domain, and the strength of the research.
The final set of papers fall under several main themes.

Assessing Speech – Five papers focus on assessing spoken language of non-native speakers of English
(Chen and Yoon; Cook, et al; Downey, et al; Yoon and Higgins; and Yoon, et al).

Grammatical Error Detection – Five papers deal with grammatical error detection for non-native
speakers, ranging from new paradigms and methodologies (Gamon; Dickinson, et al; West, et al),
to CALL applications (Huang, et al), to using grammar checking to measure language development
(Hassanali and Liu).

Generation – Five papers address different aspects of generating questions, exercises and examples for
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students (Agarawal, et al; Agarawal and Mannem; Mostow and Duan; Olney, et al; and Theune, et al).

Intelligent Tutoring – Three papers discuss issues concerning intelligent tutoring systems (Chen, et al;
Ward and Crowley; and Ward, et al).

Finally, we also have four papers on other topics. Xiong and Litman use NLP techniques to determine
the effectiveness of peer-review. Van Oosten and Hoste investigate the efficacy of using experts and
crowdsourcing for readability assessment. Dela Rosa and Eskenazi investigate the effect of word
complexity on vocabulary learning for language learners. Yang and Heines apply NLP techniques
to the novel task of determining the best transfer course equivalencies.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
contributions, the members of the Program Committee for their thoughtful reviews, and everyone who
attends this workshop. All of these factors contribute to a truly rich and successful event. And, the
informal post-workshop dinner is getting more crowded every year!

Joel Tetreault, Educational Testing Service
Jill Burstein, Educational Testing Service
Claudia Leacock, Butler Hill Group
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Abstract

In this paper, we present a system that au-
tomatically generates questions from natural
language text using discourse connectives. We
explore the usefulness of the discourse con-
nectives for Question Generation (QG) that
looks at the problem beyond sentence level.
Our work divides the QG task into content se-
lection and question formation. Content se-
lection consists of finding the relevant part in
text to frame question from while question for-
mation involves sense disambiguation of the
discourse connectives, identification of ques-
tion type and applying syntactic transforma-
tions on the content. The system is evaluated
manually for syntactic and semantic correct-
ness.

1 Introduction

Automatic QG from sentences and paragraphs has
caught the attention of the NLP community in the
last few years through the question generation work-
shops and the shared task in 2010 (QGSTEC, 2010).
Previous work in this area has concentrated on gen-
erating questions from individual sentences (Varga
and Ha, 2010; Paland et al., 2010; Ali et al., 2010).
Sneiders and E. (2002) used question templates and
Heilman et al. (2009) used general-purpose rules
to transform sentences into questions. A notable
exception is Mannem et al. (2010) who generated
questions of various scopes (general, medium and
specific)∗ 1 from paragraphs instead of individual

∗First two authors contributed equally to this work
1General scope - entire or almost entire paragraph, Medium

scope - multiple clauses or sentences, and Specific scope - sen-

sentences. They boil down theQG from paragraphs
task into first identifying the sentences in the para-
graph with general, medium and specific scopes and
then generating the corresponding questions from
these sentences using semantic roles of predicates.

Discourse connectives play a vital role in mak-
ing the text coherent. They connect two clauses
or sentences exhibiting discourse relations such as
temporal, causal, elaboration, contrast, result,
etc. Discourse relations have been shown to be use-
ful to generate questions (Prasad and Joshi, 2008)
but identifying these relations in the text is a difficult
task (Pitler et al., 2009). So in this work, instead of
identifying discourse relations and generating ques-
tions using them, we explore the usefulness of dis-
course connectives for QG. We do this by analyzing
the senses of the connectives that help in QG and
propose a system that makes use of this analysis to
generate questions of the typewhy, when, give an
exampleandyes/no.

The two main problems in QG are identifying the
content to ask a question on and finding the corre-
sponding question type for that content. We ana-
lyze the connectives in terms of the content useful
for question generation based on the senses they ex-
hibit. We show that the senses of the connectives
further help in choosing the relevant question type
for the content.

In this paper, we present an end-to-end QG sys-
tem that takes a document as input and outputs all
the questions generated using the selected discourse
connectives. The system has been evaluated man-
ually by two evaluators for syntactic and semantic

tence or less
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correctness of the generated questions. The over-
all system has been rated 6.3 out of 8 for QGSTEC
development dataset and 5.8 out of 8 for Wikipedia
dataset.

2 Overview

Question Generation involves two tasks, content
selection (the text selected for question generation)
and question formation (transformations on the con-
tent to get the question). Question formation further
has the subtasks of (i) finding suitable question type
(wh-word), (ii) auxiliary and main verb transforma-
tions and (iii) rearranging the phrases to get the final
question.

There are 100 distinct types of discourse connec-
tives listed in PDTB manual (PDTB, 2007). The
most frequent connectives in PDTB areand, or,
but, when, because, since, also, although, for
example, however andas a result. In this paper,
we provide analysis for four subordinating conjunc-
tions,since, when, becauseandalthough, and three
adverbials,for example, for instanceand as a re-
sult. Connectives such asand, or and also show-
ing conjunction relation have not been found to
be good candidates for generatingwh-type ques-
tions and hence have not been discussed in the pa-
per. Leaving asideand, or and also, the selected
connectives cover 52.05 per cent of the total number
of the connectives in QGSTEC-20102 dataset and
41.97 per cent in Wikipedia articles. Connective-
wise coverage in both the datasets is shown in Table
1. Thoughbut andhoweverdenotingcontrast re-
lation occur frequently in the data, it has not been
feasible to generate wh-questions using them.

QGSTEC-2010 Dev. Data Wikipedia Dataset
Connective count % count %

because 20 16.53 36 10.28
since 9 7.44 18 5.14
when 23 19.00 35 10.00

although 4 3.30 22 6.28
as a result 5 4.13 6 1.71

for example 2 1.65 30 8.28
for instance 0 0.00 1 0.28

Total 121 52.05 350 41.97

Table 1: Coverage of the selected discourse connec-
tives in the data

The system goes through the entire document and
2QGSTEC 2010 data set involves Wikipedia, Yahoo An-

swers and OpenLearn articles.

identifies the sentences containing at least one of the
seven discourse connectives. In our approach, suit-
ablecontentfor each discourse connective which is
referred to astarget argumentis decided based on
the properties of discourse connective. The system
finds the question type on the basis of discourse re-
lation shown by discourse connective.

3 Discourse connectives for QG

In this section, we provide an analysis of dis-
course connectives with respect to their target argu-
ments and the question types they take.

3.1 Question type identification
The sense of the discourse connective influences

the question-type (Q-type). Since few discourse
connectives such aswhen, sinceand although
among the selected ones can show multiple senses,
the task of sense disambiguation of the connectives
is essential for finding the question type.

Since:The connective can showtemporal, causal
or temporal + causalrelation in a sentence. Sen-
tence exhibitstemporalrelation in presence of key-
words like time(7 am), year (1989 or 1980s), start,
begin, end, date(9/11), month (January) etc. If the
relation istemporalthen the question-type iswhen
whereas in case ofcausalrelation it would bewhy.

1. Single wicket has rarely been playedsince lim-
ited overs cricketbegan.
Q-type:when

2. Half-court games require less cardiovascular
stamina ,since players need not run back and
forth a full court.
Q-type:why

In examples 1 and 2, 1 is identified to showtem-
poral relation because it has the keywordbegan
whereas there is no keyword in the context of ex-
ample 2 that gives the hint oftemporalrelation and
so the relation here is identified ascausal.

When: Consider the sentences with connec-
tive when in Figure 1. Althoughwhen shows
multiple senses (temporal, temporal+causaland
conditional), we can frame questions by a single
question type,when. Given a new instance of
the connective, finding the correct sense ofwhen

2



Sentence:  The San−Francisco earthquake hit when resources in the field already were stetched. (Temporal)

Sentence:  Venice’s long decline started in the 15th century, when it first made an unsuccessful attempt to hold Thessalonica

Sentence:   Earthquake mainly occurs when the different blocks or plates that make up the Earth’s surface move relative to

Question:   When do earthquake mainly occur ?     
                    each other, causing distortion in the rock. ( Conditional ) 

Question:   When did San−Francisco earthquake hit ? 

against the Ottomans (1423−1430). ( Temporal + Causal ) 

Question:  When did Venice’s long decline start in the 15th century ?

Figure 1: Questions for discourse connectivewhen

Discourse Sense Q-type
connectives

because causal why

since
temporal when
causal why

when
causal + temporal

whentemporal
conditional

although
contrast

yes/ no
concession

as a result result why
for example instantiation give an example

where
for instance instantiation give an instance

where

Table 2: Question type for discourse connectives

becomes unnecessary as a result of using discourse
connectives.

Although: The connective can showconcession
or contrastdiscourse relations. It is difficult to frame
a wh-question oncontrastor concessionrelations.
So, system generates ayes/notype question foral-
though. Moreover,yes/noquestion-type adds to the
variety of questions generated by the system.

3. Greek colonies were not politically controlled
by their founding cities , although they often
retained religious and commercial links with
them .
Q-type:Yes/No

A yes/no question could have been asked for
connectivesbut andhoweverdenoting acontrastre-
lation but it was not done to preserve the question-
type variety in the final output of the QG system.
Y es/no questions have been asked for occurrences
of although since they occur less frequently than
but andhowever.

Identifying the question types for other selected

discourse connectives is straight forward because
they broadly show only one discourse relation
(Pitler and Nenkova, 2009). Based on the relations
exhibited by these connectives, Table 2 shows the
question types for each discourse connective.

3.2 Target arguments for discourse connectives
A discourse connective can realize its two argu-

ments, Arg1 and Arg2, structurally and anaphori-
cally. Arg2 is always realized structurally whereas
Arg1 can be either structural or anaphoric (PDTB,
2007; Prasad et al., 2010).

4. [Arg1 Organisms inherit the characteristics of
their parents] because [Arg2 the cells of the
offspring contain copies of the genes in their
parents’ cells.](Intra-sentential connective be-
cause)

5. [Arg1 The scorers are directed by the hand sig-
nals of an umpire.] For example, [Arg2 the
umpire raises a forefinger to signal that the
batsman is out (has been dismissed); he raises
both arms above his head if the batsman has
hit the ball for six runs.](Inter-sentential con-
nective for example)

Consider examples 4 and 5. In 4, Arg1 and Arg2
are the structural arguments of the connectivebe-
causewhereas in 5, Arg2 is the structural argument
and Arg1 is realized anaphorically.

The task of content selection involves finding the
target argument(either Arg1 or Arg2) of the dis-
course connective. Since both the arguments are po-
tential candidates for QG, we analyze the data to
identify which argument makes better content for
each of the connectives. Our system selects one of
the two arguments based on the properties of the dis-
course connectives. Table 3 shows thetarget argu-

3



Discourse connective Target argument
because Arg1

since Arg1
when Arg1

although Arg1
as a result Arg2

for example Arg1
for instance Arg1

Table 3: Target argument for discourse connectives

menti.e. either Arg1 or Arg2, which is used ascon-
tent for QG.

4 Target Argument Identification

Target argumentfor a discourse connective can
be a clause(s) or a sentence(s). It could be one or
more sentences in case ofinter-sentential3 discourse
connectives, whereas one or more clauses in case of
intra-sentential4 connectives.

Discourse connectivesfor exampleand for in-
stancecan realize its Arg1 anywhere in the prior dis-
course (Elwell and Baldridge, 2008). So the system
considers only those sentences in which the connec-
tives occur at the beginning of the sentence and the
immediate previous sentence is assumed to be the
Arg1 of the connective (which is thetarget argument
for QG).

In case of intra-sentential connectives (because,
since, althoughandwhen) andas a result(target ar-
gumentis Arg2 which would be a clause), identifi-
cation oftarget argumentis done in two steps. The
system first locates the syntactic head or head verb
of the target argumentand then extracts it from the
dependency tree of the sentence.

4.1 Locate syntactic head
Approach for locating the syntactic head oftar-

get argumentis explained with the help of Figure 2
(generic dependency trees) and an example shown
in Figure 3. Syntactic head of Arg2 is the first fi-
nite verb while percolating up in the dependency tree
starting from the discourse connective. In case of
intra-sentential connectives where Arg1 is thetarget
argument, the system percolates up until it gets the
second finite verb which is assumed to be target head

3Connectives that realize its Arg1 anaphorically and Arg2
structurally

4Connectives that realize both of its arguments structurally

X          P         Z                   

DC        A

(a)                                            (b)

1   1   V                                           V 

2  X          V           Z                 

V2

DC         A                                     Q  

Figure 2: Head selection of thetarget argument
for intra-sentential connectives (V1,V2: finite verbs;
X,Z: subtrees ofV1; A: subtree ofV2; P,Q:Not verbs;
DC:discourse connective(child ofV2))

of Arg1. Number of percolations entirely depend on
structure and complexity of the sentence. Figure 2
shows two dependency trees (a) and (b). Starting
from the discourse connectiveDC and percolating
up, the system identifies that the head of Arg2 isV2

and that of Arg1 isV1.

  

 

aux : "is"

played

competitive
badminton

is    indoors     

by     because   flight    is

   wind                shuttlecock

Why is competitive badminton played indoors ?

affected

Because 

(From section 2.1)                      (From section 2.2)

qtype : "Why"                        Target Arg Head : "played"

(section 2.3)

               [Arg2 shuttlecock flight is affected by wind],

[Arg1 competitive badminton is played indoors].(content)

Figure 3: Question Generation process

Since the discourse connective in the example of
Figure 3 isbecause, the target argumentis Arg1
(from Table 2). By percolating up the tree starting
from because, the head of Arg2 isaffectedand that
of Arg1 is played. Once we locate the head of the
target argument, we find the auxiliary as Mannem
et al. (2010) does. For the example in Figure 3, the
auxiliary for question generation isis.

4.2 Target Argument Extraction
The extraction of thetarget argumentis done af-

ter identifying its syntactic head. Foras a result,
the target argument, Arg2, is the subtree with head
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Score Description Example
4 The question is grammatically correct and idiomatic/natural. In which type of animals are phagocytes highly developed?

3
The question is grammatically correct but does not read asIn which type of animals are phagocytes, which are important
fluently as we would like. throughout the animal kingdom, highly developed?

2 There are some grammatical errors in the question.
In which type of animals is phagocytes, which are important
throughout the animal kingdom, highly developed?

1 The question is grammatically unacceptable.
On which type of animals is phagocytes, which are important
throughout the animal kingdom, developed?

Table 4: Evaluation guidelines for syntactic correctness measure

as the head of the connective. For intra-sentential
connectives, thetarget argument, Arg1, is the tree
remaining after removing the subtree that contains
Arg2.

In Figures 2 (a) and (b) both, a tree with head
V1 and its children, X and Z, is left after removing
Arg2 from dependency trees, which is thecontent
required for generating the question. Note that in the
tree of Figure 2(b), the child P of the head verbV1 is
removed with its entire subtree that contains Arg2.
Thus, subtree with headV2 is the unwanted part for
the tree in Figure 2(a) whereas subtree with head P
is the unwanted part for the tree in Figure 2(b) when
the target argument is Arg1.

In Figure 3, after removing the unwanted argu-
ment Arg2 (subtree with headaffected), the system
getscompetitive badminton is played indoorswhich
is the required clause (content) for question genera-
tion. The next section describes how thecontentis
transformed into a question.

5 Syntactic Transformations and Question
Generation

The syntactic transformations used in this work
are similar to those by Mannem et al. (2010). At this
stage, the system has the question type, auxiliary and
the content. The following set of transformations
are applied on thecontentto get the final question.
(1) If the auxiliary is present in the sentence itself
then it is moved to the beginning of the sentence;
otherwise auxiliary is added at the beginning of the
sentence. (2) If a wh-question is to be formed, the
question word is added just before the auxiliary. In
case of Yes/No questions, the question starts with
the auxiliary itself as no question word is needed. (3)
A question-mark(?) is added at the end to complete
the question.

Consider the example in Figure 3. Here thecon-

tent is competitive badminton is played indoors.
Applying the transformations, the auxiliary is first
moved at the start of the sentence to getis compet-
itive badminton played indoors. Then the question
type Why is added just before the auxiliaryis, and
a question-mark is added at the end to get the final
question,Why is competitive badminton played in-
doors ?

Scope: In QGSTEC 2010 the question had to be
assigned a scope, specific, medium or general. The
scope is defined as:general- entire input paragraph,
medium- one or more clauses or sentences andspe-
cific - phrase or less. Questions generated using dis-
course connectives are usually of the scope specific
or medium. Mannem et al. (2010) assigned medium
scope to the questions generated using the seman-
tic roles such as ARGM-DIS (result), ARGM-CAU
(causal) and ARGM-PNC (purpose) given by the
SRL. However, most of the times, the scope of the
answer to these questions is just a clause or a sen-
tence and should have been assigned specific scope
instead of medium.

6 Evaluation and Results

Automatic evaluation of any natural language
generated text is difficult. So, our system is eval-
uated manually. The evaluation was performed
by two graduate students with good English profi-
ciency. Evaluators were asked to rate the questions
on the scale of 1 to 4 (4 being the best score) on syn-
tactic and semantic correctness (Evalguide, 2010)
of the question and an overall rating on the scale of
8 (4+4) is assigned to each question.

The syntactic correctness is rated to ensure that
the system can generate grammatical output. In ad-
dition, those questions which read fluently are given
greater score. The syntactic correctness and fluency
is evaluated using the following scores: 4 - gram-
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Discourse
Example

Connective

because

One-handed backhand players move to the net with greater ease than two-handed players
becausethe shot permits greater forward momentum and has greater similarities in muscle
memory to the preferred type of backhand volley (one-handed, for greater reach ).
Why do one-handed backhand players move to the net with greater ease than two-handed
players ?(Causal)

since

Half-court games require less cardiovascular stamina,sinceplayers need not run back and
forth a full court.
Why do half-court games require less cardiovascular stamina ? (Causal)

Single wicket has rarely been playedsincelimited overs cricket began.
Since when has single wicket rarely been played ?(Temporal)

when
A one-point shot can be earnedwhenshooting from the foul line after a foul is made.
When can a one-point shot be earned ?(Conditional)

although
A bowler cannot bowl two successive overs,although a bowler can bowl unchanged at
end for several overs.
Can a bowler bowl unchanged at the same end for several overs?(Contrast, concession)

as a result

In the United States sleep deprivation is common with students because almost all schools
begin early in the morning and many of these students either choose to stay up awake late into
the night or cannot do otherwise due to delayed sleep phase syndrome.As a result, students
that should be getting between 8.5 and 9.25 hours of sleep aregetting only 7 hours.
Why are students that should be getting between 8.5 and 9.25 hours of sleep getting
only 7 hours?(Result)

As a result of studies showing the effects of sleep-deprivation on grades , and the different
sleep patterns for teenagers , a school in New Zealand , changed its start time to 10:30,
in 2006, to allow students to keep to a schedule that allowed more sleep.
Why did a school in New Zealand change its start time ?(Result)

for example

Slicing also causes the shuttlecock to travel much slower than the arm movement suggests.
For example, a good cross court sliced drop shot will use a hitting actionthat suggests a straight
clear or smash, deceiving the opponent about both the power and direction of the shuttlecock.
Give an example where slicing also causes the shuttlecock totravel much slower than
the arm movement suggests.(Instantiation )

for instance

If the team that bats last scores enough runs to win, it is saidto have ”won by n wickets”,
where n is the number of wickets left to fall.For instancea team that passes its opponents’
score having only lost six wickets would have won ”by four wickets”.
Give an instance where if the team that bats last scores enough runs to win, it is said to have
”won by n wickets”,where n is the number of wickets left to fall. (Instantiation )

Table 5: Examples

matically correct and idiomatic/natural, 3 - gram-
matically correct, 2 - some grammar problems, 1 -
grammatically unacceptable. Table 4 shows syntac-
tic correctness measure with examples.

The semantic correctness is evaluated using the
following scores: 4 - semantically correct and id-
iomatic/natural, 3 - semantically correct and close to
the text or other questions, 2 - some semantic issues,
1 - semantically unacceptable.

Table 5 shows questions generated by the system
for each connective. The results of our system on
QGSTEC-2010 development dataset are shown in
Table 6. The overall system is rated 6.3 out of 8 on

this dataset and the total number of questions gen-
erated for this dataset is 61. The instances of the
connectives were less in the QGSTEC-2010 devel-
opment dataset. So, the system is further tested on
five Wikipedia articles (football, cricket, basketball,
badminton and tennis) for effective evaluation. Re-
sults on this dataset are presented in Table 7. Overall
rating of the system is 5.8 out of 8 for this dataset
and 150 are the total number of questions generated
for this dataset. The ratings presented in the Tables 6
and 7 are the average of the ratings given by both the
evaluators. The inter-evaluator agreement (Cohen’s
kappa coefficient) for the QGSTEC-2010 develop-
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ment dataset for syntactic correctness measure is 0.6
and is 0.5 for semantic correctness measure, and in
case of Wikipedia articles the agreement is 0.7 and
0.6 for syntactic and semantic correctness measures
respectively.

Discourse No. of Syntactic Semantic Overall
connective questions Correctness(4) Correctness(4) Rating(8)

because 20 3.6 3.6 7.2
since 9 3.8 3.2 7
when 23 2.3 2.2 4.5

although 4 4 3.8 7.8
as a result 5 4 4 8

Overall 61 3.2 3.1 6.3

Table 6: Results on QGSTEC-2010 development
dataset

Discourse No. of Syntactic Semantic Overall
connective questions Correctness(4) Correctness(4) Rating(8)

because 36 3.3 3.2 6.5
since 18 3.1 3 6.1
when 35 2.4 2.0 4.4

although 22 3.1 2.8 5.9
as a result 6 3.6 3.2 6.8

for example 16 3.1 2.9 6.0
for instance 2 4 3 7

Overall 135 3.0 2.8 5.8

Table 7: Results on the Wikipedia data(cricket, foot-
ball, basketball, badminton, tennis)

On analyzing the data, we found that the
Wikipedia articles have more complex sentences
(with unusual structure as well as more number of
clauses) than QGSTEC-2010 development dataset.
As a result, the system’s performance consistently
drops for all the connectives in case of Wikipedia
dataset.

No comparable evaluation was done as none of
the earlier works in QG exploited the discourse con-
nectives in text to generate questions.

7 Error Analysis

An error analysis was carried out on the system’s
output and the four most frequent types of errors are
discussed in this section.

7.1 Coreference resolution
The system doesn’t handle coreference resolution

and as a result of this, many questions have been
rated low for semantic correctness by the evalua-
tors. Greater the number of pronouns in the ques-
tion, lesser is the semantic rating of the question.

6. They grow in heightwhen they reach shallower

water, in a wave shoaling process.
Question:When dothey grow in height?

Although the above example 6 is syntactically
correct, such questions are rated semantically low
because the context is not sufficient to answer the
question due to the pronouns in it. 13.54% of
the generated questions on the Wikipedia dataset
have pronouns without their antecedents, making the
questions semantically insufficient.

7.2 Parsing Errors
Sometimes the parser fails to give a correct parse

for the sentences with complex structure. In such
cases, the system generates a question that is unac-
ceptable. Consider the examples below.

7. In a family who know that both parents are car-
riers of CF ,either because they already have a
CF child or as a result of carrier testing , PND
allows the conversion of a probable risk of the
disease affecting an unborn child to nearer a
certainty that it will or will not be affected.
Question: Why do in a family who know that
both parents are carriers of CF , either or will
not be affected ?

In example 7 above, the sentence has a com-
plex structure containing paired connective, either-
or, where the argument ofeither hasbecauseand
that ofor hasas a resultin it. Here the question is
formed usingbecausewhich is correct neither syn-
tactically nor semantically due to the complex nature
of the sentence. 9.38% sentences in the datasets are
complex with either three or more discourse connec-
tives.

7.3 Errors due to the inter-sentential
connectives

For inter-sentential connectives, system considers
only those sentences in which the connectives occur
at the beginning of the sentence and the immediate
previous sentence is assumed to be the Arg1 of the
connective (which is the target argument for QG).
But this assumption is not always true. Of the total
number of instances of these connectives, 52.94%
(for Wikipedia dataset) connectives occur at the be-
ginning of the sentences. Consider the paragraph be-
low.

8. A game point occurs in tennis whenever the
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player who is in the lead in the game needs only
one more point to win the game.The termi-
nology is extended to sets (set point), matches
(match point), and even championships (cham-
pionship point).For example, if the player who
is serving has a score of 40-love, the player has
a triple game point (triple set point, etc.) as the
player has three consecutive chances to win the
game.

Here in example 8, the third sentence in which the
example is specified is related to the first sentence
but not the immediately previous sentence. For these
connectives, the assumption that immediate previ-
ous sentence is Arg1 is false 14.29% of the times.

7.4 Fluency issues
The system does not handle the removal of pred-

icative adjuncts. So the questions with optional
phrases in it are rated low for syntactic correctness
measure.

8 Conclusions and Future Work

Our QG system generates questions using dis-
course connectives for different question types. In
this work, we present an end-to-end system that
takes a document as input and outputs all the ques-
tions for selected discourse connectives. The system
has been evaluated for syntactic and semantic sound-
ness of the question by two evaluators. We have
shown that some specific discourse relations are im-
portant such ascausal, temporal andresult than
others from the QG point of view. This work also
shows that discourse connectives are good enough
for QG and that there is no need for full fledged dis-
course parsing. In the near future, we plan to im-
plement coreference resolution and sentences with
more than two connectives. We aim to improve the
system with respect to the sentence complexity and
also incorporate other discourse connectives.
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Abstract

Identifying peer-review helpfulness is an im-
portant task for improving the quality of feed-
back received by students, as well as for help-
ing students write better reviews. As we tailor
standard product review analysis techniques to
our peer-review domain, we notice that peer-
review helpfulness differs not only between
students and experts but also between types
of experts. In this paper, we investigate how
different types of perceived helpfulness might
influence the utility of features for automatic
prediction. Our feature selection results show
that certain low-level linguistic features are
more useful for predicting student perceived
helpfulness, while high-level cognitive con-
structs are more effective in modeling experts’
perceived helpfulness.

1 Introduction

Peer review of writing is a commonly recommended
technique to include in good writing instruction. It
not only provides more feedback compared to what
students might get from their instructors, but also
provides opportunities for students to practice writ-
ing helpful reviews. While existing web-based peer-
review systems facilitate peer review from the logis-
tic aspect (e.g. collecting papers from authors, as-
signing reviewers, and sending reviews back), there
still remains the problem that the quality of peer
reviews varies, and potentially good feedback is
not written in a helpful way. To address this is-
sue, we propose to add a peer-review helpfulness
model to current peer-review systems, to automat-

ically predict peer-review helpfulness based on fea-
tures mined from textual reviews using Natural Lan-
guage Processing (NLP) techniques. Such an intel-
ligent component could enable peer-review systems
to 1) control the quality of peer reviews that are sent
back to authors, so authors can focus on the help-
ful ones; and 2) provide feedback to reviewers with
respect to their reviewing performance, so students
can learn to write better reviews.

In our prior work (Xiong and Litman, 2011), we
examined whether techniques used for predicting the
helpfulness of product reviews (Kim et al., 2006)
could be tailored to our peer-review domain, where
the definition of helpfulness is largely influenced by
the educational context of peer review. While previ-
ously we used the average of two expert-provided
ratings as our gold standard of peer-review help-
fulness1, there are other types of helpfulness rating
(e.g. author perceived helpfulness) that could be the
gold standard, and that could potentially impact the
features used to build the helpfulness model. In fact,
we observe that peer-review helpfulness seems to
differ not only between students and experts (exam-
ple 1), but also between types of experts (example
2).

In the following examples, students judge helpful-
ness with discrete ratings from one to seven; experts
judge it using a one to five scale. Higher ratings on
both scales correspond to the most helpful reviews.

Example 1:

Student rating = 7, Average expert rating = 2 The

1Averaged ratings are considered more reliable since they
are less noisy.
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author also has great logic in this paper. How can
we consider the United States a great democracy
when everyone is not treated equal. All of the main
points were indeed supported in this piece.

Student rating = 3, Average expert rating = 5 I
thought there were some good opportunities to
provide further data to strengthen your argument.
For example the statement “These methods of
intimidation, and the lack of military force offered
by the government to stop the KKK, led to the
rescinding of African American democracy.”
Maybe here include data about how . . . (126 words)

Example 2:

Writing-expert rating = 2, Content-expert rating = 5
Your over all arguements were organized in some
order but was unclear due to the lack of thesis in
the paper. Inside each arguement, there was no
order to the ideas presented, they went back and
forth between ideas. There was good support to
the arguements but yet some of it didnt not fit your
arguement.

Writing-expert rating = 5, Content-expert rating = 2
First off, it seems that you have difficulty writing
transitions between paragraphs. It seems that you
end your paragraphs with the main idea of each
paragraph. That being said, . . . (173 words) As a
final comment, try to continually move your paper,
that is, have in your mind a logical flow with every
paragraph having a purpose.

To better understand such differences and inves-
tigate their impact on automatically assessing peer-
review helpfulness, in this paper, we compare help-
fulness predictions using our many different pos-
sibilities for gold standard ratings. In particular,
we compare the predictive ability of features across
gold standard ratings by examining the most use-
ful features and feature ranks using standard feature
selection techniques. We show that paper ratings
and lexicon categories that suggest clear transitions
and opinions are most useful in predicting helpful-
ness as perceived by students, while review length
is generally effective in predicting expert helpful-
ness. While the presence of praise and summary
comments are more effective in modeling writing-
expert helpfulness, providing solutions is more use-
ful in predicting content-expert helpfulness.

2 Related Work

To our knowledge, no prior work on peer review
from the NLP community has attempted to auto-
matically predict peer-review helpfulness. Instead,
the NLP community has focused on issues such as
highlighting key sentences in papers (Sandor and
Vorndran, 2009), detecting important feedback fea-
tures in reviews (Cho, 2008; Xiong and Litman,
2010), and adapting peer-review assignment (Gar-
cia, 2010). However, many NLP studies have been
done on the helpfulness of other types of reviews,
such as product reviews (Kim et al., 2006; Ghose
and Ipeirotis, 2010), movie reviews (Liu et al.,
2008), book reviews (Tsur and Rappoport, 2009),
etc. Kim et al. (2006) used regression to predict the
helpfulness ranking of product reviews based on var-
ious classes of linguistic features. Ghose and Ipeiro-
tis (2010) further examined the socio-economic im-
pact of product reviews using a similar approach
and suggested the usefulness of subjectivity analy-
sis. Another study (Liu et al., 2008) of movie re-
views showed that helpfulness depends on review-
ers’ expertise, their writing style, and the timeliness
of the review. Tsur and Rappoport (2009) proposed
RevRank to select the most helpful book reviews in
an unsupervised fashion based on review lexicons.

To tailor the utility of this prior work on help-
fulness prediction to educational peer reviews, we
will draw upon research on peer review in cognitive
science. One empirical study of the nature of peer-
review feedback (Nelson and Schunn, 2009) found
that feedback implementation likelihood is signif-
icantly correlated with five feedback features. Of
these features, problem localization —pinpointing
the source of the problem and/or solution in the orig-
inal paper— and solution —providing a solution to
the observed problem— were found to be most im-
portant. Researchers (Cho, 2008; Xiong and Lit-
man, 2010) have already shown that some of these
constructs can be automatically learned from tex-
tual input using Machine Learning and NLP tech-
niques. In addition to investigating what proper-
ties of textual comments make peer-review helpful,
researchers also examined how the comments pro-
duced by students versus by different types of ex-
perts differ (Patchan et al., 2009). Though focusing
on differences between what students and experts
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produce, such work sheds light on our study of stu-
dents’ and experts’ helpfulness ratings of the same
student comments (i.e. what students and experts
value).

Our work in peer-review helpfulness prediction
integrates the NLP techniques and cognitive-science
approaches mentioned above. We will particularly
focus on examining the utility of features motivated
by related work from both areas, with respect to dif-
ferent types of gold standard ratings of peer-review
helpfulness for automatic prediction.

3 Data

In this study, we use a previously annotated peer-
review corpus (Nelson and Schunn, 2009; Patchan
et al., 2009) that was collected in an introduc-
tory college history class using the freely available
web-based peer-review SWoRD (Scaffolded Writ-
ing and Rewriting in the Discipline) system (Cho
and Schunn, 2007). The corpus consists of 16 pa-
pers (about six pages each) and 189 reviews (vary-
ing from twenty words to about two hundred words)
accompanied by numeric ratings of the papers. Each
review was manually segmented into idea units (de-
fined as contiguous feedback referring to a single
topic) (Nelson and Schunn, 2009), and these idea
units were then annotated by two independent an-
notators for various coding categories, such as feed-
back type (praise, problem, and summary), problem
localization, solution, etc. For example, the sec-
ond case in Example 1, which only has one idea
unit, was annotated as feedbackType = problem,
problemlocalization = True, and solution =
True. The agreement (Kappa) between the two an-
notators is 0.92 for FeedbackType, 0.69 for localiza-
tion, and 0.89 for solution.2

Our corpus also contains author provided back
evaluations. At the end of the peer-review assign-
ment, students were asked to provide back evalu-
ation on each review that they received by rating
review helpfulness using a discrete scale from one
to seven. After the corpus was collected, one writ-

2For Kappa value interpretation, Landis and Koch (1977)
propose the following agreement standard: 0.21-0.40 = “Fair”;
0.41-0.60 = “Moderate”; 0.61-0.80 = “Substantial”; 0.81-1.00
= “Almost Perfect”. Thus, while localization signals are more
difficult to annotate, the inter-annotator agreement is still sub-
stantial.

ing expert and one content expert were also asked to
rate review helpfulness with a slightly different scale
from one to five. For our study, we will also com-
pute the average ratings given by the two experts,
yielding four types of possible gold-standard ratings
of peer-review helpfulness for each review. Figure 1
shows the rating distribution of each type. Interest-
ingly, we observed that expert ratings roughly follow
a normal distribution, while students are more likely
to give higher ratings (as illustrated in Figure 1).

4 Features

Our features are motivated by the prior work in-
troduced in Section 2, in particular, NLP work on
predicting product-review helpfulness (Kim et al.,
2006), as well as work on automatically learning
cognitive-science constructs (Nelson and Schunn,
2009) using NLP (Cho, 2008; Xiong and Litman,
2010). The complete list of features is shown in Ta-
ble 3 and described below. The computational lin-
guistic features are automatically extracted based
on the output of syntactic analysis of reviews and
papers3. These features represent structural, lexi-
cal, syntactic and semantic information of the tex-
tual content, and also include information for identi-
fying certain important cognitive constructs:

• Structural features consider the general struc-
ture of reviews, which includes review length in
terms of tokens (reviewLength), number of sen-
tences (sentNum), the average sentence length
(sentLengthAve), percentage of sentences that
end with question marks (question%), and
number of exclamatory sentences (exclams).

• Lexical features are counts of ten lexical cat-
egories (Table 1), where the categories were
learned in a semi-supervised way from review
lexicons in a pilot study. We first manually cre-
ated a list of words that were specified as signal
words for annotating feedbackType and prob-
lem localization in the coding manual; then
we supplemented the list with words selected
by a decision tree model learned using a Bag-
of-Words representation of the peer reviews.

3We used MSTParser (McDonald et al., 2005) for syntactic
analysis.
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Figure 1: Distribution of peer-review helpfulness when rated by students and experts

Tag Meaning Word list
SUG suggestion should, must, might, could, need, needs, maybe, try, revision, want
LOC location page, paragraph, sentence
ERR problem error, mistakes, typo, problem, difficulties, conclusion
IDE idea verb consider, mention
LNK transition however, but
NEG negative words fail, hard, difficult, bad, short, little, bit, poor, few, unclear, only, more
POS positive words great, good, well, clearly, easily, effective, effectively, helpful, very
SUM summarization main, overall, also, how, job
NOT negation not, doesn’t, don’t
SOL solution revision specify correction

Table 1: Ten lexical categories

Compared with commonly used lexical uni-
grams and bigrams (Kim et al., 2006), these
lexical categories are equally useful in model-
ing peer-review helpfulness, and significantly
reduce the feature space.4

• Syntactic features mainly focus on nouns and
verbs, and include percentage of tokens that are
nouns, verbs, verbs conjugated in the first per-
son (1stPVerb%), adjectives/adverbs, and open
classes, respectively.

• Semantic features capture two important peer-

4Lexical categories help avoid the risk of over-fitting, given
only 189 peer reviews in our case compared to more than ten
thousand Amazon.com reviews used for predicting product re-
view helpfulness (Kim et al., 2006).

review properties: their relevance to the main
topics in students’ papers, and their opinion
sentiment polarities. Kim et al. (2006) ex-
tracted product property keywords from exter-
nal resources based on their hypothesis that
helpful product reviews refer frequently to cer-
tain product properties. Similarly, we hypothe-
size that helpful peer reviews are closely related
to domain topics that are shared by all students
papers in an assignment. Our domain topic set
contains 288 words extracted from the collec-
tion of student papers using topic-lexicon ex-
traction software5; our feature (domainWord)

5The software extracts topic words based on topic signa-
tures (Lin and Hovy, 2000), and was kindly provided by Annie
Louis.
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Feature Description
regTag% The percentage of problems in reviews that could be matched with a localization pattern.
soDomain% The percentage of sentences where any domain word appears between the subject and the object.
dDeterminer The number of demonstrative determiners.

windowSize For each review sentence, we search for the most likely referred window of words in the related
paper, and windowSize is the average number of words of all windows.

Table 2: Localization features

counts how many words of a given review be-
long to the extracted set. For sentiment po-
larities, we extract positive and negative sen-
timent words from the General Inquirer Dictio-
naries 6, and count their appearance in reviews
in terms of their sentiment polarity (posWord,
negWord).

• Localization features are motivated by lin-
guistic features that are used for automatically
predicting problem localization (an important
cognitive construct for feedback understand-
ing and implementation) (Nelson and Schunn,
2009), and are presented in Table 2. To illus-
trate how these features are computed, consider
the following critique:

The section of the essay on African
Americans needs more careful at-
tention to the timing and reasons
for the federal governments decision
to stop protecting African American
civil and political rights.

The review has only one sentence, in which one
regular expression is matched with “the section
of” thus regTag% = 1; no demonstrative de-
terminer, thus dDeterminer = 0; “African”
and “Americans” are domain words appearing
between the subject “section” and the object
“attention”, so soDomain is true for this sen-
tence and thus soDomain% = 1 for the given
review.

In addition to the low-level linguistic features pre-
sented above, we also examined non-linguistic fea-
tures that are derived from the ratings and prior
manual annotations of the corpus, described in Sec-
tion 3.

6http://www.wjh.harvard.edu/ inquirer/homecat.htm

• Cognitive-science features are motivated by
an empirical study (Nelson and Schunn, 2009)
which suggests significant correlation between
certain cognitive constructs (e.g. feedbackType,
problem localization, solution) and review im-
plementation likelihood. Intuitively, helpful
reviews are more likely to get implemented,
thus we introduced these features to capture
desirable high-level characteristics of peer re-
views. Note that in our corpus these cogni-
tive constructs are manually coded at the idea-
unit level (Nelson and Schunn, 2009), how-
ever, peer-review helpfulness is rated at the re-
view level.7 Our cognitive-science features ag-
gregate the annotations up to the review-level
by reporting the percentage of idea-units in
a review that exhibit each characteristic: the
distribution of review types (praise%, prob-
lem%, summary%), the percentage of problem-
localized critiques (localization%), as well as
the percentage of solution-provided ones (solu-
tion%).

• Social-science features introduce elements re-
flecting interactions between students in a peer-
review assignment. As suggested in related
work on product review helpfulness (Kim
et al., 2006; Danescu-Niculescu-Mizil et al.,
2009), some social dimensions (e.g. customer
opinion on related product quality) are of great
influence in the perceived helpfulness of prod-
uct reviews. Similarly, in our case, we intro-
duced related paper ratings (pRating) — to con-
sider whether and how helpfulness ratings are
affected by the rating that the paper receives8

— and the absolute difference between the rat-

7Details of different granularity levels of annotation can be
found in (Nelson and Schunn, 2009).

8That is, to examine whether students give higher ratings to
peers who gave them higher paper ratings in the first place.
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ing and the average score given by all review-
ers (pRatingDiff ) — to measure the variation in
perceived helpfulness of a given review.

5 Experiments

We take a machine learning approach to model dif-
ferent types of perceived helpfulness (student help-
fulness, writing-expert helpfulness, content-expert
helpfulness, average-expert helpfulness) based on
combinations of linguistic and non-linguistic fea-
tures extracted from our peer-review corpus. Then
we compare the different helpfulness types in terms
of the predictive power of features used in their cor-
responding models. For comparison purpose, we
consider the linguistic and non-linguistic features
both separately and in combination, which generates
three set of features: 1) linguistic features, 2) non-
linguistic features, and 3) all features. For each set
of features, we train four models, each correspond-
ing to a different kind of helpfulness rating. For each
learning task (three by four), we use two standard
feature selection algorithms to find the most useful
features based on 10-fold cross validation. First, we
perform Linear Regression with Greedy Stepwise
search (stepwise LR) to select the most useful fea-
tures when testing in each of the ten folds, and count
how many times each features is selected in the ten
trials. Second, we use Relief Feature Evaluation9

with Ranker (Relief) (Kira and Rendell, 1992; Wit-
ten and Frank, 2005) to rank all used features based
on their average merits (the ability of the given fea-
ture to differentiate between two example pairs) of
ten trials.10

Although both methods are supervised, the wrap-
per is “more aggressive” because its feature evalu-
ation is based on the performance of the regression
model and thus the resulting feature set is tailored
to the learning algorithm. In contrast, Relief does
not optimize feature sets directly for classifier per-
formance, thus it takes into account class informa-
tion in a “less aggressive” manner than the Wrapper
method. We use both methods in our experiment to

9Relief evaluates the worth of an attribute by repeatedly
sampling an instance and changing the value of the given at-
tribute based on the nearest instance of the same and different
class.

10Both algorithms are provided by Weka
(http://www.cs.waikato.ac.nz/ml/weka/).

provide complementary perspectives. While the for-
mer can directly tell us what features are most use-
ful, the latter gives feature ranks which provide more
detailed information about differences between fea-
tures. To compare the feature selection results, we
examine the four kind of helpfulness models for
each of the three feature sets separately, as presented
below. Note that the focus of this paper is compar-
ing feature utilities in different helpfulness models
rather than predicting those types of helpfulness rat-
ings. (Details of how the average-expert model per-
forms can be found in our prior work (Xiong and
Litman, 2011).)

5.1 Feature Selection of Linguistic Features

Table 4 presents the feature selection results of com-
putational linguistic features used in modeling the
four different types of peer-review helpfulness. The
first row lists the four sources of helpfulness ratings,
and each column represents a corresponding model.
The second row presents the most useful features
in each model selected by stepwise LR, where “#
of folds” refers to the number of trials in which the
given feature appears in the resulting feature set dur-
ing the 10-fold cross validation. Here we only report
features that are selected by no less than five folds
(half the time). The third row presents feature ranks
computed using Relief, where we only report the top
six features due to the space limit. Features are or-
dered in descending ranks, and the average merit and
its standard deviation is reported for each one of the
features.

The selection result of stepwise LR shows that
reviewLength is most useful for predicting expert
helpfulness in general, while specific lexicon cate-
gories (i.e. LNK, and NOT) and positive words (pos-
Word) are more useful in predicting student helpful-
ness. When looking at the ranking result, we observe
that transition cues (LNK) and posWord are also
ranked high in the student-helpfulness model, al-
though question% and suggestion words (SUG) are
ranked highest. For expert-helpfulness models, win-
dowSize and posWord, which are not listed in the se-
lected features for expert helpfulness (although they
are selected for students), are actually ranked high
for modeling average-expert helpfulness. While ex-
clamatory sentence number (exclams) and summa-
rization cues are ranked top for the writing expert,
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Type Features
Structural reviewLength, sentNum, sentLengthAve, question%, exclams
Lexical SUG, LOC, ERR, IDE, LNK, NEG, POS, SUM, NOT, SOL (Table 1)
Syntactic noun%, verb%, 1stPVerb%, adj+adv%, opClass%
Semantic domainWord, posWord, negWord
Localization regTag%, soDomain%, dDeterminer, windowSize (Table 2)
Cognitive-science praise%, problem%, summary%, localization%, solution%
Social-science pRating, pRatingDiff

Table 3: Summary of features

Source Students Writing expert Content expert Expert average
Feature # of folds Feature # of folds Feature # of folds Feature # of folds
LNK 9 reviewLength 8 reviewLength 10 reviewLength 10

Stepwise posWord 8 question% 6 sentNum 8
LR NOT 6 sentNum 5 question% 8

windowSize 6 1stPVerb% 5
POS 5

Relief

Feature Merit Feature Merit Feature Merit Feature Merit
question% .019± .002 exclams .010± .003 question% .010± .004 exclams .010± .003

SUG .015± .003 SUM .008± .004 ERR .009± .003 question% .011± .004
LNK .014± .003 NEG .006± .004 SUG .009± .004 windowSize .008± .002

sentLengthAve .012± .003 negWord .005± .002 posWord .007± .002 posWord .006± .002
POS .011± .002 windowSize .004± .002 exclams .006± .001 reviewLength .004± .001

posWord .010± .001 sentNum .003± .001 1stPVerb% .007± .004 sentLengthAve .004± .001

Table 4: Feature selection based on linguistic features

the percentage of questions (question%) and error
cues (ERR) are ranked top for the content-expert. In
addition, the percentage of words that are verbs con-
jugated in the first person (1stPVerb%) is both se-
lected and ranked high in the content-expert helpful-
ness model. Out of the four models, SUG are ranked
high for predicting both students and content-expert
helpfulness. These observations indicate that both
students and experts value questions (question%)
and suggestions (SUG) in reviews, and students par-
ticularly favor clear signs of logic flow in review ar-
guments (LNK), positive words (posWord), as well
as reference of their paper content which provides
explicit context information (windowSize). In addi-
tion, experts in general prefer longer reviews (re-
viewLength), and the writing expert thinks clear
summary signs (SUM) are important indicators of
helpful peer reviews.

5.2 Feature Selection of non-Linguistic
Features

When switching to the high-level non-linguistic fea-
tures (Table 5), we find that solution% is always se-
lected (in all ten trials) as a most useful feature for

predicting all four kind of helpfulness, and is also
ranked high for content-expert and student helpful-
ness. Especially for the content-expert, solution%
has a much higher merit (0.013) compared to all the
other features (≤ 0.03). This agrees with our ob-
servation in section 5.1 that SUG are ranked high in
both cases. localization% is selected as one of the
most useful features in the content-expert helpful-
ness model, which is also ranked top in the student
model (though not selected frequently by stepwise
LR). For modeling the writing-expert helpfulness,
praise (praise%) is more important than problem
and summary, and the paper rating (pRating) loses
its predictive power compared to how it works in the
other models. In contrast, pRating is both selected
and ranked high for predicting students’ perceived
helpfulness.

5.3 Feature Selection of All Features

When considering all features together as reported
in Table 6, pRating is only selected in the student-
helpfulness model, and still remains to be the most
important feature for predicting students’ perceived
helpfulness. As for experts, the structural feature

16



Source Students Writing expert Content expert Expert average
Feature # of folds Feature # of folds Feature # of folds Feature # of folds

Stepwise pRating 10 solution% 10 localization% 10 solution% 10
LR solution% 10 solution% 10 pRating 10

problem% 9 pRating 10 localization% 9

Relief

Feature Merit Feature Merit Feature Merit Feature Merit
localization% .012± .003 praise% .008± .002 solution% .013± .005 problem% .004± .002
pRatingDiff .010± .002 problem% .007± .002 pRating .003± .002 localization% .004± .006

pRating .007± .002 summary% .001± .004 praise% .001± .002 praise% .003± .003
solution% .006± .005 localization% .001± .005 localization% .001± .004 solution% .002± .004
problem% .004± .002 pRating .004± .004 problem% .001± .002 pRating .005± .003
summary% .004± .003 pRatingDiff .007± .002 pRating .002± .003 pRatingDiff .006± .005

Table 5: Feature selection based on non-linguistic features

Source Students Writing expert Content expert Expert average
Feature # of folds Feature # of folds Feature # of folds Feature # of folds

Stepwise pRating 10 reviewLength 10 reviewLength 10 reviewLength 10
LR dDeterminer 7 problem% 8 problem% 6

pRatingDiff 5
sentNum 5

Relief

Feature Merit Feature Merit Feature Merit Feature Merit
pRating .030± .006 exclams .016± .003 solution% .025± .003 exclams .015± .004

NOT .019± .004 praise% .015± .003 domainWord .012± .002 question% .012± .004
pRatingDiff .019± .005 SUM .013± .004 regTag% .012± .007 LOC .007± .002

sentNum .014± .002 summary% .008± .003 reviewLength .009± .002 sentNum .007± .002
question% .014± .003 problem% .009± .003 question% .010± .003 reviewLength .007± .001

NEG .013± .002 reviewLength .004± .001 sentNum .008± .002 praise% .008± .004

Table 6: Feature selection based on all features

reviewLength stands out from all other features in
both the writing-expert and the content-expert mod-
els. Interestingly, it is the number of sentences (sent-
Num) rather than review length of structure features
that is useful in the student-helpfulness model. And
demonstrative determiners (dDeterminer) is also se-
lected, which indicates that having a clear sign of
comment targets is considered important from the
students’ perspective. When examining the model’s
ranking result, we find that more lexicon categories
are ranked high for students compared to other kind
of helpfulness. Specifically, NOT appears high
again, suggesting clear expression of opinion is im-
portant in predicting student-helpfulness. Across
four types of helpfulness, again, we observed that
the writing expert tends to value praise and summary
(indicated by both SUM and summary%) in reviews
while the content-expert favors critiques, especially
solution provided critiques.

5.4 Discussion

Based on our observations from the above three
comparisons, we summarize our findings with re-
spect to different feature types and provide inter-

pretation: 1) review length (in tokens) is generally
effective in predicting expert perceived helpfulness,
while number of sentences is more useful in mod-
eling student perceived helpfulness. Interestingly,
there is a strong correlation between these two fea-
tures (r = 0.91, p ≤ 0.001), and why one is selected
over the other in different helpfulness models needs
further investigation. 2) Lexical categories such as
transition cues, negation, and suggestion words are
of more importance in modeling student perceived
helpfulness. This might indicate that students pre-
fer clear expression of problem, reference and even
opinion in terms of specific lexicon clues, the lack of
which is likely to result in difficulty in their under-
standing of the reviews. 3) As for cognitive-science
features, solution is generally an effective indica-
tor of helpful peer reviews. Within the three feed-
back types of peer reviews, praise is valued high
by the writing expert. (It is interesting to notice
that although praise is shown to be more impor-
tant than problem and summary for modeling the
writing-expert helpfulness, positive sentiment words
do not appear to be more predictive than negative
sentiments.) In contrast, problem is more desirable
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from the content expert’s point of view. Although
students assign less importance to the problem them-
selves, solution provided peer reviews could be help-
ful for them with respect to the learning goal of peer-
review assignments. 4) Paper rating is a very ef-
fective feature for predicting review helpfulness per-
ceived by students, which is not the case for either
expert. This supports the argument of social aspects
in people’s perception of review helpfulness, and it
also reflects the fact that students tend to be nice to
each other in such peer-review interactions. How-
ever, this dimension might not correspond with the
real helpfulness of the reviews, at least from the per-
spective of both the writing expert and content ex-
pert.

6 Conclusion and Future Work

We have shown that the type of helpfulness to be
predicted does indeed influence the utility of dif-
ferent feature types for automatic prediction. Low-
level general linguistic features are more predic-
tive when modeling students’ perceived helpfulness;
high-level theory supported constructs are more use-
ful in experts’ models. However, in the related area
of automated essay scoring (Attali and Burstein,
2006), others have suggested the need for the use
of validated features related to meaningful dimen-
sions of writing, rather than low-level (but easy to
automate) features. In this perspective, our work
similarly poses challenge to the NLP community in
terms of how to take into account the education-
oriented dimensions of helpfulness when applying
traditional NLP techniques of automatically pred-
icating review helpfulness. In addition, it is im-
portant to note that predictive features of perceived
helpfulness are not guaranteed to capture the nature
of “truly” helpful peer reviews (in contrast to the
perceived ones).

In the future, we would like to investigate how
to integrate useful dimensions of helpfulness per-
ceived by different audiences in order to come up
with a “true” helpfulness gold standard. We would
also like to explore more sophisticated features and
other NLP techniques to improve our model of peer-
review helpfulness. As we have already built models
to automatically predict certain cognitive constructs
(problem localization and solution), we will replace

the annotated cognitive-science features used here
with their automatic predictions, so that we can build
our helpfulness model fully automatically. Finally,
we would like to integrate our helpfulness model
into a real peer-review system and evaluate its per-
formance extrinsically in terms of improving stu-
dents’ learning and reviewing performance in future
peer-review assignments.
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Abstract

This paper presents Genpex, a system for au-
tomatic generation of narrative probability ex-
ercises. Generation of exercises in Genpex is
done in two steps. First, the system creates
a specification of a solvable probability prob-
lem, based on input from the user (a researcher
or test developer) who selects a specific ques-
tion type and a narrative context for the prob-
lem. Then, a text expressing the probability
problem is generated. The user can tune the
generated text by setting the values of some
linguistic variation parameters. By varying
the mathematical content of the exercise, its
narrative context and the linguistic parameter
settings, many different exercises can be pro-
duced. Here we focus on the natural language
generation part of Genpex. After describing
how the system works, we briefly present our
first evaluation results, and discuss some as-
pects requiring further investigation.

1 Introduction

Narrative exercises (also called word problems or
story problems) are mathematical exercises embed-
ded in a story or text. They are commonly used as
test items, to assess or train a student’s understand-
ing of the underlying mathematical concepts. When
solving a narrative exercise, the student is required
to derive the underlying mathematical question from
the story and to calculate the correct answer to this
mathematical problem.

This paper presents Genpex, a system for generat-
ing narrative exercises expressing probability prob-
lems. Genpex was created in the context of an inter-

national project on item generation for testing stu-
dent competencies in solving probability problems.
Automatic item generation is an effective way of
constructing many items with controlled difficulties,
based on a set of predefined task parameters (Enright
et al., 2002; Deane and Sheehan, 2003; Arendasy et
al., 2006; Holling et al., 2009). The goal of our item
generation project is to develop a model to support
optimal problem and test construction. A large col-
lection of narrative exercises is needed to test the de-
veloped models in field trials. All of these narrative
exercises should be different, but the properties that
define the difficulty of the exercise should be known.
Genpex was designed to enable easy creation of new
exercises meeting these requirements.

Figure 1 shows a narrative probability exercise
generated by Genpex. The text of the exercise is in
German, because the target group of our project are
German high school students. The texts produced
by Genpex are based on a set of example narrative
exercises that were created earlier within the project
(Zeuch, In preparation).

A property that sets Genpex apart from other
narrative exercise generation systems is that it was
specifically designed to support variation in the gen-
erated exercises. Unlike other systems, it not only
changes the context of the narrative exercise (e.g.,
instead of bikes, the example exercise could also
have been about hotel rooms with different proper-
ties) but it also varies the way the texts are formu-
lated. Most existing systems for narrative exercise
generation use fixed sentence templates to express
mathematical content, which means that the same
content is always expressed in the same way (Fa-
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In einer großen Halle ist eine Mischung von Fahrrädern. In a big hall there are a variety of bicycles.
Es gibt insgesamt 100 Fahrräder. There are 100 bicycles in total.

Es gibt 30 grüne Fahrräder und es gibt 70 weiße. 40
Fahrräder sind Mountainbikes, 50 sind Rennräder und
es gibt 10 Hollandräder. 70 Fahrräder sind billiger als
500 Euro und 30 Fahrräder teurer als 500 Euro. 41
Fahrräder sind billiger als 500 Euro und sind Rennräder.

There are 30 green bicycles and there are 70 white ones.
40 bicycles are mountain bikes, 50 are road bikes, and
there are 10 Dutch bikes. 70 bicycles are less expensive
than 500 Euros and 30 bicycles more expensive than 500
Euros. 41 bicycles are less expensive than 500 Euros and
are road bikes.

Fahrradtyp und Preis sind abhängig voneinander und
alle anderen Merkmale sind unabhängig voneinander.

Bicycle type and price are dependent on each other and
all other properties are independent of each other.

Wie groß ist die Wahrscheinlichkeit, dass ein Fahrrad
nicht sowohl ein Mountainrad als auch grün ist?

What is the probability that a bicycle is not both a moun-
tain bike and green?

Wie groß ist die Wahrscheinlichkeit, dass ein Fahrrad
entweder billiger als 500 Euro oder ein Rennrad ist?

What is the probability that a bicycle is either cheaper
than 500 Euros or a road bike?

Figure 1: The text of an exercise generated by Genpex. (Left: German original, right: English translation.)

iron and Williamson, 2002; Arendasy et al., 2006;
Holling et al., 2009). A system that uses a linguisti-
cally sophisticated approach, thus in principle allow-
ing for similar text variations as Genpex, is Model-
Creator (Deane and Sheehan, 2003; Higgins et al.,
2005). However, this system focuses on semantic
factors influencing the expression of events with dif-
ferent participants (e.g., different types of vehicles)
rather than on generating linguistic variations.

Below, we first describe how a probability prob-
lem is constructed by Genpex, based on input by the
user. Then we explain in some detail how the nat-
ural language generation (NLG) module of Genpex
creates a text expressing the probability problem, fo-
cusing on the creation of variation in the generated
texts. We end with a brief discussion of our first
evaluation results and some pointers to future work.

2 Probability Problems

Figure 2 presents the probability problem underly-
ing the narrative exercise of Figure 1. It specifies the
context, the total number of entities (numEntities),
and the distribution of (combinations of) attribute
values over the entities. Number information may be
suppressed so as not to give the answer away; this is
done by inserting a question mark in the place of the
number (e.g., colour[green] = ?). Explicitly listing
such ‘hidden’ information in the probability prob-
lem ensures that all possible values of each attribute
are mentioned in the text of the exercise. A basic as-
sumption in creating the probability problems is that

all entities have exactly one value for each attribute.
For example, all bikes must have some colour, and
they cannot have two colours at the same time.

In addition to the number statements, the proba-
bility problem also lists which pairs of attributes are
dependent on each other. In the example, these are
type and price. This means that if we look at the
subset of bikes of a specific type, the probability that
one of these bikes has a certain price is not the same
as when we look at the entire collection of bikes (and
vice versa). If a pair of attributes is not specified as
being dependent, it is independent.

Q delineates the question part of the probability
problem; we refer to the other parts (except Con-
text) as ‘statements’. All questions require the cal-
culation of a probability. A question of the form Q:
P(A) asks for the probability of event A, which can
be described as “Someone randomly draws one en-
tity out of a (sub)set of entities and this entity has
property A”. For example, the question could be to
calculate the probability that a bike is black if we
randomly pick one bike from the set of all bikes. We
equate the probability of event A with the relative
frequency of the set A of objects that satisfy prop-
erty A, computed as |A|/|U |, where U is the set of
all entities (that is, |U | = numEntities). In general,
the set we draw from is the entire set of entities, but
this set can be limited by a conditional statement:
the event A|B can be described as “Someone ran-
domly draws one entity with property A from a sub-
set of entities that have property B”. In this case, the
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Context: bikes

numEntities: 100

colour[green] = 30
colour[white] = 70
type[mountainbike] = 40
type[sportsbike] = 50
type[hollandbike] = 10
price[<500] = 70
price[>500] = 30
price[<500] ∧ type[sportsbike] = 41

dependentAttributes: price & type

Q: P(¬(type[mountainbike] ∧ colour[green]))
Q: P(price[<500] ∨ type[sportsbike])

Figure 2: The probability problem underlying Figure 1.

probability P (A|B) is computed as |A∩B|/|B|. All
events involve a single draw of exactly one entity.

Probability problems such as the one in Figure 2
are automatically created by Genpex; the only thing
the user has to do is to select one or more question
types (defining the difficulty of the exercise) and a
context for the exercise. All available question types
are of the form P(A) or P(A|B), where A (but not B)
can be a complex event, i.e., involving a conjunc-
tion or disjunction of properties. For example, Q:
P(A ∧ B) asks for the probability that an entity has
both property A and property B. Moreover, parts of
a question can be negated.

Currently, Genpex can handle 25 different ques-
tion types. Some restrictions we put on the avail-
able questions are the following. Each question in-
volves at most two different attributes, to avoid com-
plex dependencies. There are no recursive questions
(e.g., double negations) and no conditional questions
about independent attributes. Finally, we exclude
questions that are likely to result in ambiguous lan-
guage. For example, if we try to express the ques-
tion Q: P(¬ (colour[white]) ∧ type[sportsbike]) in
English, it will be something like “What is the prob-
ability that a bike is not white and a road bike?”.
Due to scope ambiguity of the negation, this sen-
tence may be misinterpreted as “What is the prob-
ability that a bike is not white and also not a road
bike?”. The same ambiguity is found in the Ger-
man sentence expressing this question.1 Excluding

1Genpex does include a re-ordered, mathematically equi-

these types of questions does not simplify the task
for Genpex; the excluded questions are not more dif-
ficult to generate than the included ones. The main
reason to exclude certain question types was to avoid
creating exercises that might be unclear to the reader.

In addition to selecting one or more question
types as input for Genpex, the user also selects a
context for the exercise. As a resource, Genpex uses
a repository of context files2 with information con-
cerning the entities that the exercise should be about
(‘bikes’ in our example) and the properties they may
have. Each attribute in the context file is linked to
a lexical lemma for the word that expresses its rela-
tion to the entity (e.g., bikes are of a certain colour
or type but have a certain price). Similarly, for each
attribute, a list of possible attribute values and the
words expressing them is provided. For example,
the type attribute in the bikes context can have the
values ‘mountainbike’, ‘sportsbike’, ‘hollandbike’
and ‘seniorbike’, respectively associated with the
words “Mountainbike” (mountain bike), “Rennrad”
(road bike), “Hollandrad” (Dutch bike) and “Se-
niorenrad” (senior bike). Other NLG-related infor-
mation in the context files is discussed in Section 3.
The context file also specifies world knowledge such
as the range of numEntities (a context about rooms
in a hotel will involve fewer entities than a context
about books in a bookshop) and possible dependen-
cies between attributes (in the bikes context, price is
more likely to be dependent on type than on colour).

Taking the selected question type(s) and context
as input, Genpex automatically constructs a proba-
bility problem. This involves selecting a number of
attributes and values, depending on the question or
questions that need to be answered, and creating a
correct and complete world: an internal represen-
tation of the situation in which all entities are fully
defined (all their properties are known), and there
are no inconsistencies. A part of this world is re-
flected in the statements of the probability problem.
Currently, all statements provide information that is

valent version of the same question: Q: P(type[sportsbike] ∧
¬ (colour[white])). Because the generated questions follow the
order of the attributes in the question specification, this version
can be expressed without ambiguity as “What is the probability
that a bike is a road bike and not white?”

2In the current Genpex prototype, five different contexts are
available. The system comes with an editor for the creation of
new context files.
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required to solve the exercise; redundant informa-
tion is not included. If the user manually edits the
generated probability problem, Genpex reconstructs
the world, and tries to solve the exercise using the in-
formation in the edited problem. The user is warned
in case of inconsistencies or missing information. A
warning is also issued if the edited problem contains
properties for which no lexical information is avail-
able. See Boer Rookhuiszen (2011) for more details
on how probability problems are constructed.

3 Language Generation

The NLG process of Genpex has two goals: generat-
ing a correct textual representation of a given prob-
ability problem, and enabling variation, so that mul-
tiple runs will result in different texts. The gener-
ated texts should be in grammatically correct Ger-
man, and they must be unambiguous: the formula-
tion of the text should not leave the reader uncertain
about the underlying mathematical exercise.

An overview of the NLG component of Genpex
is given in Figure 3. Its architecture reflects the lan-
guage generation pipeline of Reiter and Dale (2000),
with three modules: Document Planner, Microplan-
ner and Surface Realizer. Information between the
modules is exchanged in the form of a list of sen-
tence trees, each defining the content and grammat-
ical structure of a sentence. The Document Planner
creates basic sentence trees. These are manipulated
by the Microplanner to create variations. The mi-
croplanning stage can in principle be skipped, but
that will result in very monotonous texts. Finally,
the Surface Realizer applies the correct morphology
to the sentence trees and creates the layout of the
text. Below, we discuss each module in turn.

3.1 Document Planning: Creating Basic
Sentence Structures

The input of the Document Planner is a probability
problem, which defines the content and the structure
of the narrative exercise. The output is a document
plan: a structured list of sentence trees expressing
the statements and questions in the probability prob-
lem. The document plan also includes an introduc-
tion: a simple ‘canned’ text specified in the context
file. If multiple introduction texts are available, one
is randomly selected.

Figure 3: The NLG module of Genpex.

The sentences included in the document plan are
all very simple, with the same basic structure. Take
for example the statement colour[white] = 70. The
Document Planner first creates a subject NP ex-
pressing the number of entities involved, e.g., “70
Fahrräder” (70 bicycles). Then it creates a VP ex-
pressing the relation and the attribute value, e.g.,
“sind weiß” (are white). The relevant words and
their parts of speech are looked up in the context
file. For the example statement, this process results
in the following basic tree, shown in a simplified no-
tation. Note that the words in the tree have not yet
been inflected.

[s]
[np grammaticalRole=su]

[det grammaticalRole=num]70[/det]
[noun grammaticalRole=hd]Fahrrad[/noun]

[/np]
[vp]

[verb grammaticalRole=hd]sind[/verb]
[adj grammaticalRole=predc]weiss[/adj]

[/vp]
[/s]

All sentence trees for questions start with the
phrase “Wie groß ist die Wahrscheinlichkeit dass”
(What is the probability that), included as canned
text in a tree node with syntactic category ‘clause’.
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This main clause is followed by an indefinite NP re-
ferring to the type of entities discussed in the exer-
cise, e.g., “ein Fahrrad” (a bicycle). The structure
of the rest of the sentence tree depends on the ques-
tion type. Sentence tree templates are available for
all possible question types. They can be used recur-
sively: slots in the templates can be filled with an
expression for an attribute value, or with one of the
other templates.

Figure 4 shows the construction of a sentence tree
for a fairly complex question of type P(A ∨ B |
¬ C), using multiple question templates. For ques-
tions about conditional probabilities Genpex uses
the slightly formal “vorausgesetzt” (given that), be-
cause simpler phrasings are likely to be ambiguous.
For example, assume we want to ask the question
Q: P(type[mountainbike] | colour[green]). A sim-
ple way to ask this question would be “Wie groß
ist die Wahrscheinlichkeit dass ein grünes Fahrrad
ein Mountainbike ist?” (What is the probability that
a green bike is a mountain bike?). However, such
a question could be mistakenly interpreted as ask-
ing for a joint probability: Q: P(colour[green] ∧
type[mountainbike]). For this reason, the more com-
plex formulation is preferred.

3.2 Microplanning: Creating Variation

The Microplanner modifies the sentence trees pro-
duced by the Document Planner by applying a num-
ber of variation techniques. These techniques
place specific requirements on the sentences to
which they can be applied, and therefore not every
technique can be applied to all sentence trees.

When introducing variation in the narrative form
of the exercise, it is important that variations of the
same exercise should all have the same meaning
and approximately the same difficulty. According to
Deane and Sheehan (2003), it is possible to change
the wording of a text without changing its difficulty.
Reiter and Dale (2000) state that for example ag-
gregating multiple sentences does not change the in-
formation they express, but improves the readabil-
ity and fluency of the text. This is what we want
to achieve: adding variation to the text without af-
fecting its interpretation. Genpex therefore uses
aggregation as well as a number of text variation
techniques, assuming that they do not influence the
meaning or difficulty of an exercise.

Figure 4: Construction of a question combining multiple
templates. Translation, with brackets marking the tem-
plate boundaries: “What is the probability that a bicycle
[[is either black or white] given that this bicycle [is not a
mountainbike]]?”

Below we discuss the operations applied to basic
sentence trees in the Microplanner. They are only
applied to sentences expressing statements, even
though it would be practically possible to apply
some of the variations to the questions too. Given
that understanding the question is crucial for solv-
ing the exercise, and that varying the way the ques-
tions are asked might cause confusion, we chose to
adhere to a fixed format for the questions, cf. Fairon
and Williams (2002).

Aggregation. As a first step, the Microplanner
applies aggregation: grouping multiple simple sen-
tences and combining them into one complex sen-
tence. This process leaves the original order of the
sentences in the Document Plan intact. Sentences
referring to different attributes are never grouped to-
gether, to avoid possible misinterpretations. For ex-
ample, a complex sentence such as “70 bicycles are
white and 40 bicycles are mountain bikes” might
suggest that the 40 mountain bikes are different en-
tities than the 70 white bikes, excluding the possibil-
ity of white mountain bikes. Since this is not the in-
tended meaning, we avoid creating this kind of com-
plex sentences. Sentences referring to the same at-
tribute can be grouped together without risk, because
there can never be any overlap between the sets of
entities mentioned in these sentences (an entity can-
not have multiple values for the same attribute).

Aggregation is performed on a maximum of three
sentences to prevent the generation of overly large
conjunctions. Groups of four basic sentences are ag-
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gregated into two new complex sentences. This way
we avoid creating unbalanced texts like example 1
below, preferring to generate sentences that are sim-
ilar in both length and complexity, as in example 2.

1. 42 Fahrräder sind Mountainbikes, 168 Fahrräder
sind Rennräder und 200 Fahrräder sind Hol-
landräder. 10 Fahrräder sind Seniorenräder.
(42 bicycles are mountain bikes, 168 bicycles are
road bikes, and 200 bicycles are Dutch bikes. 10
bicycles are senior bikes.)

2. 42 Fahrräder sind Mountainbikes und 168 Fahrräder
sind Rennräder. 200 Fahrräder sind Hollandräder
und 10 Fahrräder sind Seniorenräder.
(42 bicycles are mountain bikes and 168 bicycles
are road bikes. 200 bicycles are Dutch bikes and 10
bicycles are senior bikes.)

Aggregation in Genpex is not optional; it is al-
ways applied under the assumption that this will
make the generated texts more coherent and pleas-
ant to read. Moreover, it enables variation through
ellipsis, as discussed later in this section. Variations
in aggregation can be achieved by manually reorder-
ing the statements in the probability problem. This
will lead to a different Document Plan and as a con-
sequence, to different aggregations, within the re-
strictions stated above.

Adjectivication. The text variation technique we
call ‘adjectivication’ changes the position and gram-
matical role of the adjective (if any) expressing the
attribute value in a sentence. In basic sentence trees,
attribute values expressed by adjectives are included
as predicative complements in the VP. If we apply
adjectivication to a sentence, the adjective is instead
added as a modifier to the subject NP, and the orig-
inal verb is removed. To make the sentence tree
complete again, the words “Es gibt” (There are’)
are added in front. For example, the sentence “30
Fahrräder sind grün” (30 bicycles are green) will be
changed to “Es gibt 30 grüne Fahrräder” (There are
30 green bikes). In German, adjectivication may
cause the inflection of the adjective to change, be-
cause it gets a different grammatical role: when used
as a modifier its inflection reflects the gender and
case of the noun it modifies. This is taken care of by
the Surface Realizer.

Entity substitution. In case an attribute value
is expressed as a noun, e.g., “Rennrad” (road bike)

the text variation technique we call ‘entity substitu-
tion’ can be applied. It involves replacing the noun
that represents the entity in a basic sentence with the
noun that represents the attribute value. As with ad-
jectivication, the original verb is removed and in-
stead “Es gibt” (There are) is added to the sentence.
For example, entity substitution changes the basic
sentence “50 Fahrräder sind Rennräder” (50 bicycles
are road bikes) to “Es gibt 50 Rennräder” (There are
50 road bikes).

Marked word order. Another source of variation
is topicalizing the phrase expressing the attribute
value by moving it to the front of the sentence.
Applying this variation technique changes the ba-
sic sentence “30 Fahrräder sind teurer als 500 Euro”
(30 bicycles are more expensive than 500 Euros) to
“Teurer als 500 Euro sind 30 Fahrräder” (More ex-
pensive than 500 Euros are 30 bicycles). Since using
such a marked word order may come across as un-
natural in a neutral discourse context, this type of
variation should be applied with caution.

Ellipsis. This is the removal of duplicate words
from sentences, which typically applies to aggre-
gated sentences (Harbusch and Kempen, 2009).
Genpex can apply different types of ellipsis, such as
Gapping and Conjunction Reduction. Gapping is the
removal of all except the first verb in an aggregated
sentence. An example from Figure 1 is the sen-
tence “70 Fahrräder sind billiger als 500 Euro und
30 Fahrräder teurer als 500 Euro” (70 bicycles are
less expensive than 500 Euros and 30 bicycles more
expensive than 500 Euros), where the verb “sind”
(are) has been deleted from the second clause. (For-
ward) Conjunction Reduction deletes the subject of
subsequent clauses if it is identical to the subject of
the first clause. The following sentence is an exam-
ple: “40 Fahrräder sind Mountainbikes und 50 sind
Rennräder” (40 bicycles are mountain bikes and 50
are road bikes). It is possible to combine Gapping
and Conjunction Reduction, e.g., “40 Fahrräder sind
Mountainbikes und 50 Rennräder” (40 bicycles are
mountain bikes and 50 road bikes).

Ellipsis is also possible in sentences with marked
word order. For example, “Grün sind 30 Fahrräder
und weiß sind 40 Fahrräder”(Green are 30 bicycles
and white are 40 bicycles) could be reduced to
“Grün sind 30 Fahrräder und weiß sind 40” (Green
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are 30 bicycles and white are 40). However, in
this sentence, the verb cannot be removed from the
last clause. Genpex currently allows aggregated
sentences in which some of the clauses have
marked word order. In these cases, ellipsis is
not applied, because it will most likely result in
grammatically incorrect sentences. For example, in
the sentence “30 Fahrräder sind grün und Weiß sind
40 Fahrräder” (30 bicycles are green and white are
40 bicycles) the system will not apply ellipsis.

For every sentence in the document plan, the sys-
tem will check which of the variation techniques de-
scribed above can be applied to it, by analyzing the
structure of the sentence tree. If a technique is in
principle applicable, the probability of it being ac-
tually applied depends on information in the context
file, and on parameters set by the user through the
GUI of Genpex. For every attribute in the context
file, the author of the file can prevent Genpex from
applying a specific technique by giving it a probabil-
ity of 0, if it is never suitable in the case of this spe-
cific attribute. For example, applying marked word
order to a sentence expressing the ‘type’ attribute in
the bikes context would lead to odd sentences such
as “Mountainbikes sind 40 Fahrräder” (Mountain-
bikes are 40 bicycles). Though grammatically cor-
rect, such sentences would be hard to interpret and
therefore are best avoided.

During generation, the user can directly influ-
ence the probability that certain variations are ap-
plied through sliders in the GUI; see Figure 5. The
probability holds for every sentence that satisfies the
structural requirements of the variation technique
in question, unless the technique is excluded based
on the information in the context file, as explained
above. After having set the variation probabilities,
the user can click ‘Update Text’ to see the effect.
The user can also choose to have the text automati-
cally updated every time a slider is moved.

When the user saves a generated exercise, infor-
mation about the variation techniques that have been
applied is logged and saved together with the exer-
cise. If further research shows that a certain varia-
tion technique has an unintended influence on exer-
cise difficulty, it will be easy to exclude this tech-
nique from the creation of new exercises by setting
its probability to 0 in the GUI.

3.3 Surface Realisation: the Final Polish
The main task of the Surface Realizer is to convert
the sentence trees that have been manipulated by the
Microplanner to actual text, applying correct mor-
phology and orthography.

Information about German morphology is re-
trieved from a lexicon listing the possible word
forms of each lemma in the context files. German
has a rich inflectional system compared to English,
with suffixes reflecting the gender, number and case
of determiners, adjectives and nouns. Gender can be
masculine, feminine or neuter, number is singular or
plural, and case is nominative, accusative, dative or
genitive. In the type of exercises currently generated
by Genpex, all words are in nominative case. Num-
ber information for nouns and verbs is given in the
sentence tree, while the inflection of determiners and
adjectives in an NP depends on the properties of the
noun. For the inflection of adjectives, Genpex also
has to consider the determiner that is used before
the adjective. In German, so-called ‘strong inflec-
tion’ has to be used after a cardinal number, ‘weak
inflection’ after a definite determiner and ‘mixed in-
flection’ after an indefinite determiner. We currently
use canoonet3 as the source for German morpholog-
ical information in Genpex.

Orthography is the process that converts the sen-
tence trees to text. This is quite easy, because the
word order is already defined by the tree structure.
All values of the nodes in the tree can be joined
together in a sentence in that order, separated by
white spaces. The clauses in aggregated sentences
are joined by a comma, except for the last conjunc-
tion where the word ‘und’ is used. A characteristic
of German is that all nouns are capitalized. The Sur-
face Realiser takes care of this, and also of the cap-
italization of the first word in each sentence, punc-
tuation and the placement of paragraph boundaries.
The generated texts are marked up with HTML for
easy display in web browsers.

4 Evaluation

Potential users of Genpex (researchers working on
test design) have been involved at different stages
of development of the system, such as requirements
specification and usability testing. Field trials with

3http://www.canoo.net/
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Figure 5: Screenshot of the GUI of Genpex, showing a variation of the narrative exercise in Figure 1. The introductory
text was taken from Zeuch (In preparation).

students are future work, but we did carry out some
preliminary, qualitative evaluations with a few na-
tive speakers of German (including one item gen-
eration expert) to test the grammaticality and un-
derstandability of the generated exercises. This re-
vealed some small mistakes that have since been cor-
rected, but also a few bigger problems with some of
the variation techniques and other NLG aspects.

One of the things noted by the native speakers was
that applying ellipsis sometimes leads to slightly un-
natural sentences. The preferred type and degree of
ellipsis is different for each type of sentence, but this
is not taken into account by Genpex. As a conse-
quence, the system frequently applies too much or
too little ellipsis to the generated sentences, with less
than ideal (though not ungrammatical) results. The
existence of such preferred formulations is in line
with the results of Cahill and Forst (2010), who car-
ried out an experiment in which native speakers of

German evaluated a number of alternative realisa-
tions of the same sentence. Their subjects accepted
some variation in word order, but showed a clear
preference for some of the alternatives.

Some of the generated question sentences also
sounded a bit forced to the native speakers. For ex-
ample, the question template for joint probabilities
(A∧B) uses the formal phrasing “sowohl... als auch”
(both ... and), whereas a simple “und” (and) would
be the more natural choice for most questions. How-
ever, in some question contexts, in particular those
involving negations, using the simpler formulation
might lead to the kind of scope ambiguities men-
tioned in Section 2. Therefore, the choice was made
to use “sowohl... als auch” in all cases, even in those
where it is not strictly necessary. Similarly, ques-
tions asking for a conditional probability were found
to be somewhat difficult to understand. For these
questions, readability might be improved by using
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two sentences to express them, along the lines of
“Consider the set of bicycles that are not mountain
bikes. What is the probability that one of those bi-
cycles is either black or white?” as an alternative to
the more complex formulation given in Figure 4.

The comments by the native speakers suggest that
in some cases, Genpex goes too far in its “one size
fits all” approach, and that we should try to add
more flexibility to the NLG component, allowing it
to make finer distinctions in the application of varia-
tion techniques to specific sentences and of question
templates to specific question types.

5 Discussion

The texts currently being generated by Genpex are
grammatical, but our native speakers reported that
some sentences had to be studied carefully before it
was possible to get the information needed to solve
the problem. No actual misinterpretations occurred,
but the increased reading time (as compared to more
preferred formulations) may still increase the diffi-
culty of the exercise. A thorough investigation into
the effect of textual variations on item difficulty is
therefore necessary. Genpex supports this type of
research by enabling the systematic application of
different variations, while logging all textual oper-
ations that have been applied and saving them to-
gether with the generated text. The underlying prob-
ability problem is saved together with the text as
well, so all factors that certainly or potentially in-
fluence item difficulty are known. This makes it rel-
atively easy to test the influence of those factors on
the difficulty of the exercise, for example by carry-
ing out the kind of statistical and cognitive analysis
advocated by Graf et al. (2005).

The effect of the main parameters of the proba-
bility problems in Genpex (i.e., the type of question
being asked) was already statistically analyzed by
Holling et al. (2009) and Zeuch (In preparation).
They used automatically generated items similar to
the exercises generated by Genpex, except that their
exercises did not have variations in wording apart
from context-related ones. Also, the exercises used
by Holling et al. (2009) mentioned probabilities in-
stead of counts in the statements.

Once we know more about the effects of the tex-
tual variations, Genpex can be of great value to test

developers, given that there exists a great need for
large amounts of learning and assessment materi-
als with a controlled level of difficulty (Enright et
al., 2002; Fairon and Williamson, 2002; Deane and
Sheehan, 2003; Arendasy et al., 2006; Holling et al.,
2008; Holling et al., 2009). The initial development
and testing of the system is a one-time investment,
which we expect will pay off afterward when large
amounts of test items can be created with little effort.
In particular, we think Genpex can be very useful
in combination with Computerized Adaptive Test-
ing (CAT). The system could be used for on-the-fly
generation of new items for each individual student,
adapted to that student’s skill level estimated from
his or her previous answers. Because every student
gets custom exercises, the risk of frequently used
items becoming known among students is reduced,
thus increasing test security.

In principle, given that the factors influencing
item difficulty are known, generating difficult items
is not more complicated than generating easy ones.
However, as illustrated in Section 2, combining mul-
tiple difficulty factors such as negation and joint
probability may lead to textual formulations that are
ambiguous or hard to understand, and which – if not
successfully prevented in advance – may need to be
filtered out or corrected by hand. For that reason,
Genpex seems most suitable for the generation of
exercises up to a moderate level of complexity. Still,
even if the need for hand-crafting will not be com-
pletely eliminated, reducing it to complex items that
require particularly careful wording already repre-
sents a big gain in efficiency.
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Abstract

Automated testing of spoken language is the
subject of much current research. Elicited
Imitation (EI), or sentence repetition, is well
suited for automated scoring, but does not di-
rectly test a broad range of speech communi-
cation skills. An Oral Proficiency Interview
(OPI) tests a broad range of skills, but is not as
well suited for automated scoring. Some have
suggested that EI can be used as a predictor of
more general speech communication abilities.
We examine EI for this purpose. A fully au-
tomated EI test is used to predict OPI scores.
Experiments show strong correlation between
predicted and actual OPI scores. Effective-
ness of OPI score prediction depends upon at
least two important design decisions. One of
these decisions is to base prediction primar-
ily on acoustic measures, rather than on tran-
scription. The other of these decisions is the
choice of sentences, or EI test items, to be re-
peated. It is shown that both of these design
decisions can greatly impact performance. It
is also shown that the effectiveness of individ-
ual test items can be predicted.

1 Introduction

1.1 Background

Learning to speak a second language is an impor-
tant objective for many people. Assessing progress
in oral proficiency is often expensive and time-
consuming. The development of automated systems
promises to significantly lower costs and increase
accessibility.

Elicited imitation (EI) has been used for nearly
half a century to measure abnormal language devel-
opment (Fujiki and Brinton, 1987) and the perfor-
mance of second language learners (Chaudron et al.,
2005; Vinther, 2002). As a method for assessing oral
proficiency it consists of a person listening to a test
item, typically a full sentence, and then doing their
best to repeat it back correctly. This method is also
referred to as sentence repetition, or more simply as
repeats. One motivation for using EI, as opposed to
some other form of test, is that it is relatively inex-
pensive to administer. An EI test can be effectively
scored by non-experts in a relatively short amount
of time. It is also well suited for automated scoring
(Graham et al., 2008), since correct responses are
predictable.

1.2 Motivation

The language skills directly measured by an EI test
are those involved in repeating back what one has
just heard. In order to directly measure a broader set
of language skills, other tests must be used. One of
these is the Oral Proficiency Interview (OPI).

The OPI is face-to-face interview conducted to as-
sess language proficiency. The interview tests dif-
ferent types of relevant skills and lasts for about 30
minutes. Additionally, a validated OPI requires a
second review of a recording created during the ini-
tial interview with arbitration if necessary. This pro-
cess is expensive ( $150 U.S.) and time-consuming
with a turn-around of several weeks before finalized
results are received.

A fully automated OPI test does not seem to be
practical. This is especially the case when the in-
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terpersonal aspects of a face-to-face interview are
considered. There have been several efforts to au-
tomatically score the type of speech which might be
spoken by an OPI test-taker, spontaneous non-native
speech (Zechner and Xi, 2008). It has been shown
that current automatic speech recognition (ASR)
systems, used to transcribe such speech, have error
rates which make it challenging to use transcripts for
testing purposes.

The argument has been made that although EI
does not directly measure communicative skills,
such as the ability to converse with another person,
it can be used to infer such skills (Henning, 1983).
Part of the theory behind EI is that people typically
are not able to memorize the sounds of an utterance
the length of a full sentence. Rather, people build
a mental model of the meaning of an utterance, and
are then able to remember the model. People who
cannot understand the utterance are not able to build
a mental model, and are therefore unable to remem-
ber or repeat the utterance. If it is true that EI can
be used to infer more general speech communica-
tion abilities, even if only to a limited extent, then
EI may be useful for predicting test scores which are
designed to directly measure that ability.

Bernstein et al. (2000) describe a system which
elicits short predictable responses, such as readings,
repeats (EI), opposites, and short answers, for auto-
mated testing. A similar system is discussed later
in Bernstein et al. (2010). It is evident that EI is
used in these systems, as part of a greater whole.
The argument is made that although the skills di-
rectly tested are limited, the scores produced may be
useful for inferring more general language abilities.
It is shown that automated scores correlate well with
scores from conventional tests, such as the OPI. One
aspect which may not be as clear is the role that EI
plays as compared to other methods used in the au-
tomated test.

We are interested in the use of a fully automated
EI test as a means to predict more general ability
in spoken language communication. Since the OPI
test is specifically designed to measure such general
ability we use it as a gold standard, in spite of the
fact that we do not expect it to be a perfect measure.
We are interested in learning the extent to which OPI
scores can be predicted using an EI test. We are also
interested in learning how to design an automated

system such that prediction of OPI scores is most
effective. We evaluate system performance based on
how highly correlated OPI score predictions are with
actual OPI scores.

Several design decisions must be made in the de-
velopment of such a system. One, is which method
to use for converting spoken responses to OPI score
predictions. Another, is the choice of sentences, or
EI test items, to be repeated. We address both of
these issues.

There are at least two approaches to scoring spo-
ken responses. One, is to score based on tran-
scriptions, generated by a speech recognizer. An-
other, is to score based on acoustic measures alone,
such as pronunciation and fluency (Cincarek et al.,
2009). The primary difference between these two
approaches is what is assumed about the textual con-
tent of a spoken response. Acoustic measures are
based on the assumption that the textual content of
each spoken response is known. Speech recognition
is based on the assumption that the content is not
known. We explore the effect of this assumption on
OPI prediction.

The selection of effective EI test items has been
the subject of some research. Tomita et al. (2009)
outline principles for creating effective EI test items.
Christensen et al. (2010) present a tool for test item
creation. We explore the use of OPI scores as a
means to evaluate the effectiveness of individual test
items.

2 Related Work

The system described by Bernstein et al. (2010) uses
EI as part of the automated test. Sentences range
in length from two to twenty or more syllables. If
fewer than 90% of natives can repeat the sentence
verbatim, then the item is not used. An augmented
ASR system is used which has been optimized for
non-native speech. The ASR system is used to tran-
scribe test-taker responses. Transcriptions are com-
pared to the word string recited in the prompt. Word
errors are counted and used to calculate a score. Flu-
ency and pronunciation of spoken responses are also
scored.

Graham et al. (2008) report on a system which
uses EI for automated assessment. Results show that
automated scores are strongly correlated with man-
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ual EI scores. ASR grammars are specific to each
test item. Our work is based on this system.

Müller et al. (2009) compare the effectiveness of
reading and repeating (EI) tasks for automated test-
ing. Automated scores are compared with manual
scores for the same task. It is found that repeating
tasks provide a better means of automatic assess-
ment than reading tasks.

3 Experiments

In this section we describe experiments, including
both an OPI test and an automated EI test. We de-
tail the manner of automated scoring of the EI test,
together with the method used to predict OPI scores.

3.1 Setup

We administer an ACTFL-OPI (see www.actfl.org)
and an automated EI test to each of 85 English as
a Foreign Language learners of varying proficiency
levels. This group of speakers (test-takers) is ran-
domly divided into a 70%/30% training/testing split,
with 60 speakers forming the training set and the re-
maining 25 forming the test set. Training data con-
sists of OPI scores and EI responses for each speaker
in the training set. Test data consists of OPI scores
and EI responses for each speaker in the test set.

An OPI is a face-to-face interview conducted by
a skilled, certified human evaluator. (We do not ex-
pect that this interview results in an ideal evaluation
of oral proficiency. We use the OPI because it is de-
signed to directly test speech communication skills
which are not directly tested by EI.) OPI proficiency
levels range across a 10-tiered nominal scale from
Novice Low to Superior. We convert these levels to
an integer score from 1 to 10 (NoviceLow = 1,
Superior = 10).

The EI test consists of 59 items, each an English
sentence. An automated system plays a recording of
each sentence and then records the speaker’s attempt
to repeat the sentence verbatim. A fixed amount of
time is allotted for the speaker to repeat the sentence.
After that fixed time, the next item is presented, until
all items are presented and all responses recorded.
The choice of which items to include in the test is
somewhat arbitrary; we select those items which we
believe might work well, given past experimentation
with EI. We expect that improvement could be made

in both the manner of administration of the test, and
in the selection of test items.

Responses are scored using a Sphinx 4 (Walker
et al., 2004) ASR system, version 1.0 beta 4, to-
gether with the supplied 30-6800HZ WSJ acoustic
model. ASR performance is affected by various sys-
tem parameters. For our experiments, we generally
use default parameters found in configuration files
for Sphinx demos. The ASR system has not been
adapted for non-native speech.

3.2 Language Models
We vary the language model component of the ASR
system in order to evaluate the merit of assum-
ing that the content of spoken responses is known.
Speech recognizers use both an acoustic model and
a language model, to transcribe text. The acoustic
model is used to estimate a probability correspond-
ing to how well input speech sounds like output text.
The language model is used to estimate a probabil-
ity corresponding to how well output text looks like
a target language, such as English. Output text is
determined based on a joint probability, using both
the acoustic and the language models. We vary the
degree to which it is assumed that the content of spo-
ken responses is known. This is done by varying the
degree to which the language model is constrained
to the text of the expected response.

When the language model is fully constrained, the
assumption is made that the content of each spoken
response is known. The language model assigns all
probability to the text of the expected response. All
other output text has zero probability. The acoustic
model estimates a probability for this word sequence
according to how well the test item is pronounced. If
the joint probability of the word sequence is below
a certain rejection threshold, then there is no out-
put from the speech recognizer. Otherwise, the text
of the test item is the output of the speech recog-
nizer. With this fully constrained language model,
the speech recognizer is essentially a binary indica-
tor of pronunciation quality.

When the language model is fully unconstrained,
there is no relationship between the language model
and test items, except that test items belong to the
English language. In this case, the speech recognizer
functions normally, as a means to transcribe spoken
responses. Output text is the best guess of the ASR
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system as to what was said.
A partially constrained language model is one that

is based on test items, but also allows variation in
output text.

We perform experiments using the following five
language models:

1. WSJ20K The 20K word Wall Street Journal
language model, supplied with Sphinx.

2. WSJ5K The 5K word Wall Street Journal lan-
guage model, supplied with Sphinx.

3. EI Items A custom language model created
from the corpus of all test items.

4. Item Selection A custom language model con-
straining output to any one of the test items.

5. Forced Alignment A custom language model
constraining output to only the current test
item.

The first two language models, WSJ20K and
WSJ5K, are supplied with Sphinx and have no spe-
cial relationship to the test items. The training cor-
pus used to build these models is drawn from issues
of the Wall Street Journal. These models are fully
unconstrained.

The third model, EI Items, is a conventional lan-
guage model with the exception that the training cor-
pus is very limited. The training corpus consists of
all test items; no other text is included in the train-
ing corpus. The fourth model, Item Selection, is not
a conventional language model. It assigns a set prob-
ability to each test item as a whole. That probability
is equal to one divided by the total number of test
items. Such a simple language model is sometimes
referred to as a grammar (Walker et al., 2004; Gra-
ham et al., 2008). Both the EI Items and Item Selec-
tion models are partially constrained. The Item Se-
lection model is much more highly constrained than
the EI Items model.

The last model, Forced Alignment, is fully con-
strained. It assigns all probability to item text. These
five language models are chosen for the purpose of
evaluating the effectiveness of constraining the lan-
guage model to the text of the expected response.

i Item
I Number of items
s Speaker (test-taker)
S Number of speakers
xis Score for item i, speaker s
y s Predicted OPI score for speaker s
os Actual OPI score for speaker s
MSE i Mean squared error for item i

Figure 1: Notation used in this paper.

3.3 Scoring
Each response is scored using a two-step process.
First, the spoken response is transcribed by the ASR
system. Second, word error rate (WER) is calcu-
lated by comparing the transcription to the item text.
WER is converted to an item score xis for item i and
speaker s in the range of 0 to 1 using the following
formula:

xis =

{
1− WER

100 if WER < 100%
0 otherwise

(1)

A list of notation used in this paper is shown in
Figure 1.

3.4 Prediction
In order to avoid over-fitting, a simple linear model
is trained (Witten and Frank, 2005) to predict an OPI
score ys, given items scores xis together with model
parameters a and b. The mean of item scores for
speaker s is multiplied by parameter a. This product
plus parameter b is the OPI score prediction: (I is
the total number of items.)

ys =
1

I

∑
i

xis · a + b (2)

Correlation is calculated between predicted and
actual OPI scores for all speakers in the test set.

4 Results

Correlation for each of the language models using
all 59 test items is shown in Figure 2. Correlation for
both of the unconstrained language models was rel-
atively poor. Performance improved significantly as
the language model was constrained to the expected
response. These results suggest that it is effective
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to assume that the content of spoken responses is
known.

Fully constraining the language model to the text
of the expected response results in an item score
which is a binary indicator (because, in this case,
WER is either 100% or 0%) of how well the spoken
response sounds like the expected response. In this
case, prediction is based on the output of the acous-
tic model of the speech recognizer, an acoustic mea-
sure. Prediction is not based on transcription, since
a specific transcription is assumed prior to process-
ing the spoken response. When the language model
is fully unconstrained, an item score is an indica-
tor of how well ASR transcription matches the text
of the expected response. In this case, prediction is
based on transcription, the speech recognizer’s best
guess of which words were spoken. Results indicate
that correlation between predicted and actual OPI
scores improves as prediction is based on acoustic
measures, rather than on transcription.

Language Model Constrained Corr.
WSJ20K Not 0.633
WSJ5K Not 0.600
EI Items Partial 0.737
Item Selection Partial 0.805
Forced Alignment Full 0.799

Figure 2: Correlation with OPI scores, for all 5 language
models, using all 59 test items. Language models are
unconstrained, partially constrained, or fully constrained
to the text of the expected response.

4.1 Item MSE
The effectiveness of individual test items is explored
by defining a measure of item quality. If each item
score xis were ideally linearly correlated with the
actual OPI score os for speaker s then the equality
shown below would hold: (os is an integer from 1 to
10. xis is a real number from 0 to 1.)

IDEAL =⇒ os = xis ∗ 9 + 1 (3)

We calculate the difference between this ideal and
the actual OPI score:

(xis ∗ 9 + 1)− os (4)

This difference can be seen as a measure of how
useful the item is as a predictor OPI scores. For bet-
ter items, this difference is closer to zero. The mean

of the squares of these differences for a particular
item, over all S speakers in the training set, is a mea-
sure of item quality MSEi:

MSEi =
1

S

∑
s

((xis ∗ 9 + 1)− os)
2 (5)

Because we expect improved results by assuming
that the content of expected responses is known, we
use the Forced Alignment language model to cal-
culate an MSE score for each test item. A sample
of items and their associated MSE are listed in Fig-
ure 3.

MSE Item text
9.28 He should have walked away before

the fight started.
10.48 We should have eaten breakfast by

now.
. . .
14.53 She dove into the pool gracefully, and

with perfect form.
14.68 If her heart were to stop beating, we

might not be able to help her.
. . .
25.78 She ought to learn Spanish.
26.09 Sometimes they go to town.

Figure 3: Sample EI items with corresponding MSE
scores.

Item MSE scores are used to define various sub-
sets of test items, better items, worse items, and so
on. Better items have lower MSE scores. These sub-
sets are used to compute a series of correlations for
each of the five language models. First, correlation
is computed using only one test item. That item is
the item with the lowest (best) MSE score. Then,
correlation is computed again using only two test
items, the two items with the lowest MSE scores.
This process is repeated until correlation is com-
puted using all test items. Results are shown in Fig-
ure 4. These results show even more convincingly
that OPI prediction improves by assuming that the
content of spoken responses is known.

4.2 OPI Prediction
Figure 4 also gives an idea of how effectively EI can
be used to predict OPI scores. Correlation over 0.80
is achieved using the Forced Alignment language
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Figure 4: Correlation with OPI scores, for all 5 language
models, using varying numbers of test items.

Figure 5: Plot of predicted OPI scores as a function of
actual OPI scores, using the Forced Alignment language
model and the best 24 test items.

model for all but 7 of the 59 subsets of test items.
Correlation is over 0.84 for 11 of the subsets (best
20 - best 31). Correlation is above 0.85 for 3 subsets
(best 23 - best 25). Predicted OPI scores correlate
strongly with actual OPI scores.

Figure 5 shows a plot of predicted OPI scores as
a function of actual OPI scores, using the Forced
Alignment language model and only the best 24 test
items. Correlation is 0.856. Interestingly, two of the
outliers (OPI=5, predicted OPI=2.3) and (OPI=4,
predicted OPI=2.3) were for speakers whose re-
sponses contained only silence, indicating those par-
ticipants may have experienced technical difficulties
or may have been uncooperative during their test

session. The inferred model used to calculate OPI
predictions for Figure 5 is shown below:

ys =
1

I

∑
i

xis ∗ 6.8 + 2.3 (6)

(Given this particular model, the lowest possible
predicted OPI score is 2.3, and the highest possible
predicted score is 9.1. The ability to predict OPI
scores 1 and 10 is lost, but the objective is to improve
overall correlation.)

4.3 Item Selection

To see more clearly the effect that the choice of test
items has on OPI prediction, we compute a series
of correlations similar to before, except that the or-
der of test items is reversed: First, correlation is
computed using only the test item with the high-
est (worst) MSE score. Then, correlation is com-
puted again using only the two worst items, and so
on. This series of correlations is computed for the
Forced Alignment language model only. It is shown
together with the original ordering for the Forced
Alignment language model from Figure 4.

These two series are shown in Figure 6. The se-
ries with generally high correlation is computed us-
ing best items first. The series with generally low
correlation is computed using worst items first. At
the end of both series all items are used, and corre-
lation is the same. As mentioned earlier, correlation
using only the best 24 items is 0.856. By contrast,
correlation using only the worst 24 items is 0.679.
The choice of test items can have a significant im-
pact on OPI score prediction.

Figure 6 also shows that the effectiveness of in-
dividual test items can be predicted. MSE scores
were calculated using only training data. Correla-
tions were calculated for test data.

4.4 Rejection Threshold

Since the Forced Alignment language model is
found to be so effective, we experiment further to
learn more about its behavior. Using this language
model, item scores are either zero or one, depending
upon whether ASR output text is the same as item
text, or there is no output text. If joint probability,
for a spoken response, is below a certain rejection
threshold, no text is output. We perform experiments

35



Figure 6: Correlation with OPI scores, showing the dif-
ference between best and worst items, using the Forced
Alignment language model.

Figure 7: Correlation with OPI scores versus rejection
threshold.

to see how sensitive OPI predictions are to the set-
ting of this threshold.

Any ASR system parameter which affects prob-
ability estimates of word sequences can affect the
rejection threshold. We make the arbitrary deci-
sion to vary the Sphinx relativeBeamWidth pa-
rameter. For all previous experiments, the value
of this parameter was fixed at 1E − 90. The
wordInsertionProbability parameter, which also
affects the rejection threshold, was fixed at 1E−36.

Correlation is computed for various values of
the relativeBeamWidth parameter. Results are
shown in Figure 7. Good results are obtained over
a wide range of rejection thresholds. Correlation
peaks at 1E− 80. OPI prediction does not appear to
be overly sensitive to the setting of this threshold.

5 Discussion

We conclude that a fully-automated EI test can be
used to effectively predict more general language
ability than those abilities which are directly tested
by EI. Such an EI test is used to predict the OPI
scores of 25 test-takers. Correlation between pre-
dicted and actual OPI scores is strong.

Effectiveness of OPI score prediction depends
upon at least two important design decisions. One
of these decisions is to base prediction primarily on
acoustic measures, rather than on transcription. The
other of these decisions is the choice of sentences,
or EI test items, to be repeated. It is shown that both
of these design decisions can greatly impact perfor-
mance. It is also shown that the effectiveness of in-
dividual test items can be predicted.

We quantify the effectiveness of individual test
items using item MSE. It may be possible to use
item MSE to learn more about the characteristics
of effective EI test items. Developing more effec-
tive test items may lead to improved prediction of
OPI test scores. In this paper, we do not attempt
to address how linguistic factors (such as sentence
length, syntactic complexity, lexical difficulty, and
morphology) affect test item effectiveness for OPI
prediction. However, others have discussed simi-
lar questions (Tomita et al., 2009; Christensen et al.,
2010).

It may be possible that a test-taker could learn
strategies for doing well on an EI test, without de-
veloping more general speech communication skills.
If test-takers were able to learn such strategies, it
may affect the usefulness of EI tests. Bernstein et al.
(2010) suggest that, as yet, no conclusive evidence
has been presented on this issue, and that automated
test providers welcome such research.

It is possible that other automated systems are
found to be more effective as a means for testing
speech communication skills, or as a means for pre-
dicting OPI scores. We expect this to be the case.
The purpose of this research is not to design the best
possible system. Rather, it is to improve understand-
ing of how such a system might be designed. It is
shown that an EI test can be used as a key compo-
nent of such a system. Strong correlation between
actual and predicted OPI scores is achieved without
using any other language testing method.
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Abstract

Structural events, (i.e., the structure of clauses
and disfluencies) in spontaneous speech, are
important components of human speaking and
have been used to measure language devel-
opment. However, they have not been ac-
tively used in automated speech assessment
research. Given the recent substantial progress
on automated structural event detection on
spontaneous speech, we investigated the de-
tection of clause boundaries and interruption
points of edit disfluencies on transcriptions
of non-native speech data and extracted fea-
tures from the detected events for speech
assessment. Compared to features com-
puted on human-annotated events, the features
computed on machine-generated events show
promising correlations to holistic scores that
reflect speaking proficiency levels.

1 Introduction

Spontaneous speech utterances are organized in a
structured way and generated dynamically with op-
tional disfluencies. In second language acquisition
(SLA) research, information related to the structure
of utterances and profile of disfluencies has been
widely used to monitor speakers’ language develop-
ment processes (Iwashita, 2006). However, struc-
tural events in human conversations have not been
actively used in the automated speech assessment re-
search. For example, most research that used Auto-
matic Speech Recognition (ASR) technology to au-
tomatically score speaking proficiency (Neumeyer
et al., 2000; Zechner et al., 2007) focused on word-
level cues for fluency and accuracy.

In the last decade, a large amount of research (Go-
toh and Renals, 2000; Shriberg et al., 2000; Liu,
2004; Ostendorf et al., 2008) has been conducted
on structural event detection (i.e., sentence and dis-
fluency structure). This research has resulted in
better models for structural event detection. The
detected structural events have been found to help
many of the following natural language processing
(NLP) tasks: speech parsing, information retrieval,
machine translation, and extractive speech summa-
rization (Ostendorf et al., 2008).

Because structural event information: (1) is im-
portant for understanding/processing speech, (2)
has been successfully used in monitoring language
development, which will be summarized in Sec-
tion 2, (3) has received limited attention in auto-
mated speech assessment, and (4) has been actively
investigated in the speech research domain in the
past decade, it is worthwhile investigating the util-
ity of using structural event detection on automated
speech assessment. Because of the fairly low word
accuracy currently achieved when recognizing spon-
taneous non-native speech of mixed proficiency lev-
els and native language backgrounds, this study will
focus on the transcribed words rather than speech
recognition outputs.

This paper is organized as follows: Section 2 re-
views previous research; Section 3 reports on the
data used in the paper, including the collection, scor-
ing, transcription, and annotation processes; Sec-
tion 4 discusses the methods we utilized for struc-
tural event detection; Section 5 describes the exper-
iments of structural event detection; Section 6 de-
scribed the features derived from the event sequence
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for assessing speech and evaluation results on these
features; Section 7 discusses the findings of our re-
search and plans for future directions.

2 Previous Research

In the SLA and child language development research
fields, language development is measured accord-
ing to fluency, accuracy, and complexity (Iwashita,
2006). Structural events are used to derive the fea-
tures measuring syntactic complexity. For example,
typical metrics for measuring syntactic complexity
include: length of production units (e.g., T-units1,
clauses, verb phrases, and sentences), amount of
embedding, subordination and coordination, range
of structural types, and structural sophistication.
Iwashita (2006) investigated several measures of
syntactic complexity on data generated by learners
of Japanese. The author reported that some mea-
surements (e.g., T-unit length, the number of clauses
per T-unit, and the number of independent clauses
per T-unit) were good at predicting learners’ profi-
ciency levels.

In addition, speech disfluencies are used to mea-
sure language development. For example, Lennon
(1990) used a dozen features related to speed,
pauses, and several disfluency markers, such as
filled pauses per T-unit, to measure the improvement
of English proficiency for four German-speaking
women during a six-month study in England. He
found a significant change in filled pauses per T-unit
during the study process.

These two types of features derived from struc-
tural events were combined in other previous stud-
ies. For example, Mizera (2006) used fluency fac-
tors related to speed, voiced smoothness (frequency
of repetitions or self-corrections), pauses, syntactic
complexity (mean length of T-units), and accuracy,
to measure speaking proficiency on 20 non-native
English speakers. In this experiment, disfluency-
related factors, such as the total number of voiced
disfluencies, correlated strongly with the fluency
score (r = −0.45); however, the syntactic com-
plexity factor only showed a moderate correlation
(r = 0.310).

There have been previous efforts in using NLP

1A T-unit is defined as essentially a main clause plus any
other clauses which are dependent upon it (Hunt, 1970).

technology to automatically calculate syntactic com-
plexity metrics on learners’ writing data. For exam-
ple, Lu (2009) and Sagae et al. (2005) used parsing
to get structural information on written texts; how-
ever, such efforts have not been undertaken in as-
sessing speech data.

Chen et al. (2010) annotated structural events
(such as clause structure and disfluencies) on En-
glish language learners’ speech transcriptions and
extracted features based on the structural event pro-
file. They found that the features derived from struc-
tural event profile show promising correlation to hu-
man holistic scores. Berstein et al. (2010) also com-
puted the features related to sentence lengths and
the counts of syntactic entities. They found the ex-
tracted features were highly correlated to holistic
scores measuring test-takers’ language proficiency
in both English and Spanish.

In the speech research domain, a large amount
of research has been conducted to detect struc-
tural events in speech transcriptions and recognized
words using lexical and prosodic cues. Using a lan-
guage model (LM) trained on words combined with
the events of interest is a popular technique for us-
ing textual information for structural event detec-
tion. For example, Heeman and Allen (1999) devel-
oped a LM including part of speech (POS) tags, dis-
course markers (e.g., right, anyway), speech repairs,
and intonational phrases. In this way, structural in-
formation (e.g., speech repairs), could be predicted
using a traditional speech recognition approach.

Prosodic information has been widely used to fur-
ther improve textual models. For example, a sim-
ple prosodic feature, pause duration between words,
was used in Gotoh and Renals (2000) to detect sen-
tence boundaries. It was found that the pause dura-
tion model alone was better than using an LM alone,
and the combination of the two models further im-
proved the performance.

More advanced prosody models were used in
other research on sentence boundary and speech re-
pair detections (Shriberg et al., 2000; Shriberg and
Stolcke, 2004). A general framework was built com-
bining textual and prosodic cues to detect various
kinds of structural events in speech, including sen-
tence boundaries, disfluencies, topic boundaries, di-
alog acts, emotion, etc. Shriberg and Stolcke (2004)
extracted prosodic features such as pause, phone du-
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ration, rhyme duration, and F0 features. Using all
of these features, a decision tree was built to de-
tect possible structural events. An LM augmented
with structural event tokens was also used to de-
tect structural events based on textual cues. Fi-
nally, a Hidden Markov Model (HMM) was used
to combine estimations from the textual model (an
augmented LM with structural events) and prosodic
model (decision-tree based on prosodic features).

Research on structural event detection has been
strongly affected by the DARPA EARS pro-
gram (EARS, 2002). As in Shriberg et al. (2000), the
structural event detection (e.g., sentence units (SUs)
and speech repairs) investigated in EARS was a clas-
sification task utilizing both prosodic and textual
knowledge sources. New approaches for combin-
ing the two knowledge sources, including maximum
entropy (MaxEnt) and conditional random fields
(CRFs), were studied to address the weaknesses of
the generative HMM approach (Liu et al., 2004). Liu
et al. (2005) concluded that “adding textual infor-
mation, building a more robust prosodic model, us-
ing conditional modeling approaches (Maxent and
CRF), and system combination all yield perfor-
mance gains.”

3 Non-native Structural Event Corpus

Non-native speech data were collected from the
TOEFL Practice Test Online (TPO) (ETS, 2006).
In each TPO test, test-takers were required to re-
spond to six speaking test items, in which they were
required to provide information or opinions on fa-
miliar topics, based on their personal experience or
background knowledge. For example, the test-takers
were asked to describe their opinions about living on
or off campus.

A total of 1066 responses were collected from ex-
aminees. Then, a group of experienced human raters
scored these items based on the scoring rubrics de-
signed for scoring the TPO test. For each item, two
human raters independently assigned 4-point holis-
tic scores for test-takers’ English proficiency levels.

The speaking content was transcribed by a pro-
fessional transcribing agency. On the transcrip-
tions, structural event annotations were added, in-
cluding (1) locations of clause boundaries, (2) types
of clauses (e.g., noun clauses, adjective clauses, ad-

verb clauses, etc.), and (3) disfluencies.
Disfluencies can further be sub-classified into sev-

eral groups: silent pauses, filled pauses (e.g., uh and
um), false starts, repetitions, and repairs. The repeti-
tions and repairs were denoted as “edit disfluency”,
which were comprised of a reparandum, an optional
editing term, and a correction. The reparandum is
the part of an utterance that a speaker wants to re-
peat or change, while the correction contains the
speaker’s correction. The editing term can be a
filled pause (e.g., um) or an explicit expression (e.g.,
sorry). The interruption point (IP), occurring at the
end of the reparandum, is where the fluent speech is
interrupted to prepare for the correction.

For the research reported in this paper, we focus
on two structural events: the locations of clause-
ending boundaries (CBs) and interruption points
(IPs) of edit disfluencies. Note that if several clauses
(in different layers of a clause hierarchy) end at the
same word boundary, these clause boundaries were
collapsed into one CB event.

Two persons annotated the corpus separately and
their annotation quality was monitored by using sev-
eral Kappa computations. For CBs, κ ranges from
0.85 to 0.90; for IPs, κ ranges from 0.63 to 0.83.
Generally, a κ greater than 0.8 indicates a good
between-rater agreement and κ in the range of 0.6
to 0.8 indicates acceptable agreement (Landis and
Koch, 1977). Therefore, we believe that our human
annotations are sufficiently reliable to be used in the
following experiments.

4 Methods of Structural Event Detection

4.1 Features for structural event detection

In previous research (Gotoh and Renals, 2000;
Shriberg et al., 2000; Liu, 2004), prosodic cues
were found to be helpful, however, such findings
on native speech data may not work well with non-
native speech data. Anderson-Hsieh and Venkata-
giri (1994) compared the pause frequencies of three
groups of speakers (native, high-scoring, and low-
scoring non-native speakers). They found that pause
frequency was higher for groups of speakers with
lower speaking skills. For native speakers, a long
pause after a word-ending boundary is an impor-
tant cue for signaling the existence of a sentence or
clause boundary. However, the fact that there are
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more frequent pauses in non-native speech obscures
this relationship.

On our non-native speech corpus, we conducted
a pilot study on a widely-used prosodic feature, the
pause duration2 after a word, for its predictive abil-
ity to detect clause boundaries. If the duration of the
pause after a word boundary is longer than 0.15 sec-
ond, we call it a long pause. We measured the likeli-
hood of being a CB event on the words followed by a
long pause. For each score level, the likelihoods are:
15% for a score of 1, 22% for a score of 2, 28% for
a score of 3, and 35% for a score of 4. Clearly, for
low-proficiency speakers (i.e., speakers with a score
of 1), long pauses in their utterances are not tightly
linked to CBs. Therefore, more research is needed
to utilize prosodic cues on non-native speech; in this
paper, we focus on lexical features.

4.2 Statistical models

Based on lexical features, the structural event detec-
tion task can be generalized as follows:

Ê = argmax
E

P (E|W )

Given that E denotes the between-word event se-
quence and W denotes the corresponding lexical
cues, the goal is to find the event sequence that has
the greatest probability, given the observed features.

Recently, conditional modeling approaches were
successfully used in sentence units (SUs) and speech
repairs detection (Liu, 2004). Hence, we use the
Maximum Entropy (MaxEnt) (Berger et al., 1996)
and Conditional Random Fields (CRFs) (Lafferty et
al., 2001) approaches to build statistical models for
structural event detection.

5 Structural Event Detection Experiment

5.1 Setup

In our experiment, the whole corpus described in
Section 3 was split into a training set (train), a devel-
opment test set (dev), and testing set (test), without
speaker overlap between any pair of sets. Table 1
summarizes the numbers of items and words, as well
as structural events of each dataset.

2Pause durations were obtained by running forced alignment
using speech and transcriptions on a tri-phone HMM speech
recognizer

train dev test
# item 664 101 301
# word 71523 10509 33754
# CB 6121 918 2852
# IP 1767 267 1112

Table 1: The number of items, words, and structural
events of the three sets in the TPO corpus

On average, each item contains about 108.6
words, 9.3 CBs, and 3.0 IPs. 9% of the word bound-
aries are associated with a CB event and 3% of the
word boundaries are associated with an IP event.
Clearly, these CB and IP events are sparse and such
a skewed distribution of structural events increases
the difficulty of structural event detection.

5.2 Models

The following two conditional models were built to
detect CB and IP events:

• MaxEnt: Given wi as the word token at po-
sition i, the word n-gram features include:
〈wi〉, 〈wi−1, wi〉, 〈wi, wi+1〉, 〈wi−2, wi−1, wi〉,
〈wi, wi+1, wi+2〉, and 〈wi−1, wi, wi+1〉. Given
ti as the POS tag3 at position i, the POS
n-gram features include: 〈ti〉, 〈ti−1, ti〉,
〈ti, ti+1〉, 〈ti−2, ti−1, ti〉, 〈ti, ti+1, ti+2〉, and
〈ti−1, ti, ti+1〉.

For IP detection, in addition to the n-gram fea-
tures described above, another four features
that capture syntactic pattern of disfluencies are
utilized:

– filled pause adjacency: This feature has
a binary value showing whether a filled
pause such as uh or um was adjacent to
the current word (wi).

– word repetition: This feature has a binary
value showing whether the current word
(wi) was repeated in the following 5 words
or not.

3POS tags were obtained by tagging words using a MaxEnt
POS tagger, which was implemented in the OpenNLP toolkit
and trained on the Switchboard (SWBD) corpus. This POS tag-
ger was trained on about 528K word/tag pairs and achieved an
tagging accuracy of 96.3% on a test set of 379K words.
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– similarity: This feature has a continuous
value which measures the similarity be-
tween the reparandum and correction. As-
suming that wi was the end of the reparan-
dum, the start point and the end point of
the reparandum and correction were es-
timated, and the string edit distance be-
tween the reparandum and correction was
calculated. The start point and the end
point of the reparandum and correction
were estimated as follows; if wi appeared
in the following 5 words, the second oc-
currence was defined as the end of the cor-
rection. Otherwise, wi+5 was defined as
the end of correction. Secondly, N , the
length of the correction was calculated,
and wi−N+1 was defined as the start point
of the reparandum. During the calculation
of the string edit distance, a word frag-
ment was considered to be the same as
a word whose initial character sequences
matched it.

– length of correction: This feature counts
the number of words in the correction.

The first two features are similar to the features
used in (Liu, 2004) while the last two features
provide important keys in distinguishing edit
disfluencies from fluent speech. Since the cor-
rection is composed of word sequences that are
similar to the reparandum, these two features
are higher than zero when the target word is a
part of the edit disfluency. In addition, these
two numeric features were discretized by using
an equal-distance binning approach.

Using n-gram features for CB detection and all
these lexical features for IP detection, we used
the Maxent toolkit designed by Zhang (2005) to
build MaxEnt models. The L-BFGS parameter
estimation method is used, with the Gaussian-
prior smoothing technique to avoid over-fitting.
The Gaussian prior is estimated on the dev set.

• CRF: All features which were described in
building MaxEnt models were used in the CRF
model. We used the Java-based NLP package
Mallet (McCallum, 2005) to build CRF mod-
els. Similar to MaxEnt models, Gaussian-prior

smoothing was used with the priors estimated
on the dev set.

These models were trained using the train set. Be-
sides Gaussian priors, other parameters in the model
training (i.e., the training iteration number as well as
the cutting-point for event decisions) were estimated
using the dev set. Finally, the trained models were
evaluated on the test set.

5.3 Evaluation of event detection
Since structural event detection was treated as a clas-
sification task in this paper, four standard evaluation
metrics were used:

accuracy =
TP + TN

TP + FP + TN + FN

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2× recall × precision
recall + precision

where, TP and FP denote the number of true pos-
itives and false positives, and TN and FN denote
the number of true negatives and false negatives. A
structural event (a CB or IP boundary) is treated as a
positive class. In our experiment, since we treated
precision and recall as equally important, the F1
measurement was used.

For each model, if the estimated probability,
P (Ei|W ), is larger than a threshold, the correspond-
ing word boundary will be estimated to be a positive
class. The threshold was chosen when a maximal
F1 score was achieved on the dev set.

A model that always predicts the majority class
(a no-event in this study) was treated as a baseline
model. For CB detection, this type of baseline model
resulted in an accuracy of 91.6%; for IP detection,
this type of baseline model resulted in an accuracy
of 96.7%.

5.4 Results of structural event detection
Table 2 summarizes the performance of the two
models on the CB and IP detection tasks.

For CB detection, two conditional models are su-
perior to the baseline CB detection (with an accuracy
of 91.6%); they achieved relatively high F1 scores
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Acc. Pre. Rec. F1

CB
MaxEnt 94.5 66.1 71.8 0.689
CRF 96.1 82.3 68.6 0.749

IP
MaxEnt 98.1 61.8 55.2 0.583
CRF 98.4 76.9 48.0 0.591

Table 2: Experimental results of the CB and IP detection
measurement using accuracy (Acc.), precision (Pre.), re-
call (Rec.) and F1 measurement (F1) on the TPO data

ranging from 0.689 to 0.749. Between the two mod-
els, the CRF model achieved the higher F1 score
at 0.749, The lower F-score of the MaxEnt model
may be caused by the fact that the MaxEnt model
does not use event history information in its decod-
ing process.

However, these two models achieved lower per-
formance on the task of detecting IPs for editing dis-
fluencies. F-scores became about 0.58 to 0.59 for
IP detections. The degraded performance may be
caused by the extremely low IP distribution (only
3%) in our data. Between the two modeling ap-
proaches, consistent with the result shown for CB
detection, the CRF model achieved a higher F1
score (0.591).

6 Using Detected Structural Events for
Speech Assessment

6.1 Features assessing proficiency

Many previous SLA studies used the length of pro-
duction units and frequency of disfluencies as met-
rics to measure language development (Iwashita,
2006; Lennon, 1990; Mizera, 2006). Our automated
structural event detection provides the locations of
CBs and IPs, which can be used to compute these
features for use in speech assessment.

Using Nw to represent the total number of words
in the spoken response (without pruning the reparan-
dums and edit terms in the edit disfluencies), NC

as the total number of CBs, and NIP as the total
number of IPs detected on transcriptions of speech
streams, the following features (i.e, mean length of
clause (MLC), interruption points per clause (IPC),
and interruption points per word (IPW)) were de-

rived:

MLC = Nw/NC

IPC = NIP /NC

IPW = NIP /Nw

The IPW can be treated as the IPC normalized
by the MLC. The reason for this normalization is
that disfluency behavior is influenced by various fac-
tors, such as speakers’ proficiency levels as well as
the difficulty of utterances’ structure. For example,
Roll et al. (2007) found that the complexity of ex-
pression, computed based on the language’s parsing-
tree structure, influenced the frequency of disflu-
encies in their experiment on Swedish responses.
Therefore, the fact that IPW is the IPC normalized
by MLC (a feature related to complexity of utter-
ances’ structure) helps to reduce the impact of utter-
ances’ structure and to highlight contributions from
the speaker’s proficiency.

6.2 Results of measuring the derived features
On the test set, we produced CB and IP event se-
quences estimated by the MaxEnt and CRF models,
respectively. These machine-generated events were
evaluated by comparison with human annotations,
which were denoted as REF.

The proposed features described in Section 6.1
were computed on the word/event sequence of each
item. In addition, given the fact that each item only
covers approximately one-minute of speech and the
content is quite limited, we also extracted features
on the test-taker level by combining the detected
events of all of the items spoken by each test-taker.
Then, according to the score handling protocol used
in TPO, the human-holistic scores from the first hu-
man rater were used as item scores to compute Pear-
son correlation coefficients (rs) with the features.
For the test-taker level evaluation, we used the aver-
age score for each test-taker from all of his/her item
scores.

Table 3 reports on the evaluation results of the
features derived from the structural event estima-
tions. Compared to rs computed on the speaker
level using multiple (as many as 6) items, rs com-
puted on the item level are generally lower. This
is because words and events are limited in this one-
minute long response. Among the three features, the
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Model rMLC rIPC rIPW

Per item
REF 0.003 −0.369 −0.402
MaxEnt −0.012 −0.329 −0.343
CRF −0.042 −0.328 −0.335

Per speaker
REF 0.066 −0.453 −0.516
MaxEnt 0.055 −0.396 −0.417
CRF 0.043 −0.355 −0.366

Table 3: Correlation coefficients (rs) between the fea-
tures derived from structural events with human scores
on the item and speaker levels

MLC shows the lowest r to human holistic scores. In
contrast, the two features derived from interruption
points show promising rs to human holistic scores.
Between them, the IPW always shows a higher r
than the IPC. Compared to the features extracted on
human annotations, the features derived from struc-
tural events automatically estimated by the two NLP
models show a lower but sufficiently high r. The
features derived from the MaxEnt model’s estima-
tions on the test-taker level show a greater r than the
features derived from the CRF model estimations.

7 Discussion

Three features measuring syntactic complexity and
disfluency profile of speaking, MLC, IPC, and IPW,
were extracted on the structural event sequences es-
timated by the developed models. Compared to the
features extracted from the human-annotated struc-
tural events, the features derived from machine-
generated event sequences show promisingly close
correlations.

Applying automated structural event detection to
spontaneous speech brings many benefits for auto-
matic speech assessment. First, obtaining informa-
tion beyond the word level, such as the structure of
clauses and disfluencies, can expand and improve
the construct4 coverage of speech features. Second,
knowing the structure of utterances helps to facili-
tate the application of more NLP processing meth-
ods (e.g., collocation detection that requires infor-
mation about sentence boundaries), to speech con-

4A construct is the set of knowledge, skills, and abilities
measured by a test.

tent. In this study, using only simple word and
POS based n-gram features, CBs can be detected
relatively well (with an F1 score of approximately
0.70). More lexical features reflecting repair proper-
ties were found to help improve IP detection perfor-
mance. In addition, IP-based features derived from
machine-generated event sequences show promis-
ing correlation with human holistic scores. Results
in detection of clause boundaries and interruption
points support the approach of utilizing automated
structural event detection on speech assessment.

We plan to continue our research in the following
three directions. First, we will investigate integrat-
ing prosodic cues to further improve the structural
event detection performance on non-native speech.
Second, we will investigate estimating structural
events directly on speech recognition results. Third,
other aspects of syntactic complexity, such as the
embedding of clauses, will be studied to provide a
broader set of features for speech assessment.
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Abstract 

For adult readers, an automated system can 
produce oral reading fluency (ORF) scores 
(e.g., words read correctly per minute) that are 
consistent with scores provided by human 
evaluators (Balogh et al., 2005, and in press).  
Balogh’s work on NAAL materials used 
passage-specific data to optimize statistical 
language models and scoring performance.  The 
current study investigates whether or not an 
automated system can produce scores for young 
children’s reading that are consistent with 
human scores.  A novel aspect of the present 
study is that text-independent rule-based 
language models were employed (Cheng and 
Townshend, 2009) to score reading passages 
that the system had never seen before.  Oral 
reading performances were collected over cell 
phones from 1st, 2nd, and 3rd grade children (n = 
95) in a classroom environment. Readings were 
scored 1) in situ by teachers in the classroom, 
2) later by expert scorers, and 3) by an 
automated system. Statistical analyses provide 
evidence that machine Words Correct scores 
correlate well with scores provided by teachers 
and expert scorers, with all (Pearson’s 
correlation coefficient) r’s > 0.98 at the 
individual response level, and all r’s > 0.99 at 
the “test” level (i.e., median scores out of 3). 

1 Introduction 

Oral reading fluency (ORF), defined as “the ability 
to read a text quickly, accurately, and with proper 
expression” (National Reading Panel, 2000; p. 
3.5), is a reflection of readers’ decoding ability.  
Skilled readers can recognize words effortlessly 

(Rasinski and Hoffman, 2003), due to 
“automaticity” of processing (LaBerge and 
Samuels, 1974) whereby a reader’s attention is no 
longer focused on “lower level” processing (e.g., 
letter to phoneme correspondence, word 
identification, etc.).  Instead, attention can be 
devoted to “higher level” functions such as 
comprehension and expression (LaBerge and 
Samuels, 1974).  As a means of assessing general 
reading ability, oral reading fluency performance is 
also a predictor of student success in academic 
areas such as reading and math (e.g., Crawford, 
Tindal, and Stieber, 2001).  Oral reading fluency is 
one of the key basic skills identified in the Reading 
First initiative used to satisfy the standards of the 
No Child Left Behind Act (NCLB, 2001). 

Although oral reading fluency is comprised of 
several abilities, due to practical constraints the 
most commonly reported reflection of oral reading 
fluency is reading rate, specifically, the words read 
correctly per minute (WCPM).  Typically, ORF 
performance is measured by a classroom teacher 
who sits alongside a student, marking and 
annotating – in real time – the student’s reading on 
a sheet of paper containing the passage to be read.  
Classroom testing is time-consuming and requires 
a teacher’s full attention.  In practice, teaching time 
is often sacrificed to “testing time” to satisfy local 
and federal reporting standards (e.g., NCLB).  
ORF scoring guidelines are specific to particular 
publishers; teachers must undergo training to 
become familiar with these guidelines, and cost, 
availability, and quality of training varies.  Finally, 
despite good-faith attempts to score accurately, 
teachers may impose errors and inconsistencies in 
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scoring ORF performances due to unavoidable 
factors such as classroom distractions, varying 
experience with different accents/dialects, varying 
experience with scoring conventions, and 
differences in training, among others.   

To address the need for a rapid and reliable way 
to assess oral reading fluency, a growing body of 
research has supported the use of automated 
approaches.  Beginning with work by Bernstein et 
al. (1990) and Mostow et al. (1994), prototype 
systems for automatic measurement of basic 
components of reading have appeared.  Recent 
projects have addressed finer event classification in 
reading aloud (Black, Tepperman, Lee, Price, and 
Narayanan, 2007), and word level reading 
(Tepperman et al., 2007), among others.  Research 
has increasingly focused on systems to score 
passage-level reading performances (e.g., Balogh 
et al., 2005; Zechner, Sabatini, and Chen, 2009; 
Cheng and Townshend, 2009).  Eskenazi (2009) 
presents a general historical perspective on speech 
processing applications in language learning, 
including reading. 

The present automated ORF assessment was 
developed to deliver and score tests of oral reading 
fluency, allowing teachers to spend less time 
testing and more time teaching, while at the same 
time improving score consistency across time and 
location.  Automated ORF tests are initiated by a 
click in a web-based class roster.  Once a test is 
initiated, a call is placed to a local phone number 
and the test begins when the phone is answered.  
Instructions presented through the handset direct 
the student to read passages out loud into the cell 
phone, and these readings are sent to the automated 
ORF system for processing and scoring. 

2 Present Study 

The scoring models used by the automated ORF 
test (see Method below) were originally developed 
based on adult readings, and then optimized on 
large sets of data collected from students reading 
passages produced by AIMSweb, a publisher of 
Reading Curriculum-Based Measurement (R-
CBM) oral reading fluency passages 
(www.aimsweb.com).  AIMSweb passages are 
leveled and normed across large samples of 
students.  Previous validation studies found that 
when the system was optimized using data from 

students reading AIMSweb passages, machine 
scores correlated with trained human expert score 
with r = 0.95 to 0.98, depending on the grade level 
of the student readers.  

The primary question that the present studies 
attempt to answer is whether the automated scoring 
system can score newly inserted content – in this 
case, ORF passages offered by Sopris called 
“Dynamic Indicators of Basic Early Literacy 
Skills”, or DIBELS (www.dibels.com) – accurately 
and at a high level of reliability.  This is an 
evaluation of text-independent Rule Based 
Language Models (RBLMs) that were developed 
with training data from other readers performing 
on other passages and then applied to the new 
passages.   

A secondary question of interest involves how 
different types of scorers may assign Words 
Correct scores differently.  Two groups of human 
scorers were recruited:  1) teachers who were 
recently trained in DIBELS scoring methods who 
would perform scoring in the classroom, and 2) 
expert scorers with the ability to score reading 
recordings carefully and at their convenience, 
without classroom distractions.  Answering the 
first part of the question involves comparing 
machine Words Correct scores to human scores 
when teachers make ratings in the classroom 
environment as the student reads into the phone.  
This analysis reveals if the machine and teachers 
produce systematically different scores when 
testing is performed in a “live” classroom with the 
typical attentional demands placed on a teacher 
scoring an ORF passage.  Answering the second 
part of the question involves comparing machine 
Words Correct scores to a “consensus”, or median 
Words Correct value, from expert scorers.  These 
three experts, with over 14 years of combined 
experience scoring DIBELS passages, listened to 
recordings of the same readings made in the 
classroom.  Because the recordings were digitally 
preserved in a database, the expert scorers were 
able to replay any part(s) of the recordings to 
determine whether each word was read correctly.  
The benefit of being able to replay recordings is 
that such scores obtained are, in theory, closer to 
capturing the “truth” of the student’s performance, 
unaffected by biases or distractions encountered by 
scorers performing a “live” rating.  
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2.1 Method 

2.1.1 Rule Based Language Models 

The scoring models used by the automated ORF 
system are RBLMs such as those described by 
Cheng and Townshend (2009). Such models out-
perform traditional n-gram language models 
(Cheng and Shen, 2010), in part by adding 
intuitively simple rules such as allowing a long 
silence as an alternative to a short pause after every 
word, leading to improvements in accuracy. Also, 
rules like those described by Cheng and 
Townshend (2009) consider much longer 
sequential dependencies. The basic idea for this 
kind of language model is that each passage gets a 
simple directed graph with a path from the first 
word to the last word. Different arcs are added to 
represent different common errors made by the 
readers, such as skipping, repeating, inserting, and 
substituting words. For each arc, a probability is 
assigned to represent the chance that the arc will be 
chosen.  Knowledge of performance on other 
readings produces linguistic rules, such as she can 
substitute for he, a single noun can replace a plural 
noun, the reader may skip from any place to the 
end, etc. All the rules used in RBLMs can be 
classified into five broad groups:  

1. skip/repeat rules 
2. rules using part-of-speech (POS) tagging 

information 
3. rules accommodating for insertion of 

partial words  
4. general word level rules 
5. hesitation and mouth noise rules  

A detailed analysis of the role of rules in RBLMs 
was described in Cheng and Shen (2010). 

The language rules are extrapolated from 
transcriptions of oral reading responses to passages 
using four base rules: any word substitutes for any 
word with a low probability; any word is inserted 
after any word with a low probability; any word is 
skipped with a low probability; any word is 
repeated immediately with a low probability. 
Following Cheng and Townshend (2009), the first 
two are the only rules that allow out-of-vocabulary 
words and their probabilities are fixed to the lowest 
level, so their arcs will never be traversed unless 
there is no other choice. 

General language model rules for reading can 
be inferred from clustering traversals of the basic 

models and proposing further rules that can be 
applied to new reading passages and used to infer 
underlying knowledge about the reading. Arcs are 
added to represent commonly observed non-
canonic readings. Further analysis of rule-firing 
details may provide diagnostic linguistic 
information about children’s reading habits that 
can be reported and analyzed. 

In the present automated scoring system, new 
passages are automatically tagged for part-of-
speech (POS) using the Penn Tree Tagger (Marcus, 
Santorini, and Marcinkiewicz, 1993).  POS tags 
allow specification of certain general rules based 
on linguistic properties, such as: 
 NN (noun, singular or mass) can become NNS 

(noun, plural);  
 VBZ (verb, 3rd person singular present) can 

become VBP (verb, non-3rd person singular 
present); and so on.  

These patterns occur quite frequently in real 
responses and can therefore be accounted for by 
rules. Sentence, clause, and end-of-line boundaries 
are tagged manually. Marked up passages are then 
inserted into the ORF scoring system, providing 
data regarding places in the reading that may result 
in pauses, hesitations, corrections, etc.  If the 
expected response to a reading passage is highly 
constrained, the system can verify the occurrence 
of the correct lexical content in the correct 
sequence.  It is expected that the system, using 
previously trained data coupled with the RBLMs 
from the newly inserted passages, will be able to 
produce Words Correct scores with high accuracy 
(i.e., consistent with human Words Correct scores). 

Here, we make a final note on the use of Words 
Correct instead of words correct per minute 
(WCPM), when WCPM is the most common 
measure for quantifying oral reading performance.  
The automated system presents students with a 60-
second recording window to read each passage, but 
it calculates a truer WCPM by trimming leading 
and trailing silence.  Human scorers simply 
reported the number of words correct, on the 
assumption that the reading time is the recording 
window duration.  Thus, Words Correct scores are 
the appropriate comparison values, with a fixed 60-
second nominal reading time. 

2.1.2 Participants 

A total of 95 students were recruited from the San 
Jose Unified School District in San Jose, 
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California.  The students were 20 first graders, 20 
second graders, and 55 third graders, all enrolled in 
a summer school program.  Students with known 
speech disorders were included in the study, as was 
one student with a hearing impairment.  Roughly 
half of the participants were male and half were 
female.  A number of English Language Learners 
are known to have been included in the sample, 
though language status was not recorded as a 
variable for this study.  It is not known whether 
any of the students had been diagnosed with 
reading disabilities.  

Four Teachers were trained to administer and 
score DIBELS ORF passages by an official 
DIBELS trainer, over the course of a two day 
training session.  All Teachers were reading 
experts or teachers with experience in reading 
education.  They were trained to navigate a web 
application that triggers delivery of tests over cell 
phones under classroom testing conditions.  
Evaluator qualifications are summarized in Table 
1. 

Evaluator 
Highest degree, 

or relevant certification 

Years 

assessing 

reading 

Teacher 1 MA Education 8 

Teacher 2 MA Education 7 

Teacher 3 Reading Credential 15 

Teacher 4 BA Education 12 

Expert 1 MS, Statistics 5 

Expert 2 EdS, Education 2 

Expert 3 MA Education 20 

Table 1.  Evaluator qualifications 

2.1.3 Procedure 

First, nine passages – three for each of the three 
grades, presented together in a single test – were 
drawn from the DIBELS Benchmark test materials.  
Each DIBELS passage was tagged for parts of 
speech and formatting (e.g., line breaks) and 
inserted into the automated scoring system.  Rule-
based language models were produced for each 
passage. 

During data collection, each student read the 
grade-appropriate DIBELS Benchmark test (3 
passages) into a cellular telephone in the 
classroom.  With three passages per student, this 
process yielded 285 individual reading 
performances.   

Once a test was initiated, Teachers allowed the 
test to run independently and scored manually 
alongside the student reading into the phone.  
According to standard DIBELS scoring 
conventions, the students were allowed to read 
each passage for one minute.  Teachers calculated 
and recorded the Words Correct score on a 
worksheet for each passage.  Teachers returned the 
annotated score sheets for analysis. 

Later, three Expert scorers logged in to a web-
based interface via the Internet, where they listened 
to the digitized recordings of the readings.  All 
three Expert scorers had extensive experience with 
DIBELS rating.  One Expert was the DIBELS 
trainer who provided the DIBELS training to the 
Teachers for this study.  Experts scored students’ 
performance manually using score sheets with the 
instruction to use standard DIBELS scoring 
conventions.  Each Expert entered a Words Correct 
score for each passage using the web interface, and 
the score sheets were returned for analysis.   

2.1.4 Automated scoring 

Incoming spoken responses were digitally 
recorded and sent to a speech processing system 
that is optimized for both native and non-native 
speech.  Recognition was performed by an HMM-
based recognizer built using the HTK toolkit 
(Young, et al., 2000).  Acoustic models, 
pronunciation dictionaries, and expected-response 
networks were developed in-house using data from 
previous training studies involving many 
thousands of responses.  The words, pauses, 
syllables, phones, and even some subphonemic 
events can be located in the recorded signal, and 
“words recognized” are compared with “words 
expected” to produce a recognized response and 
word count. 

The acoustic models for the speech recognizer 
were developed using data from a diverse sample 
of non-native speakers of English.  In addition, 
recordings from 57 first-grade children were used 
to optimize the automated scoring system to 
accommodate for characteristics specific to young 
children’s voices and speech patterns.  These 
participants produced 136 usable, individual 
reading samples.  These samples were each rated 
by two expert human raters.  Using this final 
training set, the scoring models were refined to the 
point that the correlation between human and 
machine scoring was 0.97 for WCPM.  
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2.1.5 Human scoring 

During data preparation, it was noted that many 
of the teacher scores were several words longer 
than would be expected based on the machine 
scores.  Further investigation revealed that teachers 
would occasionally continue scoring after the one 
minute point at which the system stopped 
recording a passage, perhaps because they hadn’t 
heard the notification that the reading was 
complete.  A total of 31 out of 285 instances 
(~10.8%) were found where teachers continued 
scoring for more than 3 words beyond the 1 minute 
recording window, leading to artificially inflated 
Teacher scores.  This artifact of the testing 
apparatus/environment warranted making a careful 
correction, whereby all Teacher scores were 
adjusted to account for what the machine “heard”.  
That is, words and errors which Teachers scored 
after the automated system stopped recording (i.e., 
to which the automated system did not have 
access) were subtracted from the original Teacher 
Words Correct scores.  All Teacher Words Correct 
scores reported hereafter are thus “corrected”. 

For purposes of finding a “consensus” Expert 
score, the median of the 3 expert human scores for 
each passage was obtained and is referred to as 
ExpertM in the following analyses.   

Nine readings from eight separate students 
received no scores from teachers.  Information was 
not provided by the teachers regarding why they 
failed to complete the scoring process for these 
readings.  However, we made the following 
observations based on the teachers’ marked-up 
scoring sheets. For three readings, the teacher’s 
final score was blank when the student appeared to 
have skipped lines in the passage.  It is possible 
that, despite recent scoring training, the teacher 
was uncertain how to score skipped lines in the 
readings and left the final score blank pending 
confirmation.  For one reading, the teacher made a 
note that the system stopped recording well before 
one minute had expired because the child’s reading 
was too quiet to be picked up, and the teacher did 
not record the final score on the score sheet.  For 
one reading, the student did not hear the prompt to 
begin reading (confirmed by listening to the 
response recording) and therefore did not read the 
entire passage; the teacher did not enter a final 
score.  For the four remaining readings, the teacher 

annotated the performance but did not write down 
the final score for unclear reasons. 

We might have elected to fill in the teachers’ 
final scores for these 9 readings prior to subjecting 
the data to analysis, especially in the cases where a 
teacher annotated the reading correctly on the 
score sheet but simply failed to record the final 
Words Correct score, perhaps due to oversight or 
not knowing how to handle unusual events (e.g., 
entire line of reading skipped).  Excluding such 
readings from the analysis ensured that the 
teachers’ scores reflected “their own” scoring – 
including any errors they might make – rather than 
our interpretation of what the Teachers probably 
would have written.  In addition, to maintain the 
most conservative approach, whenever a single 
reading passage from a student lacked a teacher’s 
score, all 3 of that student’s readings were 
excluded.  The decision to exclude all readings 
from students with only a single passage missing 
was made because relevant analyses reported 
below involve reporting median scores, and a 
median score for students lacking one or two 
passage scores would not be possible.1  The final 
set of graded responses thus consisted of 261 
responses from 87 students.2 

2.2 Results  

2.2.1 Score Group Comparisons 

Words Correct scores from Teachers, ExpertM, and 
machine are displayed in Table 2.  Repeated 
measures ANOVA with Scorer Type (machine, 
Teacher, ExpertM) as the repeated measure and 
Score Group as the between-subjects factor 
revealed a main effect of group for the 261 

                                                           
1 The excluded 8 students produced 15 readings with all three 
(Machine, Teacher, Expert) scores.  Machine scores vs. 
Teacher scores and Machine scores vs. ExpertM scores for 
these 15 individual responses yielded correlations of 
(Pearson’s) r = 0.9949 and 0.9956, respectively.  Thus, 
excluding these responses from the larger dataset is unlikely to 
have significantly affected the overall results. 
2 In production, such a system would not commit these errors 
of omission.  Readings that are unscorable for technical 
reasons can trigger a “Median score not be calculated” 
message and request a teacher to manually score a recording 
or re-administer the assessment.  Also, anomalous 
performances where Words Correct on one passage is very 
different from Words Correct on the two other passages could 
return a message. 
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readings3, F(2, 520) = 9.912, p < .01, ω2 < .001.  
Post-hoc pairwise comparisons 4  showed that 
Words Correct scores from Teachers were higher 
on average than both the machine and ExpertM 
scores (higher by 1.559 and 0.923 words correct, 
respectively; both p’s < .05).  On the other hand, 
Machine and ExpertM scores did not differ 
significantly from each other (diff = 0.636).  

Although the ANOVA showed that the means 
In the above analysis were significantly different, 
the effect size was negligible: ω2 was = .0002, 
indicating that Score Group by itself accounted for 
less than 1% of the overall variance in scores.  
These results indicate that, for all 261 passages, the 
ExpertM and machine scores were statistically 
comparable (e.g., within 1 word correct of each 
other), while Teachers tended to assign slightly – 
but not meaningfully – higher scores, on average. 

Next, comparisons were made using the median 
value of each student’s three readings.  Median 
Words Correct scores for the 87 individual 
students were subjected to repeated measures 
ANOVA with the same factor (Scorer Group).  
Teachers’ Words Correct scores were again higher 
than ExpertM scores (diff = 1.115) and Machine 
scores (diff = 0.851), but this was not statistically 
significant in the main analysis, F(2, 172) = 3.11, p 
> .05, ω2 < .001.  Machine Words Correct scores 
were, on average, 0.264 words higher than ExpertM 
scores, but this, too, was not statistically 
significant.  These results support the previous 
comparisons, in that machine scores fall well 
within ~1 word correct of scores from careful 
experts, while teachers tended to give scores of 
about 1 word correct higher than both experts and 
machine. 

2.2.2 Scorer performance 

To compare reliability, the Pearson’s Product 
Moment coefficient (r) was used to estimate the 
correlation between paired human and machine 
scores, and between pairs of human raters.  Two 
types of analyses are reported.  First, analyses of 
Words Correct scores were conducted across 
scorers.  Next, analyses were conducted on the 
basis of the median Words Correct score for each 

                                                           
3  For both ANOVAs, uncorrected degrees of freedom are 
reported but reported F values are corrected using Huynh-
Feldt estimates of sphericity. 
4 Using Bonferroni adjustment for multiple comparisons. 

student’s readings (i.e., the median score across all 
three passages).  This score reflects the “real-life” 
score of DIBELS ORF tests because the median 
score is the one that is ultimately reported 
according to DIBELS scoring/reporting 
conventions.    

2.2.2.1.  Intra-rater reliability 

Each Teacher scored each reading once during the 
live grading; intra-rater reliability could thus not be 
 

 Words Correct 
Score 
Type 

261 readings 
Mean (SD) 

87 students  
Mean (SD) 

Teacher 84.3 (42.5) 84.0 (42.1) 
ExpertM 83.4 (42.3) 82.9 (41.8) 
Machine 82.8 (39.6) 83.2 (39.3) 

Table 2.  Mean Words Correct for all readings and 
all students. 

 
estimated for the Teacher group.  During Expert 
rating, a randomly selected 5% of the passages 
were presented again for rating to each scorer.  
Overall Expert intra-rater reliability was 0.9998, 
with intra-rater reliability scores for Expert 1, 
Expert 2, and Expert 3 at 0.9996, 1.0, and 1.0, 
respectively.  These results indicate that Expert 
human scorers are extremely consistent when 
asked to provide Words Correct scores for reading 
passages when given the opportunity to listen to 
the passages at a careful, uninterrupted pace.  The 
automated scoring system would produce the exact 
same score (reliability = 1.0) every time it scored 
the same recordings, making its reliability 
comparable. 

2.2.2.2.  Inter-rater reliability 

Pearson’s r was used to estimate the inter-rater 
reliability.  All three Experts scored all passages, 
whereas any particular Teacher scored only a 
subset of the passages; thus, the Teacher’s score 
was used without consideration of which teacher 
provided the score.  Inter-rater reliability results 
are summarized in Table 3.   
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Reliability  (N = 261) 

 Teacher Expert 1 Expert 2 
Expert 1 0.998   
Expert 2 0.999 0.999  

Expert 3 0.998 0.999 0.999 
Table 3.  Inter-rater reliability estimates for Expert 

scorers. 
 
To provide a measure of a “consensus” expert 
score, the median score from all 3 Experts was 
derived for each passage, and then compared with 
the Teacher score.  This comparison (Teacher vs. 
ExpertM) yielded a reliability of 0.999, p < .01.  As 
shown in Table 3, all inter-rater reliability 
estimates are extremely high, indicating, in part, 
that teachers in the classroom produce scores that 
do not differ systematically from those given by 
careful experts.   

2.2.3 Human-machine performance 

Pearson’s r was computed to estimate the 
correlations.  The different scorer groups (i.e., 
ExpertM, Teacher, and Machine) provided similarly 
consistent scoring, as evidenced by high 
correlations between scores from the three groups.  
These correlations were maintained even when 
data were broken down into individual grades.  
Table 4 reveals correlations between Words 
Correct scores provided by all 3 scoring groups, 
for each grade individually, for all three grades 
combined, and finally for the median scores for all 
87 students. 
 

Grade level (N) 
Machine 

~ Teacher 

Machine ~ 

ExpertM 

Teacher ~ 

ExpertM 

1st grade (54) 0.990 0.990 0.996 

2nd grade (60) 0.990 0.991 0.999 

3rd grade (147) 0.964 0.962 0.997 

Grades 1-3 (261) 0.989 0.988 0.999 

Only medians 87 0.994 0.994 0.999 

Table 4.  Correlations between Words Correct scores 
by Experts, Teachers, and machine. 

 
All correlations are 0.96 or higher.  Correlations 
are highest between Teacher and ExpertM, but 
correlations between machine and both human 
groups are consistently 0.96 or above.  The 
relatively lower correlations between human and 
machine scores seen in the third grade data may be 

attributed in large part to two outliers noted in the 
Figures below.  If these outliers are excluded from 
the analysis, both correlations between human and 
machine scores in the third grade rise to 0.985.  
(See below for discussion of these outliers.) 

2.2.4.1.  Teacher vs. Machine performance 

Pearson’s r was used to estimate the correlation 
between Teacher and Machine scores.  First, the 
Teacher-generated Words Correct score and 
Machine-generated Words Correct scores were 
obtained for each of the 261 individual recordings, 
where the correlation was found to be r = 0.989, p 
< .01.   
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Figure 1.  Words Correct (WC) scores from Teachers 

and Machine; response level (n = 261 responses) 
 
Figure 1 shows a small number of outliers in the 
scatterplot (circled in red).  One outlier (human = 
3, machine = 21) came from a student whose low 
level of reading skill required him to sound out the 
letters as he read; machine scores were high for all 
3 recordings from this reader.  One outlier (human 
= 21, machine = 10) occurred because the reader 
had an unusually high pitched voice quality which 
posed a particular challenge to the recognizer.  
Two outliers (human = 141, machine = 76; human 
= 139, machine = 104) suffered from a similar 
recording quality-based issue whereby only some 
of the words were picked up by the system because 
the student read rapidly but quietly, making it 
difficult for the system to consistently pick up their 
voices.  That is, for these calls the Teacher was 
close enough to hear the students’ entire reading 
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but the machine picked up only some of the words 
due to distance from the telephone handset.5   

Next, median Words Correct scores for each 
student were computed.  Median scores derived 
from machine and Teachers correlated at 0.994, p 
< .01 for the 87 students.  These scores are 
presented in Figure 2. 
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Figure 2.  Words Correct (WC) scores from Teachers 

and Machine scoring at the reader level (n = 87). 
 
Figure 2 shows that some of the outliers visible in 
the individual recording data disappear when the 
median score is computed for each student’s 
reading performance, as would be expected.     

2.2.4.2. Expert vs. Machine performance 

The median of the 3 expert human scores for each 
passage (ExpertM) was compared to the Machine 
score.  The correlation between machine-generated 
Words Correct scores and ExpertM-generated 
Words Correct scores was 0.988, p < .01, for the 
261 individual readings, and 0.999, p < .01, for the 
median (student-level) scores.  These results are 
displayed in Figure 3. 

Figure 3 shows that two notable outliers present 
in the Teacher analysis were also present in the 
ExpertM analysis.  This may be due to the fact that 
while the recordings were of a low enough volume 
to present a challenge to the automated scoring 
system, they were of a sufficient quality for expert 
human scorers to “fill in the blanks” by listening 

                                                           
5 In a production version, these recordings would return an 
instruction to re-administer the readings with better recording 
conditions or to score the recordings. 

repeatedly (e.g., with the ability to turn up the 
volume), and in some cases giving the student 
credit for a word spoken correctly even though 
they, the scorers, were not completely confident of 
having heard every portion of the word correctly.  
Though conjectural, it is reasonable to expect that 
the human listeners were able to interpolate the 
words in a “top down” fashion in a way that the 
machine was not.  
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 Figure 3.  Words Correct (WC) Machine scores vs. 

Expert scores for all 261 individual responses 
(top) and for 87 students at test level (bottom).   

2.2.5. Scoring Precision 

It is reasonable to assume that careful expert 
scorers provide the closest possible representation 
of how a reading should be scored, particularly if 
the Expert score represents a “consensus” of expert 
opinions.  Given the impracticality of having a 
team of experts score every passage read by a child 
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in the classroom, automated machine scoring 
might provide the preferred alternative if its scores 
can be shown to be consistent with expert scores.  
To explore the consistency between scores from 
Teachers and scores from the machine with scores 
provided by Experts, Teacher and Machine scores 
were compared against the median Expert score for 
each call using linear regression.   

The standard error of the estimate (SEE) for the 
two human groups was computed.  The SEE may 
be considered a measure of the accuracy of the 
predictions made for Teacher and Machine scores 
based on the (median, “consensus”) Expert scores.  
Figure 4 below shows a scatterplot of the data, 
along with the R2 and SEE measures for both 
Teacher and machine scores based on ExpertM 
scores. 

Scores from Teachers and Machine produce very 
similar regression lines and coefficients of 
determination (R2 = 0.998 and 0.988 for Teachers 
and Machine, respectively).  The figure also shows 
that, compared with the Machine scores, Teachers’ 
scores approximate the predicted ExpertMed scores 
more closely (SEE for Teachers = 1.80 vs. 4.25 for 
machine).  This disparity appears to be driven by 
diverging scores at the upper and lower end of the 
distribution, as might be expected due to relatively 
smaller numbers of scores at the ends of the 
distribution. 

 

Median Words Correct Scores
Teacher vs Expert ; Machine vs Expert

R2 = 0.988, S.E.E. = 4.25 
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Figure 4.  Median Words Correct scores from 

Machine (red squares) and Teachers (blue 
triangles) plotted against median Expert scores 
for 87 students.  S.E.E. = Standard error of 
estimate. 

 

3 Summary/Discussion 

Correlations between human- and machine-based 
Words Correct scores were found to be above 0.95 
for both individual reading passages and for 
median scores per student.  The machine scoring 
was consistent with human scoring performed by 
teachers following along with the readings in real 
time (r = 0.989), and was also consistent with 
human scoring when performed by careful expert 
scorers who had the ability to listen to recorded 
renditions repeatedly (r = 0.988).  Correlations 
were consistent with those between expert scorers 
(all r’s between 0.998 and 0.999) and between 
Teachers and Experts (r = 0.999 and 0.988, 
respectively).   

These results demonstrate that text-independent  
machine scoring of Words Correct for children’s 
classroom reading predicts human scores 
extremely well (almost always within a word or 
two).   
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Abstract

In this paper, we present an automatic question
generation system that can generate gap-fill
questions for content in a document. Gap-fill
questions are fill-in-the-blank questions with
multiple choices (one correct answer and three
distractors) provided. The system finds the in-
formative sentences from the document and
generates gap-fill questions from them by first
blanking keys from the sentences and then de-
termining the distractors for these keys. Syn-
tactic and lexical features are used in this pro-
cess without relying on any external resource
apart from the information in the document.
We evaluated our system on two chapters of
a standard biology textbook and presented the
results.

1 Introduction

Gap-fill questions arefill-in-the-blank questions,
where one or more words are removed from a
sentence/paragraph and potential answers are listed.
These questions, being multiple choice ones, are
easy to evaluate. Preparing these questions manu-
ally will take a lot of time and effort. This is where
automatic gap-fill question generation(GFQG)
from a given text is useful.

1. A bond is the sharing of a pair of va-
lence electrons by two atoms.
(a) Hydrogen (b) Covalent (c) Ionic (d) Double
(correct answer: Covalent)

In a gap-fill question (GFQ) such as the one
above, we refer to the sentence with the gap as the

question sentence(QS) and the sentence in the text
that is used to generate the QS as the gap-fill sen-
tence (GFS). The word(s) which is removed from a
GFS to form the QS is referred to as thekeywhile
the three alternatives in the question are called as
distractors, as they are used to distract the students
from the correct answer.

Previous works in GFQG (Sumita et al., 2005;
John Lee and Stephanie Seneff, 2007; Lin et al.,
2007; Pino et al., 2009; Smith et al., 2010) have
mostly worked in the domain of English language
learning. Gap-fill questions have been generated to
test student’s knowledge of English in using the cor-
rect verbs (Sumita et al., 2005), prepositions (John
Lee and Stephanie Seneff, 2007) and adjectives (Lin
et al., 2007) in sentences. Pino et al. (2009) and
Smith et al. (2010) have generated GFQs to teach
and evaluate student’s vocabulary.

In this paper, we move away from the domain
of English language learning and work on generat-
ing gap-fill questions from the chapters of a biol-
ogy textbook used for Advanced Placement (AP) ex-
ams. The aim is to go through the textbook, identify
informative sentences1 and generate gap-fill ques-
tions from them to aid students’ learning. The sys-
tem scans through the text in the chapter and iden-
tifies the informative sentencesin it using features
inspired by summarization techniques. Questions
from these sentences (GFSs) are generated by first
choosing akeyin each of these and then finding ap-
propriatedistractorsfor them from the chapter.

Our GFQG system takes a document with its title
as an input and produces a list of gap-fill questions as

1A sentence is deemed informative if it has the relevant
course knowledge which can be questioned.
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output. Unlike previous works (Brown et al., 2005;
Smith et al., 2010) it doesn’t use any external re-
source for distractor selection, making it adaptable
to text from any domain. Its simplicity makes it use-
ful not only as an aid for teachers to prepare gap-fill
questions but also for students who need an auto-
matic question generator to aid their learning from a
textbook.

2 Data Used

A Biology text bookCampbell Biology, 6th Edi-
tion has been used for work in this paper. We have
reported results of our system on 2 chapters(the
structure and function of macromoleculesand an
introduction to metabolism )of unit 1. Each chapter
contains sections and subsections with their respec-
tive topic headings. Number of subsections, sen-
tences, words per sentence in each chapter are (25,
416, 18.3) and (32, 423, 19.5) respectively. Each
subsection is taken as a document. The chapters are
divided into documents and each document is used
for GFQG independently.

3 Approach

Given a document, the gap-fill questions are gen-
erated from it in three stages: sentence selection,
key selection and distractor selection.Sentence se-
lection involves identifyinginformative sentencesin
the document which can be used to generate a gap-
fill question. These sentences are then processed in
the key selectionstage to identify thekeyon which
to ask the question. In the final stage, thedistrac-
tors for the selectedkeyare identified from the given
chapter by searching for words with the same con-
text as that of thekey.

In each stage, the system identifies a set of candi-
dates (i.e. all sentences in the document in stage I,
words in the previously selected sentence in stage II
and words in the chapter in stage III) and extracts a
set of features relevant to the task.Weighted sum of
extracted features(see equation 1) is used to score
these candidates, with the weights for the features
in each of the three steps assigned heuristically. A
small development data has been used to tune the
feature weights.

score =

n∑

i=0

wi × fi (1)

In equation 1,fi denotes the feature andwi denotes
the weight of the featurefi. The overall architecture
of the system is shown in Figure 1.

Sentence

Selection

sentence (GFS)
Gap−fill

selection
      &
Distractors
 selection

GAP−FILL

Question

GFSs

Document

Chapter

  Key 

Figure 1:System architecture

In earlier approaches to generating gap-fill ques-
tions (for English language learning), thekeysin a
text were gathered first (or given as input in some
cases) and all the sentences containing thekeywere
used to generate the question. In domains where
language learning is not the aim, a gap-fill question
needs aninformative sentenceand not just any sen-
tence with the desiredkeypresent in it. For this rea-
son, in our work,sentence selectionis performed be-
fore key selection.

3.1 Sentence Selection
A good GFS should be (1)informative and (2)

gap-fill question-generatable. An informative sen-
tence in a document is one which has relevant
knowledge that is useful in the context of the docu-
ment. A sentence isgap-fill question-generatableif
there is sufficient context within the sentence to pre-
dict thekeywhen it is blanked out. Aninformative
sentencemight not have enough context to generate
a question from and vice versa.

The sentence selectionmodule goes through all
the sentences in the documents and extracts a set of
features from each of them. These features are de-
fined in such a way that the two criterion defined
above are accounted for. Table 1 gives a summary
of the features used.

First sentence:f(si) is a binary feature to check
whether the sentencesi is the first sentence of the
document or not. Upon analysing the documents in
the textbook, it was observed that the first sentence
in the document usually provides a summary of the
document. Hence,f(si) has been used to make use
of the summarized first sentence of the document.
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Feature Symbol Description Criterion
f(si) Is si the first sentence of the document? I

sim(si) No. of tokens common insi and title/ length(si) I, G
abb(si) Doessi contain any abbreviation? I

super(si) Doessi contain a word in its superlative degree? I
pos(si) si’s position in the document (= i) G

discon(si) Is si beginning with a discourse connective? G
l(si) Number of words insi G

nouns(si) No. of nouns insi / length(si) G
pronouns(si) No. of pronouns insi / length(si) G

Table 1:Feature set forSentence Selection(si: ith sen-
tence of the document;I : to captureinformative sen-
tences; G: to capture the potential candidate for gener-
ating a GFQs)

Common tokens: sim(si) is the count of words
(nouns and adjectives) that the sentence and the title
of the document have in common. A sentence with
words from the title in it is important and is a good
candidate to ask a question using the common words
as thekey.

2. The different states of potentialenergy that
electrons have in an atom are calledenergy
levels, or electron shells. (Title: The Energy
Levels of Electrons)

For example sentence 2, value of the feature is
3/19 (common words:3, sentence length:19) and
generating gap-fill question usingenergy, levelsor
electronsas thekeywill be useful.

Abbreviations and Superlatives: abb(si),
super(si) features capture those sentences which
contain abbreviations and words in superlative de-
gree respectively. The binary features determine the
degree of the importance of a sentence in terms of
the presence of abbreviations and superlatives.

3. In living organisms, most of thestrongest
chemical bonds are covalent ones.

For example, in sentence 3, presence ofstrongest
makes sentence more informative and useful for
generating a gap-fill question.

Sentence position: pos(si) is position of the
sentencesi, in the document (= i). Since topic of
the document is elaborated in the middle of the
document, the sentences occurring in the middle of
the document are less important for the GFSs than
those which occur either at the start or the end of the

document. In order to use the above observation,
the module uses this feature.

Discourse connective at the beginning:
discon(si)’s value is 1 if first word of si is a
discourse connective2 and 0 otherwise. Discourse
connective at the beginning of a sentence indicates
that the sentence might not have enough context for
a QS to be understood by the students.

4. Because of this, it is both anamine and acar-
boxylic acid.

In example 4, after selectingamine and car-
boxylic as akey, QS will be left with insufficient
context to answer. Thus binary feature,discon(si),
is used.

Length: l(si) is the number of words in the
sentence. It is important to note that a very short
sentence might generate an unanswerable question
because of short context and a very long sentence
might have enough context to make the question
generated from it trivial.

Number of nouns and pronouns: Features
nouns(si) andpronouns(si) represent the amount
of context present in a sentence. More number of
pronouns in a sentence reduces the contextual infor-
mation, instead more number of nouns increases the
number of potentialkeysto ask a gap-fill question
on.

Four sample GFSs are shown in Table 3 with their
document’s titles.

3.2 Key Selection
For each sentence selected in the previous stage,

the key selectionstage identifies the most appropri-
atekeyfrom the sentence to ask the question on.

Previous works in this area, Smith et al. (2010)
take keysas an input and, Karamanis et al. (2006)
and Mitkov et al. (2006) selectkeyson the basis of
term frequency and regular expressions on nouns.
Then they search for sentences which contain that
particularkey in it. Since their approaches generate
gap-fill questions only with one blank, they could
end up with a trivial GFQ, especially in case of con-
junctions.

2because, since, when, thus, however, although, for example
andfor instanceconnectives have been included.
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(A)

  DT       JJS       NNS       IN    NN         NNS      VBP       JJ         NNS   CC        JJ    NNS  

potential keys selection

     [The  strongest   kind]     of    [chemical  bonds]    are    [covalent  bond   and    ionic    bond].

    [The  strongest  kind]  of   [ chemical  bonds]  are  [ covalent  bond  and   ionic  bond] .(B)  

Figure 2:Generatingpotential key’s list, (key-list) of strongest, chemicalandcovalent + ionic.

5. Somewhere in the transition from molecules to
cells, we will cross the blurry boundary be-
tweennonlife and life.

For instance in example sentence 5, selecting only
one of non-life and life makes the question trivial.
This is an other reason for performing sentence se-
lection beforekey selection. Our system can gen-
erate GFQs with multiple blanks unlike previous
works described above.

Our approach ofkey selectionfrom a GFS is two
step process. In the first step the module generates
a list of potential keysfrom the GFS (key-list) and
in the second step it selects the bestkey from this
key-list.

3.2.1 Key-list formation
A list of potential keys is created in this step using

the part of speech (POS) tags of words and chunks
of the sentence in the following manner:

1. Each sequence of words in all the noun chunks
is pushed intokey-list. In figure 2(A), the three
noun chunksthe strongest kind, chemical bond
andcovalent bond and ionic bondare pushed
into thekey-list.

2. For each sequence in thekey-list, the most im-
portant word(s) is selected as the potentialkey
and the other words are removed. The most im-
portant word in a noun chunk in the context of
GFQG in biology domain is a cardinal, adjec-
tive and noun in that order. In case where there
are multiple nouns, the first noun is chosen as
the potentialkey. If the noun chunk is a NP
coordination, both the conjuncts are selected as
a single potentialkeymaking it a case of mul-
tiple gaps in QS. In Figure 2(B) potentialkeys
strongest, chemicalandcovalent + ionicare se-
lected from the noun chunks by taking the order
of importance into account.

An automatic POS tagger and a noun chunker has
been used to process the sentences selected in the

first stage. It was observed that if words of akey
are spread across a chunk then there might not be
enough context left in QS to answer the question.
The noun chunk boundaries ensure that the sequence
of words in the potentialkeysare not disconnected.

6. Hydrogen has 1 valenceelectron in the first
shell, but the shell’s capacity is 2electrons.

Any element of thekey-list which occurs more
than once in the GFS is discarded as a potentialkey
as it more often than not generates a trivial question.
For example, in sentence 6 selecting any one of the
two electronas akeygenerates an easy gap-fill ques-
tion.

7. In contrast , trypsin , a digestive enzyme resid-
ing in the alkaline environment of the intestine
, has an optimal pH of .
(a) 6 (b) 7 (c) 8 (d) 9 (correct answer: 8)

If cardinals are present in a GFS, the first one is cho-
sen as itskeydirectly and a gap-fill question has been
generated (see example 7).

3.2.2 Best Key selection
In this step three features,term(keyp),

title(keyp) and height(keyp), described in Ta-
ble 2, are used to select the bestkeyfrom thekey-list.

Feature Symbol Description

term(keyp)
Number of occurrences of the
keyp in the document.

title(keyp)
Does title contain
keyp ?

height(keyp)
height of thekeyp in the
syntactic tree of the sentence.

Table 2: Feature set forkey selection(potentialkey,
keyp is an element ofkey-list)

Term frequency: term(keyp) is number of oc-
currences of thekeyp in the document.term(keyp)
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is considered as a feature to give preference to the
potentialkeyswith high frequency.

In title: title(keyp) is a binary feature to check
whetherkeyp is present in the title of the document
or not. A common word of GFS and the title of the
document serves as a betterkeyfor gap-fill question
than the ones that are not present in both.

Height: height(keyp) denotes theheight3 of the
keyp in the syntactic tree of the sentence. Height
gives an indirect indication of the importance of the
word. It also denotes the amount of text in the sen-
tence that modifies the word under consideration.

                                  

                                

                                      

      F(0)                G(0)                  

D (1)                E (0)     

A(3)                                  

C(2)B(0)

Figure 3:Height feature: node (height)

An answerable question should have enough con-
text left after the key blanked out. A word with
greaterheight in dependency tree gets more score
since there is enough context from its dependent
words in the syntactic tree to predict the word. For
example in Figure 3, nodeC’s height is two and the
words in the dashed box in its subtree provide the
context to answer a question onC.

The score of each potentialkey is normalized by
the number of words present in it and the bestkeyis
chosen based on the scores of potentialkeysin key-
list. Table 3 shows the selectedkeys(red colored)
for sample GFSs.

3.3 Distractor Selection
Karamanis et al. (2006) defines adistractor as,

an appropriate distractor is a concept semantically
close to the key which, however, cannot serve as the
right answer itself.

For distractor selection, Brown et al. (2005) and
Smith et al. (2010) used WordNet, Kunichika et

3The height of a tree is the length of the path from the deep-
est node in the tree to the root.

No. Selected keys (red colored)

1
An electron having a certain discrete amount ofenergyis
something like a ball on a staircase.
(The Energy Levels of Electrons)

2
Lipids are the class of large biological molecules that doesnot
includepolymer.
(Lipids–Diverse Hydrophobic Molecules)

3
A DNA molecule is very long and usually consists of hundreds
or thousands of genes.
(Nucleic acids store and transmit hereditary information)

4
The fatty acid will have akink in its tail wherever a double bond
occurs.
(Fats store large amounts of energy)

Table 3: Selectedkeysfor each sample GFS

al. (2002) used their in-house thesauri to retrieve
similar or related words (synonyms, hypernyms, hy-
ponyms, antonyms, etc.). However, their approaches
can’t be used for those domains which don’t have
ontologies. Moreover, Smith et al. (2010) do not se-
lectdistractorsbased on the context of thekeys. For
example, in the sentences 8 and 9, thekey bookoc-
curs in two different senses but same set ofdistrac-
tors will be generated by them.

8. Book the flight.

9. I read a book.

Feature Symbol Description
context(distractorp , measure of contextual similarity
keys) of distractorp and thekeys

in which they are present
sim(distractorp , Dice coefficient scorebetween
keys) GFS and the sentence

containing thedistractorp
diff(distractorp , difference interm frequencies
keys) of distractorp andkeys

in the chapter

Table 4:Feature set fordistractor selection(keys is the
selectedkeyfor a GFS,distractorp is the potentialdis-
tractor for thekeys)

So adistractor should come from the same con-
text and domain, and should be relevant. It is also
clear from the above discussion that onlyterm fre-
quencyformula alone will not work for selection
of distractors. Our module uses features, shown in
Table 4, to select threedistractors from the set of
all potential distractors. Potential distractors are the
words in the chapter which have the same POS tag
as that of thekey.
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Contextual similarity: context(distractorp,
keys) gets the contextual similarity score of a
potential distractor and the keys on the basis
of context in which they occur in their respective
sentences. Value of the feature depends on how
similar are thekey and the potentialdistractor
contextually. The previous two and next two words
along with their POS tags are compared to calculate
the score.

Sentence Similarity: sim(distractorp, keys)
feature value represents similarity of the sentences
in which the keys and thedistractorp occur in.
Dice Coefficient(Dice, 1945) (equation 2) has been
used to assign weights to those potentialdistractors
which come from sentences similar to GFS because
a distractor coming from a similar sentence will be
more relevant.

dice coefficient(s1, s2) =
2× commontokens

l(s1) + l(s2)
(2)

Difference in term frequencies: Feature,
diff (distractorp, keys) is used to finddistractors
with comparable importance to thekey. Term fre-
quency of a word represents its importance in the
text and words with comparable importance might
be close in their semantic meanings. So, a smaller
difference in the term frequencies is preferable.

key Distractors
energy charge, mass, water

polymer acid, glucose, know
DNA RNA, branch, specific
kink available, start, method

Table 5:Selecteddistractorsfor selectedkeys, shown in
Table 3

10. Electrons have a negative charge, the unequal
sharing of electrons in water causes theoxy-
gen atom to have a partial negative charge and
eachhydrogen atom a partial positive charge.

A word that is present in the GFS would not be
selected as adistractor. For example in sentence 10,
if system selectsoxygenas akeythenhydrogenwill
not be considered as adistractor. Table 5 shows
selected threedistractorsfor each selectedkeys.

4 Evaluation and Results

Two chapters of the biology book are selected for
testing and top 15% candidates are selected by three
modules (sentence selection, key selectionanddis-
tractor selection). The modules were manually eval-
uated independently by two biology students with
good English proficiency. Since in current system
any kind of post editing or manual work is avoided,
comparison of efficiency in manual and automatic
generation is not needed unlike Mitkov and Ha et
al. (2003).

4.1 Sentence Selection
The output of the sentence selection module is

a list of sentences. The evaluators check if each
of these sentences are good GFSs (informativeand
gap-fill question-generatable) or not and binary
scoring is done. Evaluators are asked to evaluate
selected sentences independently, whether they are
useful for learning and answerable, or not.The cov-
erage of the selected sentences w.r.t the document
has not been evaluated.

Chapter-5 Chapter-6 Total

No. of
390 423 813

Sentences
No. of

55 65 120
Selected Sentences

No. of Good
51 59 110

GFSs (Eval-1)
No. of Good

44 51 95
GFSs (Eval-2)

Table 6:Evaluation of Sentence Selection
Evaluator-1 and 2 rated 91.66% and 79.16% of

sentences as good potential candidates for gap-fill
question respectively with 0.7 inter evaluator agree-
ment (Cohen’s kappa coefficient). Table 6 shows
the results of sentence selectionfor individual
chapters. Upon analysing the bad GFSs, we found
two different sources of errors. The first source is
the featurefirst sentenceand the second is lack of
used insentence selectionmodule.

First sentence: Few documents in the data had
either a general statement or a summary of the pre-
vious section as the first sentence and thefirst sen-
tencefeature contributed to their selection as GFS
even though they aren’t good GFSs.

11. An understanding of energy is as important
for students of biology as it is for students of
physics, chemistry and engineering.

For example, the system generated a gap-fill
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question on example 11 which isn’t a good GFS at
all even though it occurs as the first sentence in the
document.

Less no. of features:Features likecommon to-
kens, superlative and abbreviation, discourse con-
nective at the beginningand number of pronouns
was useful in selectinginformative sentencesfrom
the documents. However, in absence of these fea-
tures in the document, module has selected the GFSs
on the basis of only two features,lengthandposition
of the sentence. In those cases Evaluators rated few
GFSs as bad.

12. Here is another example of how emergent prop-
erties result from a specific arrangement of
building components.

For example, sentence 12 rated as abad GFS by
the evaluators. So more features are need to be to
used to avoid this kind of errors.

13. A molecule has a characteristicsize andshape.

Apart from these we also found few cases where
the context present in the GFS wasn’t sufficient to
answer the question although those sentences were
informative. In the above example 13,size and
shapewere selected as thekey that makes gap-fill
question unanswerable because of short context.

4.2 Key Selection
Our evaluation characterizes akey into two cat-

egories namelygood (G) andbad (B). Evaluator-1
and 2 found that 94.16% and 84.16% of thekeys
aregoodrespectively with inter evaluator agreement
0.75. Table 7 shows the results ofkeys selectionfor
individual chapters.

Chap-5 Chap-6 Total
G B G B G B

Eval-1 50 5 63 2 113 7
Eval-2 50 5 51 14 101 19

Table 7: Evaluation of Key(s) Selection: Chap: Chap-
ter, Eval: Evaluator, G and B are forgoodandbad key
respectively
14. Carbon has a total of6 electrons , with 2 in the

first electron shell and 4 in the second shell.

We observed that selection of first cardinal askey
is not always correct. For example, in sentence 14
selection of6 as thekeygenerated trivial GFQ.

4.3 Distractors Selection
Our system generates four alternatives for each

gap-fill question, out of which three aredistrac-
tors. To evaluate thedistractors’ quality, evaluators
are asked to substitute thedistractor in the gap and
check thereadability andsemantic meaningof the
QS to classify thedistractor asgoodor bad. Eval-
uators rate0, 1, 2or 3 depending on the number of
good distractorsin the GFQ (for example, questions
that are rated2 have twogood distractorsand one
bad distractor).

15. An electron having a certain discrete amount of
is something like a ball on a staircase.

(a) charge(b) energy(c) mass(d) water
(Class:3)

16. Lipids are the class of large biological
molecules that does not include .
(a) acid (b)polymer(c) glucose(d) know
(Class:2)

17. A molecule is very long and usually
consists of hundreds or thousands of genes.
(a) DNA(b) RNA(c) specific (d) branch
(Class:1)

18. The fatty acid will have a in its tail
wherever a double bond occurs .
(a) available (b) method (c)kink (d) start
(Class:0)

Examples of gap-fill questions generated by our
system are shown above (red colored alternatives are
good distractors, blue colored ones are the correct
answers for the questions and the black ones arebad
distractors).

Chap-5 Chap-6 Total
Class 0 1 2 3 0 1 2 3 0 1 2 3
Eval-1 21 19 12 3 8 31 21 5 29 50 33 8
Eval-2 20 19 13 3 9 25 28 3 29 44 41 6

Table 8:Evaluation ofDistractor Selection(Before any
corrections)

Table 8 shows the human evaluated results for
individual chapter. According to both evaluator-
1 and evaluator-2, 75.83% of the cases the system
findsuseful gap-fill questionswith 0.67 inter evalu-
ator agreement. Useful gap-fill questions are those
which have at least onegood distractor. 60.05% and
67.72% test items are answered correctly by Evalu-
ator 1 and 2 respectively.
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We observed that when akeyhas more than one
word,distractors’quality reduces because every to-
ken in a distractor must be comparably relevant.
Small chapter size also effects the number ofgood
distractorsbecausedistractorsare selected from the
chapter text.

In our work, as we only considered syntactic and
lexical features fordistractor selection, the selected
distractors could be semantically conflicting with
themselves or with thekey. For example, due to
the lack of semantic features in our method a hyper-
nym of thekeycould find way into thedistractors
list thereby providing a confusing list ofdistractors
to the students. In the example question 1 in section
1, chemicalwhich is the hypernym ofcovalentand
ionic could prove confusing if its one of the choices
for the answer. Semantic similarity measures need
to be used to solve this problem.

5 Related work

Given the distinct domains in which our system
and other systems were deployed, a direct com-
parison of evaluation scores could be misleading.
Hence, in this section we compare our approach with
previous approaches in this area.

Smith et al. (2010) and Pino et al. (2009) used
gap-fill questions for vocabulary learning. Smith et
al. (2010) present a system, TEDDCLOG, which au-
tomatically generates draft test items from a corpus.
TEDDCLOG takes thekey as input. It findsdis-
tractors from a distributional thesaurus. They got
53.33% (40 out of 75) accuracy after post editing
(editing either in carrier sentence (GFS) or indis-
tractors) in the generated gap-fill questions.

Pino et al. (2009) describe a baseline technique to
generate cloze questions (gap-fill questions) which
uses sample sentences from WordNet. They then re-
fine this technique with linguistically motivated fea-
tures to generate better questions. They used the
Cambridge Advanced Learners Dictionary (CALD)
which has several sample sentences for each sense
of a word for stem selection (GFS). The new strat-
egy produced high quality cloze questions 66% of
the time.

Karamanis et al. (2006) report the results of a pi-
lot study on generating Multiple-Choice Test Items
(MCTI) from medical text which builds on the work
of Mitkov et al. (2006). Initiallykeyset is enlarged
with NPs featuring potentialkeyterms as their heads

and satisfying certain regular expressions. Then sen-
tences having at least onekey are selected and the
terms with the same semantic type in UMLS are se-
lected asdistractors. In their manual evaluation, the
domain experts regarded a MCTI as unusable if it
could not be used in a test or required too much revi-
sion to do so. The remaining items were considered
to be usable and could be post edited by the experts
to improve their content and readability or replace
inappropriatedistractors. They have reported 19%
usable items generated from their system and after
post editing stems accuracy jumps to 54%.

However, our system takes a document and pro-
duces a list of GFQs by selectinginformative sen-
tencesfrom the document. It doesn’t use any exter-
nal resources fordistractors selectionand finds them
in the chapter only that makes it adaptable for those
domains which do not have ontologies.

6 Conclusions and Future Work

Our GFQG system, selects mostinformative sen-
tencesof the chapters and generates gap-fill ques-
tions on them. Syntactic features helped in quality of
gap-fill questions. We look forward to experiment-
ing on larger data by combining the chapters. Eval-
uation of course coverage by our system and use of
semantic features will be part of our future work.
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Abstract

We present an empirical study of one-on-
one human tutoring dialogues in the domain
of Computer Science data structures. We
are interested in discovering effective tutor-
ing strategies, that we frame as discovering
which Dialogue Act (DA) sequences corre-
late with learning. We employ multiple lin-
ear regression, to discover the strongest mod-
els that explain why students learn during
one-on-one tutoring. Importantly, we define
“flexible” DA sequence, in which extraneous
DAs can easily be discounted. Our experi-
ments reveal several cognitively plausible DA
sequences which significantly correlate with
learning outcomes.

1 Introduction

One-on-one tutoring has been shown to be a very ef-
fective form of instruction compared to other educa-
tional settings. Much research on discovering why
this is the case has focused on the analysis of the
interaction between tutor and students (Fox, 1993;
Graesser et al., 1995; Lepper et al., 1997; Chi et al.,
2001). In the last fifteen years, many such analyses
have been approached from a Natural Language Pro-
cessing (NLP) perspective, with the goal of build-
ing interfaces that allow students to naturally inter-
act with Intelligent Tutoring Systems (ITSs) (Moore
et al., 2004; Cade et al., 2008; Chi et al., 2010).
There have been two main types of approaches to
the analysis of tutoring dialogues. The first kind
of approach compares groups of subjects interact-
ing with different tutors (Graesser et al., 2004; Van-
Lehn et al., 2007), in some instances contrasting the

number of occurrences of relevant features between
the groups (Evens and Michael, 2006; Chi et al.,
2010). However, as we already argued in (Ohlsson
et al., 2007), this code-and-count methodology only
focuses on what a certain type of tutor (assumed to
be better according to certain criteria) doesdiffer-
ently from another tutor, rather than on strategies
that may be effective independently from their fre-
quencies of usage by different types of tutor. Indeed
we had followed this same methodology in previous
work (Di Eugenio et al., 2006), but a key turning
point for our work was to discover that our expert
and novice tutors were equally effective (please see
below).

The other kind of approach uses linear regression
analysis to find correlations between dialogue fea-
tures and learning gains (Litman and Forbes-Riley,
2006; Di Eugenio et al., 2009). Whereas linear
regression is broadly used to analyze experimental
data, only few analyses of tutorial data or tutoring
experiments use it. In this paper, we follow
Litman and Forbes-Riley (2006) in correlating se-
quences of Dialogue Acts (DAs) with learning gains.
We extend that work in that our bigram and trigram
DAs are not limited to tutor-student DA bigrams –
Litman and Forbes-Riley (2006) only considers bi-
grams where one DA comes from the tutor’s turn
and one from the student’s turn, in either order. Im-
portantly, we further relax constraints on how these
sequences are built, in particular, we are able to
model DA sequences that include gaps. This allows
us to discount the noise resulting from intervening
DAs that do not contribute to the effectiveness of
the specific sequence. For example, if we want to
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explore sequences in which the tutor first provides
some knowledge to solve the problem (DPI) and
then knowledge about the problem (DDI) (DPI and
DDI will be explained later), an exchange such as
the one in Figure 1 should be taken into account
(JAC and later LOW are the tutors, students are indi-
cated with a numeric code, such as 113 in Figure 1).
However, if we just use adjacent utterances, theok
from the student (113) interrupts the sequence, and
we could not take this example into account. By al-
lowing gaps in our sequences, we test a large number
of linear regression models, some of which result in
significant models that can be used as guidelines to
design an ITS. Specifically, these guidelines will be
used for further improvement of iList, an ITS that
provides feedback on linked list problems and that
we have developed over the last few years. Five
different versions of iList have been evaluated with
220 users (Fossati et al., 2009; Fossati et al., 2010).
iList is available at http://www.digitaltutor.net, and
has been used by more than 550 additional users at
15 different institutions.

JAC: so we would set k equal to e and then delete. [DPI]
113: ok.
JAC: so we’ve inserted this whole list in here.[DDI ]
113: yeah.

Figure 1:{DPI, DDI} Sequence Excerpt

The rest of the paper is organized as follows.
In Section 2, we describe the CS-Tutoring corpus,
including data collection, transcription, and anno-
tation. In Section 3, we introduce our methodol-
ogy that combines multiple linear regression with n-
grams of DAs that allow for gaps. We discuss our
experiments and results in Section 4.

2 The CS Tutoring Corpus

2.1 Data Collection

During the time span of 3 semesters, we collected a
corpus of 54 one-on-one tutoring sessions on Com-
puter Science data structures:linked list, stackand
binary search tree. (In the following context, we
will refer them asLists, StacksandTrees). Each stu-
dent only participated in one session, and was ran-
domly assigned to one of two tutors: LOW, an expe-
rienced Computer Science professor, with more than

30 years of teaching experience; or JAC, a senior un-
dergraduate student in Computer Science, with only
one semester of previous tutoring experience. In the
end 30 students interacted with LOW and 24 with
JAC.

Students took a pre-test right before the tutoring
session, and an identical post-test immediately after.
The test had two problems on Lists, two problems on
Stacks, and four problems on Trees. Each problem
was graded out of 5 points, for a possible maximum
score of 10 points each for Lists and Stacks, and 20
points for Trees. Pre and post-test scores for each
topic were later normalized to the [0..1] interval, and
learning gains were computed.

Table 1 includes information on session length.
Note that for each topic, the number of sessions is
lower than 54. The tutor was free to tutor on what
he felt was more appropriate, after he was given an
informal assessment of the student’s performance on
the pre-test (tutors were not shown pre-tests to avoid
that they’d tutor to the pre-test only). Hence, not
every student was tutored on every topic.

Topic N
Session length (minutes)

Min Max Total µ σ

Lists 52 3.4 41.4 750.4 14.4 5.8
Stacks 46 0.3 9.4 264.5 5.8 1.8
Trees 53 9.1 40.0 1017.6 19.2 6.6

Sessions 54 12.8 61.1 2032.5 37.6 6.1

Table 1: CS Tutoring Corpus - Descriptives

Each tutoring session was videotaped. The cam-
era was pointing at the sheets of paper on which tu-
tors and students were writing during the session.
The videos were all transcribed. The transcripts
were produced according to the rules and conven-
tions described in the transcription manual of the
CHILDES project (MacWhinney, 2000). Dialogue
excerpts included in this paper show some of the
transcription conventions. For example,’+...’
denotes trailing,’xxx’ unintelligible speech and
’#’ a short pause (see Figure 2). The CHILDES
transcription manual also provides directions on ut-
terance segmentation.

An additional group of 53 students (control
group) took the pre- and post-tests, but instead of
participating in a tutoring session they attended a
40 minute lecture about an unrelated CS topic. The
rationale for such a control condition was to assess
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LOW: what’s the if? [Prompt]
LOW: well of course, don’t do this if t two is null so if t
two isn’t null we can do that and xxx properly # thinking
I put it in here. [DPI]
LOW: or else if t two is null that’s telling us that this is
the +. . . [Prompt,FB]

Figure 2:{Prompt,DPI,FB} sequence excerpt

whether by simply taking the pre-test students would
learn about data-structures, and hence, to tease out
whether any learning we would see in the tutored
conditions would be indeed due to tutoring.

The learning gain, expressed as the difference
between post-score and pre-score, of students that
received tutoring wassignificantly higherthan the
learning gain of the students in the control group, for
all the topics. This was showed by ANOVA between
the aggregated group of tutored students and the
control group, and was significant at thep < 0.01

for each topic. There wasno significant difference
between the two tutored conditions in terms of learn-
ing gain. The fact that students did not learn more
with the experienced tutor was an important finding
that led us to question the approach of comparing
and contrasting more and less experienced tutors.

Please refer to (Di Eugenio et al., 2009) for further
descriptive measurements of the corpus.

2.2 Dialogue Act Annotation

Many theories have been proposed as concerns DAs,
and there are many plausible inventories of DAs, in-
cluding for tutorial dialogue (Evens and Michael,
2006; Litman and Forbes-Riley, 2006; Boyer et al.,
2010). We start from a minimalist point of view,
postulating that, according to current theories of
skill acquisition (Anderson, 1986; Sun et al., 2005;
Ohlsson, 2008), at least the following types of tuto-
rial intervention can be explained in terms of why
and how they might support learning:
1. A tutor can tell the student how to perform the
task.
2. A tutor can state declarative information about
the domain.
3. A tutor can provide feedback:
(a) positive, to confirm that a correct but tentative
step is in fact correct;
(b) negative, to help a student detect and correct an

error.
We first read through the entire corpus and exam-

ined it for impressions and trends, as suggested by
(Chi, 1997). Our informal assessment convinced us
that our minimalist set of tutoring moves was an ap-
propriate starting point. For example, contrary to
much that has been written about an idealized so-
cratic type of tutoring where students build knowl-
edge by themselves (Chi et al., 1994), our tutors
are rather directive in style, namely, they do a lot
of telling andstating. Indeed our tutors talk a lot,
to the tune of producing 93.5% of the total words!
We translated the four types above into the follow-
ing DAs: Direct Procedural Instruction (DPI), Di-
rect Declarative Instruction (DDI), Positive Feed-
back (+FB), and Negative Feedback (-FB). Besides
those 4 categories, we additionally annotated the
corpus for Prompt (PT), since our tutors did explic-
itly invite students to be active in the interaction.
We also annotated for Student Initiative (SI), to cap-
ture active participation on the part of the student’s.
SI occurs when the student proactively produces a
meaningful utterance, by providing unsolicited ex-
planation (see Figures 6 and 4), or by asking ques-
tions. As we had expected, SIs are not as frequent as
other moves (see below). However, this is precisely
the kind of move that a regression analysis would
tease out from others, if it correlates with learning,
even if it occurs relatively infrequently. This indeed
happens in two models, see Table 8.

Direct Procedural Instruction(DPI) occurs when
the tutor directly tells the student what task to per-
form. More specifically:

• Utterances containing correct steps that lead to
the solution of a problem, e.g. see Figure 1.

• Utterances containing high-level steps or sub-
goals (it wants us to put the new node that con-
tains G in it, after the node that contains B).

• Utterances containing tactics and strategies (so
with these kinds of problems, the first thing I
have to say is always draw pictures).

• Utterances where the tutor talked in the first-
person but in reality the tutor instructed the stu-
dent on what to do (So I’m pushing this value
onto a stack. So I’m pushing G back on).

Direct Declarative Instruction (DDI) occurred
when the tutor provided facts about the domain or
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a specific problem. The key to determine if an ut-
terance is DDI is that the tutor is telling the student
something that he or she ostensibly does not already
know. Common sense knowledge is not DDI (ten
is less than eleven). Utterances annotated as DDI
include:

• Providing general knowledge about data struc-
tures (the standard format is right child is al-
ways greater than the parent, left child is al-
ways less than the parent).

• Telling the student information about a specific
problem (this is not a binary search tree).

• Conveying the results of a given action (so now
since we’ve eliminated nine, it’s gone).

• Describing pictures of data structures (and then
there is a link to the next node).

Prompts (PT) occur when the tutor attempts to
elicit a meaningful contribution from the student.
We code for six types of tutor prompts, including:

• Specific prompt: An attempt to get a specific
response from the student (that’s not b so what
do we want to do?).

• Diagnosing: The tutor attempts to determine
the student’s knowledge state (why did you put
a D there?).

• Confirm-OK: The tutor attempts to determine if
the student understood or if the student is pay-
ing attention (okay, got that idea?).

• Fill-in-the-blank: The tutor does not complete
an utterance thereby inviting the student to
complete the utterance, e.g. see Figure 2.

Up to now we have discussed annotations for ut-
terances that do not explicitly address what the stu-
dent has said or done. However, many tutoring
moves concern providing feedback to the student.
Indeed as already known but not often acted upon in
ITS interfaces, tutors do not just point out mistakes,
but also confirm that the student is making correct
steps. While the DAs discussed so far label single
utterances, our positive and negative feedback (+FB
and -FB) annotations comprise a sequence of con-
secutive utterances, that starts where the tutor starts
providing feedback. We opted for a sequence of ut-
terances rather than for labeling one single utterance
because we found it very difficult to pick one single
utterance as the one providing feedback, when the

tutor may include e.g. an explanation that we con-
sider to be part of feedback. Positive feedback oc-
curs when the student says or does something cor-
rect, either spontaneously or after being prompted
by the tutor. The tutor acknowledges the correctness
of the student’s utterance, and possibly elaborates on
it with further explanation. Negative feedback oc-
curs when the student says or does something incor-
rect, either spontaneously or after being prompted
by the tutor. The tutor reacts to the mistake and pos-
sibly provides some form of explanation.

After developing a first version of the coding
manual, we refined it iteratively. During each itera-
tion, two human annotators independently annotated
several dialogues for one DA at a time, compared
outcomes, discussed disagreements, and fine-tuned
the scheme accordingly. This process was repeated
until a sufficiently high inter-coder agreement was
reached. The Kappa values we obtained in the fi-
nal iteration of this process are listed in Table 2
(Di Eugenio and Glass, 2004; Artstein and Poesio,
2008). In Table 2, the “Double Coded*” column
refers to the sessions that we double coded to cal-
culate the inter-coder agreement. This number does
not include the sessions which were double coded
when coders were developing the coding manual.
The numbers of double-coded sessions differ by DA
since it depends on the frequency on the particular
DA (recall that we coded for one DA at a time).
For example, since Student Initiatives (SI) are not as
frequent, we needed to double code more sessions
to find a number of SI’s high enough to compute a
meaningful Kappa (in our whole corpus, there are
1157 SIs but e.g. 4957 Prompts).

Category Double Coded* Kappa
DPI 10 .7133
Feedback 5 .6747
DDI 10 .8018
SI 14 .8686
Prompt 8 .9490
Table 2: Inter-Coder Agreement in Corpus

The remainder of the corpus was then indepen-
dently annotated by the two annotators. For our
final corpus, for the double coded sessions we did
not come to a consensus label when disagreements
arose; rather, we set up a priority order based on
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topic and coder (e.g., during development of the
coding scheme, when coders came to consensus
coding, which coder’s interpretation was chosen
more often), and we chose the annotation by a cer-
tain coder based on that order.

As a final important note, given our coding
scheme some utterances have more than one label
(see Figures 2 and 4), whereas others are notla-
belled at all. Specifically, most student utterances,
and some tutor utterances, are not labelled (see Fig-
ures 1 and 4).

3 Method

3.1 Linear Regression Models

In this work, we adopt a multiple regression model,
because it can tell us how much variation in learning
outcomes is explained by the variation of individual
features in the data. The features we use include pre-
test score, the length of the tutoring sessions, and
DAs, both the single DAs we annotated for and DA
n-grams, i.e. DA sequences of lengthn. Pre-test
score is always included since the effect of previ-
ous knowledge on learning is well established, and
confirmed in our data (see all Models 1 in Table 4);
indeed multiple linear regression allows us to factor
out the effect of previous knowledge on learning, by
quantifying the predictive power of features that are
added beyond pre-test score.

3.2 n-gram Dialogue Act Model

n-grams (sequences ofn units, such as words, POS
tags, dialogue acts) have been used to derive lan-
guage models in computational linguistics for a long
time, and have proven effective in tasks like part-of-
speech tagging, spell checking.

Our innovation with regard to using DA n-grams
is to allow gaps in the sequence. This allows us
to extract the sequences that are really effective,
and to eliminate noise. Note that from the point
of view of an effective sequence,noise is anything
that does not contribute to the sequence. For ex-
ample, a tutor’s turn may be interrupted by a stu-
dent’s acknowledgments, such as “OK” or “Uh-hah”
(see Figure 1). Whereas these acknowledgments
perform fundamental functions in conversation such
as grounding (Clark, 1992), they may not directly
correlate with learning (a hypothesis to test). If we

counted them in the sequence, they would contribute
two utterances, transforming a 3 DA sequence into a
5 DA sequence. As well known, the higher then, the
sparser the data becomes, i.e., the fewer sequences
of length n we find, making the task of discover-
ing significant correlations all the harder. Note that
some of the bigrams in (Litman and Forbes-Riley,
2006) could be considered to have gaps, since they
pair one student move (say SI) with each tutor move
contained in the next tutor turn (eg, in our Figure 6
they would derive two bigrams [SI, FB], and [SI,
Prompt]). However, this does not result in a system-
atic exploration of all possible sequences of a certain
lengthn, with all possible gaps of length up tom, as
we do here.

The tool that allows us to leave gaps in sequences
is part of Apache Lucene,1 an open source full text
search library. It provides strong capabilities to
match and count efficiently. Our counting method
is based on two important features provided by
Lucene, that we already used in other work (Chen
and Di Eugenio, 2010) to detect uncertainty in dif-
ferent types of corpora.

• Synonym matching: We can specify several
different tokens at the same position in a field
of a document, so that each of them can be used
to match the query.

• Precise gaps: With Lucene, we can precisely
specify the gap between the matched query and
the indexed documents (sequences of DAs in
our case) using a special type of query called
SpanNearQuery.

To take advantage of Lucene as described above,
we use the following algorithm to index our corpus.

1. For each Tutor-Topic session, we generate n-
gram utterance sequences – note that these are
sequences of utterances at this point, not of
DAs.

2. We prune utterance sequences where either 0
or only 1 utterance is annotated with a DA, be-
cause we are mining sequences with at least 2
DAs. Recall that given our annotation, some ut-
terances are not annotated (see e.g. Figure 1).

3. After pruning, for each utterance sequence, we
generate a Lucene document: each DA label on
an utterance will be treated as a token, multiple

1http://lucene.apache.org/
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labels on the same utterance will be treated as
“synonyms”.

By indexing annotations as just described, we
avoid the problem of generating too many combina-
tions of labels. After indexing, we can use SpanN-
earQuery to query the index. SpanNearQuery allows
us to specify the position distance allowed between
each term in the query.

Figure 3 is the field of the generated Lucene doc-
ument corresponding to the utterance sequences in
Figure 4. We can see that each utterance of the tu-
tor is tagged with 2 DAs. Those 2 DAs produce 2
tokens, which are put into the same position. The
tokens in the same position act as synonyms to each
other during the query.

Figure 3: Lucene Document Example for DAs

258: okay.
JAC: its right child is eight. [DDI, FB]
258: uh no it has to be greater than ten. [SI]
JAC: right so it’s not a binary search tree # it’s not a b s t,
right? [DDI,Prompt]

Figure 4:{FB, SI, DDI} is most effective in Trees

4 Experiments and Results

Here we build on our previous results reported
in (Di Eugenio et al., 2009). There we had shown
that, for lists and stacks, models that include positive
and negative feedback are significant and explain
more of the variance with respect to models that only
include pre-test score, or include pre-test score and
session length. Table 4 still follows the same ap-
proach, but adds to the regression models the addi-
tional DAs, DPI, DDI, Prompt and SI that had not
been included in that earlier work. The columnM

refers to three types of models, Model 1 only in-
cludes Pre-test, Model 2 adds session length to Pre-
test, and Model 3 adds to Pre-test all the DAs. As ev-
idenced by the table, only DPI provides a marginally
significant contribution, and only for lists. Note that
length is not included in Model 3’s. We did run all
the equivalent models to Model 3’s including length.

TheR2’s stay the same (literally, to the second dec-
imal digit), or minimally decrease. However, in all
these Model 3+’s that include length no DA is sig-
nificant, hence we consider them as less explana-
tory than the Model 3’s in Table 4: finding that a
longer dialogue positively affects learning does not
tell us what happens during that dialogue which is
conducive to learning.

Note that theβ weights on the pre-test are al-
ways negative in every model, namely, students with
higher pre-test scores learn less than students with
lower pre-test scores. This is an example of the well-
known ceiling effect: students with more previous
knowledge have lesslearning opportunity. Also no-
ticeable is that theR2 for the Trees models are much
higher than for Lists and Stacks, and that for Trees
no DA is significant (although there will be signifi-
cant trigram models that involve DAs for Trees). We
have observed that Lists are in general more diffi-
cult than Stacks and Trees (well, at least than binary
search trees) for students.

Topic Pre-Test σ Gain σ

Lists .40 .27 .14 .25
Stacks .29 .30 .31 .24
Trees .50 .26 .30 .24

Table 3: Learning gains and t-test statistics

Indeed Table 3 shows that in the CS-tutoring cor-
pus the average learning gain is only .14 for Lists,
but .31 for Stacks and .30 for Trees; whereas stu-
dents have the lowest pre-test score on Stacks, and
hence they have more opportunities for learning,
they learn as much for Trees, but not for Lists.

We now examine whether DA sequences help us
explain why student learn. We have run 24 sets of
linear regression experiments, which are grouped as
the following 6 types of models.
• With DA bigrams (DA sequences of length 2):

– Gain∼ DA Bigram
– Gain∼ DA Bigram + Pre-test Score
– Gain ∼ DA Bigram + Pre-test Score +

Session Length
• With DA trigrams (DA sequences of length 3):

– Gain∼ DA Trigram
– Gain∼ DA Trigram + Pre-test Score
– Gain ∼ DA Trigram + Pre-test Score +

Session Length
For each type of model:
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Topic M Predictor β R2 P

Lists

1 Pre-test −.47 .20 < .001

2
Pre-test −.43

.29
< .001

Length .01 < .001

3

Pre-test −.500

.377

< .001

+FB .020 < .01

-FB .039 ns

DPI .004 < .1

DDI .001 ns

SI .005 ns

Prompt .001 ns

Stacks

1 Pre-test −.46 .296 < .001

2
Pre-test −.46

.280
< .001

Length −.002 ns

3

Pre-test −.465

.275

< .001

+FB −.017 < .01

-FB −.045 ns

DPI .007 ns

DDI .001 ns

SI .008 ns

Prompt −.006 ns

Trees

1 Pre-test −.739 .676 < .001

2
Pre-test −.733

.670
< .001

Length .001 ns

3

Pre-test −.712

.667

< .001

+FB −.002 ns

-FB −.018 ns

DPI −.001 ns

DDI −.001 ns

SI −.001 ns

Prompt −.001 ns

All

1 Pre-test −.505 .305 < .001

2
Pre-test −.528

.338
< .001

Length .06 < .001

3

Pre-test −.573

.382

< .001

+FB .009 < .001

-FB −.024 ns

DPI .001 ns

DDI .001 ns

SI .001 ns

Prompt .001 ns

Table 4: Linear Regression – Human Tutoring

1. We index the corpus according to the length of
the sequence (2 or 3) using the method we in-
troduced in section 3.2.

2. We generate all the permutations of all the DAs
we annotated for within the specified length;
count the number of occurrences of each per-
mutation using Lucene’s SpanNearQuery al-
lowing for gaps of specified length. Gaps can
span from 0 to 3 utterances; for example, the

excerpt in Figure 1 will be counted as a{DPI,
DDI} bigram with a gap of length 1. Gaps can
be discontinuous.

3. We run linear regressions2 on the six types of
models listed above, generating actual models
by replacing a generic DA bi- or tri-gram with
each possible DA sequence we generated in
step 2.

4. We output those regression results, in which the
whole model and every predictor are at least
marginally significant (p < 0.1).

The number of generated significant models is
shown in Figure 5. In the legend of the Figure,
B stands forBigram DA sequence, T stands for
Trigram DA sequence, L stands for sessionLength,
P stands forPre-test score. Not surprisingly, Fig-
ure 5 shows that, as the allowed gap increases in
length, the number of significant models increases
too, which give us more models to analyze.
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Figure 5: Gaps Allowed vs. Significant Models

Figure 5 shows that there are a high number of
significant models. In what follows we will present
first of all those that improve on the models that
do not use sequences of DAs, as presented in Ta-
ble 4. Improvement here means not only that the
R2 is higher, but that the model is more appropriate
as an approximation of a tutor strategy, and hence,
constitutes a better guideline for an ITS. For exam-
ple, take model 3 for Lists in Table 4. It tells us
that positive feedback (+FB) and direct procedural
instruction (DPI) positively correlate with learning

2We used rJava, http://www.rforge.net/rJava/
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gains. However, this obviously cannot mean that our
ITS should only produce +FB and DPI. The ITS is
interacting with the student, and it needs to tune its
strategies according to what happens in the interac-
tion; model 3 doesn’t even tell us if +FB and DPI
should be used together or independently. Models
that include sequences of DAs will be more useful
for the design of an ITS, since they point out what
sequences of DAs the ITS may use, even if they still
don’t answer the question, when should the ITS en-
gage in a particular sequence – we have addressed
related issues in our work on iList (Fossati et al.,
2009; Fossati et al., 2010).

4.1 Bigram Models

{DPI, Feedback} Model Indeed the first signifi-
cant models that include a DA bigram include the
{DPI, Feedback} DA sequence. Note that we distin-
guish between models that employ Feedback (FB)
without distinguishing between positive and nega-
tive feedback; and models where the type of feed-
back is taken into account (+FB, -FB). Table 5 shows
that for Lists, a sequence that includes DPI followed
by any type of feedback (Feedback, +FB, -FB) pro-
duces significant models when the model includes
pre-test. Table 5 and all tables that follow include
the columnGap that indicates the length of the gap
within the DA sequence with which that model was
obtained. When, as in Table 5, multiple numbers
appear in theGap column, this indicates that the
model is significant with all those gap settings. We
only show theβ, R2 andP values for the gap length
which generates the highestR2 for a model, and the
corresponding gap length is in bold font: for exam-
ple, the first model for Lists in Table 5 is obtained
with a gap length = 2. For Lists, these models are not
as predictive as Model 3 in Table 4, however we be-
lieve they are more useful from an ITS design point
of view: they tell us that when the tutor gives direct
instruction on how to solve the problem, within a
short span of dialogue the tutor produces feedback,
since (presumably) the student will have tried to ap-
ply that DPI. For Stacks, a{DPI, -FB} model (with-
out taking pre-test into account) significantly corre-
lates (p < 0.05) with learning gain, and marginally
significantly correlates with learning gain when the
model also includes pre-test score. This latter model
is actually more predictive than Model 3 for Stacks

in Table 4 that includes +FB but not DPI. We can
see theβ weight is negative for the sequence{DPI,
-FB} in the Stacks model. No models including the
bigram{DPI, -FB} are significant for Trees.

Topic Predictor β R2 P Gap

Lists

DPI, -FB .039
.235

<.001
2, 3

Pre-test −.513 < .001

DPI, +FB .019

.339

<.001
0, 1, 2, 3Pre-test −.492 < .001

Length .011 < 0.05

DPI, FB .016

.333

<.05
0, 1, 2, 3Pre-test −.489 < .001

Length .011 < 0.05

Stacks
DPI, -FB −.290 .136 <.05 0, 1, 2, 3

DPI, -FB −.187
.342

<.1
0, 1, 2, 3

Pre-test −.401 < .001

Table 5: DPI, Feedback Model

{FB, DDI} Model A natural question arises:
since Feedback following DPI results in significant
models, are there any significant models which in-
clude sequences whose first component is a Feed-
back move? We found only two that are signif-
icant, when Feedback is followed by DDI (Direct
Declarative Instruction). Note that here we are not
distinguishing between negative and positive feed-
back. Those models are shown in Table 6. The
Lists model is not more effective than the original
Model 3 for Lists in Table 4, but the model for Trees
is slightly more explanatory than the best model
for Trees in that same table, and includes a bigram
model, whereas in Table 4, only pre-test is signifi-
cant for Trees.

Topic Predictor β R2 P Gap

Lists
FB, DDI .1478

.321

<.1
1Pre-test −.470 < .001

Length .011 < .05

Trees
FB, DDI .0709

.6953
<.05

0
Pre-test −.7409 < .001

Table 6:{FB, DDI} Model

4.2 Trigram Models

{DPI, FB, DDI} Model Given our significant bi-
gram models for DPI followed by FB, and FB fol-
lowed by DDI, it is natural to ask whether the com-
bined trigram model{DPI, FB, DDI} results in a
significant model. It does for the topic List, as
shown in table 7, however again theR2 is lower than
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that of Model 3 in Table 4. This suggests that an ef-
fective tutoring sequence is to provide instruction on
how to solve the problem (DPI), then Feedback on
what the student does, and finally some declarative
instruction (DDI).

Topic Predictor β R2 P Gap

Lists
DPI, FB, DDI .156

.371

<.01
1Pre-test −.528 < .001

Length .012 < .05

Table 7:{DPI, FB, DDI} Model

More effective trigram models include Prompt
and SI. Up to now, only one model including se-
quences of DAs was superior to the simpler models
in Table 4. Interestingly, different trigrams that still
include some form of Feedback, DPI or DDI, and
then either Prompt or SI (Student Initiative) result in
models that exhibit slightly higherR2; additionally
in all these models the trigram predictor is highly
significant. These models are listed in table 8 (note
that the two Trees models differ because in one FB is
generic Feedback, irregardless of orientation, in the
other it’s +FB, i.e., positive feedback). In detail, im-
provements inR2 are 0.0382 in topic Lists, 0.12 in
topic Stacks and 0.0563 in topic Trees. The highest
improvement is in Stacks.

Topic Predictor β R2 P Gap

Lists
PT,DPI,FB .266

.415

<.01
0Pre-test −.463 < .001

Length .011 < .05

Stacks
DDI,FB,PT −.06

.416
<.01

1
Pre-test −.52 < .001

Trees
+FB,SI,DDI .049

.732
<.01

1
Pre-test −.746 < .001

Trees
FB,SI,DDI .049

.732
<.01

1
Pre-test −.746 < .001

Table 8: HighestR2 Models

It is interesting to note that the model for Lists add
Promptat the beginning to a bigram that had already
been found to contribute to a significant model. For
Trees, likewise, we add another DA to the bigram
{FB,DDI} that had been found to be significant; this
time, it is Student Initiative (SI) and it occurs in
the middle. This indicates that, after the tutor pro-
vides feedback, the student takes the initiative, and
the tutor responds with one piece of information the
student didn’t know (DDI). Of course, the role of

Prompts and SI is not surprising, although interest-
ingly they are significant only in association with
certain tutor moves. It is well known that students
learn more when they build knowledge by them-
selves, either by taking the initiative (SI), or after
the tutor prompts them to do so (Chi et al., 1994;
Chi et al., 2001).

LOW: it’s backwards # it’s got four elements, but they
are backwards. [DDI ]
234: so we have do it again. [SI]
LOW: so do it again. [FB]
LOW: do what again? [Prompt]

Figure 6:{DDI, FB, PT} is most effective in Stacks

4.3 Other models

We found other significant models, specifically,
{DDI,DPI} for all three topics, and{-FB,SI} for
Lists. However, theirR2 are very low, and much
lower than any of the other models presented so
far. Besides models that includeonly oneDA se-
quenceand pre-test score to predict learning gain,
we also ran experiments to see if adding multiple
DA sequences to pre-test score will lead to signifi-
cant models – namely, we experimented with mod-
els which include two sequences as predictors, say,
the two bigrams{-FB,SI} and{FB,DDI}. However,
no significant models were found.

5 Conclusions

In this paper, we explored effective tutoring strate-
gies expressed as sequence of DAs. We first pre-
sented the CS-Tutoring corpus. By relaxing the DA
n-gram definition via the fuzzy matching provided
by Apache Lucene, we managed to discover several
DA sequences that significantly correlate with learn-
ing gain. Further, we discovered models with higher
R2 than models which include only one single DA,
which are also more informative from the point of
view of the design of interfaces to ITSs.
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Abstract 

Research has shown that a number of 

factors, such as maturational constraints, 

previous language background, and 

attention, can have an effect on L2 

acquisition. One related issue that remains 

to be explored is what factors make an 

individual word more easily learned. In 

this study we propose that word 

complexity, on both the phonetic and 

semantic levels, affect L2 vocabulary 

learning. Two studies showed that words 

with simple grapheme-to-phoneme ratios 

were easier to learn than more 

phonetically complex words, and that 

words with two or fewer word senses 

were easier to learn that those with three 

or more.  

1 Introduction 

There is much computer-assisted language learning 

(CALL) literature that explores effective methods 

of teaching vocabulary. In recent studies conducted 

using the REAP system, which finds documents 

from the internet to teach vocabulary, we have 

shown that speech synthesis reinforces written text 

for learning in reading activities (Dela Rosa et al., 

2010), and we have also shown that context-

sensitive dictionary definitions afford better 

vocabulary learning for L2 language students (Dela 

Rosa and Eskenazi, 2011).  

One issue that remains to be explored in this 

context: determining what factors make an 

individual word easier to learn. We propose that 

word complexity, on both the phonetic and 

semantic levels, can affect how easily an L2 

vocabulary word can be learned.  

In this paper we first discuss past work on 

factors that impact vocabulary acquisition in 

intelligent tutoring environments, and then explore 

work on defining the complexity of a word with 

respect to vocabulary learning. Next we describe 

two classroom studies we conducted with ESL 

college students to test the effect of word 

complexity on L2 vocabulary learning. Finally we 

examine our results and suggest future research 

directions. 

2 Background 

Many studies have been conducted to investigate 

the relationship between different variables and 

second language learning. For example, the age of 

the foreign language learner is often pointed to as a 

major factor in determining whether an individual 

will be successful in learning a new language 

(Marinova-Todd, 2000).  

In the domain of L2 vocabulary instruction, 

researchers have shown that factors such as 

maturational constraints, attention, previous 

language background, and order of acquisition, can 

all affect L2 vocabulary acquisition (Oxford and 

Scarcella, 1994). Additionally, another factor that 

affects L2 vocabulary learning is the number of 

exposures of a practice item that a student receives 

during learning activities. In a study on the effects 

of spacing and retention of vocabulary pairs, 

Pavlik and Anderson (2005) showed that each time 

an item is practiced, it receives an increment of 
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strength, but these increments decay as a power 

function of time. Furthermore, it is generally 

accepted that reading is beneficial to vocabulary 

acquisition (Perfetti, 2010).  

One group of factors in foreign language 

vocabulary instruction that has often been 

overlooked is at the level of the individual word, 

such as word complexity. In sections 3.2 and 3.3, 

we describe two simple measures of phonetic and 

semantic word complexity that were examined 

during our classroom studies. There have been 

work on defining the complexity of a word, such as 

Jakielski’s (1998) Index of Phonetic Complexity, 

but we do not know of work that measures the 

effect of word complexity on L2 vocabulary 

learning. 

3 Classroom Study Setup 

In order to determine the effect that word 

complexity, in both the phonetic and semantic 

levels, have on L2 language learners, we 

conducted two in-vivo studies with ESL students at 

the English Language Institute of the University of 

Pittsburgh. The first study focused on the effect of 

phonetic word complexity on vocabulary learning. 

The second study explored the effect of semantic 

word complexity, in the form of the number of 

senses a word has, on vocabulary learning. Both 

studies and the tutoring system that was used are 

described in the next sections. 

3.1 Overview of the Tutoring System 

The tutoring system, REAP, is a web-based 

language tutor developed at Carnegie Mellon that 

harvests documents from the internet for L2 

vocabulary learning and reading comprehension 

(Heilman et al., 2006). It has been used as a testing 

platform for cognitive science studies. This system 

has the ability to provide reader-specific passages 

by consulting profiles that model a reader’s 

reading level, topic interests, and vocabulary goals. 

The system’s interface has several features that 

enhance a student’s learning experience. One key 

feature is that it provides users with the ability to 

listen to the spoken version of any word that 

appears in a document, making use of the Cepstral 

Text-to-Speech system (2001) to synthesize words 

on the fly when clicked on. Additionally, students 

can look up the definition of any of the words they 

encounter while reading the documents using an 

embedded electronic dictionary. The system also 

automatically highlights focus words, i.e. the 

words targeted for vocabulary learning in a 

particular reading. 

3.2 Study 1: Phonetic Complexity 

In Study 1, we looked at the effect that phonetic 

complexity, one measure of a word’s complexity, 

has on learning a word, and whether this 

complexity causes a word to be learned more 

easily when multimodal input is provided in the 

form of written text accompanied by spoken text 

generated through speech synthesis. To measure a 

word’s phonetic complexity, we used the ratio of a 

word’s graphemes to phonemes, where words with 

a ratio closer to 1 were simpler than those with a 

ratio much greater or less than 1. Note that for this 

study, simple letters have been used as the 

grapheme units. 

For example, the word cat has a simple one-to-

one mapping between its graphemes and phonemes 

(C A T vs. K AE T), while other words like 

borough and index have a more complex 

relationship (B O R O U G H vs. B ER OW, and I 

N D E X vs. IH N D EH K S), with grapheme-to-

phoneme ratios greater than 1 and less than 1 

respectively. 

For this study, there were 21 intermediate-level 

ESL college students at the University of Pittsburgh’s 

English Language Institute whose native languages 

included Arabic, Chinese and Spanish. Weekly 

group readings were given as class activities, 

centered on a total of 18 focus words, followed by 

practice closed cloze questions (multiple-choice 

fill-in-the-blank with 5 answer choices provided, 

and distractors coming from the Academic Word 

List or words that are similar but do not fit the 

blank properly) on the focus words that appeared 

in the particular reading. The focus words used in 

this study were taken evenly from the following 

word groups: 

 Words with grapheme-to–phoneme ratio 

equal to 1 [6 words] 

 Words with grapheme-to–phoneme ratio 

greater than 1 [6 words] 

 Words with grapheme-to–phoneme ratio 

less than 1 [6 words] 

A pre-test was administered at the beginning of 

the study, consisting of closed cloze questions 

about the focus words. A similar set of questions 
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was presented to the students during the post-test, 

which occurred one week after the last reading 

activity. Between the pre-test and post-test, 6 

reading activities were administered, one per week, 

each focused on a single document. This activity 

typically took students 20-30 minutes to complete.  

3.3 Study 2: Semantic Complexity 

In Study 2, we investigated the effect that multiple 

word-senses, another measure of word complexity, 

have on learning a word. There were 21 
intermediate-level ESL college students at the 

University of Pittsburgh’s English Language Institute, 

whose native languages included Arabic, Chinese, 

Korean, and Spanish. As in Study 1 there was a 

pre-test, a post-test, and a series of weekly 

documents to be read featuring the focus words. In 

total there were 26 focus words, all of which were 

taken from the Academic Word List and 7 weekly 

reading activities.  

 

 
 

With respect to word complexity, the focus 

words were divided into the following groups: 

 Words with 1 sense [8 words] 

 Words with 2 senses [10 words] 

 Words with 3 or more senses [8 words] 

4 Results 

The results of both of our studies showed that the 

use of the tutoring system significantly helped 

students improve their performance on the 

vocabulary tests, as made evident by the average 

overall gains between the pre-test and post-test (p 

< 0.001). Note that the error bars shown in this 

section show the standard error. Also note that 

normalized gain, the measurement being used to 

describe improvement in both studies, is given the 

by the following:  

 

If the post-test score is greater than the pre-test 

score, then 
 

Normalized gain = (post-test score – pre-test 

score) / (maximum-possible-score – pre-test score) 
 

Otherwise, 
 

Normalized gain = (post-test score – pre-test 

score) / (pre-test score) 
 

In Study 1, the average normalized gain 

between the pre-test and post-test was 0.2563 (± 

0.0466). Figure 1 illustrates the differences in 

vocabulary gain when the gains are separated by 

word condition type. The average gains per 

condition are 0.2222, 0.1270, and 0.1191 for the 

conditions of grapheme-to-phoneme ratio = 1, 

grapheme-to-phoneme ratio > 1, and grapheme-to-

phoneme ratio < 1 respectively. 

In Study 2, the average normalized gain 

between the pre-test and post-test was 0.5323 (± 

0.0833). Figure 2 illustrates the impact of word 

sense complexity on vocabulary gains. With 

respect to word sense complexity, the average 

gains per condition are 0.2495, 0.4163, and 0.1699 

for the 1-sense, 2-senses, and 3-or-more senses 

conditions respectively. 

5 Discussion  

The results of both studies tend to confirm our 

initial hypotheses and suggest that word 

complexity, in the forms of phonetic complexity 

and the number of word senses a word has, does 

make a significant difference in how easily an L2 

vocabulary word is learned.  

 
Figure 2: Impact of word sense complexity on the 

improvement between pre-test & post-test in Study 2 

 
Figure 1: Impact of phonetic complexity on the 

improvement between pre-test & post-test in Study 1 
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In Study 1, we see that the ‘simple’ words 

(those with grapheme-to-phoneme ratios equal to 

1), afford more learning than the more ‘complex’ 

words, as made evident by the difference in gains 

between the pre-test and post-test (p < 0.04) shown 

in Figure 1. This result suggests that the phonetic 

complexity of a word may play a role in learning 

that word in an intelligent tutoring environment. 

In Study 2, the words with many senses (3 or 

more) have significantly lower gains than words 

with 1 or 2 senses (p < 0.05). There was no 

significant difference in gains between words with 

1 word sense and words with 2 word senses, as 

shown in Figure 2. This result seems to suggest 

that words with 2 or fewer word senses are 

generally easier for L2 students to learn than those 

with 3 or more word senses. This could be because 

a student has a harder time choosing the correct 

meaning of a word amongst many choices. Fewer 

choices seem to afford more learning than showing 

just the right one, which may indicate that by 

comparing two meanings with the meaning in the 

document, the student is actively constructing her 

knowledge of the word. Dela Rosa and Eskenazi 

(2011) found that giving students only the correct 

meaning of a polysemous word afforded less 

learning than giving them several meanings in a 

ranked order. 

6 Conclusion and Future Directions 

This paper demonstrates that word complexity can 

affect how easily an L2 vocabulary word can be 

learned. We proposed two dimensions of word 

complexity, one based on the complexity of a 

word’s grapheme to phoneme ratio, and another 

based on the number of meanings a word has. Two 

in-vivo studies were conducted with ESL college 

students to test our hypothesis. Our results suggest 

that word complexity on both the phonetic and 

semantic level does have an effect on L2 

vocabulary learning.  

A future research direction that this work 

suggests is the search for other measures of word 

complexity, such as a more complex measure of 

grapheme to phoneme ratio, for example taking 

into account the ambiguity of a particular 

grapheme, or more complex measures of semantic 

complexity, like one that may take the average 

number of synonyms a word sense has, to 

determine their effect on learning using an 

intelligent tutoring system. This information could 

help define different ways to teach different words, 

providing more scaffolding for harder words, for 

example. 

We would also like to investigate whether the 

average aggregate vocabulary learning trends of 

different native language groups correlates with 

different measures of word complexity, and thus 

might reveal a relation between the structure of L1 

and difficulties in L2 vocabulary learning. 

Finally we would like to investigate whether 

providing examples of focus word usage prior to or 

following a reading activity is beneficial to 

vocabulary learning.  
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Appendix A. Words Used in Studies 

Words from Study 1: condominium, exotic, 

boost, escapism, yearning, asylum, blatant, 

denizens, partisan, expats, influx, levy, taxes, 

lucrative, sector, ostracism, taunts, withdrawal 
 

Words from Study 2: established, incorporated, 

intervention, coherent, facilitate, induce, relax, 

designed, flexible, inspected, registered, category, 

enforce, illustrations, accumulate, hypothesis, 

period, qualitative, simulations, conducted, debate, 

domestic, found, concentrate, depression, register 
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Abstract

We further work on detecting errors in post-
positional particle usage by learners of Korean
by improving the training data and develop-
ing a complete pipeline of particle selection.
We improve the data by filtering non-Korean
data and sampling instances to better match
the particle distribution. Our evaluation shows
that, while the data selection is effective, there
is much work to be done with preprocessing
and system optimization.

1 Introduction

A growing area of research in analyzing learner lan-
guage is to detect errors in function words, namely
categories such as prepositions and articles (see Lea-
cock et al., 2010, and references therein). This work
has mostly been for English, and there are issues,
such as greater morphological complexity, in mov-
ing to other languages (see, e.g., de Ilarraza et al.,
2008; Dickinson et al., 2010). Our goal is to build a
machine learning system for detecting errors in post-
positional particles in Korean, a significant source of
learner errors (Ko et al., 2004; Lee et al., 2009b).

Korean postpositional particles are morphemes
that attach to a preceding nominal to indicate a range
of linguistic functions, including grammatical func-
tions, e.g., subject and object; semantic roles; and
discourse functions. In (1), for instance, ka marks
the subject (function) and agent (semantic role).1

Similar to English prepositions, particles can also
have modifier functions, adding meanings of time,
location, instrument, possession, and so forth.

1We use the Yale Romanization scheme for writing Korean.

(1) Sumi-ka
Sumi-SBJ

John-uy
John-GEN

cip-eyse
house-LOC

ku-lul
he-OBJ

twu
two

sikan-ul
hours-OBJ

kitaly-ess-ta.
wait-PAST-END

‘Sumi waited for John for (the whole) two hours in
his house.’

We treat the task of particle error detection as
one of particle selection, and we use machine learn-
ing because it has proven effective in similar tasks
for other languages (e.g., Chodorow et al., 2007;
Oyama, 2010). Training on a corpus of well-formed
Korean, we predict which particle should appear af-
ter a given nominal; if this is different from the
learner’s, we have detected an error. Using a ma-
chine learner has the advantage of being able to per-
form well without a researcher having to specify
rules, especially with the complex set of linguistic
relationships motivating particle selection.2

We build from Dickinson et al. (2010) in two
main ways: first, we implement a presence-selection
pipeline that has proven effective for English prepo-
sition error detection (cf. Gamon et al., 2008). As
the task is understudied, the work is preliminary, but
it nonetheless is able to highlight the primary ar-
eas of focus for future work. Secondly, we improve
upon the training data, in particular doing a better
job of selecting relevant instances for the machine
learner. Obtaining better-quality training data is a
major issue for machine learning applied to learner
language, as the domain of writing is different from
news-heavy training domains (Gamon, 2010).

2See Dickinson and Lee (2009); de Ilarraza et al. (2008);
Oyama (2010) for related work in other languages.
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2 Particle error detection

2.1 Pre-processing

Korean is an agglutinative language: Korean words
(referred to as ecels) are usually composed of a
root with a number of functional affixes. We thus
first segment and POS tag the text, for both train-
ing and testing, using a hybrid (trigram + rule-
based) morphological tagger for Korean (Han and
Palmer, 2004). The tagger is designed for native
language and is not optimized to make guesses for
ill-formed input. While the POS tags assigned to the
learner corpus are thus often incorrect (see Lee et al.,
2009a), there is the more primary problem of seg-
mentation, as discussed in more detail in section 4.

2.2 Machine learning

We use the Maximum Entropy Toolkit (Le, 2004)
for machine learning. Training on a corpus of well-
formed Korean, we predict which particle should ap-
pear after a given nominal; if this is different from
what the learner used, we have detected an error. It
is important that the data represent the relationships
between specific lexical items: in the comparable
English case, for example, interest is usually found
with in: interest in/*with learning.

Treating the ends of nominal elements as possible
particle slots, we break classification into two steps:
1) Is there a particle? (Yes/No); and 2) What is the
exact particle? Using two steps eases the task of ac-
tual particle prediction: with a successful classifica-
tion of negative and positive instances, there is no
need to handle nominals that have no particle in step
2. To evaluate our parameters for obtaining the most
relevant instances, we keep the task simple and per-
form only step 1, as this step provides information
about the usability of the training data. For actual
system performance, we evaluate both steps.

In selecting features for Korean, we have to ac-
count for relatively free word order (Chung et al.,
2010). We follow our previous work (Dickinson
et al., 2010) in our feature choices, using a five-
word window that includes the target stem and two
words on either side for context (see also Tetreault
and Chodorow, 2008). Each word is broken down
into: stem, affixes, stem POS, and affixes POS. We
also have features for the preceding and following
noun and verb, thereby approximating relevant se-

lectional properties. Although these are relatively
shallow features, they provide enough lexical and
grammatical context to help select better or worse
training data (section 3) and to provide a basis for a
preliminary system (section 4).

3 Obtaining the most relevant instances

We need well-formed Korean data in order to train
a machine learner. To acquire this, we use web-
based corpora, as this allows us to find data similar
to learner language, and using web as corpus (WaC)
tools allows us to adjust parameters for new data
(Dickinson et al., 2010). However, the methodology
outlined in Dickinson et al. (2010) can be improved
in at least three ways, outlined next.

3.1 Using sub-corpora
Web corpora can be built by searching for a set of
seed terms, extracting documents with those terms
(Baroni and Bernardini, 2004). One way to improve
such corpora is to use better seeds, namely, those
which are: 1) domain-appropriate (e.g., about trav-
eling), and 2) of an appropriate level. In Dickinson
et al. (2010), we show that basic terms result in poor
quality Korean, but slightly more advanced terms on
the same topics result in better-formed data.

Rather than use all of the seed terms to create a
single corpus, we divide the seed terms into 13 sep-
arate sets, based on the individual topics from our
learner corpus. The sub-corpora are then combined
to create a cohesive corpus covering all the topics.
For example, we use 10 Travel words to build a
subcorpus, 10 Learning Korean words for a differ-
ent subcorpus, and so forth. This means that terms
appropriate for one topic are not mixed with terms
for a different topic, ensuring more coherent web
documents. Otherwise, we might obtain a Health
Management word, such as pyengwen (‘hospital’),
mixed with a Generation Gap word, such as kaltung
(‘conflict’)—in this case, leading to webpages on
war, a topic not represented in our learner corpus.

3.2 Filtering
One difficulty with our web corpora is that some of
them have large amounts of other languages along
with Korean. The keywords are in the corpora, but
there is additional text, often in Chinese, English, or
Japanese. These types of pages are unreliable for
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our purposes, as they may not exhibit natural Ko-
rean. By using a simple filter, we check whether a
majority of the characters in a webpage are indeed
from the Korean writing system, and remove pages
beneath a certain threshold.

3.3 Instance sampling

Particles are often dropped in colloquial and even
written Korean, whereas learners are more often
required to use them. It is not always the case
that the web pages contain the same ratio of par-
ticles as learners are expected to use. To alleviate
this over-weighting of having no particle attached
to a noun, we propose to downsample our corpora
for the machine learning experiments, by remov-
ing a randomly-selected proportion of (negative) in-
stances. Instance sampling has been effective for
other NLP tasks, e.g., anaphora resolution (Wunsch
et al., 2009), when the number of negative instances
is much greater than the positive ones. In our web
corpora, nouns have a greater than 50% chance of
having no particle; in section 3.4, we thus downsam-
ple to varying amounts of negative instances from
about 45% to as little as 10% of the total corpus.

3.4 Training data selection

In Dickinson et al. (2010), we used a Korean learner
data set from Lee et al. (2009b) for development. It
contains 3198 ecels, 1842 of which are nominals,
and 1271 (≈70%) of those have particles. We use
this same corpus for development, to evaluate filter-
ing and down-sampling. Evaluating on (yes/no) par-
ticle presence, in tables 1 and 2, recall is the percent-
age of positive instances we correctly find and pre-
cision is the percentage of instances that we classify
as positive that actually are. A baseline of always
guessing a particle gives 100% recall, 69% preci-
sion, and 81.7% F-score.

Table 1 shows the results of the MaxEnt system
for step 1, using training data built for the topics in
the data with filter thresholds of 50%, 70%, 90%,
and 100%—i.e., requiring that percentage of Korean
characters—as well as the unfiltered corpus. The
best F-score is with the filter set at 90%, despite the
size of the filtered corpus being smaller than the full
corpus. Accordingly, we use the 90% filter on our
training corpus for the experiments described below.

Threshold 100% 90% 70% 50% Full
Ecel 67k 9.6m 10.3m 11.1m 12.7m
Instances 37k 5.8m 6.3m 7.1m 8.4m
Accuracy 74.75 81.11 74.64 80.29 80.46
Precision 80.03 86.14 79.65 85.41 85.56
Recall 84.50 86.55 84.97 86.15 86.23
F-score 82.20 86.34 82.22 85.78 85.89

Table 1: Step 1 (particle presence) results with filters

The results for instance sampling are given in ta-
ble 2. We experiment with positive to negative sam-
pling ratios of 1.3/1 (≈43% negative instances), 2/1
(≈33%), 4/1 (≈20%), and 10/1 (≈10%). We select
the 90% filter, 1.3/1 downsampling settings and ap-
ply them to the training corpus (section 3.1) for all
experiments below.

P/N ratio 10/1 4/1 2/1 1.3/1 1/1.05
Instances 3.1m 3.5m 4.3m 5m 5.8m
Accuracy 74.75 77.85 80.23 81.59 81.11
Precision 73.38 76.72 80.75 84.26 86.14

Recall 99.53 97.48 93.71 90.17 86.55
F-score 84.47 85.86 86.74 87.12 86.34

Table 2: Step 1 (presence) results with instance sampling

One goal has been to improve the web as corpus
corpus methodology for training a machine learning
system. The results in tables 1 and 2 reinforce our
earlier finding that size is not necessarily the most
important variable in determining the usefulness or
overall quality of data collected from the web for
NLP tasks (Dickinson et al., 2010). Indeed, the cor-
pus producing best results (90% filter, 1.3:1 down-
sampling) is more than 3 million instances smaller
than the unfiltered, unsampled corpus.

4 Initial system evaluation

We have obtained an annotated corpus of 25 essays
from heritage intermediate learners,3 with 299 sen-
tences and 2515 ecels (2676 ecels after correcting
spacing errors). There are 1138 nominals, with 93
particle errors (5 added particles, 35 omissions, 53
substitutions)—in other words, less than 10% of par-
ticles are errors. There are 979 particles after cor-
rection. We focus on 38 particles that intermediate

3Heritage learners have had exposure to Korean at a young
age, such as growing up with Korean spoken at home.
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students can be reasonably expected to use. A parti-
cle is one of three types (cf. Nam and Ko, 2005): 1)
case markers, 2) adverbials (cf. prepositions), and
3) auxiliary particles.4

Table 3 gives the results for the entire system on
the test corpus, with separate results for each cat-
egory of particle, (Case, Adv., and Aux.) as well
as the concatenation of the three (All). The ac-
curacy presented here is in terms of only the par-
ticle in question, as opposed to the full form of
root+particle(s). Step 2 is presented in 2 ways: Clas-
sified, meaning that all of the instances classified as
needing a particle by step 1 are processed, or Gold,
in which we rely on the annotation to determine par-
ticle presence. It is not surprising, then, that Gold
experiments are more accurate than Classified ex-
periments, due to step 1 errors and also preprocess-
ing issues, discussed next.

Step 1 Step 2
Data # Classified Gold
Case 504 95.83% 71.23% 72.22%
Adv. 205 82.43% 30.24% 32.68%
Aux. 207 89.37% 31.41% 35.74%
All 916 91.37% 53.05% 55.13%

Table 3: Accuracy for step 1 (particle presence) & step 2
(particle selection), with number (#) of instances

Preprocessing For the particles we examine, there
are 135 mis-segmented nominals. The problem is
more conspicuous if we look at the entire corpus:
the tagger identifies 1547 nominal roots, but there
are only 1138. Some are errors in segmentation, i.e.,
mis-identifying the proper root of the ecel, and some
are problems with tagging the root, e.g., a nominal
mistagged as a verb. Table 4 provides results divided
by cases with only correctly pre-processed ecels and
where the target ecel has been mis-handled by the
tagger. This checks whether the system particle is
correct, ignoring whether the whole form is correct;
if full-form accuracy is considered, we have no way
to get the 135 inaccurate cases correct.

Error detection While our goal now is to estab-
lish a starting point, the ultimate, on-going goal of

4Full corpus details will be made available at: http://
cl.indiana.edu/˜particles/.

Step 1 Step 2
Data # Classified Gold
Accurate 781 94.24% 55.95% 58.13%
Inaccurate 135 74.81% 36.29% 38.51%

Table 4: Overall accuracy divided by accurate and inac-
curate preprocessing

Case Adv. Aux. All
Precision 28.82% 7.69% 5.51% 15.45%

Recall 87.50% 100% 77.78% 88.00%

Table 5: Error detection (using Gold step 1)

this work is to develop a robust system for automati-
cally detecting errors in learner data. Thus, it is nec-
essary to measure our performance at actually find-
ing the erroneous instances extracted from our test
corpus. Table 5 provides results for step 2 in terms
of our ability to detect erroneous instances. We re-
port precision and recall, calculated as in figure 1.

From the set of erroneous instances:
True Positive (TP) ML class 6= student class
False Negative (FN) ML class = student class

From the set of correct instances:
False Positive (FP) ML class 6= student class
True Negative (TN) ML class = student class
Precision (P) TP

TP+FP

Recall (R) TP
TP+FN

Figure 1: Precision and recall for error detection

4.1 Discussion and Outlook

One striking aspect about the results in table 3 is the
gap in accuracy between case particles and the other
two categories, particularly in step 2. This points at
a need to develop independent systems for each type
of particle, each relying on different types of linguis-
tic information. Auxiliary particles, for example, in-
clude topic particles which—similar to English arti-
cles (Han et al., 2006)—require discourse informa-
tion to get correct. Still, as case particles comprise
more than half of all particles in our corpus, the sys-
tem is already potentially useful to learners.

Comparing the rows in table 4, the dramatic drop
in accuracy when moving to inaccurately-processed
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cases shows a clear need for preprocessing adapted
to learner data. While it is disconcerting that nearly
15% (135/916) of the cases have no chance of re-
sulting in a correct full form, the results indicate that
we can obtain reliable accuracy (cf. 94.24%) for pre-
dicting particle presence across all types of particles,
assuming good morphological tagging.

From table 5, it is apparent that we are overguess-
ing errors; recall that only 10% of particles are er-
roneous, whereas we more often guess a different
particle. While this tendency results in high recall,
a tool for learners should have higher precision, so
that correct usage is not flagged. However, this is
a first attempt at error detection, and simply know-
ing that precision is low means we can take steps
to solve this deficiency. Our training data may have
too many possible classes in it, and we have not yet
accounted for phonological alternations; e.g. if the
system guesses ul when lul is correct, we count a
miss, even though they are different realizations of
the same morpheme.

To try and alleviate the over-prediction of errors,
we have begun to explore implementing a confi-
dence filter. As a first pass, we use a simple fil-
ter that compares the probability of the best parti-
cle to the probability of the particle the learner pro-
vided; the absolute difference in probabilities must
be above a certain threshold. Table 6 provides the er-
ror detection results for each type of particle, incor-
porating confidence filters of 10%, 20%, 30%, 40%,
50%, and 60%. The results show that increasing the
threshold at which we accept the classifier’s answer
can significantly increase precision, at the cost of re-
call. As noted above, higher precision is desirable,
so we plan on further developing this confidence fil-
ter. We may also include heuristic-based filters, such
as the ones implemented in Criterion (see Leacock
et al., 2010), as well as a language model approach
(Gamon et al., 2008).

Finally, we are currently working on improving
the POS tagger, testing other taggers in the pro-
cess, and developing optimal feature sets for differ-
ent kinds of particles.
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Adv Aux Case All

10
% P 10.0% 6.3% 29.9% 16.3%

R 100% 77.8% 67.8% 73.3%

20
% P 13.5% 7.8% 32.6% 18.0%

R 100% 77.8% 50.0% 60.0%

30
% P 20.0% 8.3% 36.1% 20.8%

R 100% 66.7% 39.3% 50.7%

40
% P 19.4% 14.3% 48.6% 26.9%

R 60.0% 66.7% 30.4% 38.7%

50
% P 23.1% 16.7% 57.9% 32.1%

R 30.0% 44.4% 19.6% 24.0%

60
% P 40.0% 26.7% 72.3% 45.2%

R 20.0% 44.4% 14.3% 18.7%

Table 6: Error detection with confidence filters
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Cantrell. 2009. Instance sampling methods for
pronoun resolution. In Proceedings of RANLP
2009. Borovets, Bulgaria.

86



Proceedings of the Sixth Workshop on Innovative Use of NLP for Building Educational Applications, pages 87–95,
Portland, Oregon, 24 June 2011. c©2011 Association for Computational Linguistics

Measuring Language Development in Early Childhood Education: A Case
Study of Grammar Checking in Child Language Transcripts

Khairun-nisa Hassanali
Computer Science Department

The University of Texas at Dallas
Richardson, TX, USA

nisa@hlt.utdallas.edu

Yang Liu
Computer Science Department

The University of Texas at Dallas
Richardson, TX, USA

yangl@hlt.utdallas.edu

Abstract

Language sample analysis is an important
technique used in measuring language devel-
opment. At present, measures of grammati-
cal complexity such as the Index of Productive
Syntax (Scarborough, 1990) are used to mea-
sure language development in early childhood.
Although these measures depict the overall
competence in the usage of language, they do
not provide for an analysis of the grammati-
cal mistakes made by the child. In this paper,
we explore the use of existing Natural Lan-
guage Processing (NLP) techniques to provide
an insight into the processing of child lan-
guage transcripts and challenges in automatic
grammar checking. We explore the automatic
detection of 6 types of verb related grammat-
ical errors. We compare rule based systems
to statistical systems and investigate the use
of different features. We found the statistical
systems performed better than the rule based
systems for most of the error categories.

1 Introduction

Automatic grammar checking and correction has
been used extensively in several applications. One
such application is in word processors where the
user is notified of a potential ungrammatical sen-
tence. This feature makes it easier for the users to
detect and correct ungrammatical sentences. Au-
tomatic grammar checking can also be beneficial
in language learning where students are given sug-
gestions on potential grammatical errors (Lee and
Seneff, 2006). Another application of grammar
checking is in improving a parser’s performance for

ungrammatical sentences. Since most parsers are
trained on written data consisting mostly of gram-
matical sentences, the parsers face issues when pars-
ing ungrammatical sentences. Automatic detection
and correction of these ungrammatical sentences
would improve the parser’s performance by detect-
ing the ungrammatical sentences and performing
a second parse on the corrected sentences (Caines
and Buttery, 2010). From an education perspective,
measuring language skills has been extensively ex-
plored. There are systems in place that automatically
detect and correct errors for second language learn-
ers (Eeg-Olofsson and Knuttson, 2003; Leacock et
al., 2010).

One method used in measuring language devel-
opment is the analysis of transcripts of child lan-
guage speech. Child language transcripts are sam-
ples of a child’s utterances during a specified pe-
riod of time. Educators and speech language pathol-
ogists use these samples to measure language de-
velopment. In particular, speech language pathol-
ogists score these transcripts for grammatical mea-
sures of complexity amidst other measures. Since
manual analysis of transcripts is time consuming,
many of these grammatical complexity measures re-
quire the speech language pathologists to look for
just a few examples. The Index of Productive Syn-
tax (IPSyn) (Scarborough, 1990) is one such mea-
sure of morphological and syntactic structure devel-
oped for measuring language samples of preschool
children. The advantage of measures such as IPSyn
is that they give a single score that can be used to
holistically measure language development. How-
ever, they focus on grammatical constructs that the
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child uses correctly and do not take into account
the number and type of grammatical errors that are
made by the child.

Educators wishing to measure language develop-
ment and competence in a child will benefit from
having access to the grammatical errors made by a
child. Analysis of these grammatical errors will en-
able educators and speech language pathologists to
identify shortcomings in the child’s language and
recommend intervention techniques customized to
the child. Since manual identification of grammat-
ical errors is both cumbersome and time consum-
ing, a tool that automatically does grammar check-
ing would be of great use to clinicians. Addition-
ally, we see several uses of automatic grammar de-
tection. For example, we can use the statistics of
grammatical errors as features in building classifiers
that predict language impairment. Furthermore, we
could also use the statistics of these grammatical er-
rors to come up with a measure of language develop-
ment that takes into account both grammatical com-
petence and grammatical deficiencies.

In this paper, we use existing NLP techniques to
automatically detect grammatical errors from child
language transcripts. Since children with Language
Impairment (LI) have a greater problem with correct
usage of verbs compared to Typically Developing
(TD) children (Rice et al., 1995), we focus mainly
on verb related errors. We compare rule based sys-
tems to statistical systems and investigate the use
of different features. We found the statistical sys-
tems performed better than the rule based systems
for most error categories.

2 Related Work

While there has been considerable work (Sagae et
al., 2007) done on annotating child language tran-
scripts for grammatical relations, as far as we know,
there has been no work done on automatic gram-
mar checking of child language transcripts. Most
of the existing work in automatic grammar check-
ing has been done on written text. Spoken language
on the other hand, presents challenges such as dis-
fluencies and false restarts which are not present in
written text. We believe that the specific research
challenges that are encountered in detecting and cor-
recting child language transcripts warrant a more de-

tailed examination.
Caines and Buttery (2010) focused on identify-

ing sentences with the missing auxiliary verb in the
progressive aspect constructions. They used logistic
regression to predict the presence of zero auxiliary
occurrence in the spoken British National Corpus
(BNC). An example of a zero auxiliary construction
is “You talking to me?”. They first identified con-
structions with the progressive aspect and annotated
the constructions for the following features: sub-
ject person, subject case, perfect aspect, presence of
negation and use of pronouns. Their model identi-
fied zero auxiliary constructions with 96.9% accu-
racy. They also demonstrated how their model can
be integrated into existing parsing tools, thereby in-
creasing the number of successful parses for zero
auxiliary constructions by 30%.

Lee and Seneff (2008) described a system for verb
error correction using template matching on parse
trees in two ways. Their work focused on correct-
ing the error types related to subject-verb agreement,
auxiliary agreement and complementation. They
considered the irregularities in parse trees caused
by verb error forms and used n-gram counts to fil-
ter proposed corrections. They used the AQUAINT
Corpus of English News Text to detect the irregular-
ities in the parse trees caused by verb error forms.
They reported an accuracy of 98.93% for verb er-
rors related to subject-verb agreement, and 98.94%
for verb errors related to auxiliary agreement and
complementation. Bowden and Fox (2002) devel-
oped a system to detect and explain errors made by
non-native English speakers. They used classifica-
tion and pattern matching rules instead of thorough
parsing. Their system searched for the verb-related
errors and noun-related errors one by one in one sen-
tence by narrowing down the classification of errors.
Lee and Seneff (2006) developed a system to auto-
matically correct grammatical errors related to arti-
cles, verbs, prepositions and nouns.

Leacock et al. (2010) discuss automated gram-
matical error detection for English language learn-
ers. They focus on errors that language learners find
most difficult - constructions that contain preposi-
tions, articles, and collocations. They discuss the
existing systems in place for automated grammati-
cal error detection and correction for these and other
classes of errors in a number of languages. Addi-
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Label Meaning Example
0 No error I like it.
1 Missing auxiliary verb You talking to me?
2 Missing copulae She lovely.
3 Subject-auxiliary verb agreement You is talking to me.
4 Incorrect auxiliary verb used e.g. using does instead of is She does dead girl.
5 Missing verb She her a book.
6 Wrong verb usage including subject-verb disagreement He love dogs.
7 Missing preposition The book is the table.
8 Missing article She ate apple.
9 Missing subject before verb I know loves me.
10 Missing infinitive marker “to” I give it her.
11 Other errors not covered in 1-10 The put.

Table 1: Different types of errors considered in this study

tionally, they touch on error annotations and system
evaluation for grammatical error detection.

3 Data

For the purpose of our experiments, we used the Par-
adise dataset (Paradise et al., 2005). This dataset
contains 677 transcripts corresponding to 677 chil-
dren aged six that were collected in the course of
a study of the relationship of otitis media and child
development. The only household language spoken
by these children was English. The transcripts in
the Paradise set consist of conversations between a
child and his/her caretaker. We retained only the
child’s utterances and removed all other utterances.
The Paradise dataset (considering only the child’s
utterances) contains a total of 108,711 utterances,
394,290 words, and an average Mean Length of Ut-
terance of 3.64. Gabani (2009) used scores on the
Peabody Picture Vocabulary Test (Dunn, 1965), total
percentage phonemes repeated correctly on a non-
word repetition task and mean length of utterance
in morphemes to label these transcripts for language
impairment. A transcript was labeled as having been
produced by a child with LI if the child scored 1.5
or more standard deviations below the mean of the
entire sample on at least two of the three tests. Of
the 677 transcripts, 623 were labeled as TD and 54
as LI.

We manually annotated each utterance in the tran-
scripts for 10 different types of errors. Table 1 gives
the different types of errors we considered along

with examples. We focused on these 10 different
types of errors since children with LI have problems
with the usage of verbs in particular. The list of er-
rors we arrived at was based on the errors we ob-
served in the transcripts. Since an utterance could
have more than one error, we annotated each ut-
terance in the transcript for all the errors present
in the utterance. While annotating the utterances,
we observed that there were utterances that could
correspond to multiple types of error. For exam-
ple, consider the following sentence: “She go to
school”. The error in this sentence could be an er-
ror of a missing auxiliary and a wrong verb form
in which case the correct sentence would be “She is
going to school”; or it could be a missing modal, in
which case the correct form would be “She will go to
school”; or it could just be a subject-verb disagree-
ment in which case “She goes to school” would be
the correct form. Therefore, although we know that
the utterance definitely has an error, it is not always
possible to assign a single error. We also observed
several utterances had both a missing subject and a
missing auxiliary verb error. For example, instead of
saying “I am going to play”, some children say “Go-
ing to play”, which misses both the subject and aux-
iliary verb. In this case, the utterance was annotated
as having two errors: missing subject and missing
auxiliary. Finally, single word utterances were la-
beled as being correct.

Table 2 gives the distribution of the errors in the
corpus and percentage of TD and LI population that
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No Error Type Percentage
(Count)

% of LI children
making error

% of TD children
making error

1 Missing auxiliary 8.43% (641) 7% 5%
2 Missing copulae 36.67% (2788) 77.78% 45%
3 Subject-auxiliary agreement 6.31% (480) 40.74% 35%
4 Incorrect auxiliary verb used 0.71%(54) 11.47% 3%
5 Missing verb 5% (380) 29.63% 10%
6 Wrong verb usage 14.59% (1109) 68.5% 50%
7 Missing preposition 5% (380) 7.4% 5%
8 Missing article 3.97% (302) 29.63% 35%
9 Missing subject 7.69% (585) 3.7% 5%
10 Missing infinitive marker “To” 1.58% (120) 7.5% 11.67%
11 Other errors 10.05% (764) 56.7% 23.2%

Table 2: Statistics of Errors

made the error at least once in the entire transcript.
As we can see from Table 2, 36.67% of the errors in
the corpus are due to missing copulae. Wrong verb
usage was the next most common error contributing
to 14.59% of the errors in the corpus. We observed
that there was a higher percentage of children with
LI that made errors on all error categories except for
errors related to missing article and missing subject.
We observed that on average, the transcripts belong-
ing to children with LI had fewer utterances as com-
pared to transcripts belonging to TD children. Ad-
ditionally, children with LI used many single word
and two word utterances.

One annotator labeled the entire corpus for gram-
matical errors. To calculate inter-annotator agree-
ment, we randomly selected 386 utterances anno-
tated by the first annotator with different error types.
The second annotator was provided these utterances
along with the labels given by the first annotator1.
In case of a disagreement, the second annotator pro-
vided a different label/labels. The annotator agree-
ment using the average Cohen’s Kappa coeffiecient
was 77.7%. Out of the 386 utterances, there were
43 disagreements between the annotators. We found
that for some error categories such as the missing
auxiliary, there was high inter-annotator agreement
of 95.32%, whereas for other categories such as
wrong verb usage and missing articles, there was

1We will perform independent annotation of the errors and
calculate inter-annotator agreement based on these independent
annotations

less agreement (64.2% and 65.3% respectively). In
particular, we found low inter-annotator agreement
on utterances that have errors that could be assigned
to multiple categories.

4 Experiments

The transcripts were parsed using the Charniak
parser (Charniak, 2000). Since the Paradise dataset
consists of children’s utterances, and many of them
have not mastered the language, we observed that
processing these transcripts is challenging. As is
prevalent in spoken language corpora, these tran-
scripts had disfluencies, false restarts and incom-
plete utterances, which sometimes pose problems to
the parser.

We conducted experiments in detecting errors re-
lated to the usage of the -ing participle, subject-
auxiliary agreement, missing copulae, missing
verb, subject-verb agreement and missing infinitive
marker “to”. For each of these categories, we con-
structed one rule based classifier using regular ex-
pressions based on the parse tree structure, an alter-
nating decision tree classifier that used rules as fea-
tures and a naive Bayes multinomial classifier that
used a variety of features. For every category, we
performed 10 fold cross validation using all the ut-
terances. We used the naive Bayes multinomial clas-
sifier and the alternating decision tree classifier from
the WEKA toolkit (Hall et al., 2009). Table 3 gives
the results using the three classifiers for the different
categories of errors, where (P/R) F1 stands for (Pre-
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Error Rule Based System
(P/R)F1

Decision Tree Clas-
sifier using Rules as
features (P/R)F1

Naive Bayes Classifier
using a variety of fea-
tures (P/R)F1

Usage of -ing participle (0.984/0.978) 0.981 (0.986/1) 0.993 (0.736/0.929) 0.821
Missing copulae (0.885/0.9) 0.892 (0.912/0.94) 0.926 (0.82/0.86) 0.84
Missing verb (0.875/0.932) 0.903 (0.92/0.89) 0.905 (0.87/0.91) 0.9
Subject-auxiliary agree-
ment

(0.855/0.932) 0.888 (0.95/0.84) 0.892 (0.89/0.934) 0.912

Subject-verb agreement (0.883/0.945) 0.892 (0.92/0.877) 0.898 (0.91/0.914) 0.912
Missing infinitive marker
“To”

(0.97/0.954) 0.962 (0.94/0.84) 0.887 (0.95/0.88) 0.914

Overall (0.935/0.923) 0.929 (0.945/0.965) 0.955 (0.956/0.978) 0.967

Table 3: Detection of errors using rule based system, alternating decision tree classifier and naive Bayes classifier

No Feature Type
1 Verb Adjective Bigram
2 Auxiliary Noun Bigram
3 Auxiliary Progressive-verb Bigram
4 Pronoun Auxiliary Bigram
5 Wh-Pronoun Progressive verb Bigram
6 Progressive-verb Wh-adverb Bigram
7 Adverb Auxiliary Skip-1
8 Pronoun Auxiliary Skip-1
9 Wh-adverb Progressive-verb Skip-1
10 Auxiliary Preposition Skip-2

Table 4: Top most bigram features useful for detecting
misuse of -ing participle

cision/Recall) F1-measure. Below we describe the
different experiments we conducted.

4.1 Misuse of the -ing Participle
The -ing participle can be used as a progressive as-
pect, a verb complementation, or a prepositional
complementation. In the progressive aspect, it is
necessary that the progressive verb be preceded by
an auxiliary verb. When used as a verb comple-
mentation, the -ing participle should be preceded by
a verb and similiarly when used as a prepositional
complement, the -ing participle should be preceded
by a preposition.

Rule based system
The -ing participle is denoted by the VBG tag in the
Penn tree bank notation. VP and PP correspond to

the verb phrase and prepositional phrase structures
respectively. The rules that we formed were as fol-
lows:

1. Check that the utterance has a VBG tag (if it
does not have a VBG tag, it does not contain an
-ing participle).

2. If none of the following conditions are met,
there is an error in the usage of -ing participle:

(a) The root of the subtree that contains the
-ing participle should be a VP with the
head being a verb if used as a verb com-
plementation

(b) The root of the subtree that contains the
-ing participle should be a PP if used as a
prepositional complement

(c) The root of the subtree that contains the
-ing participle should be a VP with the
head being an auxiliary verb if used as a
progressive aspect

Predictive model
The features that we considered were:

1. Bigrams from POS tags

2. Skip bigrams from POS tags

We used the skip bigrams to account for the
fact that there could be other POS tags between
an auxiliary verb and the progressive aspect of
the verb such as adverbs. A skip-n bigram is
a sequence of 2 POS tags with a distance of n
between them. We used skip-1 and skip-2 bi-
grams in this study.
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Analysis
As we can see from Table 3, the alternating decision
tree classifier with rules as features gave the best re-
sults with an F1-measure of 0.993. Table 4 gives
the topmost 10 features extracted using feature se-
lection. We got the best results when we used the
reduced set of features as opposed to using all bi-
grams and skip-1 and skip-2 bigrams. We also used
the results reported by (Caines and Buttery, 2010)
to see if their method was successful in identifying
zero auxiliary constructs on our corpus. When we
used logistic regression with the coefficients and fea-
tures used by (Caines and Buttery, 2010), we got a
recall of 0%. When we trained the logistic regres-
sion model on our data with their features, we got a
precision of 1.09%, recall of 53.6% and F1-measure
of 2.14%. This leads us to conclude that the features
that were used by them are not suitable for child lan-
guage transcripts. Additionally, we also observed
that based on the features they used, in some cases
it is difficult to distinguish zero auxiliary constructs
from those with auxiliary constructs. For example,
“You talking to me?” and “Are you talking to me?”
would have the same values for their features, al-
though the former is a zero auxiliary construct and
the latter is not.

4.2 Identifying Missing Copulae
A copular verb is a verb that links a subject to its
complement. In English, the most common copular
verb is “be”. Examples of sentences that contain a
copular verb is “She is lovely” and “The child who
fell sick was healthy earlier”. An example of a sen-
tence that misses a copular verb is “She lovely”.

Rule based system
The rule that we used was as follows:

If an Adjective Phrase follows a noun phrase, or
a Noun phrase follows a noun phrase, the likelihood
that the utterance is missing a copular verb is quite
high. However, there are exceptions to such rules,
for example, “Apple Pie”. We formed additional
rules to identify such utterances and examined their
parse trees to determine the function of the two noun
phrases.

Predictive model

The features we used were as follows:

1. Does the utterance contain a noun phrase fol-
lowed by a noun phrase?

2. Does the utterance contain a noun phrase fol-
lowed by an adjective phrase?

3. Is the parent a verb phrase?

4. Is the parent a prepositional phrase?

5. Is the parent the root of the parse tree?

6. Is there an auxiliary verb or a verb between the
noun phrase and/or adjective phrase?

Analysis
As we can see from Table 3, the alternating deci-
sion tree classifier performed the best with an F1-
measure of 0.926. Our rules capture simple con-
structs that are used by young children. The majority
of the utterances that missed a copulae consisted of
noun phrase and an adjective phrase or a noun phrase
and a noun phrase. Hence, the rules based system
performed the best. Some of the false positives were
due to utterances like “She an apple” where it is un-
likely that the missing verb is a copular verb.

4.3 Identifying Missing Verbs
Errors of this type occur when a sentence is miss-
ing the verb. For example, the sentence “You can
an apple” lacks the main verb after the modal verb
“can”. Similarly, “I did not it” lacks a main verb af-
ter “did not”. For the purpose of this experiment, we
consider only utterances that contain a modal or an
auxiliary verb but do not have a main verb. We also
consider utterances that use the verb “do” and detect
the main missing verb in such cases.

Rule based system
The rule we used was to check if the utterance con-
tains an auxiliary verb or a modal verb but not a main
verb. In this case, the utterance is definitely missing
a main verb. In order to identify utterances where the
words “did”, “do” and “does” are auxiliary verbs, we
use the following procedure: If the negation “not”
is present after did/do/does, then did/do/does is an
auxiliary verb and needs to be followed by a main
verb. In the case of the utterance being a question,
the presence of did/do/does at the beginning of the
utterances indicates the use as an auxiliary verb. In
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such a case, we need to check for the presence of a
main verb. The same holds for the other auxiliary
verbs.

Predictive model
We used the following as features:

1. Is an auxiliary verb present?

2. Is a modal verb present?

3. Is a main verb present after the auxiliary verb?

4. Is a main verb present after the modal verb?

5. Type of utterance - interrogative, declarative

6. Is a negation (not) present?

Analysis
As we can see from Table 3, the alternating decision
tree classifier using rules as features gave the best
result with an F1-measure of 0.905. At present, we
handle only a subset of missing verbs and specif-
ically those verbs that contain an auxiliary verb.
Since most of the utterances are simple constructs,
the alternating decision tree classifier performs well.

4.4 Identifying Subject-auxiliary Agreement

In the case of the subject-auxiliary agreement and
subject-verb agreement, the first verb in the verb
phrase has to agree with the subject unless the first
verb is a modal verb. In the sentence “The girls has
bought a nice car”, since the subject “The girls” is
a plural noun phrase, the auxiliary verb should be in
the plural form. While considering the number and
person of the subject, we take into account whether
the subject is an indefinite pronoun or contains a
conjunction since special rules apply to these cases.
Indefinite pronouns are words which replace nouns
without specifying the nouns they replace. Some in-
definite pronouns such as all, any and more take both
singular and plural forms. On the other hand, indefi-
nite pronouns like somebody and anyone always take
the singular form.

Rule based system
The rule we used to identify subject-auxiliary agree-
ment was as follows:

1. Extract the number (singular, plural) of the sub-
ject and the auxiliary verb in the verb phrase.

2. If the number of the subject and auxiliary verb
do not match, there is a subject-auxiliary agree-
ment error.

Predictive model
The features were as follows:

1. Number of subject - singular or plural

2. Type of noun phrase - pronoun or other noun
phrase

3. Person of noun phrase - first, second, third

4. Presence of a main verb in the utterance (we are
looking at the agreement only for the auxiliary
verb)

Analysis
As we can see from Table 3, the naive Bayes multi-
nomial classifier performed the best with an F1-
measure of 0.912. We found that our system did
not detect the subject-auxiliary agreement correctly
if there was an error in the subject such as number
agreement.

4.5 Identifying Subject-verb Agreement
In order to achieve subject-verb agreement, the num-
ber and person of the subject and verb must agree.
The subject-verb agreement applies to the first verb
in the verb phrase. We consider cases wherein the
first verb is a main verb or contains a modal verb.
An example of a sentence that has subject-verb dis-
agreement is “The boy have an ice cream”. The
number and person of the subject “The boy” and the
verb “have” do not match.

Rule based system
The rule we used to identify subject-verb agreement
was as follows:

1. Extract the number (singular, plural) and per-
son (first, second, third) of the subject and the
first verb in the verb phrase.

2. If the verb is not a modal verb and the num-
ber and person of the subject and verb do not
match, there is a subject-verb agreement error.

Predictive model
We used the following features to be used in a statis-
tical setup:
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1. Type of sentence - interrogative or declarative

2. Number of subject - singular or plural

3. Person of subject if pronoun - first, second or
third

4. Number of verb - singular or plural

5. Person of verb - first, second or third

6. Type of verb - modal, main

Analysis
We found that our system did not detect errors in
cases where there was a number disagreement. For
example, in the sentence “The two dog is playing”,
our system based on the POS tag would assume
that the subject is singular and therefore there is no
subject-verb error. One way to improve this would
be to detect number disagreement in the subject and
correct it before detecting the subject-verb agree-
ment.

4.6 Identifying Missing Infinitive Marker “To”

Errors of this type occur when the sentence lacks the
infinitive marker “to”. An example of such a sen-
tence would be “She loves sleep”. In this case, “She
loves to sleep” would be the correct form. On the
other hand, this statement is ambiguous since sleep
could be used as a noun sense or a verb sense. We
concentrated on identifying utterances that have the
progressive verb followed by the verb in the infini-
tive form. Examples of such sentences are: “She is
going cry”. In this case, we can see that the sentence
is missing the “to”.

Rule based system
If the utterance contains a progressive verb followed
by a verb in its infinitive form, it is missing the in-
finitive marker “to”.

Predictive model
The features we used are:

1. Presence of a progressive verb followed by the
infinitive

2. Presence of infinitive marker “to” before the in-
finitive

Analysis
The naive Bayes multinomial classifier performed
the best with an F1-measure of 0.967. We encoun-
tered exceptions with words like “saying”. An ex-
ample of such a sentence would be “He was saying
play”. Most of our false positives were due to sen-
tences such as this. We considered a subset of utter-
ances in which the infinitive was used along with the
progressive verb. The missing infinitive marker “to”
is also found in other utterances such as “I would
love to swim” in which case we have two verbs that
are in the base form - “love” and “swim”.

4.7 Combining the Classifiers

Finally, we perform sentence level binary classifica-
tion - does the sentence have a grammatical error?
Since an utterance can contain more than one error,
we serially apply the binary classifiers that we de-
scribed above for each error category. If any one of
the classifiers reports an error in the utterance, we
flag the utterance as having a grammatical error. For
evaluation, as long as the utterance had any gram-
matical error, we considered the decision to be cor-
rect. As we can see from Table 3, the best result
for detecting the overall errors was obtained by se-
rially applying the classifiers that used the features
that were not rule based.

5 Conclusions and Future Work

In this paper, we described a study of grammati-
cal errors in child language transcripts. Our study
showed that a higher percentage of children with
LI made at least one mistake than TD children on
most error categories. We created different systems
including rule based systems that used parse tree
template matching and classifiers to detect errors re-
lated to missing verbs, subject-auxiliary agreement,
subject-verb agreement, missing infinitive marker
“to”, missing copulae and wrong usage of -ing par-
ticiple. In all cases, we had a recall higher than 84%.
When combining the classifiers to detect sentences
with grammatical errors, the classifiers that used fea-
tures other than rules performed the best with an F1-
measure of 0.967.

The error categories that we detect at present are
restricted in their scope to specific kind of errors.
In future, we plan to enhance our systems to de-
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tect other grammatical errors such as missing arti-
cles, missing prepositions and missing main verbs
in utterances that do not have an auxiliary verb. Fur-
thermore, we will investigate methods to address is-
sues in child language transcripts due to incomplete
utterances and disfluencies.

At present, we treat sentences that conform to
formal English language as correct. We could en-
hance our systems to look at dialect specific con-
structs and grammatical errors made across differ-
ent demographics. For example, African American
children have a different dialect and do not always
follow the formal English language while speaking.
Therefore, in the context of detecting language im-
pairment, it would be interesting to see whether both
TD children and LI children make the same errors
that are otherwise considered the norm in the dialect
they speak.
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Abstract 

We introduce a method for learning to 
describe the attendant contexts of a given 
query for language learning. In our 
approach, we display phraseological 
information in the form of a summary of 
general patterns as well as lexical bundles 
anchored at the query. The method 
involves syntactical analyses and inverted 
file construction. At run-time, grammatical 
constructions and their lexical 
instantiations characterizing the usage of 
the given query are generated and 
displayed, aimed at improving learners’ 
deep vocabulary knowledge. We present a 
prototype system, GRASP, that applies the 
proposed method for enhanced collocation 
learning. Preliminary experiments show 
that language learners benefit more from 
GRASP than conventional dictionary 
lookup. In addition, the information 
produced by GRASP is potentially useful 
information for automatic or manual 
editing process. 

1 Introduction 

Many learners submit word or phrase queries (e.g., 
“ role”) to language learning sites on the Web to 
get usage information every day, and an increasing 
number of services on the Web specifically target 
such queries. Language learning tools such as 
concordancers typically accept single-word queries 

and respond with example sentences containing the 
words. There are also collocation reference tools 
such as Sketch Engine and TANGO that provide 
co-occurring words for the query word. Another 
collocation tool, JustTheWord further organizes 
and displays collocation clusters. 

Learners may want to submit phrase queries 
(fixed or rigid collocaions) to learn further how to 
use the phrase in context, or in other words, to 
acquire the knowledge on the attendant 
phraseology of the query. These queries could be 
answered more appropriately if the tool accepted 
long queries and returned a concise summary of 
their surrounding contexts. 

Consider the query “play role”. The best 
responses for this query are probably not just 
example sentences, but rather the phraseological 
tendencies described grammatically or lexically. A 
good response of such a summary might contain  
patterns such as “play Det Adj role” (as in “play an 
important role”) and “play ~ role in V-ing” (as in 
“play ~ role in shaping …”). Intuitively, by 
exploiting simple part-of-speech analysis, we can 
derive such patterns, inspired by the grammatical 
theory of Pattern Grammar1 in order to provide 
more information on demand beyond what is given 
in a grammar book. 

We present a system, GRASP, that provide a 
usage summary of the contexts of the query in the 
form of patterns and frequent lexical bundles. Such 
rich information is expected to help learners and 
lexicographers grasp the essence of word usages. 
An example GRASP response for the query “play 

                                                           
1 Please refer to (Hunston and Francis, 2000). 
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role” is shown in Figure 1. GRASP has retrieved 
the sentences containing the query in a reference 
corpus. GRASP constructs these query-to-sentence 
index in the preparation stage (Section 3). 

 
Figure 1. An example GRASP search for “play role”. 

 
At run-time, GRASP starts with a search query 

(e.g., “play role”) submitted by the user. GRASP 
then retrieves example sentences and generates a 
summary of representative contexts, using patterns 
(e.g., “play ~ role in V-ing”) and lexical bundles 
(e.g., “play ~ role in shaping. In our 
implementation, GRASP also returns the 
translations and the example sentences of the 
lexical instances, so the learner can use their 
knowledge of native language to enhance the 
learning process. 

2 Related Work 

Computer-assisted language learning (CALL) has 
been an area of active research. Recently, more and 
more research based on natural language 

processing techniques has been done to help 
language learners. In our work, we introduce a 
language learning environment, where summarized 
usage information are provided, including how 
function words and verb forms are used in 
combination with the query. These usage notes 
often help contrast the common sources of error in 
learners’ writing (Nicholls, 1999). In our pilot 
teaching experiment, we found learners have 
problems using articles and prepositions correctly 
in sentence composition (as high as 80% of the 
articles and 60% of the prepositions were used 
incorrectly), and GRASP is exactly aimed at 
helping ESL or EFL learners in that area. 

Until recently, collocations and usage 
information are compiled mostly manually 
(Benson et al., 1986). With the accessibility to 
large-scale corpora and powerful computers, it has 
become common place to compile a list of 
collocations automatically (Smadja, 1993). In 
addition, there are many collocation checkers 
developed to help non-native language learners 
(Chang et al., 2008), or learners of English for 
academic purposes (Durrant, 2009). 

Recently, automatic generation of collocations 
for computational lexicography and online 
language learning has drawn much attention. 
Sketch Engine (Kilgarriff et al., 2004) summarizes 
a word’s grammatical and collocation behavior, 
while JustTheWord clusters the co-occurring 
words of single-word queries and TANGO (Jian et 
al., 2004) accommodates cross-lingual collocation 
searches. Moreover, Cheng et al. (2006) describe 
how to retrieve mutually expected words using 
concgrams. In contrast, GRASP, going one step 
further, automatically computes and displays the 
information that reveals the regularities of the 
contexts of user queries in terms of grammar 
patterns. 

Recent work has been done on incorporating 
word class information into the analyses of 
phraseological tendencies. Stubbs (2004) 
introduces phrase-frames, which are based on 
lexical ngrams with variable slots, while Wible et 
al. (2010) describe a database called StringNet, 
with lexico-syntactic patterns. Their methods of 
using word class information are similar in spirit to 
our work. The main differences are that our 
patterns is anchored with query words directly and 
generalizes query’s contexts via parts-of-speech, 
and that we present the query’s usage summary in 

Search query: 

Mapping query words to (position, sentence) pairs: 
“play” occurs in (10,77), (4,90), (6,102), …, and so on. 
“role” occurs in (7,90), (12,122), (6,167), …, and so on. 

A. In-between pattern grammar: 
   Distance 3 (1624): 
play DT JJ role (1364): 
e.g., ‘play an important role’ (259), ‘play a major role’ (168), … 
play DT VBG role (123): 
e.g., ‘play a leading role’ (75), ‘play a supporting role’ (5), … 
play DT JJR role (40): 
e.g., ‘play a greater role’ (17), ‘play a larger role’ (8), … 
   Distance 2 (480): 
play DT role (63): 
e.g., ‘play a role’ (197), ‘play the role’ (123), … 
play JJ role (63): 
e.g., ‘play important role’ (15), ‘play different role’ (6), … 
   Distance 1 (6): 
play role (6) 
B. Subsequent pattern grammar: 
play ~ role IN(in) DT (707): 
e.g., ‘play ~ role in the’ (520), ‘play ~ role in this’ (24), … 
play ~ role IN(in) VBG (407): 
e.g., ‘play ~ role in shaping’ (22), … 
play ~ role IN(in) NN (166): 
e.g., ‘play ~ role in society’ (7), ‘play ~ role in relation’ (5), … 
C. Precedent pattern grammar: 
NN MD play ~ role (83): 
e.g., ‘communication will play ~ role ’ (2), … 
JJ NNS play ~ role (69): 
e.g., ‘voluntary groups play ~ role’ (2), … 

Type your search query, and push GRASP! 
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terms of function words as well as content word 
form (e.g., “play ~ role in V-ing”), as well as 
elastic lexical bundles (e.g., “play ~ role in 
shaping”). Additionally, we also use semantic 
codes (e.g., PERSON) to provide more information 
in a way similar what is provided in learner 
dictionaries. 

3 The GRASP System 

3.1 Problem Statement 

We focus on constructing a usage summary likely 
to explain the contexts of a given linguistic search. 
The usage summary, consisting of the query’s 
predominant attendant phraseology ranging from 
pattern grammar to lexical phrases, is then returned 
as the output of the system. The returned summary, 
or a set of patterns pivoted with both content and 
function words, can be used for learners’ benefits 
directly, or passed on to an error detection and 
correction system (e.g., (Tsao and Wible, 2009) 
and some modules in (Gamon et al., 2009) as rules. 
Therefore, our goal is to return a reasonable-sized 
set of lexical and grammatical patterns 
characterizing the contexts of the query. We now 
formally state the problem that we are addressing. 

Problem Statement: We are given a reference 
corpus C from a wide range of sources and a 
learner search query Q. Our goal is to construct a 
summary of word usages based on C that is likely 
to represent the lexical or grammatical preferences 
on Q’s contexts. For this, we transform the words 
in Q into sets of (word position, sentence record) 
pairs such that the context information, whether 
lexically- or grammatical-oriented, of the querying 
words is likely to be acquired efficiently. 

In the rest of this section, we describe our 
solution to this problem. First, we define a strategy 
for preprocessing our reference corpus (Section 
3.2). Then, we show how GRASP generates 
contextual patterns, comprising the usage summary, 
at run-time (Section 3.3). 

3.2 Corpus Preprocessing 

We attempt to find the word-to-sentence mappings 
and the syntactic counterparts of the L1 sentences 
expected to speed up run-time pattern generation. 
Our preprocessing procedure has two stages. 
Lemmatizing and PoS Tagging. In the first stage, 
we lemmatize each sentence in the reference 

corpus C and generate its most probable POS tag 
sequence. The goal of lemmatization is to reduce 
the impact of morphology on statistical analyses 
while that of POS tagging is to provide a way to 
grammatically describe and generalize the 
contexts/usages of a linguistic query. Actually, 
using POS tags is quite natural: they are often used 
for general description in grammar books, such as 
one’s (i.e., possessive pronoun) in the phrase 
“make up one’s mind”, oneself (i.e., reflexive 
pronoun) in “enjoy oneself very much”, 
superlative_adjective in “the most 
superlative_adjective”, NN (i.e., noun) and VB (i.e., 
base form of a verb) in “insist/suggest/demand that 
NN VB” and so on. 
Constructing Inverted Files. In the second stage, 
we build up inverted files of the lemmas in C for 
quick run-time search. For each lemma, we record 
the sentences and positions in which it occurs. 
Additionally, its corresponding surface word and 
POS tag are kept for run-time pattern grammar 
generation. 
 

Figure 2. Generating pattern grammar and usage 
summary at run-time. 

procedure GRASPusageSummaryBuilding(query,proximity,N,C) 
(1)  queries=queryReformulation(query) 
(2)  GRASPresponses= φ  

for each query in queries 
(3)    interInvList=findInvertedFile(w1 in query) 

for each lemma wi in query except for w1 
(4)      InvList=findInvertedFile(wi) 

//AND operation on interInvList and InvList 
(5a)    newInterInvList= φ ; i=1; j=1 
(5b)    while i<=length(interInvList) and j<=lengh(InvList) 
(5c)       if interInvList[i].SentNo==InvList[ j].SentNo 
(5d)         if withinProximity(interInvList[ i]. 

wordPosi,InvList[ j].wordPosi,proximity) 
(5e)   Insert(newInterInvList, interInvList[i],InvList[j]) 

else if interInvList[i].wordPosi<InvList[j].wordPosi 
(5f)   i++ 

else //interInvList[ i].wordPosi>InvList[ j].wordPosi 
(5g)   j++ 

else if interInvList[i].SentNo<InvList[ j].SentNo 
(5h)          i++ 

else //interInvList[i].SentNo>InvList[j].SentNo 
(5i)           j++ 
(5j)     interInvList=newInterInvList 

//construction of GRASP usage summary for this query 
(6)    Usage= φ  

for each element in interInvList 
(7)       Usage+={PatternGrammarGeneration(query,element,C)} 
(8a)  Sort patterns and their instances in Usage in descending order 

of frequency 
(8b)  GRASPresponse=the N patterns and instances in Usage with 

highest frequency 
(9)    append GRASPresponse to GRASPresponses 
(10) return GRASPresponses 
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3.3 Run-Time Usage Summary Construction 

Once the word-to-sentence mappings and syntactic 
analyses are obtained, GRASP generates the usage 
summary of a query using the procedure in Figure 
2. 

In Step (1) we reformulate the user query into 
new ones, queries, if necessary. The first type of 
query reformulation concerns the language used in 
query. If it is not in the same language as C, we 
translate query and append the translations to 
queries as if they were submitted by the user. The 
second concerns the length of the query. Since 
single words may be ambiguous in senses and 
contexts or grammar patterns are closely associated 
with words’ meanings (Hunston and Francis, 2000), 
we transform single-word queries into their 
collocations, particularly focusing on one word 
sense (Yarowsky, 1995), as stepping stones to 
GRASP patterns. Notice that, in implementation, 
users may be allowed to choose their own 
interested translation or collocation of the query 
for usage learning. The prototypes for first-
language (i.e., Chinese) queries and English 
queries of any length are at A2 and B3 respectively. 
The goal of cross-lingual GRASP is to assist EFL 
users even when they do not know the words of 
their searches and to avoid incorrect queries 
largely because of miscollocation, misapplication, 
and misgeneralization. 

Afterwards, we initialize GRASPresponses to 
collect usage summaries for queries (Step (2)) and 
leverage inverted files to extract and generate each 
query’s syntax-based contexts. In Step (3) we prep 
interInvList for the intersected inverted files of the 
lemmas in query. For each lemma wi within, we 
first obtain its inverted file, InvList (Step (4)) and 
perform an AND operation on interInvList 
(intersected results from previous iteration) and 
InvList (Step (5a) to (5j)4), defined as follows. 

First, we enumerate the inverted lists (Step (5b)) 
after the initialization of their indices i and j and 
temporary resulting intersection newInterInvList 
(Step (5a)). Second, we incorporate a new instance 
of (position, sentence), based on interInvList[i] and 
InvList[j], into newInterInvList (Step (5e)) if the 
sentence records of the indexed list elements are 
the same (Step (5c)) and the distance between their 
                                                           
2 http://140.114.214.80/theSite/bGRASP_v552/ 
3 http://140.114.214.80/theSite/GRASP_v552/ 
4 These steps only hold for sorted inverted files. 

words are within proximity (Step (5d)). Otherwise, 
i and j are moved accordingly. To accommodate 
the contexts of queries’ positional variants (e.g., 
“ role to play” and “role ~ play by” for the query 
“play role”), Step (5d) considers the absolute 
distance. Finally, interInvList is set for the next 
AND iteration (Step (5j)). 

Once we obtain the sentences containing query, 
we construct its context summary as below. For 
each element, taking the form ([wordPosi(w1), …, 
wordPosi(wn)], sentence record) denoting the 
positions of query’s lemmas in the sentence, we 
generate pattern grammar involving replacing 
words in the sentence with POS tags and words in 
wordPosi(wi) with lemmas, and extracting fixed-
window5  segments surrounding query from the 
transformed sentence. The result is a set of 
grammatical patterns with counts. Their lexical 
realizations also retrieved and displayed. 

The procedure finally generates top N 
predominant syntactic patterns and their N most 
frequent lexical phrases as output (Step (8)). The 
usage summaries GRASP returns are aimed to 
accelerate EFL learners’ language understanding 
and learning and lexicographers’ word usage 
navigation. To acquire more semantic-oriented 
patterns, we further exploit WordNet and majority 
voting to categorize words, deriving the patterns 
like “provide PERSON with.” 

4 Experimental Results 

GRASP was designed to generate usage 
summarization of a query for language learning. 
As such, GRASP will be evaluated over CALL. In 
this section, we first present the setting of GRASP 
(Section 4.1) and report the results of different 
consulting systems on language learning in Section 
4.2. 

4.1 Experimental Setting 

We used British National Corpus (BNC) as our 
underlying reference corpus C. It is a British 
English text collection. We exploited GENIA 
tagger to obtain the lemmas and POS tags of C’s 
sentences. After lemmatizing and syntactic 
analyses, all sentences in BNC were used to build 
up inverted files and used as examples for 
grammar pattern extraction. 

                                                           
5 Inspired by (Gamon and Leacock, 2010). 
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English (E) sentence with corresponding Chinese (C) translation answer to 1st blank  answer to 2nd blank 
C: 環境保護對地球有深遠的影響 
E: Environmental protection has ___ impact ___. 

a profound on the Earth 

C: 房屋仲介商在賣屋上大賺一筆 
E: The real estate agent ___ record profit ___. 

made a on house selling 

C: 他們打算在不久將來推出新專輯 
E: They plan to release their new album in ___ future 

the near none 

C: 他為了再見她一面等了很久 
E: He waited for her for a long time in ___ attempt ___ again. 

an to see her 

 

4.2 Results of Constrained Experiments 

In our experiments, we showed GRASP6 to two 
classes of Chinese EFL (first-year) college students. 
32 and 86 students participated, and were trained 
to use GRASP and instructed to perform a sentence 
translation/composition task, made up of pretest 
and posttest. In (30-minute) pretest, participants 
were to complete 15 English sentences with 
Chinese translations as hints, while, in (20-minute) 
posttest, after spending 20 minutes familiarizing 
word usages of the test candidates from us by 
consulting traditional tools or GRASP, participants 
were also asked to complete the same English 
sentences. We refer to the experiments as 
constrained ones since the test items in pre- and 
post-test are the same except for their order. A 
more sophisticated testing environment, however, 
are to be designed. 

Each test item contains one to two blanks as 
shown in the above table. In the table, the first item 
is supposed to test learners’ knowledge on the 
adjective and prepositional collocate of “have 
impact” while the second test the verb collocate 
make, subsequent preposition on, and preceding 
article a of “record profit”. On the other hand, the 
third tests the ability to produce the adjective 
enrichment of “in future”, and the fourth the in-
between article a or possessive his and the 
following infinitive of “ in attempt”. Note that as 
existing collocation reference tools retrieve and 
display collocates, they typically ignore function 
words like articles and determiners, which happen 
to be closely related to frequent errors made by the 
learners (Nicholls, 1999), and fail to provide an 
overall picture of word usages. In contrast, GRASP 
attempts to show the overall picture with 
appropriate function words and word forms. 

We selected 20 collocations and phrases 7 
manually from 100 most frequent collocations in 
                                                           
6 http://koromiko.cs.nthu.edu.tw/grasp/ 
7 Include the 15 test items. 

BNC whose MI values exceed 2.2 and used them 
as the target for learning between the pretest and 
posttest. To evaluate GRASP, half of the 
participants were instructed to use GRASP for 
learning and the other half used traditional tools 
such as online dictionaries or machine translation 
systems (i.e., Google Translate and Yahoo! Babel 
Fish). We summarize the performance of our 
participants on pre- and post-test in Table 1 where 
GRASP denotes the experimental group and TRAD 
the control group. 
 
 class 1 class 2 combined 
 pretest posttest  pretest  posttest  pretest posttest 
GRASP 26.4 41.9 43.6 58.4 38.9 53.9 
TRAD 27.1 32.7 43.8 53.4 39.9 48.6 

Table 1. The performance (%) on pre- and post-test. 
 

We observe in Table 1 that (1) the partition of 
the classes was quite random (the difference 
between GRASP and TRAD was insignificant 
under pretest); (2) GRASP summaries of words’ 
contexts were more helpful in language learning 
(across class 1, class 2 and combined). Specifically, 
under the column of the 1st class, GRASP helped to 
boost students’ achievements by 15.5%, almost 
tripled (15.5 vs. 5.6) compared to the gain using 
TRAD; (3) the effectiveness of GRASP in language 
learning do not confine to students at a certain 
level. Encouragingly, both high- and low-
achieving students benefited from GRASP if we 
think of students in class 2 and those in class 1 as 
the high and the low respectively (due to the 
performance difference on pretests). 

We have analyzed some participants’ answers 
and found that GRASP helped to reduce learners’ 
article and preposition errors by 28% and 8%, 
comparing to much smaller error reduction rate 7% 
and 2% observed in TRAD group. Additionally, an 
experiment where Chinese EFL students were 
asked to perform the same task but using GRASP 
as well as GRASP with translation information8 
                                                           
8 http://koromiko.cs.nthu.edu.tw/grasp/ch 
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was conducted. We observed that with Chinese 
translation there was an additional 5% increase in 
students’ test performance. This suggests to some 
extent learners still depend on their first languages 
in learning and first-language information may 
serve as another quick navigation index even when 
English GRASP is presented. 

Overall, we are modest to say that (in the 
constrained experiments) GRASP summarized 
general-to-specific usages, contexts, or phrase-
ologies of words are quite effective in assisting 
learners in collocation and phrase learning. 

5 Applying GRASP to Error Correction 

To demonstrate the viability of GRASP-retrieved 
lexicalized grammar patterns (e.g., “play ~ role In 
V-ING” and “look forward to V-ING”) in error 
detection and correction, we incorporate them into 
an extended Levenshtein algorithm (1966) to 
provide broad-coverage sentence-level grammat-
ical edits (involving substitution, deletion, and 
insertion) to inappropriate word usages in learner 
text. 

Previously, a number of interesting rule-based 
error detection/correction systems have been 
proposed for some specific error types such as 
article and preposition error (e.g., (Uria et al., 
2009), (Lee et al., 2009), and some modules in 
(Gamon et al., 2009)). Statistical approaches, 
supervised or unsupervised, to grammar checking 
have become the recent trend. For example, 
unsupervised systems of (Chodorow and Leacock, 
2000) and (Tsao and Wible, 2009) leverage word 
distributions in general and/or word-specific 
corpus for detecting erroneous usages while 
(Hermet et al., 2008) and (Gamon and Leacock, 
2010) use Web as a corpus. On the other hand, 
supervised models, typically treating error 
detection/correction as a classification problem, 
utilize the training of well-formed texts ((De Felice 
and Pulman, 2008) and (Tetreault et al., 2010)), 
learner texts, or both pairwisely (Brockett et al., 
2006). Moreover, (Sun et al., 2007) describes a 
way to construct a supervised error detection 
system trained on well-formed and learner texts 
neither pairwise nor error tagged. 

In contrast to the previous work in grammar 
checking, our pattern grammar rules are 
automatically inferred from a general corpus (as 
described in Section 3) and helpful for correcting 

errors resulting from the others (e.g., “to close” in 
“play ~ role to close”), our pattern grammar 
lexicalizes on both content and function words and 
lexical items within may be contiguous (e.g., “look 
forward to V-ING PRP”) or non-contiguous (e.g., 
“play ~ role In V-ING”), and, with word class 
(POS) information, error correction or grammatical 
suggestion is provided at sentence level. 

5.1 Error Correcting Process 

Figure 3 shows how we check grammaticality and 
provide suggestions for a given text with accurate 
spelling. 
 

 
Figure 3. Procedure of grammar suggestion/correction. 

 
In Step (1), we initiate a set Suggestions to 

collect grammar suggestions to the user text T 
according to a bank of patterns 
PatternGrammarBank, i.e., a collection of 
summaries of grammatical usages (e.g., “play ~ 
role In V-ING”) of queries (e.g., “play role”) 
submitted to GRASP. Since we focus on grammar 
checking at sentence level, T is heuristically split 
(Step (2)). 

For each sentence, we extract user-proposed 
word usages (Step (3)), that is, the user 
grammatical contexts of ngram and collocation 
sequences. Take for example the (ungrammatical) 
sentences and their corresponding POS sequences 
“he/PRP play/VBP an/DT important/JJ roles/NNS 
to/TO close/VB this/DT deals/NNS” and “he/PRP 
looks/VBZ forward/RB to/TO hear/VB you/PRP”. 
Ngram contexts include “he VBP DT”, “play an JJ 
NNS”, “this NNS” for the first sentence and “look 
forward to VB PRP” and “look forward to hear 
PRP” for the second. And collocation contexts for 

procedure GrammarChecking(T,PatternGrammarBank) 
(1) Suggestions=“”//candidate suggestions 
(2) sentences=sentenceSplitting(T) 

for each sentence in sentences 
(3)   userProposedUsages=extractUsage(sentence) 

for each userUsage in userProposedUsages 
(4)     patGram=findPatternGrammar(userUsage.lexemes, 

PatternGrammarBank) 
(5)     minEditedCost=SystemMax; minEditedSug=“” 

for each pattern in patGram 
(6)        cost=extendedLevenshtein(userUsage,pattern) 

if cost<minEditedCost 
(7)            minEditedCost=cost; minEditedSug=pattern 

if minEditedCost>0 
(8)       append (userUsage,minEditedSug) to Suggestions 
(9) Return Suggestions 
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the first sentence are “play ~ role to VERB” and 
“close ~ deal .” 

For each userUsage in the sentence (e.g., “play 
~ role TO VB” and “look forward to hear PRP”), 
we first acquire the pattern grammar of its lexemes 
(e.g., “play role” and “look forward to hear”) such 
as “play ~ role in V-ing” and “look forward to 
hear from” in Step (4), and we compare the user-
proposed usage against the corresponding 
predominant, most likely more proper, ones (from 
Step (5) to (7)). We leverage an extended 
Levenshtein’s algorithm in Figure 4 for usage 
comparison, i.e. error detection and correction, 
after setting up minEditedCost and minEditedSug 
for the minimum-cost edit from alleged error usage 
into appropriate one (Step (5)). 
 

 
Figure 4. Extended Levenshtein algorithm for correction. 
 

In Step (1) of the algorithm in Figure 4 we 
allocate and initialize costArray to gather the 
dynamic programming based cost to transform 
userUsage into a specific pattern. Afterwards, the 
algorithm defines the cost of performing 
substitution (Step (2)), deletion (Step (3)) and 
insertion (Step (4)) at i-indexed userUsage and j-
indexed pattern. If the entries userUsage[i] and 
pattern[j] are equal literally (e.g., “VB” and “VB”) 
or grammatically (e.g., “DT” and “PRP$”9), no edit 

                                                           
9 ONE’S denotes possessives. 

is needed, hence, no cost (Step (2a)). On the other 
hand, since learners tend to select wrong word 
form and preposition, we make less the cost of the 
substitution of the same word group, say from 
“VERB” to “V-ing”, “TO” to “In” and “In” to 
“IN( on)” (Step (2b)) compared to a total edit (Step 
(2c)). In addition to the conventional deletion and 
insertion (Step (3b) and (4b) respectively), we look 
ahead to the elements userUsage[i+1] and 
pattern[ j+1] considering the fact that “with or 
without preposition” and “transitive or intransitive 
verb” often puzzles EFL learners (Step (3a) and 
(4a)). Only a small edit cost is applied if the next 
elements in userUsage and Pattern are “equal”. In 
Step (6) the extended Levenshtein’s algorithm 
returns the minimum cost to edit userUsage based 
on pattern. 

Once we obtain the costs to transform the 
userUsage into its related frequent patterns, we 
propose the minimum-cost one as its grammatical 
suggestion (Step (8) in Figure 3), if its minimum 
edit cost is greater than zero. Otherwise, the usage 
is considered valid. At last, the gathered 
suggestions Suggestions to T are returned to users 
(Step (9)). Example edits to the user text “he play 
an important roles to close this deals. he looks 
forward to hear you.” from our working prototype, 
EdIt10, is shown in Figure 5. Note that we exploit 
context checking of collocations to cover longer 
span than ngrams’, and longer ngrams like 
fourgrams and fivegrams to (more or less) help 
semantic checking (or word sense disambiguation). 
For example, “hear” may be transitive or 
intransitive, but, in the context of “look forward 
to”, there is strong tendency it is used intransitively 
and follows by “from”, as EdIt would suggest (see 
Figure 5). 

There are two issues worth mentioning on the 
development of EdIt. First, grammar checkers 
typically have different modules examining 
different types of errors with different priority. In 
our unified framework, we set the priority of 
checking collocations’ usages higher than that of 
ngrams’, set the priority of checking longer 
ngrams’ usages higher than that of shorter, and we 
do not double check. Alternatively, one may first 
check usages of all sorts and employ majority 
voting to determine the grammaticality of a 
sentence. Second, we further incorporate

                                                           
10 http://140.114.214.80/theSite/EdIt_demo2/ 

procedure extendedLevenshtein(userUsage,pattern) 
(1) allocate and initialize costArray 

for i in range(len(userUsage)) 
for j in range(len(pattern)) 

//substitution 
if equal(userUsage[ i],pattern[j]) 

(2a)       substiCost=costArray[ i-1,j-1]+0 
elseif sameWordGroup(userUsage[ i],pattern[j]) 

(2b)       substiCost=costArray[ i-1,j-1]+0.5 
else 

(2c)       substiCost=costArray[ i-1,j-1]+1 
//deletion 
if equal(userUsage[ i+1],pattern[j+1]) 

(3a)       delCost=costArray[ i-1,j]+smallCost 
else 

(3b)       delCost=costArray[ i-1,j]+1 
//insertion 
if equal(userUsage[ i+1],pattern[j+1])  

(4a)        insCost=costArray[ i,j-1]+smallCost 
else 

(4b)       insCost=costArray[ i,j-1]+1 
(5)       costArray[i,j]=min(substiCost,delCost,insCost) 
(6) Return costArray[len(userUsage),len(pattern)] 
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Erroneous sentence EdIt suggestion ESL Assistant suggestion 
Wrong word form 
… a sunny days … a sunny NN a sunny day 
every days, I … every NN every day 
I would said to … would VB would say 
he play a … he VBD none 
… should have tell the truth should have VBN should have to tell 
… look forward to see you look forward to VBG none 
… in an attempt to seeing you an attempt to VB none 
… be able to solved this problem able to VB none 
Wrong preposition 
he plays an important role to close … play ~ role IN(in) none 
he has a vital effect at her. have ~ effect IN(on) effect on her 
it has an effect on reducing … have ~ effect IN(of) VBG none 
… depend of the scholarship depend IN(on) depend on 
Confusion between intransitive and transitive verb 
he listens the music. missing “to” after “listens” missing “to” after “listens” 
it affects to his decision. unnecessary “to” unnecessary “to” 
I understand about the situation. unnecessary “about”  unnecessary “about” 
we would like to discuss about this matter. unnecessary “about” unnecessary “about” 
Mixture 
she play an important roles to close this deals. she VBD; an JJ NN; 

play ~ role IN(in) VBG; this NN 
play an important role; 
close this deal 

I look forward to hear you. look forward to VBG; 
missing “from” after “hear” 

none 

Table 2. Three common score-related error types and their examples with suggestions from EdIt and ESL Assistant. 
 

 
Figure 5. Example EdIt responses to the ungrammatical. 
 
probabilities conditioned on word positions to 
weigh edit costs. For example, the conditional 
probability of “VERB” being the immediate 
follower of “look forward to” is virtually zero, but 
the probability of “V-ing” is around 0.3. 

5.2 Preliminary Results in Error Correction 

We examined three common error types in learner 
text that are highly correlated with essay scores 

(Leacock and Chodorow, 2003; Burstein et al., 
2004), to evaluate EdIt, (see Table 2). In Table 2, 
the results of a state-of-the-art checker, ESL 
Assistant (www.eslassistant.com/), are shown for 
comparison, and information produced by both 
systems are underscored. As indicated, GRASP 
retrieves patterns which are potential useful if 
incorporated into an extension of Levenshtein’s 
algorithm to correct substitution, deletion, and 
insertion errors in learner. 

6 Summary 

We have introduced a new method for producing a 
general-to-specific usage summary of the contexts 
of a linguistic search query aimed at accelerating 
learners’ grasp on word usages. We have 
implemented and evaluated the method as applied 
to collocation and phrase learning and grammar 
checking. In the preliminary evaluations we show 
that GRASP is more helpful than traditional 
language learning tools, and that the patterns and 
lexical bundles provided are promising in detecting 
and correcting common types of errors in learner 
writing. 
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Abstract 

Learning a vocabulary word requires seeing it 

in multiple informative contexts.  We describe 

a system to generate such contexts for a given 

word sense.  Rather than attempt to do word 

sense disambiguation on example contexts al-

ready generated or selected from a corpus, we 

compile information about the word sense into 

the context generation process.  To evaluate the 

sense-appropriateness of the generated contexts 

compared to WordNet examples, three human 

judges chose which word sense(s) fit each ex-

ample, blind to its source and intended sense.  

On average, one judge rated the generated ex-

amples as sense-appropriate, compared to two 

judges for the WordNet examples.  Although 

the system’s precision was only half of Word-

Net’s, its recall was actually higher than 

WordNet’s, thanks to covering many senses for 

which WordNet lacks examples. 

 

1 Introduction 

Learning word meaning from example contexts is 

an important aspect of vocabulary learning. Con-

texts give clues to semantics but also convey many 

other lexical aspects, such as parts of speech, mor-

phology, and pragmatics, which help enrich a per-

son’s word knowledge base (Jenkins 1984; Nagy et 

al. 1985; Schatz 1986; Herman et al. 1987; Nagy 

et al. 1987; Schwanenflugel et al. 1997; Kuhn and 

Stahl 1998; Fukkink et al. 2001). Accordingly, one 

key issue in vocabulary instruction is how to find 

or create good example contexts to help children 

learn a particular sense of a word. Hand-vetting 

automatically generated contexts can be easier than 

hand-crafting them from scratch (Mitkov et al. 

2006; Liu et al. 2009). 

This paper describes what we believe is the first 

system to generate example contexts for a given 

target sense of a polysemous word.  Liu et al. 

(2009) characterized good contexts for helping 

children learn vocabulary and generated them for a 

target part of speech, but not a given word sense.  

Pino and Eskenazi  (2009) addressed the polysemy 

issue, but in a system for selecting contexts rather 

than for generating them.  Generation can supply 

more contexts for a given purpose, e.g. teaching 

children, than WordNet or a fixed corpus contains. 

Section 2 describes a method to generate sense-

targeted contexts. Section 3 compares them to 

WordNet examples.  Section 4 concludes. 

2 Approach 

An obvious way to generate sense-targeted con-

texts is to generate contexts containing the target 

word, and use Word Sense Disambiguation (WSD) 

to select the ones that use the target word sense.  

However, without taking the target word sense into 

account, the generation process may not output any 

contexts that use it. Instead, we model word senses 

as topics and incorporate their sense indicators into 

the generation process – words that imply a unique 

word sense when they co-occur with a target word.   

For example, retreat can mean ―a place of pri-

vacy; a place affording peace and quiet.‖  Indica-

tors for this sense, in decreasing order of Pr(word | 

topic for target sense), include retreat, yoga, place, 

retreats, day, home, center, church, spiritual, life, 

city, time, lake, year, room, prayer, years, school, 

dog, park, beautiful, area, and stay.  Generated 

contexts include …retreat in this bustling city…. 

Another sense of retreat (as defined in Word-

Net) is ―(military) a signal to begin a withdrawal 
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from a dangerous position,‖ for which indicators 

include states, war, united, american, military, 

flag, president, world, bush, state, Israel, Iraq, in-

ternational, national, policy, forces, foreign, na-

tion, administration, power, security, iran, force, 

and Russia.  Generated contexts include …military 

leaders believe that retreat…. 

We decompose our approach into two phases, 

summarized in Figure 1.  Section 2.1 describes the 

Sense Indicator Extraction phase, which obtains 

indicators for each WordNet synset of the target 

word.  Section 2.2 describes the Context Genera-

tion phase, which generates contexts that contain 

the target word and indicators for the target sense. 

 
Figure 1: overall work flow diagram 

2.1 Sense Indicator Extraction 

Kulkarni and Pedersen (2005) and Duan and Yates 

(2010) performed Sense Indicator Extraction, but 

the indicators they extracted are not sense targeted.  

Content words in the definition and examples for 

each sense are often good indicators for that sense, 

but we found that on their own they did poorly. 

One reason is that such indicators sometimes co-

occur with a different sense.  But the main reason 

is that there are so few of them that the word sense 

often appears without any of them.  Thus we need 

more (and if possible better) sense indicators. 

 To obtain sense-targeted indicators for a target 

word, we first assemble a corpus by issuing a 

Google query for each synset of the target word.  

The query lists the target word and all content 

words in the synset’s WordNet definition and ex-

amples, and specifies a limit of 200 hits.  The re-

sulting corpus contains a few hundred documents. 

To extract sense indicators from the corpus for a 

word, we adapt Latent Dirichlet Allocation (LDA) 

(Blei et al. 2003).  LDA takes as input a corpus of 

documents and an integer k, and outputs k latent 

topics, each represented as a probability distribu-

tion over the corpus vocabulary.  For k, we use the 

number of word senses.  To bias LDA to learn top-

ics corresponding to the word senses, we use the 

content words in their WordNet definitions and 

examples as seed words. 

After learning these topics and filtering out stop 

words, we pick the 30 highest-probability words 

for each topic as indicators for the corresponding 

word sense, filtering out any words that also indi-

cate other senses. We create a corpus for each tar-

get word and run LDA on it. 

Having outlined the extraction process, we now 

explain in more detail how we learn the topics; the 

mathematically faint-hearted may skip to Section 

2.2.  Formally, given corpus   with   documents, 

let   be the number of topics, and let    and    be 

the parameters of the document and topic distribu-

tions respectively.  LDA assumes this generative 

process for each document    for a corpus  : 

1. Choose            where           

2. Choose            where           

3. For each word      in    where   

       ,   is the number of words in    

(a) Choose a topic                       

(b) Choose a topic                      

where        

In classical LDA, all   ’s are the same. We al-

low them to be different in order to use the seed 

words as high confidence indicators of target 

senses to bias the hyper-parameters of their docu-

ment distributions. 

For inference, we use Gibbs Sampling (Steyvers 

and Griffiths 2006) with transition probability  

                
            

               

                
 

              

                   
 

Here        
denotes the topic assignments to all 

other words in the corpus except     ;            

is the number of times word   is assigned to topic 

  in the whole corpus;          is the number of 

words assigned to topic   in the entire corpus; 
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          is the count of tokens assigned to topic 

  in document   ; and     and       are the hyper-

parameters on      and      respectively in the two 

Dirichlet distributions. 

For each document    that contains seed words 

of some synset, we bias    toward the topic   for 

that synset by making      larger; specifically, we 

set each      to 10 times the average value of   .  

This bias causes more words      in    to be as-

signed to topic   because the words of    are likely 

to be relevant to  . These assignments then influ-

ence the topic distribution of   so as to make      

likelier to be assigned to   in any document     , 

and thus shift the document distribution in      

towards  . By this time we are back to the start of 

the loop where the document distribution of      

is biased to  .  Thus this procedure can discover 

more sense indicators for each sense. 

Our method is a variant of Labeled LDA (L-

LDA) (Ramage 2009), which allows only labels 

for each document as topics.  In contrast, our va-

riant allows all topics for each document, because 

it may use more than one sense of the target word.  

Allowing other senses provides additional flexibili-

ty to discover appropriate sense indicators. 

The LDA method we use to obtain sense indica-

tors fits naturally into the framework of bootstrap-

ping WSD (Yarowsky 1995; Mihalcea 2002; 

Martinez et al. 2008; Duan and Yates 2010), in 

which seeds are given for each target word, and the 

goal is to disambiguate the target word by boot-

strapping good sense indicators that can identify 

the sense.  In contrast to WSD, our goal is to gen-

erate contexts for each sense of the target word.  

2.2 Context Generation 

To generate sense-targeted contexts, we extend the 

VEGEMATIC context generation system (Liu et 

al. 2009). VEGEMATIC generates contexts for a 

given target word using the Google N-gram cor-

pus.  Starting with a 5-gram that contains the target 

word, VEGEMATIC extends it by concatenating 

additional 5-grams that overlap by 4 words on the 

left or right. 

To satisfy various constraints on good contexts 

for learning the meaning of a word, VEGEMATIC 

uses various heuristic filters.  For example, to gen-

erate contexts likely to be informative about the 

word meaning, VEGEMATIC prefers 5-grams that 

contain words related to the target word, i.e., that 

occur more often in its presence.  However, this 

criterion is not specific to a particular target sense. 

To make VEGEMATIC sense-targeted, we 

modify this heuristic to prefer 5-grams that contain 

sense indicators.  We assign the generated contexts 

to the senses whose sense indicators they contain. 

We discard contexts that contain sense indicators 

for more than one sense. 

3 Experiments and Evaluation 

To evaluate our method, we picked 8 target words 

from a list of polysemous vocabulary words used 

in many domains and hence important for children 

to learn (Beck et al. 2002).  Four of them are 

nouns:  advantage (with 3 synsets), content (7), 

force (10), and retreat (7). Four are verbs:  dash 

(6), decline (7), direct (13), and reduce (20).  Some 

of these words can have other parts of speech, but 

we exclude those senses, leaving 73 senses in total. 

We use their definitions from WordNet because 

it is a widely used, comprehensive sense inventory. 

Some alternative sense inventories might be un-

suitable. For instance, children’s dictionaries may 

lack WordNet’s rare senses or hypernym relations. 

We generated contexts for these 73 word senses 

as described in Section 2, typically 3 examples for 

each word sense.  To reduce the evaluation burden 

on our human judges, we chose just one context for 

each word sense, and for words with more than 10 

senses we chose a random sample of them.  To 

avoid unconscious bias, we chose random contexts 

rather than the best ones, which a human would 

likelier pick if vetting the generated contexts by 

hand.  For comparison, we also evaluated WordNet 

examples (23 in total) where available. 

We gave three native English-speaking college-

educated judges the examples to evaluate indepen-

dently, blind to their intended sense.  They filled in 

a table for each target word.  The left column listed 

the examples (both generated and WordNet) in 

random order, one per row.  The top row gave the 

WordNet definition of each synset, one per col-

umn.  Judges were told:  For each example, put a 
1 in the column for the sense that best fits how 
the example uses the target word.  If more than 
one sense fits, rank them 1, 2, etc.  Use the last 
two columns only to say that none of the senses 
fit, or you can't tell, and why.  (Only 10 such cas-

es arose.) 

We measured inter-rater reliability at two levels. 
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At the fine-grained level, we measured how well 

the judges agreed on which one sense fit the exam-

ple best.  The value of Fleiss’ Kappa (Shrout and 

Fleiss 1979) was 42%, considered moderate.  At 

the coarse-grained level, we measured how well 

judges agreed on which sense(s) fit at all.  Here 

Fleiss’ Kappa was 48%, also considered moderate. 

We evaluated the examples on three criteria. 

Yield is the percentage of intended senses for 

which we generate at least one example – whether 

it fits or not.  For the 73 synsets, this percentage is 

92%.  Moreover, we typically generate 3 examples 

for a word sense.  In comparison, only 34% of the 

synsets have even a single example in WordNet. 

 (Fine-grained) precision is the percentage of 

examples that the intended sense fits best accord-

ing to the judges. Human judges often disagree, so 

we prorate this percentage by the percentage of 

judges who chose the intended sense as the best fit.  

The result is algebraically equivalent to computing 

precision separately according to each judge, and 

then averaging the results.  Precision for generated 

examples was 36% for those 23 synsets and 27% 

for all 67 synsets with generated examples.  Al-

though we expected WordNet to be a gold stan-

dard, its precision for the 23 synsets having 

examples was 52% — far less than 100%. 

This low precision suggests that the WordNet 

contexts to illustrate different senses were often 

not informative enough for the judges to distin-

guish them from all the other senses.  For example, 

the WordNet example reduce one’s standard of 

living is attached to the sense ―lessen and make 

more modest.‖  However, this sense is hard to dis-

tinguish from ―lower in grade or rank or force 

somebody into an undignified situation.‖ In fact, 

two judges did not choose the first sense, and one 

of them chose the second sense as the best fit.   
Coarse-grained precision is similar, but based on 

how often the intended sense fits the example at 

all, whether or not it fits best.  Coarse-grained pre-

cision was 67% for the 23 WordNet examples, 

40% for the examples generated for those 23 syn-

sets, and 33% for all 67 generated examples. 

Coarse-grained precision is important because 

fine-grained semantic distinctions do not matter in 

illustrating a core sense of a word.  The problem of 

how to cluster fine-grained senses into coarse 

senses is hard, especially if consensus is required 

(Navigli et al. 2007). Rather than attempt to identi-

fy a single definitive partition of a target word’s 

synsets into coarse senses, we implicitly define a 

coarse sense as the subset of synsets rated by a 

judge as fitting a given example.  Thus the cluster-

ing into coarse senses is not only judge-specific but 

example-specific:   different, possibly overlapping 

sets of synsets may fit different examples. 
Recall is the percentage of synsets that fit their 

generated examples. Algebraically it is the product 

of precision and yield.  Fine-grained recall was 

25% for the generated examples, compared to only 

18% for the WordNet examples. Coarse-grained 

recall was 30% for the generated examples, com-

pared to 23% for the WordNet examples. 

Figure 2 shows how yield, inter-rater agreement, 

and coarse and fine precision for the 8 target words 

vary with their number of synsets.  With so few 

words, this analysis is suggestive, not conclusive. 

We plot all four metrics on the same [0,1] scale to 

save space, but only the last two metrics have di-

rectly comparable values,  However, it is still mea-

ningful to compare how they vary.  Precision and 

inter-rater reliability generally appear to decrease 

with the number of senses.  As polysemy increases, 

the judges have more ways to disagree with each 

other and with our program.  Yield is mostly high, 

but might be lower for words with many senses, 

due to deficient document corpora for rare senses.   

  

Figure 2: Effects of increasing polysemy 

Table 1 compares the generated and WordNet 

examples on various measures.  It compares preci-

sion on the same 23 senses that have WordNet ex-

amples.  It compares recall on all 73 senses.  It 

compares Kappa on the 23 WordNet examples and 

the sample of generated examples the judges rated.   
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Generated WordNet 

Yield 92% 34% 

Senses with examples 67 23 

Avg. words in context 5.91 7.87 

Precision 

(same 23) 

    Fine 36% 52% 

Coarse 40% 67% 

Recall 
Fine  25% 18% 

Coarse 30% 23% 

Fleiss’ 

Kappa 

Fine 0.43 0.39 

Coarse 0.48 0.49 

Table 1: Generated examples vs. WordNet 

Errors occur when 1) the corpus is missing a 

word sense; 2) LDA fails to find good sense indi-

cators; or 3) Context Generation fails to generate a 

sense-appropriate context. 

Our method succeeds when (1) the target sense 

occurs in the corpus, (2) LDA finds good indica-

tors for it, and (3) Context Generation uses them to 

construct a sense-appropriate context.  For exam-

ple, the first sense of advantage is ―the quality of 

having a superior or more favorable position,‖ for 

which we obtain the sense indicators support, work, 

time, order, life, knowledge, mind, media, human, 

market, experience, nature, make, social, informa-

tion, child, individual, cost, people, power, good, 

land, strategy, and company, and generate (among 

others) the context …knowledge gave him an ad-

vantage…. 

Errors occur when any of these 3 steps fails.  

Step 1 fails for the sense ―reduce in scope while 

retaining essential elements‖ of reduce because it 

is so general that no good example exists in the 

corpus for it.  Step 2 fails for the sense of force in 

―the force of his eloquence easily persuaded them‖ 

because its sense indicators are men, made, great, 

page, man, time, general, day, found, side, called, 

and house.  None of these words are precise 

enough to convey the sense.  Step 3 fails for the 

sense of advantage as ―(tennis) first point scored 

after deuce,‖ with sense indicators point, game, 

player, tennis, set, score, points, ball, court, ser-

vice, serve, called, win, side, players, play, team, 

games, match, wins, won, net, deuce, line, oppo-

nent, and turn.  This list looks suitably tennis-

related.  However, the generated context …the 

player has an advantage… fits the first sense of 

advantage; here the indicator player for the tennis 

sense is misleading. 

4 Contributions and Limitations 

This paper presents what we believe is the first 

system for generating sense-appropriate contexts to 

illustrate different word senses even if they have 

the same part of speech.  We define the problem of 

generating sense-targeted contexts for vocabulary 

learning, factor it into Sense Indicator Extraction 

and Context Generation, and compare the resulting 

contexts to WordNet in yield, precision, and recall 

according to human judges who decided, given 

definitions of all senses, which one(s) fit each con-

text, without knowing its source or intended sense.  

This test is much more stringent than just deciding 

whether a given word sense fits a given context. 

There are other possible baselines to compare 

against, such as Google snippets. However, Google 

snippets fare poorly on criteria for teaching child-

ren vocabulary (Liu et al. under revision).  Another 

shortcoming of this alternative is the inefficiency 

of retrieving all contexts containing the target word 

and filtering out the unsuitable ones.  Instead, we 

compile constraints on suitability into a generator 

that constructs only contexts that satisfy them.  

Moreover, in contrast to retrieve-and-filter, our 

constructive method (concatenation of overlapping 

Google 5-grams) can generate novel contexts. 

There is ample room for future improvement. 

We specify word senses as WordNet synsets rather 

than as coarser-grain dictionary word senses more 

natural for educators.  Our methods for target word 

document corpus construction, Sense Indicator 

Extraction, and Context Generation are all fallible.  

On average, 1 of 3 human judges rated the result-

ing contexts as sense-appropriate, half as many as 

for WordNet examples.  However, thanks to high 

yield, their recall surpassed the percentage of syn-

sets with WordNet examples.  The ultimate crite-

rion for evaluating them will be their value in 

tutorial interventions to help students learn vocabu-

lary. 

Acknowledgments 

This work was supported by the Institute of Educa-

tion Sciences, U.S. Department of Education, 

through Grant R305A080157 to Carnegie Mellon 

University. The opinions expressed are those of the 

authors and do not necessarily represent the views 

of the Institute or the U.S. Department of Educa-

tion.  We thank the reviewers and our judges. 

109



References  

Isabel L.  Beck, Margaret G. Mckeown and Linda 

Kucan. 2002. Bringing Words to Life:  Robust 

Vocabulary Instruction. NY, Guilford. 

David Blei, Andrew Ng and Michael Jordan. 2003. 

Latent Dirichlet allocation. Journal of Machine 

Learning Research 3: 993–1022. 

Weisi Duan and Alexander Yates. 2010. Extracting 

Glosses to Disambiguate Word Senses. Human 

Language Technologies: The 2010 Annual 

Conference of the North American Chapter of the 

Association for Computational Linguistics, Los 

Angeles. 

Ruben G. Fukkink, Henk Blok and Kees De Glopper. 

2001. Deriving word meaning from written context: 

A multicomponential skill. Language Learning 51(3): 

477-496. 

Patricia A. Herman, Richard C. Anderson, P. David 

Pearson and William E. Nagy. 1987. Incidental 

acquisition of word meaning from expositions with 

varied text features. Reading Research Quarterly 

22(3): 263-284. 

Joseph R. Jenkins, Marcy  Stein and Katherine Wysocki. 

1984. Learning vocabulary through reading. 

American Educational Research Journal 21: 767-787. 

Melanie R. Kuhn and Steven A. Stahl. 1998. Teaching 

children to learn word meaning from context: A 

synthesis and some questions. Journal of Literacy 

Research 30(1): 119-138. 

Anagha Kulkarni and Ted Pedersen. 2005. Name 

discrimination and email clustering using 

unsupervised clustering and labeling of similar 

contexts. Proceedings of the Second Indian 

International Conference on Artificial Intelligence, 

Pune, India. 

Liu Liu, Jack Mostow and Greg Aist. 2009. Automated 

Generation of Example Contexts for Helping 

Children Learn Vocabulary. Second ISCA Workshop 

on Speech and Language Technology in Education 

(SLaTE), Wroxall Abbey Estate, Warwickshire, 

England. 

Liu Liu, Jack Mostow and Gregory S. Aist. under 

revision. Generating Example Contexts to Help 

Children Learn Word Meaning. Journal of Natural 

Language Engineering. 

David Martinez, Oier Lopez de Lacalle and Eneko 

Agirre. 2008. On the use of automatically acquired 

examples for all-nouns word sense disambiguation. 

Journal of Artificial Intelligence Research 33: 79--

107. 

Rada Mihalcea. 2002. Bootstrapping large sense tagged 

corpora. Proceedings of the 3rd International 

Conference on Languages Resources and Evaluations 

LREC 2002, Las Palmas, Spain. 

R. Uslan Mitkov, Le An Ha and Nikiforos Karamanis. 

2006. A computer-aided environment for generating 

multiple choice test items. Natural Language 

Engineering 12(2): 177-194. 

William E. Nagy, Richard C. Anderson and Patricia A. 

Herman. 1987. Learning Word Meanings from 

Context during Normal Reading. American 

Educational Research Journal 24(2): 237-270. 

William E. Nagy, Patricia A. Herman and Richard C. 

Anderson. 1985. Learning words from context. 

Reading Research Quarterly 20(2): 233-253. 

Roberto Navigli, Kenneth C. Litkowski and Orin 

Hargraves. 2007. Semeval-2007 task 07: Coarse-

grained English all-words task. Proceedings of the 

4th International Workshop on Semantic Evaluations, 

Association for Computational Linguistics: 30-35. 

Juan Pino and Maxine Eskenazi. 2009. An Application 

of Latent Semantic Analysis to Word Sense 

Discrimination for Words with Related and Unrelated 

Meanings. The 4th Workshop on Innovative Use of 

NLP for Building Educational Applications, 

NAACL-HLT 2009 Workshops, Boulder, CO, USA. 

Daniel Ramage, David Hall, Ramesh Nallapati, and 

Christopher D. Manning. 2009. Labeled LDA: A 

supervised topic model for credit attribution in multi-

labeled corpora. Proceedings of the 2009 Conference 

on Empirical Methods in Natural Language 

Processing, Association for Computational 

Linguistics. 

Elinore K. Schatz and R. Scott Baldwin. 1986. Context 

clues are unreliable predictors of word meanings. 

Reading Research Quarterly 21: 439-453. 

Paula J. Schwanenflugel, Steven A. Stahl and Elisabeth 

L. Mcfalls. 1997. Partial Word Knowledge and 

Vocabulary Growth during Reading Comprehension. 

Journal of Literacy Research 29(4): 531-553. 

Patrick E. Shrout and Joseph L. Fleiss. 1979. Intraclass 

correlations: Uses in assessing rater reliability. 

Psychological Bulletin 86(2): 420-428. 

Mark Steyvers and Tom Griffiths. 2006. Probabilistic 

topic models. Latent Semantic Analysis: A Road to 

Meaning. T. Landauer, D. McNamara, S. Dennis and 

W. Kintsch. Hillsdale, NJ, Laurence Erlbaum. 

David Yarowsky. 1995. Unsupervised WSD rivaling 

supervised methods. Proceedings of the 33rd Annual 

Meeting of the Association for Computational 

Linguistics, Massachusetts Institute of Technology, 

Cambridge, MA. 

  

 

 

110



Proceedings of the Sixth Workshop on Innovative Use of NLP for Building Educational Applications, pages 111–119,
Portland, Oregon, 24 June 2011. c©2011 Association for Computational Linguistics

Generating Concept Map Exercises from Textbooks

Andrew M. Olney, Whitney L. Cade, and Claire Williams
Institute for Intelligent Systems

University of Memphis
365 Innovation Drive, Memphis, TN 38152

aolney@memphis.edu

Abstract

In this paper we present a methodology for
creating concept map exercises for students.
Concept mapping is a common pedagogical
exercise in which students generate a graph-
ical model of some domain. Our method auto-
matically extracts knowledge representations
from a textbook and uses them to generate
concept maps. The purpose of the study is to
generate and evaluate these concept maps ac-
cording to their accuracy, completeness, and
pedagogy.

1 Introduction

Concept mapping is an increasingly common educa-
tional activity, particularly in K-12 settings. Concept
maps are graphical knowledge representations that
represent a concept, question or process (Novak and
Canas, 2006). A recent meta-analysis of 55 studies
involving over five thousand participants found the
students creating concept maps had increased learn-
ing gains (d = .82) and students studying concept
maps had increased learning gains ( d = .37 ) (Nesbit
and Adesope, 2006). In comparison, novice tutoring
across many studies have had more modest learning
gains ( d = .40 ) (Cohen et al., 1982) – comparable
to studying concept maps but not to creating them.

For difficult topics, or for students new to con-
cept mapping, some researchers propose so-called
expert skeleton concept maps (Novak and Canas,
2006). These are partially specified concept maps
that may have some existing structure and then a
“word bank” of concepts, properties, and relations
that can be used to fill in the rest of the map. This

approach is consistent with concept maps as instruc-
tional scaffolds for student learning (O’Donnell et
al., 2002). As students increase in ability, they can
move from expert skeleton concept maps to self-
generated maps.

Because concept maps are essentially knowledge
representations based in words, analysis and syn-
thesis of concept maps are theoretically amenable
to knowledge-rich computational linguistic tech-
niques. This paper presents an approach to extract-
ing concept maps from textbooks to create educa-
tional materials for students. The concept maps can
be used as expert skeleton concept maps. The rest of
the paper is organized as follows. Section 2 presents
a brief overview of concept maps from the AI, psy-
chological, and education literatures and motivates a
particular representation used in later sections. Sec-
tion 3 presents a general technique for extracting
concept maps from textbooks and generating graph-
ical depictions of these as student exercises. Sec-
tion 4 describes a comparative evaluation of maps
extracted by the model to gold-standard human gen-
erated concept maps. Section 5 discusses these re-
sults and their significance for generating concept
map exercises for students.

2 Perspectives on Concept Maps

There are many different kinds of concept maps, and
each variation imposes different computational de-
mands. One prominent perspective comes from the
AI literature in formal reasoning, as an extension of
work done a century ago by Pierce on existential
graphs (Sowa, 2007; Sowa, 2009). In this formula-
tion (which is now an ISO standard), so-called con-
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ceptual graphs are interchangeable with predicate
calculus. Of particular importance to the current dis-
cussion is grain size, that is the level of granularity
given to nodes and relationships. In these conceptual
graphs, grain size is very small, such that each argu-
ment, e.g. John, is connected to other arguments,
e.g. Mary, through an arbitrary predicate, e.g. John
loves Mary. Aside from the tight correspondence to
logic, grain size turns out to be a relevant differentia-
tor amongst conceptualizations of conceptual graphs
amongst different fields, and one that leads to impor-
tant design decisions when extracting graphs from a
text.

Another prominent perspective comes from the
psychology literature (Graesser and Clark, 1985),
with some emphasis on modeling question ask-
ing and answering (Graesser and Franklin, 1990;
Gordon et al., 1993). In this formulation
of conceptual graphs, nodes themselves can be
propositions, e.g. “a girl wants to play with
a doll,” and relations are (as much as pos-
sible) limited to a generic set of propositions
for a given domain. For example, one such
categorization consists of 21 relations including
is-a, has-property, has-consequence,
reason, implies, outcome, and means (Gor-
don et al., 1993). A particular advantage of limiting
relations to these categories is that the categories can
then be set into correspondence with certain ques-
tion types, e.g. definitional, causal consequent, pro-
cedural, for both the purposes of answering ques-
tions (Graesser and Franklin, 1990) as well as gen-
erating them (Gordon et al., 1993).

Finally, concept maps are widely used in science
education (Fisher et al., 2000; Mintzes et al., 2005)
for both enhancing student learning and assessment.
Even in this community, there are several formu-
lations of concept maps. One such widely known
map is a hierarchical map (Novak and Canas, 2006;
Novak, 1990), in which a core concept/question at
the root of the map drives the elaboration of the
map to more and more specific details. In hierarchi-
cal maps, nodes are not propositions, and the edges
linking nodes are not restricted (Novak and Canas,
2006). Alternative formulations to hierarchical
maps include cluster maps, MindMaps, computer-
generated associative networks, and concept-circle
diagrams, amongst others (Fisher et al., 2000).

part

abdomenarthropod posterior
has-part

is-a

has-property

Figure 1: A concept map fragment. Key terms have black
nodes.

Of particular interest is the SemNet formulation,
which is characterized by a central concept (which
has been determined as highly relevant in the do-
main) linked to other concepts using a relatively pre-
scribed set of relations (Fisher, 2010). End nodes
can be arbitrary, and cannot themselves be linked to
unless they are another core concept in the domain.
Interestingly, in the field of biology, 50% of all links
are is-a, part-of, or has-property (Fisher et al., 2000),
which suggests that generic relations may be able
to account for a large percentage of links in any
domain, with only some customization to be per-
formed for specific domains. An example SemNet
triple (start node/relation/end node) is “prophase in-
cludes process chromosomes become visible.” Sev-
eral thousand of such triples are available online for
biology, illustrating the viability of this representa-
tional scheme for biology (Fisher, 2010).

3 Computational Model

Our approach for extracting concept maps from a bi-
ology textbook follows the general SemNet formu-
lation with some elements of the conceptual graphs
of Graesser and Clark (1985). There are two pri-
mary reasons for adopting this formulation, rather
than the others described in Section 2. By using a
highly comparable formulation to the original Sem-
Nets, one can compare generated graphs with sev-
eral thousand, expert-generated triples that are freely
available. Second, by making just a few modifica-
tions to the SemNet formalism, we can create a for-
malism that is more closely aligned with question
answering/question generation, which we believe is
a fruitful avenue for future research.
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Our concept map representation has two signif-
icant structural elements. The first is key terms,
shown as black nodes in Figure 1. These are terms in
our domain that are pedagogically significant. Only
key terms can be the start of a triple, e.g. abdomen
is-a part. End nodes can contain key terms, other
words, or complete propositions. This structural el-
ement is aligned with SemNets. The second cen-
tral aspect of our representation is labeled edges,
shown as boxes in Figure 1. As noted by (Fisher
et al., 2000), a small set of edges can account for a
large percentage of relationships in a domain. Thus
this second structural element aligns better with psy-
chological conceptual graphs (Gordon et al., 1993;
Graesser and Clark, 1985), but remains consistent
with the spirit of the SemNet representation. The
next sections outline the techniques and models used
for defining key terms and edges, followed by our
method of graph extraction.

3.1 Key Terms

General purpose key term extraction procedures are
the subject of current research (Medelyan et al.,
2009), but they are less relevant in a pedagogical
context where key terms are often already provided
in learning materials. For example, both glossaries
(Navigli and Velardi, 2008), and textbook indices
(Larrañaga et al., 2004) have previously been used
as resources in constructing domain models and on-
tologies. To develop our key terms, we used the
glossary and index from a textbook in the domain of
biology (Miller and Levine, 2002) as well as the key-
words given in a test-prep study guide (Cypress Cur-
riculum Services, 2008). Thus we can skip the key-
word extraction step of previous work on concept
map extraction (Valerio and Leake, 2008; Zouaq and
Nkambou, 2009) and the various errors associated
with that process.

3.2 Edge Relations

Since edge relations used in conceptual graphs often
depict abstract, domain-independent relationships
(Graesser and Clark, 1985; Gordon et al., 1993), it
might be inferred that these types of relationships,
e.g. is-a, has-part, has-property, are
exhaustive. While such abstract relationships may
be able to cover a sizable percentage of all relation-
ships previous work suggests new content can drive

new additions to that set (Fisher et al., 2000). In or-
der to verify the completeness of our edge relations,
we undertook an analysis of concept maps from bi-
ology.

Over a few hours, we manually clustered 4371 bi-
ology triples available on the Internet1 that span the
two topics of molecules & cells and population bi-
ology. Although these two topics represent a small
subset of biology topics, we hypothesize that as the
extremes of levels of description in biology, their re-
lations will be representative of the levels between
them.

Consistent with previous reported concept map
research in biology (Fisher et al., 2000), our cluster
analysis revealed that 50% of all relations were
either is-a, has-part, or has-property.
Overall, 252 relation types clustered into 20 rela-
tions shown in Table 1. The reduction from 252
relation types to 20 clusters generally lost little
information because the original set of relations
included many specific subclass relationships, e.g.
part-of had the subclasses composed of, has
organelle, organelle of, component
in, subcellular structure of, has
subcellular structure. In most cases
subclassing of this kind is recoverable from infor-
mation distributed across nodes. For example, if we
know that golgi body is-a organelle and we know
that eukaryotic cell has-part golgi body, then
the original relation golgi body organelle of
eukaryotic cell is implied.

Additional edge relations were added based on
the psychology literature (Graesser and Clark, 1985;
Gordon et al., 1993) as well as adjunct information
gleaned from the parser described in the next sec-
tion, raising the total number of edge relations to
30. As indicated by Table 1 a great deal of over-
lap exists between the clustered edge relations and
those in the psychological literature. However, nei-
ther goal-oriented relationships nor logical relation-
ships (and/or) were included as these did not seem
appropriate for the domain (a cell divides because it
must, not because it “wants to”). We also removed
general relations that overlapped with more specific
ones, e.g. temporal is replaced by before, during,
after. We hypothesize that the edge relation scheme

1http://www.biologylessons.sdsu.edu
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Relation Clustered Gordon Adjunct Relation Clustered Gordon Adjunct
after * has-consequence * * *
before * has-part * *
combine * has-property * *
connect * * implies *
contain * * isa * *
contrast * lack *
convert * location * *
definition * manner * *
direction * not *
during * * possibility *
enable * produce *
example * purpose *
extent * reciprocal *
follow * require *
function * same-as * *

Table 1: Edge relations from cluster analysis, Gordon et al. (1993), and parser adjunct labels

in Table 1 would be portable to other domains, but
some additional tuning would be necessary to cap-
ture fine-grained, domain specific relationships.

3.3 Automatic Extraction

According to the representational scheme defined
above, triples always begin with a key term that is
connected by a relation to either another key term
or a propositional phrase. In other words, each key
term is the center of a radial graph. Triples begin-
ning and ending with key terms bridge these radial
graphs. The automatic extraction process follows
this representational scheme. Additionally, the fol-
lowing process was developed using a biology glos-
sary and biology study guide as a development data
set, so training and testing data were kept separate in
this study.

We processed a high school biology text (Miller
and Levine, 2002), using its index and glossary as
sources of key terms as described above, using the
LTH SRL2 parser. The LTH SRL parser is a seman-
tic role labeling parser that outputs a dependency
parse annotated with PropBank and NomBank pred-
icate/argument structures (Johansson and Nugues,
2008; Meyers et al., 2004; Palmer et al., 2005). For
each word token in a parse, the parser returns in-

2The Swedish “Lunds Tekniska Högskola” translates as
“Faculty of Engineering”

formation about the word token’s part of speech,
lemma, head, and relation to the head. Moreover,
it uses PropBank and NomBank to identify pred-
icates in the parse, either verbal predicates (Prop-
Bank) or nominal predicates (NomBank), and their
associated arguments. A slightly abbreviated exam-
ple parse corresponding to the concept map in Fig-
ure 1 is shown in Table 2.

In Table 2 the root of the sentence is “is,” whose
head is token 0 (the implied root token) and whose
dependents are “abdomen” and “part,” the subject
and predicate, respectively. Predicate “part.01,” be-
ing a noun, refers to the Nombank predicate “part”
roleset 1. This predicate has a single argument of
type A1, i.e. theme, which is the phrase domi-
nated by “of,” i.e. “of an arthopod’s body.” Predi-
cate “body.03” refers to Nombank predicate “body”
roleset 3 and also has a single argument of type A1,
“arthopod,” dominating the phrase “an arthopod’s.”
Potentially each of these semantic predicates repre-
sents a relation, e.g. has-part, and the syntactic in-
formation in the parse also suggests relations, e.g.
ABDOMEN is-a.

The LTH parser also marks adjunct arguments.
For example, consider the sentence “During electron
transport, H+ ions build up in the intermembrane
space, making it positively charged.” There are four
adjuncts in this sentence: “During electron trans-
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port” is a temporal adjunct, “in the intermembrane
space” is a locative adjunct, “making it positively
charged” is an adverbial adjunct, and “positively” is
a manner adjunct. The abundance of these adjuncts
led to the pragmatic decision to include them as edge
relation indicators in Table 1.

After parsing, four triple extractor algorithms are
applied to each sentence, targeting specific syntac-
tic/semantic features of the parse, is-a, adjectives,
prepositions, and predicates. Each extractor first at-
tempts to identify a key term as a possible start node.
The search for key terms is greedy, attempting to
match an entire phrase if possible, e.g. “abiotic fac-
tor” rather than “factor,” by searching the depen-
dents of an argument and applying morphological
rules for pluralization. If no key term can be found,
the prospective triple is discarded. Potentially, some
unwanted loss can occur at this stage because of
unresolved anaphora. However, it appears that the
writing style of the particular textbook used, Miller
and Levine (2002), generally minimizes anaphoric
reference.

As exemplified by Figure 1 and Table 2, several
edge relations are handled purely syntactically. The
is-a extractor considers when the root verb of the
sentence is “be,” but not a helping verb. Is-a rela-
tions can create a special context for processing ad-
ditional relations. For example, in the sentence, “An
abdomen is a posterior part of an arthropod’s body,”
“posterior” modifies “part,” but the desired triple is
abdomen has-property posterior. This is an ex-
ample of the adjective extraction algorithm running
in the context of an is-a relation: rather than al-
ways using the head of the adjective as the start of
the triple, the adjective extractor considers whether
the head is a predicate nominative. Prepositions can
create a variety of edge relations. For example, if
the preposition has part of speech IN and has a LOC
dependency relation to its head (a locative relation),
then the appropriate relation is location, e.g. “by
migrating whales in the Pacific Ocean.” becomes
whales location in the Pacific Ocean.

The predicates from PropBank and NomBank use
specialized extractors that consider both their argu-
ment structure as well as the specific sense of the
predicate used. As illustrated in some of the preced-
ing examples, not all predicates have an A0. Like-
wise not all predicates have patient/instrument roles

like A1 and A2. Ideally, every predicate would
start with A0 and end with A1, but the variability
in predicate arguments makes simple mapping unre-
alistic. To assist the predicate extractors, we created
a manual mapping between predicates, arguments,
and edge relations, for every predicate that occurred
more that 40 times in the textbook. Table 3 lists the
four most common predicates and their mappings.

Predicate Edge Relation Start End
have.03 HAS PROPERTY A0 Span
use.01 USE A0 Span
produce.01 PRODUCE A0 Span
call.01 HAS DEFINITION A1 A2

Table 3: Predicate map examples

The label “Span” in the last column indicates that
the end node of the triple should be the text domi-
nated by the predicate. Consider the example, “The
menstrual cycle has four phases” has AO cycle and
A1 phases. Using just A0 and A1, the extracted
triple would be menstrual cycle has-property
phases. Using the span dominated by the predi-
cate yields menstrual cycle has-property four
phases, which is more correct in this situation. As
can be seen in this example, end nodes based on
predicate spans tend to contain more words and
therefore have closer fidelity to the original sen-
tence.

After triples are extracted from the parse, they
are filtered to remove triples that are not particularly
useful for generating concept map exercises. Filters
are applied on the back end rather than during the
extraction process because the triples discarded at
this stage might be usefully used for other applica-
tions such as student modeling or question genera-
tion. The first three filters used are straightforward
and require little explanation: the repetition filter,
the adjective filter, and the nominal filter. The repeti-
tion filter considers the number of words in common
between the start and end nodes. If the number of
shared words is more than half the words in the end
node, the triple is filtered. This helps alleviate redun-
dant triples such as cell has-property cell. The
adjective filter removes any triple whose key term is
an adjective. These triples violate the assumption by
the question generator that all key terms are nouns.
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Id Form Lemma POS Head Dependency Relation Predicate Arg 1 Arg 2
1 abdomen abdomen NN 2 SBJ
2 is be VBZ 0 ROOT
3 a DT 5 NMOD
4 posterior posterior JJ 5 NMOD
5 part part NN 2 PRD part.01
6 of IN 5 NMOD A1
7 an DT 8 NMOD
8 arthropod arthropod NN 10 NMOD A1
9 s POS 8 SUFFIX
10 body body NN 6 PMOD body.03
11 . . 2 P

Table 2: A slightly simplified semantic parse

Has-property edge relations based on adjectives
were also filtered because they tend to overgener-
ate. Finally the nominal filter removes all NomBank
predicates except has-part predicates, since these of-
ten have Span end nodes and so contain themselves,
e.g. light has-property the energy of sunlight.

The final filter uses likelihood ratios to establish
whether the relation between start and end nodes
is meaningful, i.e. something not likely to occur
by chance. This filter measures the association be-
tween the start and end node using likelihood ratios
(Dunning, 1993) and a χ2 significance criterion to
remove triples with insignificant association. As a
first step in the filter, words from the end node that
have low log entropy are removed prior to calcula-
tion. This penalizes non-distinctive words that occur
in many contexts. Next, the remaining words from
start and end nodes are pooled into bags of words,
and the likelihood ratio calculated. By transforming
the likelihood ratio to be χ2 distributed (Manning
and Schütze, 1999), and applying a statistical signif-
icance threshold of .0001, triples with a weak associ-
ation between start and end nodes were filtered out.
The likelihood ratio filter helps prevent sentences re-
lated to specific examples from being integrated into
concept maps for a general concept. For example,
the sentence “In most houses, heat is supplied by
a furnace that burns oil or natural gas.” from the
textbook is part of a larger discussion about home-
ostatis. An invalid triple implied by the sentence is
heat has-property supplied by a furnace. Since
heat and furnace do not have a strong association in

the textbook overall, the likelihood ratio filter would
discard this triple.

After filtering, triples belonging to a graph are
rendered to image files using the NodeXL3 graphing
library. In each image file, a key term defines the
center of a radial graph. To prevent visual clutter,
triples that have the same edge type can be merged
into a single node as is depicted in Figure 2.

4 Evaluation

A comparison study using gold-standard, human
generated maps was performed to test the quality
of the concept maps generated by the method de-
scribed in Section 3. The gold-standard maps were
taken from Fisher (2010). Since these maps cover
only a small section of biology, only the correspond-
ing chapters from Miller and Levine (2002), chap-
ters two and seven, were used to generate concept
maps. All possible concept maps were generated
from these two chapters, and then 60 of these con-
cept maps that had a corresponding map in the gold-
standard set were selected for evaluation.

Two judges having background in biology and
pedagogy were recruited to rate both the gold stan-
dard and generated maps. Each map was rated
on the following three dimensions: the cover-
age/completeness of the map with respect to the key
term (Coverage), the accuracy of the map (Accu-
racy), and the pedagogical value of the map (Ped-
agogy). A consistent four item scale was used for

3http://nodexl.codeplex.com/
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Figure 2: Comparison of computer and human generated concept maps for “cohesion.” The computer generated
concept map is on the left, and the human generated map is on the right.

all ratings dimensions. An example of the four item
scale is shown in Table 4.

Score Criteria
1 The map covers the concept.
2 The map mostly covers the concept.
3 The map only slightly covers the concept.
4 The map is unrelated to the concept.

Table 4: Rating scale for coverage

Judges rated half the items, compared their scores,
and then rated the second half of the items. Inter-
rater reliability was calculated on each of the three
measures using Cronbach’s α. Cronbach’s α is more
appropriate than Cohen’s κ because the ratings are
ordinal rather than categorical. A Cronbach’s α for
each measure is presented in Table 5. Most of the
reliability scores in Table 5 are close to .70, which
is typically considered satisfactory reliability. How-
ever, reliability for accuracy was poor at α = .41.

Scale Cronbach’s α
Coverage .75
Accuracy .41
Pedagogy .71

Table 5: Inter-rater reliability

Computer Human
Scale Mean SD Mean SD
Coverage 2.47 .55 1.67 .82
Accuracy 1.87 .67 1.47 .55
Pedagogy 2.53 .74 1.83 .90

Table 6: Inter-rater reliability and mean ratings for com-
puter and human generated maps

Means and standard deviations were computed for
each measure per condition as shown in Table 6. In
general, the means for the computer generated maps
were in between 2 and 3 on the respective scales,
while the human generated maps were between 1
and 2. The outlier is accuracy for the computer gen-
erated maps, which was significantly higher than for
the other scales. However, since the inter-rater reli-
ability for this scale was relatively low, the mean for
accuracy requires closer analysis. Inspection of the
individual means for each judge revealed that judge
A had the same mean accuracy for both human and
computer generated maps, (M = 1.73), while judge
B rated the human maps higher (M = 1.2) and the
computer generated maps lower (M = 2). Thus
it is reasonable to use this more conservative lower
mean, (M = 2), as the estimate of accuracy for the
computer-generated concept maps.
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Wilcoxon signed ranks tests pairing computer and
human generated maps based on their key terms
were computed for each of the three scales. There
was a significant effect for coverage, Z = 2.95,
p < .003, a significant effect for accuracy, Z =
2.13, p < .03, and a significant effect for pedagogy
Z = 2.46, p < .01.

Since the purpose of the computer generated maps
is to help students learn, pedagogy is clearly the
most important of the three scales. In order to assess
how the other scales were related to pedagogy, cor-
relations were calculated. Accuracy and pedagogy
were strongly correlated, r(28) = .57, p < .001.
Coverage and pedagogy were even more strongly
correlated, r(28) = .86, p < .001.

The strong relationship between coverage and
pedagogy suggests that the number of the triples in
the map might be strongly contributing to the judges
ratings. An inspection of the number of triples in the
human maps compared to the computer generated
maps reveals that there are approximately 3.5 times
as many triples in the human maps as the computer
generated maps. To further explore this relationship,
a linear regression was conducted using the log of
number of triples in each graph to predict the mean
pedagogy score for that graph. The log number of
triples in a graph significantly predicted pedagogy
ratings, b = −.96, t(28) = −3.47, p < .002. The
log number of triples in the graph explained a sig-
nificant proportion of variance in pedagogy ratings,
r2 = .30, F (1, 28) = 12.02, p < .002.

These results are encouraging on two fronts. First,
the computer generated maps are on average “mostly
accurate.” Secondly, the computer generated maps
fare less well for coverage and pedagogy, but these
two scale are highly correlated, suggesting that
judges are using a criterion largely based on com-
pleteness when scoring maps. The strength of the
log number of triples in a graph as a predictor of ped-
agogy likewise indicates that increasing the number
of triples in each graph, which would require access
to a larger sample of texts on these topics, would
increase the pedagogical ratings for the computer
generated maps. However, while gaps in the maps
would be problematic if the students were using
the maps as an authoritative source for study, gaps
are perfectly acceptable for expert skeleton concept
maps.

5 Conclusion

In this paper we have presented a methodology for
creating expert skeleton concept maps from text-
books. Our comparative analysis using human gen-
erated concept maps as a gold standard suggests that
our maps are mostly accurate and are appropriate for
use as expert skeleton concept maps.

Ideally student concept maps that extend these
skeleton maps would be automatically scored and
feedback given as is already done in intelligent tu-
toring systems like Betty’s Brain and CIRCSIM Tu-
tor(Biswas et al., 2005; Evens et al., 2001). Both
of these systems use expert-generated maps as gold
standards by which to evaluate student maps. There-
fore automatic scoring of our expert skeleton con-
cept maps would require a more complete map in
the background.

In future work we will examine increasing the
number of knowledge sources to see if this will in-
crease the pedagogical value of the concept maps
and allow for automatic scoring. However, increas-
ing the knowledge sources will also likely lead to
an increase not only in total information but also in
redundant information. Thus extending this work
to include more knowledge sources will likely re-
quire incorporating techniques from the summariza-
tion and entailment literatures to remove redundant
information.
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Mikel Larrañaga, Urko Rueda, Jon A. Elorriaga, and
Ana Arruarte Lasa. 2004. Acquisition of the domain
structure from document indexes using heuristic rea-
soning. In Intelligent Tutoring Systems, pages 175–
186.

Christopher D. Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge, MA.

Olena Medelyan, Eibe Frank, and Ian H. Witten.
2009. Human-competitive tagging using automatic
keyphrase extraction. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1318–1327, Singapore, August. As-
sociation for Computational Linguistics.

Adam Meyers, Ruth Reeves, Catherine Macleod, Rachel
Szekely, Veronika Zielinska, Brian Young, and Ralph
Grishman. 2004. The NomBank project: An interim
report. In A. Meyers, editor, HLT-NAACL 2004 Work-
shop: Frontiers in Corpus Annotation, pages 24–31,
Boston, Massachusetts, USA, May 2 - May 7. Associ-
ation for Computational Linguistics.

Kenneth R. Miller and Joseph S. Levine. 2002. Prentice
Hall Biology. Pearson Education, New Jersey.

Joel J. Mintzes, James H. Wandersee, and Joseph D. No-
vak. 2005. Assessing science understanding: A hu-
man constructivist view. Academic Press.

Roberto Navigli and Paola Velardi. 2008. From glos-
saries to ontologies: Extracting semantic structure
from textual definitions. In Proceeding of the 2008
conference on Ontology Learning and Population:
Bridging the Gap between Text and Knowledge, pages
71–87, Amsterdam, The Netherlands, The Nether-
lands. IOS Press.

John C. Nesbit and Olusola O. Adesope. 2006. Learning
with concept and knowledge maps: A meta-analysis.
Review of Educational Research, 76(3):413–448.

Joeseph D. Novak and Alberto J. Canas. 2006. The
theory underlying concept maps and how to construct
them. Technical report, Institute for Human and Ma-
chine Cognition, January.

Joeseph D. Novak. 1990. Concept mapping: A useful
tool for science education. Journal of Research in Sci-
ence Teaching, 27(10):937–49.

Angela O’Donnell, Donald Dansereau, and Richard Hall.
2002. Knowledge maps as scaffolds for cognitive pro-
cessing. Educational Psychology Review, 14:71–86.
10.1023/A:1013132527007.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated corpus of
semantic roles. Comput. Linguist., 31(1):71–106.

John F. Sowa. 2007. Conceptual graphs. In
F. Van Harmelen, V. Lifschitz, and B. Porter, editors,
Handbook of knowledge representation, pages 213–
237. Elsevier Science, San Diego, USA.

John F. Sowa. 2009. Conceptual graphs for representing
conceptual structures. In P. Hitzler and H. Scharfe,
editors, Conceptual Structures in Practice, pages 101–
136. Chapman & Hall/CRC.

Alejandro Valerio and David B. Leake. 2008. Associ-
ating documents to concept maps in context. In A. J.
Canas, P. Reiska, M. Ahlberg, and J. D. Novak, editors,
Proceedings of the Third International Conference on
Concept Mapping.

Amal Zouaq and Roger Nkambou. 2009. Evaluating
the generation of domain ontologies in the knowledge
puzzle project. IEEE Trans. on Knowl. and Data Eng.,
21(11):1559–1572.

119



Proceedings of the Sixth Workshop on Innovative Use of NLP for Building Educational Applications, pages 120–129,
Portland, Oregon, 24 June 2011. c©2011 Association for Computational Linguistics

Readability Annotation: Replacing the Expert by the Crowd
Philip van Oosten

LT3, Language and Translation Technology Team, University College Ghent
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Véronique Hoste
LT3, Language and Translation Technology Team, University College Ghent
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Abstract

This paper investigates two strategies for
collecting readability assessments, an Ex-
pert Readers application intended to collect
fine-grained readability assessments from lan-
guage experts and a Sort by Readability ap-
plication designed to be intuitive and open for
everyone having internet access. We show
that the data sets resulting from both annota-
tion strategies are very similar. We conclude
that crowdsourcing is a viable alternative to
the opinions of language experts for readabil-
ity prediction.

1 Introduction

The task of automatically determining the readabil-
ity of texts has a long and rich tradition. This has not
only resulted in a large number of readability formu-
las (Flesch, 1948; Brouwer, 1963; Dale and Chall,
1948; Gunning, 1952; McLaughlin, 1969), but also
to the more recent tendency of using insights from
NLP for automatic readability prediction (Schwarm
and Ostendorf, 2005; Collins-Thompson and Callan,
2004; Pitler and Nenkova, 2008). Potential appli-
cations include the selection of reading material for
language learners, automatic essay scoring, the se-
lection of online text material for automatic summa-
rization, etc.

One of the well-known bottlenecks in data-driven
NLP research is the lack of sufficiently large data
sets for which annotators provided labels with suffi-
cient agreement. Also readability research is faced

with the crucial obstacle that very few corpora of
generic texts exist of which reliable readability in-
formation is available (Tanaka-Ishii et al., 2010).
When constructing such a corpus, the inherent sub-
jectivity of the concept of readability cannot be ig-
nored. The ease with which a given reader can
correctly identify the message conveyed in a text
is, among other things, inextricably related to the
reader’s background knowledge of the subject at
hand (McNamara et al., 1993). The construction of
a corpus, which can serve as a gold standard against
which new scoring or ranking systems can be tested,
thus requires a multifaceted approach taking into ac-
count both the properties of the text under evaluation
and those of the readers. In recent years, a tendency
seems to have arisen to also explicitly address this
subjective aspect of readability. Pitler and Nenkova
(2008), for example, base their readability predic-
tion method exclusively on the extent to which read-
ers found a text to be “well-written” and Kate et al.
(2010) take the assessments supplied by a number
of experts as their gold standard, and test their read-
ability prediction method as well as assessments by
novices against these expert opinions.

In this paper, we report on two methodologies
to construct a corpus of readability assessments,
which can serve as a gold standard against which
new scoring or ranking systems can be tested. Both
methodologies were used for collecting readabil-
ity assessments of Dutch and English texts. Since
these data collection experiments for English only
recently started, the focus in this paper will be on
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Dutch. By collecting multiple assessments per text,
the goal was to level out the reader’s background
knowledge and attitude. We will both report on
a data collection experiment designed for language
experts and a simple crowdsourcing experiment.

We will introduce inter-annotator agreement and
calculate K scores in different settings. We will
show that from the two readability assessment appli-
cations, two very similar data sets are obtained, with
calculations of Pearson correlations of at least 87 %,
and conclude that the simple crowdsourcing results
are a viable alternative to the assessments resulting
from expert labelings.

In section 2, we describe the data from language
experts and how those data can be converted to rela-
tive assessments. Section 3 outlines a simpler crow-
sourcing application and its correspondences with
the experts. Finally, in section 4, we draw conclu-
sions and give a short summary of future work.

2 Readability assessment by the expert
reader

Since readability prediction was initially primarily
designed to identify reading material suited to the
reading competence of a given individual, most of
the existing data sets are drawn from textbooks and
other sources intended for different compentence
levels (François, 2009; Heilman et al., 2008). For
Dutch, for example, the only large-scale experi-
mental readability research (Staphorsius and Krom,
1985; Staphorsius, 1994) is limited to texts for el-
ementary school children.1 For English, the situa-
tion is similar as for Dutch, viz. a predominant focus
on educational corpora. Recently, an evaluation was
designed by LDC in the framework of the DARPA
Machine Reading Program (Kate et al., 2010). For
this purpose a more general corpus was assembled
which was not tailored to a specific audience, genre
or domain. Unfortunately, the data are not available
for further use. Our research focus is similar and we
report on the collection of readability assessments

1Staphorsius (1994), for instance, who conducted the only
large-scale experimental readability research in the Dutch-
speaking regions, based his research entirely on cloze-testing. A
cloze-test is a reading comprehension test introduced by Rankin
(1959) in which test subjects are required to fill in automatically
deleted words in an unseen text. It is unclear whether such tasks
are actually suitable to estimate the readability of a text.

for a corpus of Dutch text, which will be used for
training and evaluating a readability prediction sys-
tem.

2.1 Source data

In order to acquire useful data for the construction of
a gold standard, we implemented the Expert Read-
ers application intended for language experts. The
texts for the application were chosen from the Lassy
corpus (van Noord, 2009), which is syntactically an-
notated, and which is currently being enhanced with
several layers of semantic annotations (Schuurman
et al., 2009). These annotations will allow us in the
future to determine the impact of various semantic,
syntactic and pragmatic factors on text readability.
The small subcorpus consists of 105 texts of be-
tween about 100 and 200 words. Most of the texts
are extracted from a larger context, but all are mean-
ingful by themselves. All texts are in Dutch and
most of them originate from Wikipedia or newspa-
pers. Further, the corpus contains parts of domain-
specific and official documents, manuals, patient in-
formation leaflets and others. The texts in the sub-
corpus have no readability levels assigned, but they
are carefully selected in order to obtain texts with a
multitude of readability levels. Because of the lack
of a prior readability assessment, the selection was
purely based on careful, yet intuitive judgment.

2.2 Application set-up

The Expert Readers application2 is designed to col-
lect readability assessments from language experts.
They can express their opinion by ranking texts on
a scale of 0 (easy) to 100 (difficult), which allows
them to compare the texts with each other while
at the same time assigning absolute scores. These
fine-grained assessments committed by experts are
grouped into submission batches, holding a num-
ber of texts which have been ranked and to which
a score has been assigned. For each submitted text,
we know who sent it when, with which score and
along with which other texts in the same submission
batch. The experts can also make use of a so-called
frame of reference, in which texts are kept avail-
able over different submission batches. The same

2The Expert Readers application is accessible at the
password-protected link http://lt3.hogent.be/
tools/expert-readers-nl/.
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text can occur only once per batch, but can be pre-
sented again to the same expert in other batches.
Apart from the readability scores and the rankings
in the batches, the experts can also enter comments
on what makes each text more or less readable.
That allows for qualitative analysis. We did not
ask more detailed questions about certain aspects
of readability, because we wanted to avoid influenc-
ing the text properties experts pay attention to. Nei-
ther did we inform the experts in any way how they
should judge readability. Any presumption about
which features are important readability indicators
was thus avoided. Our main interest is to design a
system that is robust enough to model readability as
generally as possible.

In the context of our experiments, we regard peo-
ple as language experts if they are native readers pro-
fessionally involved with the Dutch language. Our
current pool of active experts consists of 34 teach-
ers, writers and linguists, who have contributed a to-
tal of 1862 text scores over 108 submission batches.
The experts were all volunteers and were not paid
for their work. Their instructions consisted of an ex-
planation of how the application works on paper and
an instruction movie of a couple of minutes. The
sizes of the submission batches range from 5 to all
available texts. Batches with less than 5 texts were
omitted from the data.

2.3 Text scores converted to text pairs

The Expert Readers application provided a rich, but
highly fine-grained output. At first sight, a straight-
forward and intuitive way to work with the Expert
Readers data would be to use, for example, the mean
readability score assigned to each text. Pitler and
Nenkova (2008) and Kate et al. (2010), for example,
average out results collected from different readers.
However, problems with this approach immediately
arise. Results from Anderson and Davison (1986),
for example, show for their data set that if the data
on which readability formulas are based, were not
aggregated on the school grade level but considered
at the individual level, their predictive power would
drop from around 80% to an estimated 10%.

We observed a similar tendency in the results of
the expert readers application: Figure 1 illustrates
that different experts employ different standards to
assign readability scores to texts. Being given the
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Figure 1: Different scoring strategies for a subset of ex-
perts, showing all text scores aggregated across batches

choice to label texts with marks between 0 and
100, some annotators decided to use a more coarse-
grained labeling strategy (e.g. by using multiples of
10 or 20), whereas others used a fine-grained scoring
(all marks between 0 and 100). Furthermore, some
people seem to be reluctant to assign either high or
low scores, or both, while some others use the full
range of possible scores.

Moreover, the experts delivered their data in sev-
eral batches. The texts presented in each submis-
sion batch were selected randomly, which implies
that the annotator could have been confronted with
predominantly less readable or predominantly more
readable texts, which may have affected his scoring.

Furthermore, since each text being added to a
batch makes it increasingly difficult for an annota-
tor to position this text to the already scored texts,
we can assume that the greater the number of texts
in a batch, the more effort the annotator did to posi-
tion each text correctly in the batch. We decided to
only take into account submission batches in which
at least 5 texts were compared to each other. Figure 2
clearly shows the variability in the scores assigned to
the texts.

There is by no means a notion of a single statis-
tical distribution that allows for a useful interpre-
tation of the means of the scores. Since it is far
from trivial to use the absolute scores assigned by
the experts, we transformed their assessments to a
relative scale. A resulting text pair then consists
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Figure 2: Box plots showing the minimum, first quantile,
median, third quantile, the maximum and the outliers for
the scores assigned to each text

of two texts, accompanied with an assessment that
designates which of the two texts is easier than the
other one, and to what degree. The identification
of text pairs is straightforward, since in each batch,
each pair of distinct texts presents a text pair, leading
to n×(n−1)

2 pairs per batch. For the transformation
from the position of the texts in a batch to a relative
assessment for each text pair, we need to fit the batch
size and number of texts scored in between two texts
in the same batch to a measure that indicates the dif-
ference in readability between two texts. In order to
do so, a possible formula to map the significance of
the difference in readability is the following:

S =

(
t

B

)2

×
(

1− exp

(
−B

10

))
in which S is the significance of the difference in
readability, B is the batch size and t is the number
of texts scored in between two texts.

The quadratic function
(

t
B

)2 in the first factor ex-
presses that, in order to achieve a greater signifi-
cance, the value of t must be more than proportion-
ally higher. Because of the quadratic function, more
texts must be scored in between two texts in order to
get a higher significance estimate. If the quadratic
part would be the only factor, the two outer texts
in each batch would always get the highest possible
significance estimate. However, the second factor,
1 − exp

(
− B

10

)
ensures that small batches are less
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Figure 3: S as a function of t for 6 different values of B

likely to result in text pairs with a great difference in
readability. Figure 3 illustrates S as a function of t
for different batch sizes.
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Figure 4: The relative cumulative frequency of the esti-
mated significance scores

A plot of which percentile of the text scores gen-
erated from the batches results in which significance
of the difference in readability is shown in Figure 4.
The text pairs plotted on the lower left of the figure
will be regarded as text pairs for which the annota-
tors assess the readability of both texts in the pair
as equal. The text pairs plotted in the middle of the
figure will be regarded as assessed with a somewhat
different readability and those plotted in the upper

123



right part will be interpreted as text pairs with much
difference in readability.

3 From the expert to the crowd

Based on the assumption that the readability of a
text can be conceptualized as the extent to which the
text is perceived to be readable by the community
of language users, we also investigated whether a
crowdsourcing approach could be a viable alterna-
tive to expert labeling. Crowdsourcing has already
been used with success for NLP applications such as
WSD (Snow et al., 2008) or anaphora resolution3.
By redesigning readability assessment as a crowd-
sourcing application, we hypothesize that no back-
ground in linguistics is required to judge the read-
ability of a given text. The Sort by Readability ap-
plication4 is designed as a simple crowdsourcing ap-
plication to be used by as many users as possible.
The site is accessible to anyone having internet ac-
cess and very inutitive; the users are not required to
provide personal data. A screenshot of the crowd-
sourcing application is shown in Figure 5.

Two texts are displayed simultaneously and the
user is asked to tick one of the following statements
“Left: much more difficult – Right: much easier”,
“Left: somewhat more difficult – Right: somewhat
easier”, “Both equally difficult”, “Left: somewhat
easier – Right: somewhat more difficult”, “Left:
much easier Right: much more difficult”. The as-
sessments were performed on the same data set that
was used for the Expert readers application. The re-
spondents were not paid for their work and initially
recruited among friends and students. The only in-
structions they were given were the following two
sentences on the landing page of the application:

Using this tool, you can help us compose
a readability corpus. You are shown two
texts of which you can decide which is the
more difficult and which is the easier one.

We assume that most respondents are native speak-
ers of the Dutch language.

At the time of writing, 8568 comparisons were
performed.

3http://www.phrasedetectives.org
4The Sort by Readability application can be accessed

through the following link: http://lt3.hogent.be/
tools/sort-by-readability-nl/.

Figure 6: The number of times each button is pressed
in the Sort by Readability application. The buttons from
left to right are LME (“Left: much easier – Right: much
more difficult”), LSE (“Left: somewhat easier – Right:
somewhat more difficult”), ED (“Both equally difficult”),
RSE (“Left: somewhat more difficult – Right: somewhat
easier”) and RME (“Left: much more difficult – Right:
much easier”).

The number of times each button in the crowd-
sourcing application was pressed is displayed in Fig-
ure 6. The number of times the text on the left was
found easier is almost exactly the same as the num-
ber of times for the right one. That means that users
of the crowdsourcing application are generally not
biased towards finding texts on one side easier than
on the other side. Most of the times two texts were
compared, people found that there was a difference
in readability. Only in 28.2% of the cases, people as-
sessed both texts as equally difficult. In 53.6% of the
cases, the crowd assigned a slight difference in read-
ability and in 18.2%, the readability was assessed as
very different. Note that not everyone evaluated the
same text pairs. Moreover, nobody evaluated all the
possible text pairs.

Figure 7 shows for both the Expert readers and
Sort by Readability application the relationship be-
tween the proportions with which each text is as-
sessed as easier (both much and somewhat easier),
equally readable or more difficult (both much and
somewhat more difficult) than any other text. In
all scatter plots, the texts occur in a sickle-shaped
form. The plots for both data sets look very simi-
lar, but there is less variability for the Expert Read-
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Figure 5: A screenshot of the Sort by Readability application.

ers data. That may indicate that the Expert Readers
application actually helps people to provide assess-
ments more consistently than the Sort by Readability
application. Despite these small variations, we can
conclude that from the two readability assessment
applications, two very similar data sets are obtained.

3.1 Inter-annotator agreement

For most NLP tasks, there is a tradition to calculate
some measure of inter-annotator agreement (IAA).
If this measure is high enough, the data are deemed
acceptable to serve as a gold standard. If not, the un-
derlying annotation guidelines can be adapted or fur-
ther specified in order to improve the future agree-
ment between annotators. In readability research,
however, this practice does not seem to have gained
much ground. Given that many readability pre-
diction methods (e.g. (Flesch, 1948; Staphorsius,
1994)) were developed before it became common-
place, it is not surprising that inter-annotator agree-
ment played no great part in the development of
those readability formulas. However, also in the
more recent classification-based work on readability

prediction, we are not aware of such efforts. Deter-
mining inter-annotator agreement for both our an-
notation tasks is far from trivial. In both appli-
cations, not all texts received an equal number of
assessments, as shown in Figures 8 and 9. Since
this evidently leads to a varying number of assess-
ments per text pair (ranging from 1 to 25 for Expert
Readers and from 1 to 8 for Sort by Readability),
we took this into account in the calculation of the
inter-annotator agreement. Further, our definition
of readability does not allow annotation guidelines.
We explicitly avoided to influence people on what
their view on readability should be, because we as-
sume that their collective view is what defines the
readability of a given text. Annotation guidelines
would make the definition recursive. Inter-annotator
agreement is therefore implemented as a descriptive
statistic. It is not used to further guide the annotation
process.

We calculated the IAA both for the text pairs from
the Sort by Readability application and the mapped
text pairs resulting from the Expert Readers data. To
convert the significance levels of the Expert Read-
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Figure 7: Proportion of times each text was assessed as easier, equally difficult or more difficult than any other text:
(a) for the Sort by Readability data and (b) for the Expert Readers data.

Data set # text pairs Setup K

Experts 1 – 10 standard 30 %
Experts 11 – 25 standard 31 %
Experts 1 – 25 standard 30 %

Experts 1 – 10 no same 56 %
Experts 11 – 25 no same 75 %
Experts 1 – 25 no same 60 %

Experts 1 – 10 much difference 95 %
Experts 11 – 25 much difference 98 %
Experts 1 – 25 much difference 96 %

Experts 1 – 10 adjacent 50 %
Experts 11 – 25 adjacent 65 %
Experts 1 – 25 adjacent 54 %

Experts 1 – 10 merged 35 %
Experts 11 – 25 merged 41 %
Experts 1 – 25 merged 37 %

Crowd 1 – 8 standard 44 %
Crowd 1 – 8 no same 66 %
Crowd 1 – 8 much difference 88 %
Crowd 1 – 8 adjacent 59 %
Crowd 1 – 8 merged 50 %

Table 1: Kappa statistics for all the different setups. The
second column shows the number of times a text pair
must have been labeled in order to be taken into account.

Number of occurrences in a batch
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Figure 8: The distribution of the texts, according to the
number of submission batches in which they occurred.
Only batches with >5 texts were taken into account.

ers text pairs as shown in Figure 4 to classes of text
pairs like in the Sort by Readability data, we can
choose boundary values for the classes. As bound-
ary values, we chose the significance estimates lead-
ing to equal proportions of equally difficult, some-
what different or much different text pairs for both
data sets. The only possible alternative would be to
choose ad hoc boundaries. Projection of the num-
ber of times each button is pressed in the Sort by
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Number of sessions in which text was compared
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Figure 9: Distribution of the number of sessions each text
was seen in for the Sort by Readability application

Readability application5 on the Expert Readers data
set, leads to the boundary values displayed as dashed
lines in Figure 4. 28 % of the text pairs in both ap-
plications are thus labeled as equally readable, while
18 % of the pairs are labeled with much difference in
difficulty. Those partitions correspond with bound-
ary values of 0.016 and 0.29 for S, respectively.

We used K as proposed by Carletta (1996) as a
measure for the agreement between annotators. K
is given by the following formula:

K =
P (A)− P (E)

1− P (E)

in which P (A) is the probability that two annotators
make the same decision and P (E) is the probabil-
ity that the same decision is made coincidently. For
P (A), we take into account the number of times two
annotators agree about a text pair and the number of
times they disagree. The trivial case, when there is
total agreement, simply because a text pair is anno-
tated only once, was not taken into account for the
calculation of the kappa statistic. P (E) is empiri-
cally estimated in the standard way.

We calculate K in 5 different settings. In the stan-
dard setting, each of the five possible assessments
for a text in a text pair is regarded as a separate class,
without ordering of the classes.

In a second calculation of inter-annotator agree-
ment, we considered a click on an adjacent button

5See Figure 6

for the same text pair as agreement. By doing so,
we took into account that the choice between “eas-
ier” and “much easier” and between “more diffi-
cult” “much more difficult” , respectively, is less
straightforward than the distinction between “eas-
ier” and “more difficult”. Furthermore, the bound-
ary between “both equally difficult” and “somewhat
easier/more difficult” could also be considered less
transparent.

In a third calculation, named merged, the classes
“easier” and “much easier” on one hand, and “more
difficult” and “much more difficult” on the other
hand are merged, resulting in three different classes.

Finally, we examine two cases in which a part of
the text pairs are omitted, viz. no same and much
difference. In both cases, a binary classification is
performed. P (E) now equals 0.5 for both classes,
because there are two possible outcomes, with equal
probability. For no same, the button in the mid-
dle was discarded. The “easier” and “much easier”
classes were merged, as well as the “more difficult”
and “much more difficult” classes. In the much dif-
ference setting, only the texts labeled as much easier
or much more difficult were taken into account.

The results of all these calculations are shown in
Table 1. The second column indicates a range of a
number of text pairs, which determines how many
times a text pair must have been labeled in order
to be taken into account for the calculation of K.
The results are variable, depending on how K was
calculated. For the Expert Readers, we consistently
observe higher K values when more labelings are
required per text pair.

One possibility to get an idea of how similar the
two data sets are is by calculating correlation met-
rics, such as the Pearson correlation coefficient. In
order to calculate that, a numerical value acquired
from both data sets must be attached to each text.
For each text, we attached two values per data set,
viz. the proportions of times the text was assessed
either as easier or as more difficult than any other
text. The correlations between the 4 resulting values
per text are shown in Table 2. From those results, it
is clear that the data sets are very similar.

There are different viable alternatives to construct
a gold standard from the data sets. The type of gold
standard that is needed depends on the learning task
to be performed. For regression, for example, the
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Crowd Crowd Experts Experts
easier more difficult easier more difficult

Crowd – easier 100 % -93 % 88 % -87 %
Crowd – more difficult -93 % 100 % -87 % 89 %
Experts – easier 88 % -87 % 100 % -99 %
Experts – more difficult -87 % 89 % -99 % 100 %

Table 2: Pearson correlations between 4 different metrics calculated based on the assessments by experts or the crowd.
The metrics are the proportions of times a text is assessed either as easier or as more difficult than any other text.

most suitable gold standard consists of an assign-
ment of a readability score to each individual text.
Those readability scores can for example be the pro-
portion of times each text was assessed as easier than
any other text. Other possibilities to assign scores
can also lead to a gold standard for regression. Bi-
nary classification is an example of a different learn-
ing task, for which the data set doesn’t need to be
transformed. For two texts, a binary classifier at-
tempts to determine which is the easiest and which
the most difficult one. Further research will focus
on how the data sets resulting from both annotation
strategies can be transformed into gold standards.

4 Concluding remarks

We have implemented two web applications to col-
lect assessments about the readability of texts in a
selected corpus: an application intended for lan-
guage experts and a crowdsourcing tool. Although
both English and Dutch are targeted, we focused on
the results that were obtained for Dutch. In order
to compare the resulting readability assessments, we
viewed the data as text pairs, for which a relative as-
sessment is given. A comparison of both data sets
revealed that they are very similar, a similarity which
was numerically confirmed by an analysis with Pear-
son’s correlation coefficient. Finally, we gave ex-
amples of how gold standards for different learning
tasks canbe constructed from the data sets.

We introduced the problem of inter-annotator
agreement into the field of readability prediction and
calculated inter-annotator agreement for both data
sets in five different ways. We show that for the
text pairs which were assessed > 10 times, higher
K scores are obtained in each of the different set-
tings, which strengthens our confidence that read-
ability can be learned from our data sets.

We conclude that both data sets are valuable and

that crowdsourcing is a viable alternative to read-
ability assessments by language experts.

Future work includes a further extension and anal-
ysis of the data sets. Further analysis could also re-
veal the ideal way to extract a gold standard from the
data sets. We will also continue to investigate the
impact of different linguistic features on automatic
readability prediction (van Oosten et al., 2010).
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Abstract

To overcome their substantial barriers to flu-
ent reading, students with dyslexia need to be
enticed to read more, and to read texts with
carefully controlled lexical content. We de-
scribe and show examples from a prototype of
the new R2aft story assembly engine, which
generates an interactive text that has A) vari-
able plot and B) lexical content which is indi-
vidualized by decoding pattern.

1 Introduction

Dyslexia is a specific disability which prevents stu-
dents from reading at a level commensurate with
their general intelligence. It is also the most com-
mon learning disability, affecting as many as 15
(NICHD, 2011) or 20% of the population (Shaywitz,
2003).

We have recently started a new Intelligent Tutor-
ing System project to address dyslexia. The R2aft
tutor (Repeated Reading Adaptive Fluency Tutor) is
intended to improve reading fluency among students
with dyslexia. An important part of the R2aft tutor
will be its story assembly engine TASA (Text And
Story Assembler), which will generate the text to be
read. In this paper, we will discuss how the special
characteristics of dyslexia influenced the design of
TASA, and describe the prototype system.

Research has shown that phonological processing
is the core deficit in dyslexia, but one which can be
addressed by intensive training in phonemic aware-
ness and phonics (e.g. (Torgesen et al., 2001)). Be-
cause dyslexic readers have difficulty distinguish-
ing individual phonemes within a word, they also

have great difficulty learning the relationships be-
tween written letter patterns and the sounds they
make. These decoding patterns, which are often ab-
sorbed intuitively by normal readers, must be ex-
plicitly taught to dyslexic readers. For example, the
words “tramped” and “padded” both end in “ed,”
but are pronounced differently. In “tramped” “ed”
makes a “t” sound (the “ed t” pattern), while in
“padded” it makes an “ed” sound (the “ed ed” pat-
tern). 1 A dyslexic reader must receive explicit
training on hundreds of decoding patterns such as
these. In addition, to improve fluency a dyslexic
reader must practice these patterns extensively, in
large amounts of connected text.

Unfortunately, this practice is difficult to obtain.
“Decodable texts” which use a constrained vocab-
ulary are available (e.g. (Bloomfield et al., 1998)),
however, professional dyslexia tutors report that
these booklets often do not meet the individual vo-
cabulary needs of their students. In addition, stu-
dents with dyslexia typically hate to read (Shaywitz,
2003), and do little to acquire the necessary practice
in connected text.

This analysis suggests that a successful fluency
tutor should address two sets of issues. It should
address vocabulary issues to ensure that the student
gets practice on appropriate decoding patterns. It
also should address motivational issues, to entice
students to read more text. As described below,
TASA addresses the vocabulary issue by using tem-
plates whose slots allow for lexical individualiza-
tion. It aims to improve motivation by generating
a variable plot line, and allowing students to make

1These examples are taken from (Bloomfield et al., 1998).
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plot choices that affect the unfolding story. There
are several reasons to expect that allowing dyslexic
students to interactively shape plot events will im-
prove their motivation. For example the popular
“Choose Your Own Adventure” books (e.g. (Mont-
gomery, 1982)), allow their readers to choose paths
in a branching narrative. Also, “Interactive Fic-
tion” type text adventures (Montfort, 2003) which
allow the reader to control the protagonist, enjoy
continuing popularity.2 Furthermore, a study with
the REAP ESL vocabulary tutor suggests that pre-
senting more interesting stories can improve learn-
ing (Heilman et al., 2010).

Authoring a branching narrative entirely by hand,
however, is an unattractive option. Even a small
story could require authoring hundreds of plot
branches. Reducing this burden would allow author-
ing the large volume of text needed by our readers.

The dyslexia tutoring domain therefore suggests
three design goals for our story generation engine.

1. Lexical Individualization: It should allow us to
fine tune lexical content to feature the decoding pat-
terns required by each student.

2. Interactivity: It should allow student plot choices
to influence the story being read.

3. Tractable Authoring: It should help reduce the
burden of authoring multiple story branches.

2 Story Representation

As described above, the dyslexia domain requires
detailed control over lexical content in our reading,
and our approach to motivational issues involves in-
teractive text. Both of these considerations argue
against the use of pre-existing texts as are used, for
example, in the Listen (Mostow, 2011) or REAP
(Brown and Eskenazi, 2004) systems. Instead, we
investigate generating our own stories.

The literature on story analysis and generation can
be usefully divided into approaches which model
the structure of the story itself, versus approaches
which model some of the processes involved in story
creation. The latter often simulate the author (e.g.
(Dehn, 1981), the reader (Bailey, 1999), or the story
world (Meehan, 1976). They also typically require
large amounts of real-world knowledge to generate

2However, see (Glassner, 2004, pg 239) for a discussion of
the difficulties of branching narrative.

even simple stories. Given our need to produce a
large amount of practice text, this approach seems
untenable.

Instead, we take the first mentioned approach of
modeling story structure. To do this, we will re-
quire a formalism which will allow us to repre-
sent, manipulate and re-combine pre-written stories.
Early work in story grammars used elegant hierar-
chical tree structures to analyze plot structure. (see
(Graesser et al., 1991) for an overview of this work).
In general, these structures seem underspecified for
generating stories.

We turn instead to the causal network theory of
Trabasso and van den Broek (1985). This formal-
ism does not enforce strict hierarchies, but repre-
sents text as a sequence of nodes. The nodes rep-
resent categories such as “Setting,” “Goal,” “Event,”
“Reaction” or “Outcome,” and are connected in se-
quence by temporal and causal links.

This formalism provides guidelines about legal
node sequences. It also enforces several constraints
on the type of text we can represent. For example,
the text base must be generated in strict temporal and
causal order, we cannot represent flashbacks or other
types of transformed narrative. Also, each node gen-
erates text, we cannot represent events which do not
appear in the textbase.

3 The Story

Our prototype story is a rehash of several standard
themes common in young reader fiction. A young
protagonist moves to a new house with a parent (the
genre seems to require that one parent be missing).
This protagonist is shown to be weak and fearful
in various ways. The protagonist discovers some
source of inspiration which leads him/her to attempt
some endeavor. After many setbacks the protago-
nist becomes accomplished at this endeavor, then at
the climax uses his/her new strength/skill to save the
parent from certain doom.

Our prototype story was developed to instantiate
these themes each in several ways. For example, the
initial source of inspiration comes in two options.
The first source will be found in a springhouse at the
rear of the protagonist’s new home. The alternate
source is found in a locked room of the main house.
There are also several options for the resulting en-
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deavor and several options for the final climax. Pur-
suant to our goal of presenting an interactive text,
most of these plot variations will be determined at
runtime by reader choice.

For example, toward the beginning of the story,
the protagonist is found in his/her new bedroom,
with a goal to explore the unfamiliar house. Here
the reader chooses what to investigate, with the next
plot fork being determined by whether the “spring-
house” or the “locked door” is chosen.

This story is written in text form, then decon-
structed into a causal network in the following way.
An analyst examines the initial story text, and di-
vides it into chunks. Following the Trabasso frame-
work described in Section 2, each chunk is required
to be temporally and causally subsequent to the pre-
vious chunk, and to depict elements such as a “set-
ting,” “event,” “goal,” “attempt” “reaction” or “out-
come.” The story chunk described above, for ex-
ample, is labeled as a goal node. The subsequent
chunk in which the protagonist begins to explore, is
labeled as an “attempt.” After this analysis, the re-
sulting chunks are instantiated as production system
rules, as described below.

4 The TASA Prototype

Our prototype TASA system is instantiated as a set of
facts and rules in the Clips expert system shell (Gi-
arratano and Riley, 1994). Expert systems typically
consist of a set of if-then rules, plus a set of facts as-
serted in memory. Rules whose if portions are satis-
fied by facts are activated and placed on an agenda.
A rule on the agenda is then selected and fired, ac-
cording to some salience scheme. Rules typically
assert new, or modify old facts in memory. These
facts then cause more rules to activate and fire, and
the cycle continues until the agenda is empty. In our
system, we write rules which append text to the ac-
cumulating story when the story world is in a partic-
ular state.

The TASA system includes three types of facts:
user-model, story-world, and lexicon facts.

User-model facts include details about the stu-
dent’s age and gender, as well as about targeted de-
coding patterns for that individual student.

Figure 1 shows an abbreviation of a student fact.
This fact records information about the current stu-

(student
(decodePat ed t)
(age 9)
(gender m))

Figure 1: Abbreviated student fact, requesting “ed t” pat-
tern

dent user such as age and gender. It also records the
set of decoding patterns that should be selected in
the text. The “ed t” pattern is shown.

Story-world facts include the text so far, as well
as the relevant story state. The story state is much
less detailed than is required for the story gener-
ation systems described in Section 2, and simply
includes information about the location, goals and
mood of characters, and the locations and status
of certain objects, as seems necessary to prevent
rules from appending text in inappropriate places. It
prevents, for example, text about unlocking a door
from being appended when the door is open. Facts
belonging to the same world state are co-indexed
(with the “worldHist” variable shown in Figure 1),
so that when a rule modifies the world state, the en-
tire set of world facts can be re-asserted into memory
with an updated index. This allows several different
plot branches to be developed in memory simulta-
neously, without context-breaching intrusions from
each other.

(character
(charID clif 1)
(worldHist 0)
(role protag)
(firstName Clif)
(gender m)
(goal explore springHouse)
(location bedroom)
(subjPronoun he)
(objPronoun him)
(posPronoun his)
(age 9))

Figure 2: Abbreviated story-world fact for protagonist

Figure 2 abbreviates a “protagonist” story-world
fact. Among other things, this fact contains the pro-
tagonist’s current location and goal, as well as ap-
propriate forms for pronominal reference. Note also
that the protagonist’s age and gender have been set
to match those of the current student user.

The Lexicon facts are a large set of words known
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to the system. Each word is associated with both a
synonym and a decoding pattern. This allows the
system to locate all appropriate substitutions for a
target word which also exhibit a targeted decoding
pattern.

(decodeSet
(decodePat ed ed)
(word padded)
(syn walked))

(decodeSet
(decodePat ed t)
(word tramped)
(syn walked))
Figure 3: Example Lexicon Facts

Figure 3 shows several example lexicon facts.
They allow the system, for example, to locate words
which can substitute for “walked” and which dis-
play the “ed ed” decoding pattern. Note that or-
ganizing our lexicon by substitutable synonyms al-
lows the prototype to dispense with representing
things like tense and number. Other senses of
“walked,” if needed, would be listed with an index,
ie. “walked 2.”

In the final system, we expect to implement the
70 to 80 decoding patterns commonly featured in
Orton-Gillingham (Orton-Gillingham, 2011) based
instructional materials. Based on discussions with
professional dyslexia tutors, we hope to provide at
least five examples of each pattern, requiring a lex-
icon of above 400 words. In addition, we hope to
show each example word in several sentence con-
texts, which brings the number of expected sentence
templates well into the thousands.

As mentioned above, each node from the story
analysis is instantiated as one or more rules in this
expert system. If a rule matches a story-world state
and fires, it appends text to the story so far. Each rule
also changes the story-world in some feature which
is modelled by the system and matched in the rule’s
if part. For example a rule should leave the protago-
nist in a different place or in a different mood than in
the previous chunk. This is a practical requirement
to prevent the same rule from repeatedly firing when
the story-world facts are re-asserted.

The then portions of these rules contain templates
which are used to generate text. Each template in-
cludes slots which are to be filled by appropriate

words from the lexicon. Because one template typ-
ically does not exhaust all the ways to express the
rule’s intended message, the analyst typically writes
several forms of the rule, which increases the range
of potential word use.

Given this structure of rules and facts, the produc-
tion rule paradigm is appealing for its ability to meet
all three of our design goals: plot variety, lexical in-
dividualization, and tractable authoring. By mod-
ularizing chunks of text and associating them with
appropriate story-world conditions (in their if parts),
we can make a system able to generate plot forks by
matching two potential child nodes to the previous
story node. We can achieve lexical individualization
by writing rules which match not only story world
facts, but also student model facts about targeted de-
coding patterns. Authoring burden is reduced by the
ability of existing rules to add text in new situations.
We give examples of each of these features below.

As an example of how this works in our prototype
system, consider the plot node described above. The
protagonist is in the bedroom. If the reader chooses
to investigate the springhouse, a rule like the follow-
ing is activated. 3

(defrule walkAcrossYard 1
(Code which binds state variables omit-

ted here)
?prot← (character (charID ?proID)

(worldHist ?rh)
(location ?proLoc&bedroom)
(goal explore springHouse)
(firstName ?proFn))

(student (decodePat ?dp))
(decodeSet (decodePat ?dp)(syn

walked)(word ?wlkd))
⇒
(Code which duplicates state variables omitted
here)

(text (str-cat ?txt ?proFn ” ” ?wlkd ”
across the back yard to the springhouse. ”)))
Figure 4: Rule describing walk to springhouse

Figure 4 abbreviates a rule which fires if A) the
protagonist is in the bedroom with goal to explore
the springhouse, and B) the current student needs
a decoding pattern ?dp which is available in a syn-
onym of “walked.” If these conditions are met, then

3For clarity, example rules are extensively pruned from the
Clips rule syntax.
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(below the⇒) the rule fills a sentence template with
the name of the protagonist and the appropriate syn-
onym of walked.

For example, if the protagonist’s name is set to
“Clif,” (as in Figure 2) and the decoding rule “ed t”
is targeted (as in Figure 1), this rule will produce a
sentence for each matching synonym of “walked,”
(one of which is shown in Figure 3) including:

Clif tramped across the back yard to the
springhouse.

If the targeted pattern had instead been “ed ed,”
this rule would produce sentences like “Clif padded
across the back yard to the springhouse.”

When the rule fires, the story world is changed
to place Clif at the springhouse door, which causes
additional rules to be activated. Still assuming the
“ed ed” decoding rule is active, one subsequent rule
appends a sentence as follows:

Clif hunted across the back yard to the
springhouse. He pounded on the door, and lis-
tened for an answer.

Alternatively, if the source of inspiration in the
story is set to be in the locked room, TASA produces
a different variety of sentences including:

Clif padded across the room toward the
locked door. He pounded on the door, and lis-
tened for an answer.

Note from Figure 3 that “padded” is in the lexi-
con as another synonym for “walked” that follows
the “ed ed” decoding pattern. Also note that in this
example the second sentence was produced by the
same rule that provided the second sentence in the
previous example, which had been written for a dif-
ferent branch of the plot. Together, these examples
show how TASA can provide both plot variation and
lexical individualization. They also demonstrate the
feature of text reuse, which we expect will become
more prevalent as the rule base grows larger.

5 Future Work

In our ongoing work we are re-implementing the
prototype system in the Drools expert system shell
(Bali, 2009). Drools provides for the inclusion of
Java code in instantiated story-world facts, which

will allow us to offload the substantial portion of our
prototype rules devoted to updating and maintain-
ing the story state. In addition we are greatly ex-
panding our rule-base as we instantiate more of the
prototype story. In the course of this work we will
also evaluate moving to a more expressive story for-
malism, such as Graesser’s Conceptual Graph Struc-
tures (Graesser et al., 1991) which can represent ad-
ditional relationships between nodes.

In addition, we will evaluate improved ways to se-
lect the best text from the many options output by the
system. Rather than simply comparing the number
of targeted decoding patterns (as we do now) we will
experiment with other evaluation metrics such as co-
hesion (Graesser et al., 2004), or methods which
have been useful in essay evaluation (e.g. : (Higgins
et al., 2004)).

After sufficient story development, we intend to
evaluate the effect of interactive text on students’
motivation to read. This evaluation will collect
motivational survey results and “voluntary” reading
times, and compare them between students using in-
teractive and non-interactive versions of the system.
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Abstract

We apply a previously reported measure of di-
alog cohesion to a corpus of spoken tutoring
dialogs in which motivation was measured.
We find that cohesion significantly predicts
changes in student motivation, as measured
with a modified MSLQ instrument. This sug-
gests that non-intrusive dialog measures can
be used to measure motivation during tutoring.

1 Introduction

Motivation is widely believed to be an important fac-
tor in learning, and many studies have found rela-
tionships between motivation and educational out-
comes. For example Pintrich and DeGroot (1990)
found that students’ motivational state was a signif-
icant predictor of classroom performance. In ad-
dition, pedagogically significant behaviors such as
dictionary lookup in the REAP (Brown and Eske-
nazi, 2004) vocabulary tutor have been shown to
be positively correlated with motivation assessments
(DelaRosa and Eskenazi, 2011). Also, in a separate
study with the REAP tutor, attempts to manipulate
reading motivation by presenting more interesting
stories were shown to improve vocabulary learning
(Heilman et al., 2010).

In addition to influencing learning outcomes, mo-
tivational state may also affect which interventions
will be effective during tutoring. For example, Ward
and Litman (2011) have shown that motivation can
significantly affect which students benefit from a re-
flective reading following interactive tutoring with a
the Itspoke (Litman and Silliman, 2004) tutor.

An accurate way to measure student motivation
during tutoring could therefore be valuable to Intel-
ligent Tutoring System (ITS) researchers. Several
self-report instruments have been developed which
measure various aspects of motivation (e.g. (Pintrich
and DeGroot, 1990; McKenna and Kear, 1990)).
However, these instruments are too intrusive to be
administered during tutoring, for fear of fatally dis-
rupting learning. We would prefer a non-intrusive
measure which would allow an ITS to detect when
student motivation is decreasing so as to launch a
motivational intervention. Similarly, the ITS should
be able to detect when motivation is increasing
again, to determine if the intervention worked. As
mentioned above, such a measure might also allow
an ITS to determine when it would be effective to
use certain instructional tactics.

In this work we investigate cohesion as a non-
intrusive measure of motivation for natural language
dialog based ITS. As defined more precisely below,
our measure of cohesion quantifies lexical and se-
mantic similarity between tutor and student dialog
utterances. We hypothesize that this measure of lexi-
cal similarity may be related to motivation in part be-
cause other measures of dialog similarity have been
shown to be related to task success. For example,
there is evidence that perceived similarity between a
student’s own speech rate and that of a recorded task
request increases the student’s feelings of immedi-
acy, which are in turn linked to greater compliance
with the request to perform a task (Buller and Aune,
1992). 1 In addition, Ward and Litman (2006; 2008)
investigated a measure of lexical similarity between

1In this experiment, the task was to watch a series of videos.
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the tutor and student partners in a tutoring dialog
which was shown to be correlated with task success
in several corpora of tutorial dialogs.

Measures of cohesion have also been used in a va-
riety of NLP tasks such as measuring text readability
(e.g. (Pitler and Nenkova, 2008)), measuring stylis-
tic differences in text (Mccarthy et al., 2006), and
for topic segmentation in tutorial dialog (Olney and
Cai, 2005).

Given the previously mentioned results relating
motivation to educational task success, these links
between task success and cohesion lead us to hy-
pothesize a direct correlation between motivation
and cohesion when using the Itspoke tutor.

We will first briefly describe the Itspoke tutor, and
the corpus of tutoring dialogs used in this study. We
will then describe the instrument we used to mea-
sure motivation both before and immediately after
tutoring, then we will describe the algorithm used
to measure cohesion in the tutoring dialogs. Finally,
we show results of correlations between the measure
of motivation and the measure of cohesion. We will
find that the change in motivation is significantly
correlated with dialog cohesion.

2 Itspoke System and Corpus

Itspoke (Intelligent Tutoring SPOKEn dialog sys-
tem) is a spoken dialog tutoring system which
teaches qualitative physics. It provides a spoken di-
alog interface to the Why2-Atlas (VanLehn et al.,
2002) tutor, and has recently been re-implemented
using the TuTalk (Jordan et al., 2007) dialog plat-
form. The Itspoke tutor presents a problem in qual-
itative physics, and asks the student an initial ques-
tion. The student answers the question, and the di-
alog continues until all points have been covered to
the tutor’s satisfaction.

The corpus used in the current work was collected
in a previous study (Ward and Litman, 2011), us-
ing novice subjects who had never taken a college
physics course. Before tutoring, students were given
a motivation survey which will be described in Sec-
tion 3. They then engaged Itspoke in five tutoring
dialogs as described above. Immediately after tu-
toring they were given the motivation questionnaire
again, with tenses changed as appropriate.

166 subjects were recruited by flyer, by advertise-

Speaker Utterance
Tutor To see which vehicle’s change in motion

is greater, we use the definition of accel-
eration. What is the definition of accel-
eration?

Student Change in velocity.
Tutor Excellent. Acceleration is defined as the

amount velocity changes per unit time.

Table 1: Dialog turns, with Token, Stem, and Semantic
Similarity Matches in bold (as discussed in Section 4).

ment during an undergraduate psychology course, or
from the University of Pittsburgh’s psychology sub-
ject pool. Of these, 40 were dismissed after pretest
as “middle third” knowledge students, following ex-
treme groups design (Feldt, 1961). Extreme groups
design was adopted to increase the power of a “high”
vs “low” knowledge comparison, which is reported
elsewhere (Ward, 2010). Another 27 students were
not used for various reasons including incomplete
data. This left a corpus of 99 subjects who each par-
ticipated in 5 tutorial dialogs.

Table 1 shows an exchange from one of these di-
alogs. The tutor asks a question about the current
problem, which the student then answers. The tutor
restates the answer, and (later in the dialog) proceeds
on to the next point of discussion.

3 Motivation Measure

In this study we measure motivation using a reduced
version of the “Motivated Strategies for Learning
Questionnaire (MSLQ)” developed by Pintrich and
DeGroot (1990). This version of the MSLQ is also
based on work by Roll (2009), who adapted it for
use in an IPL (Invention as Preparation for Learning
(Schwartz and Martin, 2004)) tutoring environment.
Our motivational survey is shown in Figure 1.

Questions one and two address “self-regulation,”
particularly the students’ tendency to manage and
control their own effort. Question one is on a re-
versed scale relative to the other questions, so re-
sponses to it were inverted. Question three addresses
“self-efficacy,” the students’ expectation of success
on the task. Questions four and five address “intrin-
sic value,” the students’ beliefs about the importance
and interest of the task.

These dimensions of motivation are theoretically
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Please read the following statements and then
click a number on the scale that best matches
how true it is of you. 1 means “not at all true
of me” whereas 7 means “very true of me”.

1. I think that when the tutor is talking
I will be thinking of other things and
won’t really listen to what is being said.

2. If I could take as much time as I want,
I would spend a lot of time on physics
tutoring sessions.

3. I think I am going to find the physics tu-
tor activities difficult.

4. I think I will be able to use what I learn
in the physics tutor sessions in my other
classes.

5. I think that what I will learn in the
physics tutor sessions is useful for me to
know.

Figure 1: Pre-tutoring Motivational Survey

distinct. However, except for question three (the
self-efficacy question), responses to these questions
were all very significantly correlated with each other
in our survey (p < .01).

Table 2 shows values of Cronbach’s Alpha (Cron-
bach, 1951) for various subsets of the motivation
questions. Alpha measures the internal consistency
of responses to a multi-point questionnaire, and is a
function of the number of test items and the corre-
lation between them. Higher values are thought to
indicate that the various test items are measuring the
same underlying latent construct. For this study we
omit Question 3, maximizing Alpha at .716. This
is just above the commonly accepted (Gliem and
Gliem, 2003) threshold for reliability in such an in-
strument.

Questions Alpha
1, 2, 3, 4, 5 0.531

1, 2, 4, 5 0.716
2, 4, 5 0.703

4, 5 0.683

Table 2: Alpha reliability
scores for various subsets
of questions.

As mentioned above,
this instrument was ad-
ministered both before
and (with suitable tense
changes) immediately
after tutoring. We will
report correlations using
mean scores on the
pre- and post-tutoring
measures, as well as
for the change-in-motivation score, calculated as
post-minus-pre.

4 Semantic Cohesion Measure

In this work we measure cohesion between tutor and
student using the “semantic cohesion” measure first
reported by Ward and Litman (2008). This measure
counts the number of “cohesive ties” (Halliday and
Hasan, 1976) between adjacent tutor and student di-
alog turns. A cohesive tie can be the repetition of an
exact word or word stem, or the use of two words
with similar meanings in adjacent turns. Stop words
are excluded, and cohesive ties are counted in both
the student-to-tutor and the tutor-to-student direc-
tions. For example, in the dialog shown in Table 1,
the final tutor turn repeats the word “velocity” from
the previous student turn. This repetition would be
counted as an exact cohesive tie. Similarly, the tu-
tor uses the word “changes” following the student’s
use of “change.” This would be counted as a stem
repetition cohesive tie.

Finally, the student’s use of “velocity” will be
counted as a cohesive tie because of its semantic
similarity to “acceleration,” from the preceding turn.
The algorithm therefore counts four ties in Table 1.
As described more completely in (Ward and Litman,
2008), semantic similarity cohesive ties are counted
by measuring two words’ proximity in the Word-
Net (Miller et al., 1990) hierarchy. We use a simple
path distance similarity measure, as implemented in
NLTK (Loper and Bird, 2002). This measure counts
the number of edges N in the shortest path between
two words in WordNet, and calculates similarity as 1
/ (1 + N). Our implementation of this semantic simi-
larity measure allows setting a threshold θ, such that
only word pairs with stronger-than-threshold simi-
larity are counted. Table 3 shows some semantic
similarity pairs counted with a threshold of 0.3.

motion-contact
man-person

decrease-acceleration
acceleration-change

travel-flying

Table 3: Example Se-
mantic ties: θ = 0.3

We obtain a normal-
ized cohesion score for
each dialog by dividing
the tie count by the num-
ber of turns in the dialog.
We then sum the line nor-
malized counts over all
the dialogs for each stu-
dent, resulting in a per-
student cohesion measure.
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5 Results

We ran correlations between the change-in-
motivation score described in Section 3 and the
semantic similarity measure of cohesion described
in Section 4. We report results for a semantic
similarity threshold of .3 for consistency with
(Ward and Litman, 2008), however the pattern of
results is not sensitive to this threshold. Significant
results were obtained for all thresholds between .2
and .5, in .1 increments. 2 In addition, we report
results for the motivation measure with the third
question removed for consistency with (Ward and
Litman, 2011). However the pattern of results is not
sensitive to this exclusion, either. Significant results
were also obtained using the entire questionnaire.

Motivation
Measure Cor. pValue

pre-Tutoring 0.02 0.86
Change 0.21 0.03

post-Tutoring 0.19 0.055

Table 4: Cohesion - Motivation
Correlations. N = 99. θ = 0.3

In all cases,
the change in
motivation was
found to be
significantly
and positively
correlated with
the cohesive-
ness of the
tutoring dialog. More lexical similarity between
tutor and student was predictive of increased student
motivation. As shown in the middle row of Table
4, the correlation with motivational change, using a
threshold of .3 and the reduced motivation measure
was r(97)= .21, p = 0.03.

Interestingly, as shown in the top and bottom rows
of Table 4, neither motivation before tutoring r(97)
= .02, p=.86, nor after tutoring r(97) = .19, p = .055,
was significantly correlated with cohesion, although
the post-tutoring measure achieves a strong trend.

Pre- and post-tutoring mean motivation levels
were, however, significantly correlated with each
other (R(97) = .69, p < .0001). Mean motivation
levels also showed a non-significant improvement
from 4.31 before tutoring to 4.44 after tutoring.

6 Discussion and Future Work

We have brought forward evidence that cohesion in
tutorial dialog, as measured in this paper, is corre-
lated with changes in student motivation. This sug-

2Note from the path distance formula that thresholds be-
tween .5 and 1 are impossible

gests that dialog cohesion may be useful as a non-
intrusive measure of motivational fluctuations.

As discussed in Section 1, other researchers have
investigated various types of cohesion, and their re-
lationship to things such as task success and learn-
ing. In addition, work has been done investigating
the role of motivation in learning. However, we be-
lieve ours is the first work relating dialog cohesion
directly to user motivation.

The presence of a correlation between cohesion
and motivation leaves open the possibility that more
motivated students are experiencing greater task
success in the tutor, and so generating more cohe-
sive dialogs. 3 Note, however, that the very non-
significant correlation between pre-dialog motiva-
tion and dialog cohesion argues against this pos-
sibility. Instead, it seems that some process is
both creating dialog cohesion and improving student
motivation. The lack of significance in the post-
dialog/motivation correlation may be due to data
sparsity.

In future work, we hope to investigate other dia-
log features which may be even better predictors of
student motivation. As mentioned in Section 1, we
became interested in dialog similarity metrics partly
because of their association with task success. These
kinds of associations between task success and dia-
log have also been shown for dialog entrainment.

In this discussion we will use the term “entrain-
ment” for the phenomenon in which conversational
partners’ speech features become more similar to
each other at many levels, including word choice,
over the course of a dialog. 4 As mentioned above,
we use the term “cohesion” for overall similarity of
word choice between speakers in a dialog, perhaps
resulting from entrainment.

Users appear to entrain strongly with dialog sys-
tems. For example, Brennan (1996) has found that
users are likely to adopt the terms used by a WOZ
dialog system, and that this tendency is at least as
strong as with human dialog partners. Similarly, Par-
ent and Eskenazi (2010) showed that users of the
Let’s Go (Raux et al., 2005) spoken dialog system
quickly entrain to its lexical choices.

3We thank an anonymous reviewer for prompting this dis-
cussion.

4This definition conflates studies of priming, alignment,
convergence and accommodation.
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As with measures of dialog similarity, dialog en-
trainment has been found to be related to satisfac-
tion and success in task oriented dialogs. For ex-
ample, Reitter and Moore (2007) found that lexi-
cal and syntactic repetition predicted task success
in the MapTask corpus. Similarly, Ward and Lit-
man (2007) found that lexical and acoustic-prosodic
entrainment are correlated with task success in the
Itspoke dialog system. Interestingly, in that work
entrainment was more strongly correlated with task
success than a measure of dialog cohesion similar
to the one used in the current paper. This raises the
question of whether such a measure of dialog en-
trainment might also be a better predictor of motiva-
tion than the current measure of cohesion. We hope
in future work to further investigate this possibility.

Finally, because we are interested in predicting
motivation during tutoring, our dialog metrics may
be improved by making them sensitive to the educa-
tional domain. For example, exploratory work with
our tutor has suggested that a measure of cohesion
which only counts cohesive ties between physics
terms is better correlated with certain measures of
learning than a measure which counts non-physics
terms. This suggests that measures of cohesion
or entrainment which recognize educational domain
words may also improve correlations with motiva-
tion.
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Abstract

Semantic distance is the degree of closeness
between two pieces of text determined by their
meaning. Semantic distance is typically mea-
sured by analyzing a set of documents or a list
of terms and assigning a metric based on the
likeness of their meaning or the concept they
represent. Although related research provides
some semantic-based algorithms, few applica-
tions exist. This work proposes a semantic-
based approach for automatically identifying
potential course equivalencies given their cat-
alog descriptions. The method developed by
Li et al. (2006) is extended in this paper to take
a course description from one university as the
input and suggest equivalent courses offered at
another university. Results are evaluated and
future work is discussed.

1 Introduction

Hundreds of students transfer to University of Mas-
sachusetts Lowell (UML) each year. As part of
that process, courses taken at students’ previous ed-
ucational institutions must be evaluated by UML
for transfer credit. Course descriptions are usually
short paragraphs of less than 200 words. To de-
termine whether an incoming course can be trans-
ferred, the undergraduate and graduate transfer coor-
dinators from each department must manually com-
pare its course description to the courses offered
at UML. This process can be tedious and time-
consuming. Although the publicly available course
transfer dictionary (Figure 1) for students transfer-
ring to UML lists equivalent courses from hundreds

of institutions, it is not always up to date and the data
set is sparse and non-uniformed.

This work proposes an approach to automati-
cally identify course equivalencies by analyzing the
course descriptions and comparing their semantic
distance. The course descriptions are first pruned
and unrelated contexts are removed. Given a course
from another university, the algorithm measures
word, sentence, and paragraph similarities to sug-
gest a list of potentially equivalent courses offered
by UML. This work has two goals: (1) to efficiently
and accurately suggest equivalent courses to reduce
the workload of transfer coordinators, and (2) to ex-
plore new applications using semantic distance to
move toward the Semantic Web, i.e., to turn exist-
ing resources into knowledge structures.
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Figure 1. A subset of the transfer dictionary for
students transferred from an external institution to
UML.
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2 Related Research

Semantic distance measures have been used in appli-
cations such as automatic annotation, keyword ex-
traction, and social network extraction (Matsuo et
al., 2007). It is important to note that there are two
kinds of semantic distance: semantic similarity and
semantic relatedness. Semantic relatedness is more
generic than semantic similarity in that it includes all
classical and non-classical semantic relations such
as holonymy1, meronymy2, and antonymy3, where
semantic similarity is limited to relations such as
hyponymy4 and hypernymy5 (Budanitsky and Hirst,
2006). The terms semantic distance, semantic relat-
edness, and semantic similarity are sometimes used
interchangeably by different authors in the literature
related to this topic. The relative generality of the
three terms is illustrated in Figure 2.

Semantic Distance

Semantic Relatedness

Semantic Similarity

Figure 2. The relations of semantic distance, seman-
tic relatedness, and semantic similarity as described
by Budanitsky and Hirst (2006).

Related work in semantic distance measurement
can be roughly divided into three categories: (1) lex-
icographic resource based methods, (2) corpus based
methods, and (3) hybrid methods.

1A holonym is a word that names the whole of which a given
word is a part. For example, “hat” is a holonymy for “brim” and
“crown.”

2A meronym is a word that names a part of a larger whole.
For example, “brim” and “crown” are meronyms of “hat.”

3A antonym is a word that expresses a meaning opposed to
the meaning of another word. For example, “big” is an antonym
of “small.”

4A hyponym is a word that is more specific than a given
word. For example, “nickel” is a hyponym of “coin.”

5A hypernym is a word that is more generic than a given
word. For example, “coin” is a hypernym of “nickel.”

Figure 3. A fragment of WordNet’s taxonomy.

Lexicographic resource based methods typically
calculate semantic distance based on WordNet6. In
related work (Rada et al., 1989; Wu and Palmer,
1994; Leacock and Chodorow, 1998; Hirst and
St-Onge, 1998; Yang and Powers, 2005), lexico-
graphic resource based methods use one or more
edge-counting (also known as shortest-path) tech-
niques in the WordNet taxonomy (Figure 3). In this
technique, concept nodes are constructed in a hierar-
chical network and the minimum number of hops be-
tween any two nodes represents their semantic dis-
tance (Collins and Quillian, 1969). The measure by
Hirst and St-Onge (1998) is based on the fact that the
target concepts are likely more distant if the target
path consists of edges that belong to many different
relations. The approach by Leacock and Chodorow
(1998) combines the shortest path with maximum
depth so that edges lower down in the is-a hierar-
chy correspond to smaller semantic distances than
the ones higher up. Yang and Powers (2005) further
suggest that it is necessary to consider relations such
as holonymy and meronymy.

A corpus-based method typically calculates co-
occurrence on one or more corpora to deduce seman-
tic closeness (Sahami and Heilman, 2006; Cilibrasi
and Vitanyi, 2007; Islam and Inkpen, 2006; Mihal-
cea et al., 2006). Using this technique, two words

6http://wordnet.princeton.edu/
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are likely to have a short semantic distance if they
co-occur within similar contexts (Lin, 1998).

Hybrid methods (including distributional mea-
sures) combine lexicographic resources with corpus
statistics (Jiang and Conrath, 1997; Mohammad and
Hirst, 2006; Li et al., 2003; Li et al., 2006). Related
work shows that hybrid methods generally outper-
form lexicographic resource based and corpus based
methods (Budanitsky and Hirst, 2006; Curran, 2004;
Mohammad and Hirst, 2006; Mohammad, 2008).

Li et al. (2006) proposed a hybrid method based
on WordNet and the Brown corpus to incorporate se-
mantic similarity between words, semantic similar-
ity between sentences, and word order similarity to
measure overall sentence similarity. The semantic
similarity between words is derived from WordNet
based on path lengths and depths of lowest common
hypernyms. The semantic similarity between two
sentences is defined as the cosine coefficient of two
vectors that are derived from building two seman-
tic vectors and collecting the information content for
each term from the Brown corpus. The word order
similarity is then determined by the normalized dif-
ference in word order of each sentence. Finally, the
overall sentence similarity is defined as the weighted
sum of the semantic similarity between sentences
and the word order similarity.

3 Proposed Method

This work proposes a variant of the hybrid method
by Li et al. (2006) to identify course equivalen-
cies by measuring the semantic distance between
course descriptions. Our approach has three mod-
ules: (1) semantic distance between words, (2) se-
mantic distance between sentences, and (3) seman-
tic distance between paragraphs. Their word order
similarity and overall sentence similarity modules
are found to decrease the accuracy (See Section 4).
Therefore, these methods are not used in our ap-
proach. This work modifies the semantic similarity
between words and the semantic similarity between
sentences modules developed by Li et al. (2006) and
adds semantic distance between paragraphs tailored
to the domain of identifying equivalent courses. Ex-
periments show that these modifications maximized
accuracy.

3.1 Semantic Distance Between Words
Given a concept c1 of word w1, and a concept c2

of word w2, the semantic distance between the two
words (SDBW) is a function of the path length be-
tween the two concepts and the depth of their lowest
common hypernym.

The path length p from c1 to c2 is determined
by one of five cases. This work adds holonymy
and meronymy relations to the method by Li et al.
(2006) to measure the semantic relatedness:

1. c1 and c2 are in the same synonym set (synset).
2. c1 and c2 are not in the same synset, but the

synset of c1 and the synset of c2 contain one or
more common words.

3. c1 is either a holonym or a meronym of c2.
4. c1 is neither a holonym nor a meronym of c2,

but the synset of c1 contains one or more words
that are either holonyms or meronyms of one or
more words in the synset that c2 belongs to.

5. c1 and c2 do not satisfy any of the previous four
cases.

If c1 and c2 belong to case 1, p is 0. If c1 and c2

belong to cases 2, 3, or 4, p is 1. In case 5, p is the
number of links between the two words. Therefore,
the semantic distance of c1 and c2 is an exponential
decaying function of p, where α is a constant (Li et
al., 2006):

f1(p) = eαp (α ∈ [−1, 0]). (1)

Let h be the depth of the lowest common hyper-
nym of c1 and c2 in the WordNet hierarchy. f2 is
a monotonically increasing function of h (Li et al.,
2006):

f2(h) =
eβh − e−βh

eβh + e−βh
(β ∈ [0, 1]). (2)

The values of α and β are given in Section 4.
The semantic distance between concepts c1 and c2

is defined as:

fword(c1, c2) = f1(p) · f2(h), (3)

where f1 and f2 are given by Equations 1 and 2. The
values of both f1 and f2 are between 0 and 1 (Li et
al., 2006).

WordNet is based on concepts, not words. Words
with different meanings are considered different
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“words” and are marked with sense tags (Budanit-
sky and Hirst, 2006). Unfortunately, common cor-
pora (as well as course descriptions) are not sense-
tagged. Therefore, a mapping between a word and
a certain sense must be provided. Such mapping
is called word sense disambiguation (WSD), which
is the ability to identify the meaning of words in
context in a computational manner (Navigli, 2009).
We consider two strategies to perform the WSD: (1)
compare all senses of two words and select the max-
imum score, and (2) apply the first sense heuris-
tic (McCarthy et al., 2004). We will show that the
overall performance of the two strategies is about
the same.

To improve accuracy, the parts of speech7 (POS)
of two words have to be the same before visiting the
WordNet taxonomy to determine their semantic dis-
tance. Therefore, “book” as in “read a book” and
“book” as in “book a ticket” are considered differ-
ent. We do not distinguish the plural forms of POS
from singular forms. Therefore, POS such as “NN”
(the singular form of a noun) and “NNS”(the plural
form of a noun) are considered the same.

The SDBW module also considers the stemmed
forms of words. Without considering stemmed
words, two equivalent course titles such as “net-
working” and “data communication” are misclassi-
fied as semantically distant because “networking” in
WordNet is solely defined as socializing with peo-
ple, not as a computer network. The stemmed word
“network” is semantically closer to “data communi-
cation.”

Algorithm 1 shows how to determine the semantic
distance between two words w1 and w2.

The SDBW module uses WordNet as a lexical
knowledge base to determine the semantic close-
ness between words. The path lengths and depths
in the WordNet IS-A hierarchy may be used to mea-
sure how strongly a word contributes to the meaning
of a sentence. However, this approach has a prob-
lem. Because WordNet is a manually created lex-
ical resource, it does not cover all the words that
appear in a sentence, even though some of these
words are commonly seen in literature. Words not
defined in WordNet are misclassified as semanti-

7We use the part-of-speech tags from the Penn Treebank
project: http://www.ling.upenn.edu/courses/Fall 2003/ling001/
penn treebank pos.html.

Algorithm 1 Semantic Distance Between Words
1: If two words w1 and w2 have different POS,

consider them semantically distant. Return 0.
2: If w1 and w2 have the same POS and look the

same but do not exist in WordNet, consider them
semantically close. Return 1.

3: Using either maximum scores or the first sense
heuristic to perform WSD, measure the seman-
tic distance between w1 and w2 using Equation
3.

4: Using the same WSD strategy as the previous
step, measure the semantic distance between the
stemmed w1 and the stemmed w2 using Equa-
tion 3.

5: Return the larger of the two results in steps (3)
and (4), i.e., the score of the pair that is seman-
tically closer.

cally distant when compared with any other words.
This is a huge problem for identifying equivalent
courses. For example, course names “propositional
logic” and “logic” are differentiated solely by the
word “propositional,” which is not defined in Word-
Net8. The semantic distance measurement between
sentences therefore cannot be simplified to all pair-
wise comparisons of words using WordNet. A cor-
pus must be introduced to assess the semantic relat-
edness of words in sentences.

3.2 Semantic Distance Between Sentences
To measure the semantic distance between sen-
tences, Li et al. (2006) join two sentences S1 and
S2 into a unique word set S, with a length of n:

S = S1 ∪ S2 = {w1, w2, . . . wn}. (4)

A semantic vector SV1 is computed for sentence S1

and another semantic vector SV2 for sentence S2.
Given the number of words in S1 as t, Li et al. (2006)
define the value of an entry of SV1 for sentence S1

as:
SV1i = ŝ1i · I(wi) · I(w1j), (5)

where i ∈ [1, n], j ∈ [1, t], ŝ1i is an entry of the
lexical semantic vector ŝ1 derived from S1, wi is a
word in S, and w1j is semantically the closest to wi

8WordNet 3.0 is used in our implementation and experi-
ments.
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in S1. I(wi) is the information content (IC) of wi in
the Brown corpus and I(w1j) is the IC of w1j in the
same corpus.

Our work redefines the semantic vector as:

SV1i = ŝ1i·(TFIDF (wi)+ε)·(TFIDF (w1j)+ε).
(6)

There are two major modifications in our ver-
sion. First, we replace the information content with
the Term Frequency–Inverse Document Frequency
(TFIDF) weighting scheme, which is a bag-of-words
model (Joachims, 1997). In the TFIDF formula,
each term i in document D is assigned weight mi:

mi = tfi · idfi = tfi · log
N

dfi
, (7)

where tfi is the frequency of term i in D, idfi is the
inverse document frequency of term i, N is the total
number of documents, and dfi is the number of doc-
uments that contain i (Salton and Buckley, 1987).
Our approach uses a smoothing factor ε to add a
small mass9 to the TFIDF.

Second, we compute TFIDF over our custom
course description corpus instead of the Brown cor-
pus. The course description corpus is built from
crawling the course catalogs from two universities’
websites. These two modifications find inner rela-
tions of words from the course description data do-
main, rather than from the various domains provided
by the Brown corpus.

The semantic distance of S1 and S2 is the co-
sine coefficient of their semantic vectors SV1 and
SV2 (Li et al., 2006):

fsent(S1, S2) =
SV1 · SV2

||SV1|| · ||SV2||
. (8)

Although Li et al. (2006) do not remove stop
words10, it is found that the removal of stop words
remarkably improves accuracy to identify equivalent
courses. (See Section 4.)

While building and deriving the lexical semantic
vectors ŝ1 for sentence S1 and ŝ2 for sentence S2,

9In our experiments, ε=0.01.
10Stop words (such as “the”, “a”, and “of”) are words that

appear in almost every document, and have no discrimination
value for contexts of documents. Porter et al.’s English stop
words list (http://snowball.tartarus.org/algorithms/english/stop.
txt) are adapted in this work.

it is found that some words from the joint word list
S (Equation 4) which are not stop words, but are
very generic, in turn rank as semantically the clos-
est words to most other words. These generic words
cannot be simply regarded as domain-specific stop
words in that a generic word in a pair of courses may
not be generic in another pair. To discourage these
generic words, we introduce a ticketing algorithm as
part of the process to build a lexical semantic vec-
tor. Algorithm 2 shows the steps to build the lexical
semantic vector11 ŝ1 for sentence S1. Similarly, we
follow these steps to build ŝ2 for S2.

Algorithm 2 Lexical Semantic Vector ŝ1 for S1

1: for all words wi ∈ S do
2: if wi ∈ S1, set ŝ1i = 1 where ŝ1i ∈ ŝ1.
3: if wi /∈ S1, the semantic distance between wi

and each word w1j ∈ S1 is calculated (Sec-
tion 3.1). Set ŝ1i to the highest score if the
score exceeds a preset threshold δ (δ ∈ [0, 1]),
otherwise ŝ1i = 0.

4: Let γ ∈ [1, n] be the maximum number of
times a word w1j ∈ S1 is chosen as semanti-
cally the closest word of wi. Let the seman-
tic distance of wi and w1j be d, and f1j be
the number of times that w1j is chosen. If
f1j > γ, set ŝ1i = d/γ to give a penalty to
w1j . This step is called ticketing.

5: end for

3.3 Semantic Distance Between Paragraphs

Although Li et al. (2006) claim that their approach
is for measuring the semantic similarity of sentences
and short texts, test cases show that the accuracy of
their approach is not satisfactory on course descrip-
tions. We introduce the semantic distance measure
between paragraphs to address this problem.

Given course descriptions P1 and P2, the first
step is to remove generic data and prerequisite in-
formation. Let P1 be a paragraph consisting of a
set of n sentences, and P2 be a paragraph of m sen-
tences, where n and m are positive integers. For s1i

(s1i ∈ P1, i ∈ [1, n]) and s2j (s2j ∈ P2, j ∈ [1,m]),
the semantic distance between paragraphs P1 and P2

is defined as a weighted mean:

11In our experiments, we chose δ=0.2.
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fpara(P1, P2) =

∑n
i=1(maxm

j=1 fsent(s1i, s2j)) · Ni∑n
i=1 Ni

,

(9)
where Ni is the sum of the number of words in
sentences s1i (s1i ∈ P1) and s2j (s2j ∈ P2), and
fsent(s1i, s2j) is the semantic distance between sen-
tences s1i and s2j (Section 3.2). Algorithm 3 sum-
marizes these steps. Optionally the deletion flag can
be enabled to speed up the computation. Empirical
results show that accuracy is about the same whether
or not the deletion flag is enabled.

Algorithm 3 Semantic Distance for Paragraphs
1: If deletion is enabled, given two course descrip-

tions, select the one with fewer sentences as P1,
and the other as P2. If deletion is disabled, se-
lect the first course description as P1, and the
other as P2.

2: for each sentence s1i ∈ P1 do
3: Calculate the semantic distance between sen-

tences (Section 3.2) for s1i and each of the
sentences in P2.

4: Find the sentence pair 〈s1i, s2j〉 (s2j ∈ P2)
that scores the highest. Save the highest score
and the total number of words of s1i and s2j .
If deletion is enabled, remove sentence s2j

from P2.
5: end for
6: Collect the highest score and the number of

words from each run. Use their weighted mean
(Equation 9) as the semantic distance between
P1 and P2.

We introduce θ to denote how much we weigh
course titles over course descriptions. Course titles
are compared using the semantic distance measure-
ment discussed in Section 3.2. Given title T1 and de-
scription P1 of course C1, and title T2 and descrip-
tion P2 of course C2, the semantic distance of the
two courses is defined as:

fcourse(C1, C2) = θ · fsent(T1, T2)

+ (1 − θ) · fpara(P1, P2).

(10)

4 Implementation and Experimental
Results

The method proposed in this paper is fully imple-
mented using Python and NLTK (Bird et al., 2009).
The WordNet interface built into NLTK is used to
retrieve lexical information for word similarities. In
our experiments, the default parameters are: α =
−0.2, β = 0.45 (Li et al., 2006), γ = 2, and
θ = 0.7. The γ and θ values are found empirically
to perform well.

A course description corpus must be built for the
experiments. The UMass Lowell (UML) course
transfer dictionary lists courses that are equivalent
to those from hundreds of other institutions (see Fig-
ure 1, shown in Section 1). We only used the transfer
dictionary as a test corpus rather than a training cor-
pus to keep the algorithm simple and efficient. Mid-
dlesex Community College (MCC) is picked as an
external institution in our experiments. The transfer
dictionary lists over 1,400 MCC courses in differ-
ent majors. We remove the rejected courses, elec-
tive courses, and those with missing fields from
the transfer dictionary. Referring to the equiva-
lencies from the transfer dictionary, we crawl over
1,500 web pages from the course catalogs of both
UML and MCC to retrieve over 200 interconnected
courses that contain both course names and descrip-
tions. Two XML files are created, one for UML
and one for MCC courses. Given an MCC course,
the goal is to suggest the most similar UML course.
A fragment of the MCC XML file is shown below.
Each course entry has features such as course ID,
course name, credits, description, and the ID of its
equivalent course at UML. The UML XML file has
the same layout except that the equivalence tag is
removed and the root tag is uml.

<mcc>
<course>

<courseid>ART 113</courseid>
<coursename>Color and Design</coursename>
<credits>3</credits>
<description>Basic concepts of composition
and color theory. Stresses the process and
conceptual development of ideas in two
dimensions and the development of a strong
sensitivity to color.</description>
<equivalence>70.101</equivalence>

</course>
...

</mcc>
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After the integrity check, the MCC XML file con-
tains 108 courses and the UML XML file contains
89 courses. The reason there are more MCC courses
than UML courses is that the transfer dictionary al-
lows multiple courses from MCC to be transferred
to the same UML course.

To monitor the accuracy change over different
numbers of documents, we randomly select equiva-
lent courses to create two smaller data sets for UML
and MCC respectively in the XML format. The ran-
dom number of courses in each XML file is shown
in Table 1. These three pairs of XML data sets are
used both as the corpora and as the test data sets.

XML Datasets MCC Courses UML Courses Total
Small 25 24 49
Medium 55 50 105
Large 108 89 197

Table 1. Number of courses in the data sets

Consider the small data set as an illustration. Each
of the 25 MCC courses is compared with all 24
UML courses. All words are converted to low-
ercase and punctuation is removed. We also re-
move both general stop words12 (such as “a” and
“of”) and domain-specific stop words13 (such as
“courses,” “students,” and “reading”). We do not
remove words based on high or low occurrence be-
cause that is found empirically to decrease accuracy.
Using the algorithms discussed in Section 3, a score
is computed for each comparison. After comparing
an MCC course to all UML courses, the 24 UML
courses are sorted by score in descending order. The
course equivalencies indicated by the transfer dic-
tionary are used as the benchmark. In each run we
mark the rank of the real UML course that is equiv-
alent to the given MCC course as indicated by the
transfer dictionary. We consider the result of each
run correct when the equivalent course indicated by
the transfer dictionary is in the top 3 of the sorted
list. After doing this for all the 25 MCC courses, we
calculate the overall accuracy and the average ranks
of the real equivalent courses.

Empirical results show that accuracy drops when
some inseparable phrases naming atomic keywords

12A list of English stop words in NLTK is used in our exper-
iments.

13A list of domain-specific stop words is created manually.

(such as “local area networks,” “data communica-
tions,” and “I/O”) are tokenized. To address this
problem, a list of 40 atomic keywords is constructed
manually.

Our approach is compared against two baselines:
TFIDF only (Equation 7), and the method by Li et al.
(2006). Since the method by Li et al. (2006) does not
measure semantic distance between paragraphs, we
consider each course description as a sentence. Fig-
ure 4 shows that the accuracy of our approach out-
performs the TFIDF and Li et al. (2006) approaches
over the three sets of documents from Table 1. It is
interesting to note that while the accuracies of the
TFIDF and Li et al. (2006) approaches decrease as
the number of documents increases, the accuracy of
our approach increases when the number of docu-
ments increases from 105 to 195. This observation is
counter-intuitive and therefore requires further anal-
ysis in future work.
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Figure 4. Accuracy of our approach compared to the
TFIDF and Li et al. (2006) approaches.

For each of the three different approaches, we
note the average ranks of the real equivalent courses
indicated by the transfer dictionary. Figure 5 shows
that our approach outperforms the TFIDF and Li et
al. (2006) approaches. It also shows that the average
rank in our approach does not increase as fast as the
other two.

The word order similarity module in the Li et al.
(2006) approach tokenizes two sentences into a list
of unique words. Each of the two sentences is con-
verted into a numbered list where each entry in the
list is the index of the corresponding word in the
joint set. The word order similarity between these
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Figure 5. Average ranks of the real equivalent
courses.

two sentences is in turn the normalized difference
of their word orders. We experiment with enabling
and disabling word order similarity to compare ac-
curacy (Figure 6) and speed. Empirical results show
that disabling word order similarity increases the ac-
curacy of our approach and the speed is over 20%
faster. Therefore, the word order similarity module
by Li et al. (2006) is removed from our approach.

We then compare the two WSD strategies as de-
scribed in Section 3.1: (1) always select the maxi-
mum score on all senses of two words (Max), and
(2) apply the first sense heuristic. As Figure 7 and
Figure 8 suggest, the accuracy of Max is higher than
the first sense heuristic, but the average rank of the
first sense heuristic is better than Max. Therefore,
the overall performance of the two strategies is about
the same.

We also experiment with enabling and disabling
ticketing (Section 3.2). Results show that both accu-
racy and average ranks are improved when ticketing
is enabled.

5 Future Refinements

This paper presents a novel application of seman-
tic distance to suggesting potential equivalencies for
a course transferred from an external university. It
proposes a hybrid method that incorporates seman-
tic distance measurement for words, sentences, and
paragraphs. We show that a composite weighting
scheme based on a lexicographic resource and a bag-
of-words model outperforms previous work to iden-
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Figure 6. The accuracy of our approach when en-
abling or disabling word order similarity.
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Figure 7. Accuracy comparison under two WSD
strategies.
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tify equivalent courses. In practice, it is not com-
mon for two sentences in the course description cor-
pus to have the exact same word order. Therefore,
word order similarity is not very useful for identi-
fying course equivalencies. Empirical results sug-
gest that WSD and POS are helpful to increase ac-
curacy, and that it is necessary to remove general and
domain-specific stop words. The ticketing algorithm
(Algorithm 2) also improves accuracy.

UML’s transfer dictionary is only used as a test
corpus in this paper. Alternatively, a set of ex-
amples might be constructed from the transfer dic-
tionary to automatically learn equivalent properties
without compromising the time complexity. Ana-
lyzing transfer dictionaries from other universities
might help as well.

Meta data such as course levels, textbooks, and
prerequisites can also be used as indicators of course
equivalencies, but unfortunately these data are not
available in the resources we used. Obtaining these
data would require a great deal of manual work,
which runs counter to our goal of devising a simple
and straightforward algorithm for suggesting course
equivalencies with a reasonable time complexity.

WordNet is selected as the lexical knowledge
base for determining the semantic closeness be-
tween words, but empirical results indicate that
WordNet does not cover all the concepts that exist in
course descriptions. To address this issue, a domain-
specific ontology could be constructed.

We plan to test our approach against other seman-
tic distance measures in addition to the approach by
Li et al. (2006), such as the work by Mihalcea et al.
(2006) and Islam and Inkpen (2007).

Other directions for future work include: (1) opti-
mizing performance and the exploration of more el-
egant WSD algorithms, (2) testing the sensitivity of
results to values of γ and θ, (3) testing courses from
a larger number of universities, (4) proposing robust
methodologies that tolerate poorly formed texts, (5)
adding more data to the course description corpus,
and (6) making the course description corpus pub-
licly available to the research community.
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Abstract

We present a method that filters out non-
scorable (NS) responses, such as responses
with a technical difficulty, in an automated
speaking proficiency assessment system. The
assessment system described in this study first
filters out the non-scorable responses and then
predicts a proficiency score using a scoring
model for the remaining responses.

The data were collected from non-native
speakers in two different countries, using two
different item types in the proficiency assess-
ment: items that elicit spontaneous speech and
items that elicit recited speech. Since the pro-
portion of NS responses and the features avail-
able to the model differ according to the item
type, an item type specific model was trained
for each item type. The accuracy of the mod-
els ranged between 75% and 79% in spon-
taneous speech items and between 95% and
97% in recited speech items.

Two different groups of features, signal pro-
cessing based features and automatic speech
recognition (ASR) based features, were im-
plemented. The ASR based models achieved
higher accuracy than the non-ASR based mod-
els.

1 Introduction

We developed a method that filters out non-scorable
(NS) responses as a supplementary module to an
automated speech proficiency assessment system.
In this study, the method was developed for a
telephony-based assessment of English proficiency
for non-native speakers. The examinees’ responses

were collected from several different environmen-
tal conditions, and many of the utterances contain
background noise from diverse sources. In ad-
dition to the presence of noise, many responses
have other sub-optimal characteristics. For exam-
ple, some responses contain uncooperative behav-
ior from the speakers, such as non-English speech,
whispered speech, and non-responses. These types
of responses make it difficult to provide a valid as-
sessment of a speaker’s English proficiency. There-
fore, in order to address the diverse types of causes
for these problematic responses, we used a two step
approach: first, these problematic responses were
filtered out by a “filtering model,” and only the re-
maining responses were scored using the automated
scoring model.

The overall architecture of our method, includ-
ing the automated speech proficiency scoring sys-
tem, is as follows: for a given spoken response,
the system performs speech recognition, yielding a
word hypothesis and time stamps. In addition to
word recognition, the system computes pitch and
power to generate prosodic features; the system cal-
culates descriptive statistics such as the mean and
standard deviation of pitch and power at both the
word level and response level. Given the word hy-
potheses and pitch/power features, it derives features
for automated proficiency scoring. Next, the non-
ASR based features are calculated separately using
signal processing techniques. Finally, given both
sets of features, the filtering model identifies NS re-
sponses.

This paper will proceed as follows: we will re-
view previous studies (Section 2), present the data
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(Section 3), and then describe the structure of the
filtering model (Section 4). Next, the results will
be presented (Section 5), followed by a discussion
(Section 6), and we will conclude with a summary
of the importance of the findings (Section 7).

2 Previous Work

Higgins et al. (2011) developed a “filtering model”
that is conceptually similar to the one in this pa-
per. The model was trained and tested on a corpus
containing responses from non-native speakers to an
English proficiency assessment. This system used
a regression model based on four features which
were originally designed for automated speech pro-
ficiency scoring: the number of distinct words in the
speech recognition output, the average speech rec-
ognizer confidence score, the average power of the
speech signal, and the mean absolute deviation of
the speech signal power. This model was able to
identify responses which were also identified as NS
responses by human raters with an approximately
98% accuracy when a false positive rate (the propor-
tion of responses without technical difficulties that
were incorrectly flagged as problematic) was lower
than 1%.

Although there are few other studies which are di-
rectly related to the task of filtering out non-scorable
responses in the domain of automated speech profi-
ciency assessment, several signal processing studies
are related to this work. Traditionally, the Signal to
Noise Ratio (SNR) has been used to detect speech
with a large amount of background noise. This
method measures the ratio between the total energy
of the speech signal and the total energy of the noise;
if the SNR is low, then the speech contains loud
background noise. A low SNR results in lower in-
telligibility and increases the difficulty for both hu-
man and automated scoring. Furthermore, spectral
characteristics can be also applied to detect speech
with loud background noise, since noise has differ-
ent spectral characteristics than speech (noise tends
to have no or few peaks in the spectral domain).
If a response contains loud background noise, then
the spectral characteristics of the speech may be ob-
scured by noise and it may have similar character-
istics with the noise. These differences in spectral
characteristics have been used in audio information

retrieval Lu and Hankinson (1998).
Secondly, responses without valid speech can be

identified using Voice Activity Detection (VAD).
VAD is a technique which distinguishes human
speech from non-speech. When speech is clean,
VAD can be calculated by simply computing the
zero-crossing rate which signals the existence of
cyclic waves such as vowels. However, if the re-
sponse also contains loud background noises, more
sophisticated methods are required. In order to re-
move the influence of noise, Chang and Kim (2003),
Chang et al. (2006), Shin et al. (2005) and Sohn et
al. (1999) estimated the characteristics of the noise
spectrum and the distribution of noise, and compen-
sated for them when speech is identified. The perfor-
mance of these systems is heavily-influenced by the
accuracy of estimating characteristics of the back-
ground noise.

In this study, we used a set of ASR based fea-
tures and non-ASR based features. ASR based fea-
tures were similar to the ones used by Zechner et al.
(2009). In addition to the features based on ASR
hypotheses, the ASR based feature set contained ba-
sic pitch and power related features since the ASR
system in this study also produced pitch and power
measurements in order to generate prosodic features.
The non-ASR based features were comprised of four
groups of features based on signal processing tech-
niques such as SNR, VAD, and pitch and power.
Features related to pitch and power were included in
both the ASR based features and the non-ASR based
features. Since the non-ASR based features were
originally implemented as an independent module
from the ASR-based system (it was implemented for
the case where the appropriate recognizer is unavail-
able), there is some degree of overlap between the
two feature sets.

3 Data

The data for this experiment were drawn from a pro-
totype of a telephony-based English language as-
sessment. Non-native speakers of English each re-
sponded to 40 test items designed to evaluate their
level of English proficiency. The test was composed
of items that elicited both spontaneous speech (here-
after SS) and recited speech (hereafter RS). In this
study, 8 items (four SS and four RS) were used for
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each speaker.
Participants used either a cell phone or a land

line to complete the assessment, and the participants
were compensated for their time. The motivation
level of the participants was thus lower than in the
case of an actual high stakes assessment, where a
participant’s performance could have a substantial
impact on their future. In addition, the data collec-
tion procedure was less controlled than in an op-
erational testing environment; for example, some
recordings exhibited higher levels of ambient noise
than others. These two facts led to the quality of
some of the responses being lower than would be
expected in an operational assessment.

The data for this study were collected from partic-
ipants in two countries: India and China. For India,
4900 responses from 638 speakers were collected.
For China, 5565 responses from 702 speakers were
collected (some of the participants did not provide
responses to all 8 test items). Each response is ap-
proximately 45 sec in duration.

After the data was collected, all of the responses
were given scores on a three-point scale by trained
raters. The raters also labeled responses as “non-
scorable” (NS), when appropriate. NS responses are
ones that could not be given a score according to the
rubrics of the three-point scale. These were due to
either a technical difficulty obscuring the content of
the response or an inappropriate response from the
participant.

The proportion of NS responses differs markedly
between the two countries. 852 of the responses in
the India data set (17% of the total) were labeled as
NS, compared to 1548 responses (28%) in the China
data set.

Table 1 provides the different types of NS re-
sponses that were annotated by the raters, along with
the relative frequency of each NS category com-
pared to the others.

Excluding the category “Other”, background
noise, non-responses, and unrelated topic were the
most frequent types of NS response for both data
sets. However, the relative proportions of each type
differed somewhat between the two countries. For
example, the most frequent NS type in India was
background noise; 33% of NS responses were of this
type, 1.7 times higher than in China.

The proportion of unrelated topic responses was

NS Type India (%) China (%)
Background noise 33.2 19.6
Other 25.0 15.4
Unrelated response 18.9 40.1
Non-response 10.6 8.8
Non-English speech 4.9 6.4
Too soft 2.8 1.0
Background speech 2.0 1.9
Missing samples 1.5 4.0
Too loud 0.8 0.1
Cheating 0.3 2.7

Table 1: Different types of NS responses and their relative
frequency, in % of all NS for each country (ranked by
frequency of occurrence in India)

Data Partition
India China
# of re-
sponses

NS
(%)

# of re-
sponses

NS
(%)

SS-train 1114 31.6 1382 32.2
SS-eval 1271 27.5 1391 33.8
RS-train 1253 8.0 1392 22.4
RS-eval 1275 4.8 1400 22.9

Table 2: Item-type specific training and evaluation data

also high in both countries, but it was much higher
in the China data set: it was 19% in the responses
from India and 40% for China (more than twice as
high as in India). All responses which were not di-
rectly related to the prompt fell into this category.
For SS items, the majority included responses about
a different topic. For RS items, responses in which
the speakers read different prompts were classified
into this category.

The responses were divided into training and test-
ing for NS response detection. Due to the significant
difference in the proportion of NS responses and rel-
ative frequencies of NS types in the two data sets, fil-
tering models were trained separately for each coun-
try. In addition, since the proportions of NS re-
sponses and the available features varied according
to the item type, training and testing data were fur-
ther classified by item types. The proportions of NS
responses and the sizes of the partitions, along with
the percent of NS responses in each item type, are
shown in Table 2.
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The partitions for testing the filtering model were
selected to maximize the number of speakers with
complete sets of responses; however, this constraint
was not able to be met for the training partitions in
the India data set (due to insufficient data). This ex-
plains the lower proportion of NS responses in the
India test partitions, since speakers with complete
sets of responses were less likely to provide bad re-
sponses. As Table 2 shows, NS responses were more
frequent among SS items than RS items: the pro-
portion of NS responses in SS items was four times
higher than in RS items in India and 1.5 times in
China.

4 Method

4.1 Overview

In this study, two different sets of features were used
in the model training process; ASR-based features
and non-ASR based features. For each item-type,
an item-type-specific filtering model was developed
using these two sets of features.

4.2 Feature generation

4.2.1 ASR based features

For this feature set, we used the features from
an automated speech proficiency scoring system.
This scoring system used an ASR engine containing
word-internal triphone acoustic models and item-
type-specific language models. Separate acoustic
models were trained for the data sets from the two
countries. The acoustic training data for the two
models consisted of 45.5 hours of speech from In-
dia and 123.1 hours of speech from China. In addi-
tion, separate language models were trained for the
SS and RS items for each country; for the RS items,
the language models also incorporated the texts of
the prompts.

A total of 61 features were available. Among
these features, many features were conceptually
similar but based on different normalization meth-
ods. These features showed a strong intercorrela-
tion. For this study, 30 features were selected and
classified into four groups according to their char-
acteristics: basic features, fluency features, ASR-
confidence features, and Word Error Rate (WER)
features.

The basic features are related to power and pitch,
and they capture the overall distribution of pitch and
power values in a speaker’s response using mean and
variance calculations. These features are relevant
since NS responses may have an abnormal distribu-
tion in energy. For instance, non-responses contain
very low energy. In order to detect these abnormal-
ities in speech signal, pitch and power related fea-
tures were calculated.

The fluency features measure the length of a re-
sponse in terms of duration and number of words.
In addition, this group contains features related to
speaking rate and silences, such as mean duration
and number of silence. In particular, these features
are effective in identifying Non-responses which
contain zero or only a few words.

The ASR-confidence group contains features pre-
dicting the performance of the speech recognizer.
Low speech recognition accuracy may be indicated
by low confidence scores.

Finally, the WER group provides features esti-
mating the similarity between the prompts and the
recognition output. In addition to the conventional
word error rate (WER), term error rate (TER) was
also implemented for the filtering model. TER is
a metric commonly used in spoken information re-
trieval, and it only accounts for errors in content
words. This measure may be more effective in iden-
tifying NS responses than conventional WER; for in-
stance, the overlap in function words between off-
topic responses and prompts can be correctly ig-
nored. TER was calculated according to the follow-
ing formula:

dif(Wc) =
{

0 ifCref (Wc) < Chyp(Wc)
Cref (Wc)− Chyp(Wc) otherwise

TER =

∑
c∈WC

dif(Wc)∑
c∈WC

Cref (Wc)

(1)
where Cref (Wc) is the number of occurrences of

the word Wc in reference, Chyp(Wc) is the number
of occurrences of the word Wc in hypothesis, and
WC is the set of content words in reference.

Formula 1 differs from the conventional method
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Group List of features
Basic mean/standard deviation/minimum/maximum of power, difference between maxi-

mum and minimum in power, mean/standard deviation/minimum/maximum of pitch,
difference between maximum and minimum in pitch

Fluency duration of whole speech part, number of words, speaking rate (word per sec),
mean/standard deviation of silence duration, number of silences, silences per sec and
silences per word

ASR score mean of confidence score, normalized Acoustic Model score by word length, normal-
ized Language Model score by number of words

Word Error Rate the word accuracy between prompt and ASR word hypothesis, correct words per
minute, term error rate

Table 3: List of ASR based features

of calculating TER in two ways. Firstly, content
words which occurred only in the word hypothesis
are ignored in the formula. Secondly, if a word oc-
curred in the word hypothesis more frequently than
in the reference, the difference is ignored. These
modifications were made to address characteristics
of the responses in the data. On the one hand, speak-
ers occasionally inserted a few words such as “too
difficult” at the end of a response. In addition, a few
speakers repeated words contained in the prompt
multiple times. The two modifications to TER ad-
dress both of these issues.

All features from the four groups are summarized
in Table 3.

4.2.2 Non-ASR based features
A total of 12 features from four different groups

were implemented using non-ASR based methods
such as VAD and SNR. These features are listed in
Table 4.

Feature Category Feature
VAD proportion of voiced

frames in response, num-
ber and total duration of
voiced regions

Syllable number of syllables
Amplitude maximum, minimum,

mean, standard deviation
SNR SNR, speech peak

Table 4: List of non-ASR based features

VAD related features were implemented using the

ESPS speech analysis program. For every 10 mil-
lisecond interval, the voice frame detector deter-
mined whether the interval was voiced or not. Three
features were implemented using this voiced interval
information: the number of voiced intervals, ratio of
voiced intervals in the entire response, and the total
duration of voiced intervals.

In addition, the number of syllables was estimated
based on the flow of energy. The energy of the syl-
lable tends to reach its peak in the nucleus and the
dip in the boundaries. By counting the number of
such fluctuations in energy measurements, the num-
ber of syllables can be estimated. The Praat script
from De Jong and Wempe (2009) was used for this
purpose.

In order to detect the abnormalities in energy, am-
plitude based features were calculated. These fea-
tures were similar to the basic features in ASR based
features.

Finally, if a response contains loud background
noise, the ratio of speech to noise is low. SNR, the
mean noise level, and the peak speech level were
computed using the NIST audio quality assurance
package (NIST, 2009).

The VAD and syllable feature groups were de-
signed to estimate the number of syllables, the pro-
portion of speech to non-speech, and the total dura-
tion of speech intervals. These features were similar
to the number of words and duration of speech fea-
tures in the ASR-based feature set. Despite the con-
ceptual similarity, these features were implemented
since the two types of features were calculated us-
ing different characteristics of the spoken response.
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The VAD and syllable features are based on the flow
of energy and the zero crossing rate and the ASR-
based features are based on the speech recognition.
In particular, the speech recognizer tends to gener-
ate word hypotheses even for responses that contain
no speech input, but VAD does not have such a ten-
dency. Due to this difference, VAD based features
may be more robust in the responses with no valid
speech.

4.3 Model building
For each response, both ASR features and non-ASR
features were calculated. In contrast to non-ASR
features, which were available for all responses,
ASR features (except the Basic group) were un-
available for some responses, namely, responses for
which the ASR system did not generate any word
hypotheses because no tokens received scores above
the rejection threshold. This causes a missing value
problem; about 7% of the responses did not have a
complete set of attributes.

Missing values are a common problem in machine
learning. One of the popular approaches is to replace
a missing value with a unique value such as the at-
tribute’s mean. Ding and Simonoff (2008) proposed
a method that replaces a missing value with an arbi-
trary unique value. This method is preferable when
missing of a value depends on the target value and
this relationship holds in both training and test data.

In this study, the missing values were replaced
with unique values due to the relationship between
the missing values and the target label; if the speech
recognizer did not produce any word hypotheses, the
response was highly likely to be a NS response. 63%
of the responses where the speech recognizer failed
to generate word hypotheses were NS responses.
Since all ASR-based features were continuous val-
ues, we used two real values: 0.0 for fluency features
and ASR features and 100.0 for word error rate fea-
tures. The fluency features and ASR features tend to
be 0.0 while the word error rate features tend to be
100.0 when the responses are NS responses.

A total of 42 features were used in the model
building. The only exception was WER; since WER
features were only available for the model based
on recited speech, they were calculated only for RS
items. Decision tree models were trained using the
J48 algorithm (WEKA implementation of C4.5) of

WEKA machine learning toolkit (Hall et al., 2009).

5 Results

For each item-type, three models were built to in-
vestigate the impact of each feature group: a model
using non-ASR features, a model using ASR fea-
tures, and a model using both features (the “Com-
bined” model). Tables 5 and 6 present the accuracy
of the SS models and Tables 7 and 8 present the ac-
curacy of the RS models. In all tables, the base-
line was calculated using majority voting, and rep-
resented a system in which no responses were clas-
sified as NS; since the majority class was scorable,
the baseline using the majority voting did not predict
any response as non-scorable response. Therefore,
precision, recall, F-score are all 0 in this case.

Model Acc. Pre. Rec. F-score
Baseline 72.5 0 0 0
Non-ASR 77.0 0.645 0.364 0.465
ASR 79.0 0.683 0.444 0.538
Combined 78.6 0.657 0.461 0.542

Table 5: Performance of the SS model in India

Model Acc. Pre. Rec. F-score
Baseline 66.2 0 0 0
Non-ASR 68.9 0.601 0.240 0.343
ASR 72.9 0.718 0.326 0.448
Combined 72.9 0.720 0.323 0.446

Table 6: Performance of the SS model in China

Model Acc. Pre. Rec. F-score
Baseline 94.8 0 0 0
Non-ASR 95.7 0.684 0.210 0.321
ASR 97.2 0.882 0.484 0.625
Combined 96.8 0.769 0.484 0.594

Table 7: Performance of the RS model in India

In both item-types, the models using ASR-based
features achieved the best performance. The SS
model achieved 79% accuracy in India and 73% ac-
curacy in China, representing improvements of ap-
proximately 7% over the baseline. In both data sets,
the RS model achieved high accuracies: 97% accu-
racy in India and 96% accuracy in China. In India,
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Model Acc. Pre. Rec. F-score
Baseline 77.1 0 0 0
Non-ASR 78.3 0.555 0.268 0.361
ASR 95.6 0.942 0.860 0.899
Combined 95.1 0.912 0.872 0.892

Table 8: Performance of the RS model in China

this represents a 2.4% improvement over the base-
line. Although the absolute value of this error re-
duction is not very large, the relative error reduc-
tion is 46%. In China, the improvement was more
salient; there was 18% improvement over baseline,
corresponding to a relative error reduction of 78%.

Additional experiments were conducted to deter-
mine the robustness of the filtering models to evalu-
ation data from a country not included in the train-
ing data. The evaluation sets from both item types
(SS and RS) in both countries (India and China)
were processed using three different models: 1) a
model trained using the ASR-based features for the
responses from the same country (the “Same” con-
dition, whose results are identical to the “ASR” re-
sults in Tables 5 - 8), 2) a model trained using the
ASR-based features for the responses from the other
country (the “Different” condition), and 3) a model
trained using the ASR-based features for the re-
sponses from both countries (the “Both” condition).
Table 9 presents the accuracy results for these four
sets of experiments.

Model
India China

SS RS SS RS
Same 79.0 97.2 72.9 95.6
Different 80.1 95.4 73.5 93.8
Both 80.0 96.5 74.0 95.9

Table 9: Accuracy results using training and evaluation
data from different countries

These results show that the models are quite ro-
bust to evaluation data from a different country. In
all cases, there is at most a small decline in perfor-
mance when training data from the other country is
used (in the case of the SS responses, there is even a
slight increase in performance). Table 9 also shows
that the RS models performed worse in the Different
Country condition (compared to the Same Country

condition) than the SS models. This difference is
likely due to the difference in the number of NS re-
sponses among the RS data in the two countries (as
shown in Table 2). However, the decline is still rel-
atively small, suggesting that it would be reasonable
to extend the filtering models to responses from ad-
ditional countries that were not seen in the training
data.

6 Discussion

Approximately 40 features were available for the
model building, but not all features had a signifi-
cant impact on the detection of NS responses. For
each item-type, the importance of features were fur-
ther investigated using a logistic regression analysis.
The training data of India and China were combined,
and a stepwise logistic regression analysis was per-
formed using the SPSS statistical analysis program.

For each item-type, the top 3 features are pre-
sented in Table 10; the features are presented in the
same order selected in the models.

Model RS SS
ASR TER,

speaking
rate, s.d. of
pitch

mean of confi-
dence scores,
speaking rate,
s.d. of power

Non-ASR number of
syllables,
number
and du-
ration of
voiced
regions

number of sylla-
bles, s.d. and
mean of ampli-
tude

Combined TER,
speaking
rate, s.s.dd.
pitch

mean of confi-
dence scores,
speaking rate,
number of
voiced regions

Table 10: Top 3 features in stepwise logistic regression
model

For the RS items, TER was the best feature and it
was the top feature for both the ASR feature based
model and the combined model. The top 3 features
in the combined model were the same as the ASR
feature based model, and non-ASR features were not
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selected. In non-ASR based features, the number of
syllables was the best feature, followed by the VAD
based features.

For the SS items, the top 2 features were the same
in both the ASR feature based model and the com-
bined model. The combined model selected one
non-ASR based feature, namely, a VAD based fea-
ture. As with the RS items, the number of syllables
was the best feature, followed by the energy related
feature.

These results show the importance of WER fea-
tures. Most of the current features are designed for
signal level abnormalities such as responses with
large background noise or non-responses. For in-
stance, fluency features and VAD features are effec-
tive for non-response detection, since they can deter-
mine whether the responses contain valid speech or
not. SNR and pitch/power related features are use-
ful for identifying responses with large background
noise. However, no features except the WER group
can identify content-level abnormalities such as un-
related topic and non-English responses. The high
proportion of these two types of responses (24%
in India and 46% in China) may be the major ex-
planation for the lower accuracy of the model for
SS responses than for RS responses. In the future,
content-related features should also be developed for
spontaneous speech.

The features selected the first time in the logis-
tic model differed according to item-types. The re-
sults support the item-type-specific model approach
adopted in this paper; item-type-specific models can
assign strong weights to the item-type-specific fea-
tures that are most important.

As shown in Tables 5 - 8, the combination of non-
ASR and ASR features could not achieve any fur-
ther improvement over the model consisting only of
ASR based features. However, in all cases, the non-
ASR based model did lead to some improvement
over the baseline. The magnitude of this improve-
ment was greater in SS items than RS items; in par-
ticular, it was greatest among the SS items in the
India data set. This difference may be due to the dif-
ferent distributions of the NS types among the data
sets. The non-ASR based features can cover only
limited types of NS responses such as non-responses
and responses with background noise, and the pro-
portion of these types is much higher among the SS

responses from India.
In addition, in RS items, the poor performance of

the combined model may be related to the high per-
formance of TER. The stepwise regression analysis
showed that the combined model did not select any
of non-ASR based features.

7 Conclusion

In this study, filtering models were implemented as a
supplementary module to an automated proficiency
scoring system. Due to the difference in the avail-
able features and proportion of NS responses, item-
type specific models were trained.

The item-types heavily influenced the overall
characteristics of the filtering models. First, the pro-
portion of NS responses was significantly different
according to item-type; it was much higher in spon-
taneous speech items than recited speech items. Sec-
ondly, the word error rate feature group was only
available for recited speech. Although the word er-
ror rate feature group contained three features, they
improved the performance of the filtering model sig-
nificantly.

ASR feature based models outperformed non-
ASR feature based models, but non-ASR based fea-
tures may be useful for new tests. Finally, experi-
ments demonstrated that the country-specific mod-
els using the ASR-based features are relatively ro-
bust to responses from a different country. This re-
sult suggests that this approach can generalize well
to speakers from different countries.

In this study, large numbers of features (42 for RS
items and 39 for SS items) were used in the model
training, but some features were conceptually simi-
lar and not all of them were significantly important;
the logistic regression analsysis using traning data
showed that there was no significant improvement
after selecting 5 features for RS items and 13 fea-
tures for SS items. Use of non-significant features
in the model training may result in the overfitting
problems. In future research, the features will be
classified into subgroups based on their conceptual
similarities; groups of features with high intercorre-
lations will be reduced to include only the best per-
forming feature in each group. Thus, based on care-
ful pre-selection procedures, only high performing
features will be selected, and the model will be re-
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trained.
In addition, many different types of NS responses

were lumped into one big category (NS); this may
increase the confusion between scorable and non-
scorable responses and decrease the model’s perfor-
mance. Some of NS types have very different char-
acteristics compared to other NS types and this fact
caused critical differences in the feature values. For
instance, non-responses contained zero or close to
zero words, whereas non-English responses and off-
topic responses typically had a word count similar to
scorable responses. This difference may reduce the
effectiveness of this feature. In order to avoid this
type of problem, we will classify NS types into small
numbers of subgroups and build a seperate model for
each subgroup.
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Abstract

This paper presents a method for identifying
non-English speech, with the aim of support-
ing an automated speech proficiency scoring
system for non-native speakers.

The method uses a popular technique from the
language identification domain, a single phone
recognizer followed by multiple language-
dependent language models. This method
determines the language of a speech sample
based on the phonotactic differences among
languages.

The method is intended for use with non-
native English speakers. Therefore, the
method must be able to distinguish non-
English responses from non-native speakers’
English responses. This makes the task more
challenging, as the frequent pronunciation er-
rors of non-native speakers may weaken the
phonetic and phonotactic distinction between
English responses and non-English responses.
In order to address this issue, the speaking
rate measure was used to complement the
language identification based features in the
model.

The accuracy of the method was 98%, and
there was 45% relative error reduction over
a system based on the conventional language
identification technique. The model using
both feature sets furthermore demonstrated an
improvement in accuracy for speakers at all
English proficiency levels.

1 Introduction

We developed a non-English response identifica-
tion method as a supplementary module for the au-

tomated speech proficiency scoring of non-native
speakers. The method can identify speech samples
of test takers who try to game the system by speak-
ing in their native languages. For the items that
elicited spontaneous speech, fluency features such
as speaking rate have been one of the most impor-
tant features in the automated scoring. By speak-
ing in their native languages, speakers can generate
fluent speech, and the automated proficiency scor-
ing system may assign a high score. This problem
has been rarely recognized, and none of research has
focused on it as to the authors’ knowledge. In or-
der to address this issue, the automated proficiency
scoring system in this study first filters out the re-
sponses in non-English languages, and for the re-
maining responses, it predicts the proficiency score
using a scoring model.

Non-English detection is strongly related to lan-
guage identification(Lamel and Gauvain, 1993;
Zissman, 1996; Li et al., 2007); language identifi-
cation is the process of determining which language
a spoken response is in, while non-English detec-
tion makes a binary decision whether the spoken re-
sponse is in English or not. Due to the strong simi-
larity between the two tasks, the language identifica-
tion method was used here for non-English response
detection.

In contrast to previous research, the method de-
scribed here was intended for use with non-native
speakers, and the English responses for model train-
ing and evaluation were accordingly collected from
non-native speakers. Among other differences,
non-native speakers’ speech tends to display non-
standard pronunciation characteristics which can
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make the task of language identification more chal-
lenging. For instance, when native Korean speak-
ers speak English, they may replace some English
phonemes not in their language with their native
phones, and epenthesize vowels within consonant
clusters. Such processes tend to reduce the pho-
netic and phonotactic distinction between English
and other languages. The frequency of these pro-
nunciation errors is influenced by speakers’ na-
tive language and proficiency level, with lower-
proficiency speakers likely to exhibit the greatest
degree of divergence from standard pronunciation.
Language identification method may not effectively
distinguish non-fluent speakers’ English responses
from non-English responses. In order to address
these non-native speech characteristics, the model
described here includes the speaking rate feature,
which has been found to be an indicator of speak-
ing proficiency in previous research(Strik and Cuc-
chiarini, 1999; Zechner et al., 2009). Non-fluent
speakers’ English responses can be distinguished
from non-English responses by slow speaking rate.

This paper will proceed as follows: we first re-
view previous studies in section 2, then describe the
data in section 3, and present the experiment in sec-
tion 4. The results and discussion are presented in
section 5, and the conclusions are presented in sec-
tion 6.

2 Previous Work

Many previous studies in language identification
focused on phonetic and phonotactic differences
among languages. The frequencies of phones and
phone sequences differ according to languages and
some phone sequences occur only in certain lan-
guages. The literature in language identification
captured this characteristic using the likelihood
score of speech recognizers, which signals the de-
gree of a match between the test sentences and
speech recognizer models. Both the language model
(hereafter, LM) and acoustic model (hereafter, AM)
of a phone recognizer are optimized for the acoustic
characteristics and the phoneme distribution of the
training data. If a spoken response is recognized us-
ing a recognizer trained on a different language, it
may result in a low likelihood score due to a mis-
match between the test sentences and the models.

Lamel and Gauvain (1993) trained multiple
language-dependent-phone-recognizers and se-
lected the language with the highest matching score
as the input language (hereafter, parallel PRLM).
For instance, if the test data contained English and
Hindi speech data, the English-phone-recognizer
and the Hindi-phone-recognizer were trained in-
dependently. In the test, the given speech samples
were recognized using two phone recognizers,
and the language that had a higher matching
score was selected. However, training multiple
phone recognizers was time-consuming and labor
intensive; therefore, Zissman (1996) proposed a
system using single-language phone recognition
followed by multiple language-dependent language
modeling (hereafter, PRLM). PRLM was able to
achieve comparable performance to parallel PRLM
for long speech (longer than 30 seconds), and in a
two-language situation, the error rate was between
5 and 7%.

Instead of language-dependent LM, Li et al.
(2007) used vector space modeling (VSM). They
applied metrics frequently used in information re-
trieval. As with the PRLM method, the speech was
converted into phone sequences using the phone rec-
ognizer, and cooccurrence statistics such as term fre-
quency (TF) and inverse document frequency (IDF)
were calculated. The method outperformed the
PRLM approach for long speech.

These methods can be challenging and time-
consuming to implement, as they require implemen-
tation of methods beyond those typically available
in a standard word-based recognition system. In
particular, the application of the phone recognizer
increases the processing time substantially. Be-
cause of this problem, Lim et al. (2004) presented a
method based on the features that were readily avail-
able for speech recognizers: a confidence score and
the cross-entropy of the LM. The confidence scoring
method measured the acoustic match between the
word hypotheses and the real sound, while the cross-
entropy measured how well a sentence matched a
given language model. If the test sentence was rec-
ognized by the speech recognizer in a different lan-
guage, the phonetic and lexical mismatches between
two languages resulted in a low confidence score and
a high cross-entropy. Using this methodology, Lim
et al. (2004) achieved 99.8% accuracy in their three-
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way classification task.
The current study can be distinguished from the

previous studies in the following points. First of all,
special features were implemented to model non-
native speech since the method was developed for
non-native speech. In our study, the data contained
non-native speakers’ English speech, characterized
by inaccurate pronunciation. It resulted in a mis-
match between the speech-recognizer models and
test sentences, even for utterances in English. In par-
ticular, the mismatch was more salient in non-fluent
speakers’ speech, which comprised a high propor-
tion of our data. In order to address this issue, speak-
ing rate, which has achieved good performance in
the estimation of non-native speakers’ speaking pro-
ficiency (Strik and Cucchiarini, 1999; Zechner et
al., 2009), was implemented as an additional feature.
Secondly, in contrast to previous studies that deter-
mined which language the speech was in, we made
a binary decision whether the speech was in English
or not. Finally, the method was developed as part of
a language assessment system.

3 Data

The OGI Multi-language corpus (Muthusamy et al.,
1992), a standard language identification develop-
ment data set, was used in the training and evalua-
tion of the system. It contains a total of 1,957 calls
from speakers of 10 different languages (English,
Farsi, French, German, Japanese, Korean, Mandarin
Chinese, Spanish, Tamil, and Vietnamese). The cor-
pus was composed of short speech and long speech;
the short files contained approximately 10 seconds
speech, while the long files contained speech ranged
from 30 seconds to 50 seconds.

The method described here was implemented to
distinguish non-English responses from non-native
speakers’ English responses. Therefore, the English
data used to train and evaluate the model for non-
English response detection was collected from non-
native speakers. In particular, responses to the En-
glish Practice Test (EPT) were used. The EPT is
an online practice test which allows students to gain
familiarity with the format of a high-stakes test of
English proficiency and receive immediate feedback
on their test responses based on automated scor-
ing methods. The speaking section of the EPT as-

sessment consists of 6 items in which speakers are
prompted to provide open-ended responses of 45-60
seconds in length. The scoring scale of each item is
discrete from 1 to 4, where 4 indicates high speaking
proficiency and 1 low proficiency.

The non-English detection task is composed of
two major components: training of PRLM, and
training of the classifier which makes a binary de-
cision about whether a speech sample is in the En-
glish language, given PRLM-based features and the
speaking rate.

The OGI corpus was used in training of both
PRLM and the classifier; a total of 9,033 short files
from the OGI corpus were used in PRLM training,
and 158 long files were used in classifier training.
(The small number of long files in the OGI corpus
limited the number of samples comparable in length
to our English-language data described below, so
that only these 158 OGI samples could be used in
classifier training and evaluation.) For English, only
short samples were selected for use in this experi-
ment.

In addition, a total of 3,021 EPT responses were
used in classifier training. As the English profi-
ciency levels of speakers may have an influence
on the accuracy of non-English response detection,
the EPT responses were selected to include simi-
lar numbers of responses for each score level. Re-
sponses were classified into four groups according
to their proficiency scores and 1000 responses were
randomly selected from each group. For score 1
and 4, where the number of available responses was
smaller than 1000, all available responses were se-
lected. Ultimately, 156 responses for score 1, 1000
responses for score 2 and score 3, and 865 responses
for score 4 were selected.

The resultant training and evaluation data sets are
summarized in Table 1.

Due to the lack of non-Engilsh responses in EPT
data, 158 non-English utterances in OGI data were
used in both training and evaluation of non-English
detection. EPT responses were collected from many
different countries, and speakers with 75 different
native languages were participated in the data collec-
tion. Due to the large variations, many of their native
languages were not covered by OGI data. However,
all 9 languages in OGI data were in top 15 L1 lan-
guages and covered approximately 60% of speakers’
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Partition name Purpose Number of
English files

Number of non-
English files

PRLM-train Training of Language-
dependent LM

1,716 (OGI) 7,317 (OGI)

EN-detection Training and evaluation of non-
English detection classifier

3,021 (EPT) 158 (OGI)

Table 1: Data partition

native languages.

4 Experiment

4.1 Overview
Due to the efficiency in processing time and im-
plementation, a PRLM was implemented instead of
a parallel PRLM. However, the difference between
PRLM and parallel PRLM in this study may not be
significant since PRLM has been shown to be com-
parable to parallel PRLM for test samples longer
than 30 seconds, and the duration of test instances in
this study was longer than 30 seconds. In addition
to PRLM, speaking rate was calculated as a feature.

4.2 PRLM based features
The PRLM based method in this study is composed
of three parts: training of a phone recognizer, train-
ing of language-dependent LMs, and generation of
PRLM-based features. In contrast to the conven-
tional language identification approach that only fo-
cused on identifying the language with the highest
matching score, 6 additional features were imple-
mented to capture the difference between English
model and other models.

Phone recognizer: An English triphone acoustic
model was trained on 30 hours of non-native English
speech (EPT data) using the HTK toolkit (Young et
al., 2002). The model contained 43 monophones
and 4,887 triphones. Due to the difference in the
sampling rate of EPT (11,025 Hz) and the OGI cor-
pus (8,000 Hz), the EPT data was down-sampled to
8,000 Hz and the acoustic model was trained using
the down-sampled data. In order to avoid the in-
fluence of English in phone hypothesis generation,
a triphone bigram language model with a uniform
probability distribution was used as the LM. (All
possible combinations of two triphones were gener-
ated and a uniform probability was assigned to each

combination.) The phone recognition accuracy rate
was 42.7% on the 94 held-out EPT test samples.
This phone recognizer was used in phone hypoth-
esis generation for all data; the same recognizer was
used for all languages.

Language-dependent LMs: For responses in the
PRLM-train partition, phone hypothesis was gener-
ated using the English recognizer. Instead of the
manual transcription, a language-dependent phone
bigram LM was trained using the phone hypothe-
sis. In order to avoid a data sparseness problem, tri-
phones were converted into monophones by remov-
ing left and right context phones, and a bigram LM
with closed vocabulary was trained. 10 language-
dependent bigram LMs, including one for English,
were trained.

PRLM based feature generation: For each re-
sponse in the EN-detection partition, phone hypoth-
esis was generated, and triphones were converted
into monophones. Given monophone hypothesis, an
LM score was calculated for each language using a
language-dependent LM. A total of 10 LM scores
were calculated.

Since the LM score increases as the number of
phones increases, the LM score was normalized by
the number of phones in each response, in order
to avoid the influence of hypothesis length. 7 fea-
tures were generated based on these normalized LM
scores:

• MaxLanguage: The language with the maxi-
mum LM score

• SecondLanguage: The language with the
second-largest LM score.

• MaxScore: Normalized LM score of the
MaxLanguage.
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• MaxDifference: Difference between normal-
ized English LM score and MaxScore

• MaxRatio: Ratio between normalized English
LM score and MaxScore

• AverageDifference: Difference between nor-
malized English LM score and the average of
normalized LM scores for languages other than
English

• AverageRatio: Ratio between normalized En-
glish LM score and the average of normalized
LM scores for languages other than English

Among above 6 features, 4 features (MaxDiffer-
ence, MaxRatio, AverageDifference, and AverageR-
atio) were designed to measure the difference be-
tween matching of a test responses with English
model and it with the other models. These features
may be particularly effective when MaxLanguage of
the English response is not English; these values will
be close to 0 when the divergence due to non-native
characteristics result in only slightly better match
with other language than that with English.

4.3 Speaking rate calculation

The speaking rate was calculated as a feature rele-
vant to establishing speakers’ proficiency level, as
established in previous research. Speaking rate was
calculated from the phone hypothesis as the number
of phones divided by the duration of responses (cf.
Strik and Cucchiarini (1999)).

4.4 Model building

For each response, both PRLM-based features and
speaking rate were calculated, and a decision tree
model was trained to predict binary values (0 for En-
glish and 1 for non-English) using the J48 algorithm
(WEKA implementation of C4.5) of the WEKA ma-
chine learning toolkit (Hall et al., 2009).

Due to the limited number of non-English re-
sponses in the EN-detection partition, three-fold
cross validation was performed during classifier
training and evaluation. The 3,179 responses were
partitioned into three sets to include approximately
same numbers of non-English responses and English
responses for each proficiency score group. Each
partition contained 52 ∼ 53 non-English responses

and 1007 English responses. In each fold, the de-
cision tree was trained using two of these partitions
and tested on the remaining one.

5 Evaluation

First, the accuracy of the PRLM method was eval-
uated based on multiple forced-choice experiments
with two alternatives using OGI data; in addition
to non-English responses in EN-detection partition,
English responses from the OGI data were used in
this experiment. For each response (in English and
one other language), phone hypothesis was gener-
ated and two normalized LM scores were calculated
using the English LM and the LM for the other lan-
guage. The MaxLanguage was hypothesized as the
source language of the speech. The same experiment
was performed for 9 combinations of English and
other languages. Each experiment was comprised
of 17 English utterances and 17 non-English utter-
ances1. The majority class baseline was thus 0.5.
The mean accuracy of the 9 experiments in this study
was 0.943, which is comparable to (1996)’s perfor-
mance: in his study, the best performing PRLM
exhibited an average accuracy of 0.950. This ini-
tial evaluation used the same data and feature as
Zissman (1996). (Of the seven PRLM-based fea-
tures listed above, only MaxLanguage was used in
(1996)’s study.)

Table 2 summarizes the evaluation results of the
non-English response detection experiments using
three-fold cross-validation within the EN-detection
partition. In order to investigate the impact of dif-
ferent types of features, the features were classi-
fied into four sets—MaxLanguage only, PRLM
(encompassing all PRLM features), SpeakingRate,
and all—and models were trained using each set.
The baseline using majority voting demonstrated an
accuracy of 0.95 by classifying all responses as En-
glish responses.

All models achieved improvements over baseline.
In particular, the model using all features achieved
a 66% relative error reduction over the baseline of
0.95. Furthermore, the all-features model outper-
formed the model based only on PRLM or speaking

1Due to the languages where the available responses were
only 17, the same 17 English responses were used in the all
experiment although 18 responses were available
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Features Acc. Pre. Rec. F-
score

Base-
line

0.950 0.000 0.000 0.000

Max-
Language

0.969 0.943 0.411 0.572

PRLM 0.966 0.675 0.633 0.649
Speaking-
Rate

0.962 0.886 0.278 0.415

All 0.983 0.909 0.746 0.816

Table 2: Performance of non-English response detection

rate; the accuracy of the all-features model was ap-
proximately 1-2% higher than other models in abso-
lute value and represented approximately a 45-50%
relative error reduction over these models.

The PRLM-based model had higher overall accu-
racy than the speaking rate-based model, and the dif-
ference was even more salient by the F-score mea-
sure: the PRLM-based model achieved an F-score
approximately 24% higher than the speaking rate-
based model.

The model based on all PRLM features did not
achieve a higher accuracy than the model based on
only MaxLanguage. However, there was a clear im-
provement in F-score by using the additional fea-
tures. The PRLM-based model achieved an F-score
approximately 8% higher than the model based only
on MaxLanguage.

In order to investigate the influence of speakers’
proficiency on the accuracy of non-English detec-
tion, the responses in EN-detection were divided
into 4 groups according to proficiency score, and the
performance was calculated for each score group;
the performance of each score group was calcu-
lated using subset comprised of all non-English re-
sponses and English responses with the correspond-
ing scores.

A majority class baseline (classifying all re-
sponses as English) was again used. Table 3 sum-
marizes the results observed, by score level, for the
baseline model and for four different models used in
Table 2. Note that the baseline is lower in Table 3
than in Table 2, because the ratio of English to non-
English responses is lower for each of the subsets of
the EN-detection partitions used for the evaluations

Figure 1: Relationship between proficiency score and
MaxDifference

at a given score level.
For all score groups, the model using all features

achieved high accuracy. The model’s accuracy on all
data sets except for score group 1 was approximately
0.96 and the F-score approximately 0.85. The accu-
racy on score group 1 was 0.87, relatively lower than
other score groups. This is largely due to the smaller
number of English responses available at score level
1, and the consequent lower baseline on this data
set. However, the relative error reduction was much
larger; it was 74% for score group 1.

For all score groups, the PRLM-based mod-
els outperformed MaxLanguage based models and
speaking rate based models. Additional PRLM
features improved the performance over the mod-
els only based on MaxLanguage (conventional lan-
guage identification method). In addition, the com-
bination of both types of features resulted in further
improvement.

The consistent improvement of the model using
both PRLM and speaking rate features suggests a
compensatory relationship between these features.
In order to investigate this relationship in further de-
tail, two representative features, MaxDifference and
AverageDifference were selected, and boxplots were
created. Figure 1 and Figure 2 show the relationship
between proficiency score and PRLM features. In
these figures, the label ‘NE’ is used to indicate the
non-English group, while the labels 1, 2, 3, and 4
correspond to each score group.

Figure 1 shows that MaxDifference decreases as

166



Score Features Acc. Pre. Rec. F-score
1 Baseline 0.497 0.000 0.000 0.000

MaxLanguage 0.696 0.970 0.411 0.577
PRLM 0.792 0.936 0.633 0.752
SpeakingRate 0.636 1.000 0.278 0.432
All 0.869 0.992 0.746 0.851

2 Baseline 0.865 0.000 0.000 0.000
MaxLanguage 0.919 0.983 0.411 0.579
PRLM 0.930 0.811 0.633 0.709
SpeakingRate 0.901 1.000 0.278 0.432
All 0.962 0.971 0.746 0.843

3 Baseline 0.865 0.000 0.000 0.000
MaxLanguage 0.920 1.000 0.411 0.582
PRLM 0.939 0.903 0.633 0.738
SpeakingRate 0.901 0.983 0.278 0.430
All 0.963 0.976 0.746 0.845

4 Baseline 0.846 0.000 0.000 0.000
MaxLanguage 0.908 0.987 0.411 0.579
PRLM 0.936 0.934 0.633 0.752
SpeakingRate 0.882 0.896 0.278 0.417
All 0.955 0.956 0.746 0.837

Table 3: Performance of non-English detection according to speakers’ proficiency level

Figure 2: Relationship between proficiency score and Av-
erageDifference

the speaker’s proficiency decreases, although the
feature displays a large variance. The feature mean
for non-English responses is lower than for score
groups 2, 3, and 4, but the distinction between
non-English and English becomes smaller as the
proficiency score decreases. The feature mean for
score group 1 is even lower than for non-English re-
sponses. This obscures the distinction between En-
glish responses and non-English responses at lower
score levels.

As Figure 2 shows, AverageDifference is rela-
tively stable across score levels, compared to MaxD-
ifference. Although the mean feature value de-
creases as the proficiency score decreases, the de-
crease is smaller than for MaxDifference. In addi-
tion, the mean feature values of the English groups
are consistently higher than those for non-English
responses.

Figure 3 shows the relationship between profi-
ciency score and speaking rate.

For the speaking rate feature, the distinction be-
tween non-English and English responses increases
as speakers’ proficiency level decreases, as shown
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Figure 3: Relationship between proficiency score and
SpeakingRate

in Figure 3. The speaking rate of non-English re-
sponses is the highest among all groups compared,
and the speaking rate decreases for English re-
sponses as the speaker’s proficiency score decreases.
Thus, the PRLM features tend to display better dis-
crimination between English and non-English re-
sponses at the higher end of the proficiency scale,
while the SpeakingRate feature provides better dis-
crimination at the lower end of the scale. By com-
bining both feature classes, we are able to produce
a model which outperforms both a PRLM-based
model and a model using speaking rate alone.

6 Conclusion

In this study, we presented a non-English response
detection method for non-native speakers’ speech. A
decision tree model was trained using PRLM-based
features and speaking rate.

The method was intended for use as a supple-
mentary module of an automated speech proficiency
scoring system. The characteristics of non-native
English speech (frequent pronunciation errors) re-
duced the phonetic distinction between English re-
sponses and non-English responses, and correspond-
ingly, the differences between the feature values for
non-English and English speech decreased as well.

In order to address this issue, a speaking rate fea-
ture was added to the model. This feature was spe-
cialized for second language (L2) learners’ speech,
as speaking rate has previously proved useful in es-

timating non-native speakers’ speaking proficiency.
In contrast to PRLM-based features, the speaking
rate feature showed increasing discrimination be-
tween non-English and English speech samples as
speakers’ proficiency level decreased. The com-
plementary relationship between PRLM-based fea-
tures and speaking rate led to an improvement in
the model when these features were combined. Im-
provements resulting from the combined feature set
extended across speakers at all proficiency levels
studied in the context of this paper.

The speaking rate becomes less effective if test
takers speak slowly in their native languages. How-
ever, the test takers are unlikely to use this strategy,
since it will result in a low score although they can
game the system.

Due to lack of non-English responses in EPT data,
non-English utterances were extracted from OGI
data. Since the features in this study were not di-
rectly related to acoustic scores, the acoustic dif-
ferences between EPT and OGI data may not give
significant impact on the results. However, in order
to avoid any influence by differences between cor-
pora, the non-English responses will be collected us-
ing EPT setup and the evaluation will be performed
using new data in future.
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Abstract

We present a novel noisy channel model for
correcting text produced by English as a sec-
ond language (ESL) authors. We model the
English word choices made by ESL authors as
a random walk across an undirected bipartite
dictionary graph composed of edges between
English words and associated words in an au-
thor’s native language. We present two such
models, using cascades of weighted finite-
state transducers (wFSTs) to model language
model priors, random walk-induced noise, and
observed sentences, and expectation maxi-
mization (EM) to learn model parameters af-
ter Park and Levy (2011). We show that such
models can make intelligent word substitu-
tions to improve grammaticality in an unsu-
pervised setting.

1 Introduction

How do language learners make word choices as
they compose text in a language in which they are
not fluent? Anyone who has attempted to learn a for-
eign language can attest to spending a great deal of
time leafing through the pages of a bilingual dictio-
nary. However, dictionaries, especially those with-
out a wealth of example sentences or accompany-
ing word sense information, can often lead even the
most scrupulous of language learners in the wrong
direction. Consider an example: the English noun
“head” has several senses, e.g. the physical head and
the head of an organization. However, the Japanese
atamacan only mean the physical head or mind, and
likewiseshuchou, meaning “chief,” can only map to

the second sense of head. A native English speaker
and Japanese learner faced with the choice of these
two words and no additional explanation of which
Japanese word corresponds to which sense is liable
to make a mistake on the flip of a coin.

One could of course conceive of more subtle ex-
amples where the semantics of a set of choices are
not so blatantly orthogonal. “Complete” and “en-
tire” are synonyms, but they are not necessarily in-
terchangeable. “Complete stranger” is a common
two-word phrase, but “entire stranger” sounds com-
pletely strange, if not entirely ungrammatical, to the
native English speaker, who will correct “entire”
to “complete” in a surprisingly automatic fashion.
Thus, correct word choice in non-native language
production is essential not only to the preservation
of intended meaning, but also to fluent expression of
the correct meaning.

The development of software to correct ESL text
is valuable for both learning and communication.
A language learner provided instant grammatical-
ity feedback during self-study is less likely to fall
into patterns of misuse, and the comprehension diffi-
culties one may encounter when corresponding with
non-native speakers would be ameliorated by an au-
tomated system to improve text fluency. Addition-
ally, since machine-translated text is often ungram-
matical, automated grammar correction algorithms
can be deployed as part of a machine translation sys-
tem to improve the quality of output.

We propose that word choice production errors
on the part of the language learner can be mod-
eled as follows. Given an observed word and an
undirected bipartite graph with nodes representing
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words in one of two languages, i.e. English and the
sentence author’s native tongue, and edges between
words in each language and their dictionary trans-
lation in the other (see Figure 1 for an example),
there exists some functionf 7→ [0, 1] that defines
the parameters of a random walk along graph edges,
conditioned on the source word. By composing this
graph with a language model prior such as ann-
gram model or probabilistic context-free grammar,
we can “correct” an observed sentence by inferring
the most likely unobserved sentence from which it
originated.

More concretely, given that we knowf , we can
computeargmax

w
′ p(w′|w, f, θ), wherew is the

observed sentence,θ is the language model, andw′

is the “corrected,” unobserved sentence. Under this
view, somew′ drawn from the distributionθ is sub-
jected to some noise processf , which perturbs the
sentence author’s intended meaning and outputsw.
We perform this computation in the standard way
from the statistical machine translation (SMT) liter-
ature (Brown et al., 1993), namely by using Bayes’
theorem to write

p(w′|w, f, θ) =
p(w′|θ)p(w|w′, f, θ)

p(w|θ)

Since the denominator of the RHS is independent of
w

′, we can rewrite ourargmax as

argmax
w

′

p(w′|θ)p(w|w′, f, θ)

We have now decomposed our original equation into
two manageable parts, a prior belief about the gram-
maticality of an unobserved sentencew

′, which we
can compute using a language modelθ learned sepa-
rately using standard supervised techniques (in par-
ticular, n-gram estimation), and the probability of
the observed sentencew given w

′, f , andθ. To-
gether, these constitute a noisy channel model from
information theory (Shannon, 1948). All that re-
mains is to learn an appropriatef , for which we will
employ unsupervised methods, namely expectation
maximization.

The rest of this paper is organized as follows. In
Section 2, we will discuss related work. In Section
3, we will present the implementation, methodology
and results of two experiments with differentf . In
Section 4, we will discuss our experimental results,
and we will conclude in Section 5.

2 Related Work

The literature on automated grammar correction
is mostly focused on rule-based methods and er-
ror identification rather than correction. However,
there has been a recent outgrowth in the applica-
tion of machine translation (MT) techniques to ad-
dress the problem of single-language grammar cor-
rection. Park and Levy (2011) propose a noisy chan-
nel model for learning to correct various types of er-
rors, including article and preposition errors, word-
form errors, and spelling mistakes, to which this pa-
per is an extension. As the present work builds on
Park and Levy’s basic model, we will reserve a more
detailed discussion of their work for Section 3.

Brockett et al. (2006) use phrasal SMT techniques
to identify and correct mass noun errors of ESL stu-
dents with some success, but they correct no other
production error classes to our knowledge.

Lee and Seneff (2006) learn a method to aid ESL
students in language acquisition by reducing sen-
tences to their canonical form, i.e. a lemmatized
form devoid of articles, prepositions, and auxil-
iaries, and then building an over-specified lattice by
reinserting all word inflections and removed word
classes. They then score this lattice using a trigram
model and PCFG. While this method has many ad-
vantages, it does not take into account the full con-
text of the original sentence.

Kok and Brockett (2010) use random walks over
bi- and multilingual graphs generated by aligning
English sentences with translations in 10 other Eu-
ropean languages to learn paraphrases, which they
then evaluate in the context of the original sentence.
While their approach shares many high-level simi-
larities with ours, both their task, paraphrasing cor-
rect sentences, and the details of their methodology
are divergent from the present work.

Désilets and Hermet (2009) employ round-trip
machine translation from L1 to L2 and back again
to correct second language learner text by keep-
ing track of the word alignments between transla-
tions. They operate on a very similar hypothesis
to that of this work, namely that language learners
make overly-literal translations when the produce
text in their second language. However, they go
about correcting these errors in a very different way
than the present work, which is novel to the best of
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Figure 1: Example English-Korean dictionary graph for a subset of the edges out of the Englishhead, leader, and
chief.

head

머리수령지휘자 우두머리장관 주요한지배자

chiefleader

our knowledge, and their technique of using error-
annotated sentences for evaluation makes a compar-
ison difficult.

3 Model Implementation and Experiments

We present the results of two experiments with dif-
ferent random walk parametrizations. We begin by
describing our dataset, then proceed to an overview
of our model and experimental procedures, and fi-
nally detail the experiments themselves.

3.1 Dataset

We use the dataset of Park and Levy (2011), a col-
lection of approximately 25,000 essays comprised of
478,350 sentences scraped from web postings made
by Korean ESL students studying for the Test of En-
glish as a Foreign Language (TOEFL). Of these, we
randomly select 10,000 sentences for training, 504
as a development set, and 1017 held out for final
model evaluation.

Our English-Korean dictionary is scraped from
http://endic2009.naver.com, a widely-
used and trusted online dictionary source in South
Korea. We are unfortunately unaware of any freely
available, downloadable English-Korean dictionary
databases.

3.2 Model and Experimental Procedures

3.2.1 Overview

The bulk of our experimental methodology and
machinery is borrowed from Park and Levy (2011),
so we will summarize that portion of it only briefly
here. At a high level, there are three major compo-
nents to the model of a sentence: a language prior,
a noise model, and an observed sentence. Each
of these is implemented as a wFST and composed

together into a single transducer whose accepting
paths represent all possibilities of transducing from
an (unobserved) input sentence to the (observed)
output sentence, with the path weight being associ-
ated probability. See Figure 2 for an example.

3.2.2 Language Model

For our language model, we use a Kneser-Ney
smoothed trigram model learned from a version
of the British National Corpus modified to use
Americanized spellings (Chen and Goodman, 1996;
Burnard, 1995). The implementation of ann-gram
model as a wFST requires that each state represent a
context, and so one must necessarily instantiate arcs
for all words in the alphabet from each state. In order
to reduce model size and minimize memory usage, it
is standard practice to remove relatively uninforma-
tive higher-ordern-grams from the model, but under
the wFST regime one cannot, for example, remove
some trigrams from a bigram context without re-
moving all of them. Instead, we retain only the 1,000
most informative bigramcontexts, as measured by
the Kullback-Leibler divergence between each bi-
gram context and its unigram counterpart. This is
in contrast to standard cutoff models, which remove
n-grams occurring less than some cutoff number of
times in the corpus.

3.2.3 Noise Models

The structure of the noise wFST differs for each
noise model; for our model of word-choice error, we
can use a single initial/final state with arcs labeled
with unobserved words as input, observed words as
output, and a weight defined by the functionf that
governs the parameters of a random walk across our
dictionary graph (again, see Figure 2 for an exam-
ple). We will reserve the definition off , which is
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Figure 2: Example wFSTs for the sentence “head chief”.
From top to bottom, the pictured transducers are the ob-
served sentences, a noise modeln with parameterλ, a
unigram language modell representing the normalized
frequency of each word, and the fully composed model,
l ◦ n ◦ s.

0 1
head:head/1

2
chief:chief/1

Observed Sentence

0

leader:chief/(λ/2)

leader:head/(λ/2)

leader:leader/(1-λ)

chief:leader/(λ/2)

chief:head/(λ/2)

chief:chief/λ

head:chief/(λ/2)

head:leader/(λ/2)

head:head/(1-λ)

Noise Model

0

chief:chief/(1/5)

leader:leader/(3/10)

head:head/(1/2)

Language Model

0 1

head:head/((1-λ)/2)

leader:head/(3λ/20)

chief:head/(λ/10)

2

head:chief/(λ/4)

leader:chief/(3λ/20)

chief:chief/((1-λ)/5)

Composed Model

different for each experiment, for Section 3.3.
We have thus far proceeded by describing the con-

struction of an ideal noise model that completely
implements the dictionary graph described previ-
ously. However, due to the size of the dictionary
graph, such a model would be computationally pro-
hibitive1. Moreover, we must handle the non-trivial
peculiars of arbitrary lookups in a roughly lem-
matized dictionary and preservation of word forms
through random walks, which we discuss now.

1The maximum degree of the dictionary graph is 515, mean-
ing that the upper bound on the number of paths in a random
walk of length 2 is5152 = 265, 225!

Among its various capabilities, the CELEX database
(Baayen et al., 1995) provides interfaces for map-
ping arbitrary English words to their lemmas, query-
ing for lemma syntactic (sub)classes, and discover-
ing the morphological inflectional features of arbi-
trary words. We use these capabilities in conjunction
with unigram frequencies from our language model
and a standard stop word filter to build abridged sets
of random walk candidates as in Algorithm 1.

Algorithm 1 Build an abridged set of random walk
candidatesC for an observed wordw s.t. each
ci ∈ C has syntactic and morphological characteris-
tics similar tow and is in the topm such candidates
as sorted by word frequency.

Let G = (V,E) be the undirected dictionary
graph,m the max candidates per word,B the set
of stop words,I the set of inflectional features of
w, andC the set of random walk candidates for
w, initially {}
if w ∈ B then

return {}
end if
for lemmasl of w do

Let S be the set of syntactic classes ofl

for l′ generated from a random walk of length
2 in G from l do

if S ∩ {syntactic classes ofl′} 6= {} then
for wordsw′ related tol′ do

if I ∩ {inflectional features ofw′} 6=
{} ∧w′ 6∈ B then

C ← C ∪ {w′}
end if

end for
end if

end for
end for
if |C| > m then

C ← topm members ofC by word frequency
end if
return C

3.2.4 Sentence Models

Sentences are simply identity transducers, i.e.
wFSTs withn + 1 states for a sentence of length
n and a single arc between each state0 ≤ i < n and
statei+1 labeled with input and output tokeni from
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the sentence and weight 1.

3.2.5 Training and Decoding

For training, we hold language model parameters
constant and use expectation maximization (Demp-
ster et al., 1977) to learn noise model parameters as
follows. We replace language model input symbols
and sentence model output symbols with the empty
symbolǫ and use the V-expectation semiring of Eis-
ner (2002) to annotate noise model arcs with ini-
tial parameter values. This is our M-step. Then,
we compose the language, noise, and sentence mod-
els, which produces a transducer with onlyǫ-labeled
arcs, and useǫ-removal to move expectation infor-
mation into a single state from which we can eas-
ily read off expected noise model parameter counts
thanks to the V-expectation semiring’s bookkeeping
(Eisner, 2002; Mohri, 2001). We repeat this pro-
cess over a batch of training sentences and add the
results together to yield a final vector of expected
counts. This is our E-step. Finally, we normalize the
expected parameter counts to recompute our param-
eters and rebuild the noise model in a repetition of
the M-step. This process goes back and forth from
E- to M-step until the parameters converge within
some threshold.

The decoding or inference process is performed
in a similar fashion, the main difference being that
we use the negative log Viterbi semiring for com-
puting shortest paths instead of the V-expectation
semiring. We first build a new noise model for each
sentence using the parameter values learned during
training. Then, the language, noise, and sentence
models (sansǫ substitutions) are composed together,
and the shortest path is computed.

3.2.6 wFST Implementation

All wFST manipulation is performed using Open-
FST (Allauzen et al., 2007), an open source
weighted finite-state transducer library written in
C++. Additionally, we use the V-expectation semir-
ing code of Dreyer et al. (2008) for training.

3.2.7 Evaluation

The most probable unobserved sentencew
′ from

which the observed sentencew was generated under
our model,argmax

w
′ p(w′|θ)p(w|w′, f, θ), can be

read off from the input of the transducer produced

during the decoding process. In order to evaluate
its quality versus the observed ESL sentence, we
use theMETEOR2 andBLEU evaluation metrics for
machine translation (Lavie and Agarwal, 2007; Pap-
ineni et al., 2002). This evaluation is performed us-
ing a set of human-corrected sentences gathered via
Amazon Mechanical Turk, an online service where
workers are paid to perform a short task, and further
filtered for correctness by an undergraduate research
assistant. 8 workers were assigned to correct each
sentence from the development and evaluation sets
described in Section 3.1, and so after filtering we
had 8 or fewer unique corrected versions per sen-
tence available for evaluation. We note that the use
of METEOR andBLEU is justified inasmuch as the
process of grammar correction is translation from
an ungrammatical “language” to a grammatical one
(Park and Levy, 2011). However, it is far from per-
fect, as we shall see shortly.

While human evaluation is far too costly to at-
tempt at every step during development, it is very
worthwhile to examine our corrections through a hu-
man eye for final evaluation, especially given the
somewhat tenuous suitability ofMETEOR andBLEU
for our evaluation task. In order to facilitate this, we
designed a simple task, again using Amazon Me-
chanical Turk, where native English speakers are
presented with side-by-side ESL and corrected sen-
tences and asked to choose which is more correct.
Workers are instructed to “judge whether the cor-
rected sentence improves the grammaticality and/or
fluency of the ESL sentence without changing the
ESL sentence’s basic meaning.” They are then pre-
sented with two questions per sentence pair:

1. Question: “Between the two sentences listed
above, which is more correct?”
Answer choices:“ESL sentence is more cor-
rect,” “Corrected sentence is more correct,”
“Both are equally correct,” and, “The sentences
are identical.”

2Although theMETEOR “synonymy” module may initially
seem appropriate to our evaluation task, we find that it does
little to improve or clarify evaluation results. For that reason,
and moreover since we do not wish for differing forms of the
same lemma to be given equal weight in a grammar correction
task, we instead use the “exact” module for all evaluation inthis
paper.
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2. Question:“Is the meaning of the corrected sen-
tence significantly different from that of the
ESL sentence?”
Answer choices:“Yes, the two sentences do not
mean the same thing,” and, “No, the two sen-
tences have roughly the same meaning.”

Each task is 10 sentences long, 3 of which are iden-
tical filler sentences. When a worker mislabels more
than one sentence as identical in any single task, the
results for that task are thrown out and resubmitted
for another worker to complete. We additionally re-
quire that each sentence pair be judged by 5 unique,
U.S.-based workers.

3.3 Experiments

3.3.1 Experiment 1

Motivation and Noise Model For our first exper-
iment, we assume that the probability of arriving at
some wordw′ 6= w after a random walk of length
2 from an observed wordw is uniform across allw.
This is perhaps not the most plausible model, but it
serves as a baseline by which we can evaluate more
complex models.

More concretely, we use a single parameterλ

modeling the probability of walking two steps along
the dictionary graph from an observed English word
w to its Korean definition(s), and then back to some
other English wordw′ 6= w. Since we treat un-
observed words as transducer input and observed
words as output,λ is normalized by|{w|w 6= w′}|,
i.e. the number of edges with different input and out-
put per input word, andp(w|w) = 1 − λ such that∑

w
p(w|w′) = 1.

Initialization and Other Settings We train two
variations on the same model, settingm from Al-
gorithm 1, i.e. the maximum number of allowed
random walk candidates per word, to 5 and 10. We
initialize λ to 0.01 for each.

Results We find that both variations converge af-
ter roughly 10 iterations3. The parameters learned
are slightly lower than the initialization value (λ =

3Running on a Linux server with two quad-core Intel Xeon
processors and 72GB of memory, training for all models in this
paper takes around 4 hours per model. Note that decoding is a
much quicker process, requiring less than one second per sen-
tence.

0.01), 0.007246 for the 5 candidate variation and
0.009528 for the 10 candidate variation. We inter-
pret the parameter value disparity between the two
model variations as follows. The larger the num-
ber of random walk candidates available for each
observed word, the more likely that at least one of
the candidates has a high probability in the sentence
context, so it makes sense that the 10 candidate vari-
ation would yield a higher value forλ. Moreover,
recalling thatλ is normalized by the number of ob-
served words|{w|w 6= w′}| reachable from each un-
observed candidate wordw′, it is reasonable that a
higher value ofλ would need to be learned in order
to distribute enough probability mass to candidates
that are highly probable in the sentence context.

The METEOR andBLEU scores for this Experi-
ment are summarized in Table 1, and the final pa-
rameter values after 10 iterations are listed in Table
2. We discuss these in greater detail in Section 4.

Table 1:METEOR andBLEU scores for all experiments.

METEOR BLEU
ESL baseline 0.820802 0.715625
Exp. 1, 5 candidates 0.816055 0.708871
Exp. 1, 10 candidates 0.815703 0.708284
Exp. 2, 5 candidates 0.815162 0.707549
Exp. 2, 10 candidates 0.814533 0.706587

Table 2: Final parameter values after 10 iterations for Ex-
periment 1 with 5 and 10 word random walk candidate
limits.

Max 5 Candidates Max 10 Candidates
λ 0.007246 0.009528

3.3.2 Experiment 2

Motivation and Noise Model For our second ex-
periment, we hypothesize that there is an inverse re-
lationship between unobserved word frequency and
random walk path probability. We motivate this by
observing that when a language learner produces a
common word, it is likely that she either meant to
use that word or used it in place of a rarer word that
she did not know. Likewise, when she uses a rare
word, it is likely that she chose it above any of the
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common words that she knows. If the word that she
chose was erroneous, then, it is most likely that she
did not mean to use a common word but could have
meant to use a different rare word with a subtle se-
mantic difference. Hence, we should always prefer
to replace observed words, regardless of their fre-
quency, with rare words unless the language model
overwhelmingly prefers a common word.

In order to model this hypothesis, we introduce
a second parameterα < 0 to which power the
unigram frequency of each unobserved wordw′,
freq(w′), is raised. The resulting full model is

p(w|w′)w 6=w′ = freq(w′)αλ

|{w|w 6=w′}| and p(w|w) = 1 −

freq(w)αλ. We approximate the full model to sim-
ple coin flips by bucketing the unique word frequen-
cies from the language model and initializing each
bucket using its average frequency and some appro-
priate initial values ofα and λ, leaving us with a
number of parameters equal to the number of fre-
quency buckets.

Initialization and Other Settings We train two
variations on the same model, settingm from Al-
gorithm 1 to 5 and 10. We initializeλ to 0.01 andα

to−0.1 for each and use 10 frequency buckets.

Results As in Experiment 1, we find that both
model variations converge after roughly 10 itera-
tions. The random walk parameters learned for
both variations in the highest frequency bucket,
freq(w′)αλ ≈ 0.004803 and 0.004845 for 5 and
10 candidates, respectively, seem to validate our
hypothesis that we should prefer rare unobserved
words. However, the parameters learned for the pro-
ceeding buckets do not indicate the smooth positive
slope that we might have hoped for, which we dis-
cuss further in Section 4. The 10 candidate variation
learns consistently higher parameter values than the
5 candidate variation, and we interpret this disparity
in the same way as in Experiment 1.

The METEOR andBLEU scores for this Experi-
ment are summarized in Table 1, and the final pa-
rameter values after 10 iterations are listed in Table
3. We discuss these in greater detail in Section 4.

4 Discussion

At first glance, the experimental results are less than
satisfactory. However,METEOR andBLEU do not

Table 3: Final parameter values after 10 iterations for Ex-
periment 2 with 5 and 10 word random walk candidate
limits.

Word Frequency Max 5 Max 10
(high to low) Candidates Candidates

Bucket 1 0.004803 0.004845
Bucket 2 0.031505 0.052706
Bucket 3 0.019211 0.036479
Bucket 4 0.006871 0.013130
Bucket 5 0.002603 0.005024
Bucket 6 0.000032 0.000599
Bucket 7 0.001908 0.003336
Bucket 8 0.000609 0.002771
Bucket 9 0.001256 0.002014
Bucket 10 0.006085 0.006828

tell the whole story. At a high level, these metrics
work by computing the level of agreement, e.g. un-
igram and bigram precision, between the sentence
being evaluated and a pool of “correct” sentences
(Lavie and Agarwal, 2007; Papineni et al., 2002).
When the correct sentences agree strongly with each
other, the evaluated sentence is heavily penalized
for any departures from the correct sentence pool.
This sort of penalization can occur even when the
model-corrected sentence is a perfectly valid correc-
tion that just had the misfortune of choosing a dif-
ferent replacement word than the majority of the hu-
man workers. For example, one ESL sentence in
our evaluation set reads,progress of medical science
helps human live longer.All four of our models cor-
rect this toprogress of medical science helps peo-
ple live longer, but none of the workers correct to
“people,” instead opting for “humans.” This issue is
exacerbated by the fact that Mechanical Turk work-
ers were instructed to change each ESL sentence as
little as possible, which helps their consistency but
hurts these particular models’ evaluation scores.

With the exception of some mostly harmless but
ultimately useless exchanges, e.g. changing “reduce
mistakes” to “reduce errors,” the models actually do
fairly well when they correct ungrammatical words
and phrases. As we alluded to in Section 1, all four
model variations correct the sentenceto begin with,
i’d rather not room with someone who is a entire
stranger to mefrom our development set toto be-
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gin with, i’d rather not room with someone who is
a complete stranger to me. But only 2 out of 5 hu-
man workers make this correction, 2 retain “entire,”
and 1 removes it altogether. As another example, all
model variations correcthowever, depending merely
on luck is very dangerousfrom our evaluation set to
however, depending solely on luck is very danger-
ous. However, only 1 worker corrects “merely” to
“solely,” with the others either preferring to retain
“merely” or leaving it out entirely.

None of this is to say that the models suffer only
from an unfortunate difference in correction bias rel-
ative to the workers, or even that the models make
good corrections a majority of the time. In fact, they
make a range of false-positive corrections as well4.
These seem to fall into three major categories: slight
preferences for similar words that don’t fit in the
overall context of the sentence or change its mean-
ing in an undesired way, e.g. changing “roommate”
to “lodger” in you and your roommate must dev-
ide [sic] the housework, strong preferences for very
common words in the local context that render the
corrected sentence ungrammatical, e.g. changing
“compose” to “take” infirst, during childhood years,
we compose our personality, and misinterpretations
of ambiguous parts of speech that cause nouns to
be replaced with verbs, etc., e.g. changing “circum-
stance” to “go” in. . . that help you look abound your
circumstance and find out . . ..

Many of these issues can be blamed at least par-
tially on the myopia of the language model, which,
for example, vastly prefers “go and find” to “cir-
cumstance and find.” However, they can also be
attributed to the motivational intuition for Experi-
ment 2, which states that we should avoid replacing
observed words with common alternatives. While
Table 3 does demonstrate that the models in Ex-
periment 2 learn this preference to a degree for the
highest frequency bucket, the proceeding buckets do
not exhibit a smooth upwards slope analogous to the
function being approximated. Indeed, the words in
bucket 2 are preferred an order of magnitude more

4Although Type I errors are of course undesirable, Gamon
et al. (2009) suggest that learners are able to effectively distin-
guish between good and bad corrections when presented with
possible error locations and scored alternatives. Such an inter-
active system is beyond the scope of this paper but nonetheless
feasible without significant model modification.

than those in bucket 1. This can be traced to the
truncation policy of Algorithm 1, which selects only
the highest frequency words from an over-sized set
of random walk candidates. While it is unclear how
to intelligently select a good candidate set of man-
ageable size, a policy that butts heads with our intu-
ition about which words we should be correcting is
clearly not the right one.

The differences between the models themselves
are somewhat more difficult to interpret. The 5 and
10 candidate variations of Experiment 1 and those
of Experiment 2 correct 103, 108, 115, and 130 sen-
tences out of 1017, respectively, and at least one
model differs from the others on 123 of those sen-
tences (they all agree on 42 sentences). These dis-
agreements are of all types: sometimes only a single
model corrects or vice versa, sometimes two models
are pitted against the other two, and occasionally all
four will choose a different word, but none of these
inconsistencies seem to follow any sort of pattern,
e.g. the two five candidate models agreeing more
often than the other two or the like.

Interestingly, however, the models tend to be in
agreement on the sentences that they correct the
most effectively. We explore this more concretely in
Table 4, in which we manually judge the quality of
sentence corrections versus the agreement between
models. Specifically, we judge a set of sentence
corrections asGood if all of the corrections made
between models improve sentence grammaticality,
Harmlessif the corrections do not significantly im-
prove or reduce grammaticality, andBad if at least
one of the corrections is either ungrammatical or
changes the sentence meaning. We note thatBad
corrections for the most part do not take grammatical
sentences and make them ungrammatical, only per-
turb them in some other erroneous fashion. Clearly,
there is a strong correlation between corrected sen-
tence quality and model agreement. We conclude
from this observation that the models are all learn-
ing to correct the most unambiguously incorrect sen-
tences in a consistent way, but where some deal of
ambiguity remains, they are subject to random dif-
ferences inherent in each’s construction.

To round out our evaluation of correction qual-
ity, we presented the corrected sentences from all
4 model variations to human workers for judgment
using the task detailed in Section 3.2.7. The results
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Table 4: Manual judgments of model-corrected sentence
quality between experiments. If all models are in agree-
ment, a sentence is marked asSame, andDifferent oth-
erwise. We judge a set of sentence corrections asGood
if all of the corrections made between models improve
sentence grammaticality,Harmlessif the corrections do
not significantly improve or reduce grammaticality, and
Bad if at least one of the corrections is either ungram-
matical or changes the sentence meaning. Only corrected
sentences are listed.

Model
Judgment

# of % of
Agreement Sentences Total

Same

Good 6 14.3%
Harmless 11 26.2%

Bad 25 59.5%
Total 42 –

Different

Good 4 3.3%
Harmless 34 27.6%

Bad 85 69.1%
Total 123 –

of this effort are detailed in Figure 3. The work-
ers are perhaps a bit more generous with their judg-
ments than we are, but overall, they tend towards the
same results that we do in our manual evaluation.
Aside from the conclusions already presented, the
worker judgments do expose one interesting finding:
When the corrected sentence is judged to be at least
as grammatical as the ESL sentence, it also tends
to preserve the ESL sentence’s meaning. However,
when the ESL sentence is judged more correct, the
meaning preservation trend is reversed. This obser-
vation leads us to believe that incorporating some
measure of semantic distance into our random walk
functionf might prove effective.

5 Conclusion and Future Work

We have presented a novel noisy channel model for
correcting a broad class of language learner produc-
tion errors. Although our experimental results are
mixed, we believe that our model constitutes an in-
teresting and potentially very fruitful approach to
ESL grammar correction. There are a number of
opportunities for improvement available. Using a
richer language model, such as a PCFG, would un-
doubtedly improve our results. Noting that ESL er-
rors tend to occur in groups within sentences and

Figure 3: Human judgments of corrected sentences gath-
ered using Mechanical Turk. The items listed in the leg-
end are answers to the questionsBetween the [original
(ESL) and corrected] sentences, which is more correct?/
Is the meaning of the corrected sentence significantly dif-
ferent from that of the ESL sentence?See Section 3.2.7
for methodological details and Section 4 for results dis-
cussion.
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are often interdependent, the addition of other noise
models, such as those detailed in Park and Levy
(2011), would further improve things by allowing
the language model to consider a wider range of cor-
rected contexts around each word. Our random walk
model itself could also be improved by incorporat-
ing observed word frequency information or some
notion of semantic difference between observed and
unobserved words, or by learning separate parame-
ters for different word classes. Somewhat counter-
intuitively, a structured reduction of dictionary rich-
ness could also yield better results by limiting the
breadth of random walk candidates. Finally, a more
intelligent heuristic for truncating large sets of ran-
dom walk candidates would likely foster improve-
ment.
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Abstract 

We address the problem of detecting Eng-

lish language learner errors by using a dis-

criminative high-order sequence model. 

Unlike most work in error-detection, this 

method is agnostic as to specific error 

types, thus potentially allowing for higher 

recall across different error types.  The ap-

proach integrates features from many 

sources into the error-detection model, 

ranging from language model-based fea-

tures to linguistic analysis features. Evalua-

tion results on a large annotated corpus of 

learner writing indicate the feasibility of 

our approach on a realistic, noisy and in-

herently skewed set of data. High-order 

models consistently outperform low-order 

models in our experiments. Error analysis 

on the output shows that the calculation of 

precision on the test set represents a lower 

bound on the real system performance. 

1. Introduction 

Systems for automatic detection and correction of 

errors in native writing have been developed for 

many decades. Early in the development of these 

systems, the approach was exclusively based on 

knowledge engineering. Hand-crafted grammars 

would analyze a sentence and would contain spe-

cial mechanisms for rule or constraint relaxation 

that allow ungrammatical sentences to produce a 

parse, while at the same time indicating that a 

grammatical error is present. More recently, data-

driven methods have assumed prominence and 

there has been an emerging area of research into 

the challenge of detecting and correcting errors in 

learner language (for an overview see Leacock et 

al. 2010). Data-driven methods offer the familiar 

set of advantages: they can be more flexible than a 

manually maintained set of rules and they tend to 

cope better with noisy input. Drawbacks include 

the inability to handle linguistically more complex 

errors that involve long distance dependencies such 

as subject-verb agreement. Learner errors as a tar-

get for error detection and correction pose a partic-

ular challenge but also offer some unique 

opportunities. The challenge lies in the density of 

errors (much higher than in native writing), the 

variety of errors (a superset of typical native er-

rors) and the generally more non-idiomatic writing. 

On the other hand, the availability of annotated 

corpora, often comprised of manually corrected 

learner essays or scripts, provides a big advantage 

for the evaluation and training of data-driven sys-

tems.  

Data-driven systems for English learner error 

detection and correction typically target a specific 

set of error types and contain a machine learned 

component for each error type. For example, such 

a system may have a classifier that determines the 

correct choice of preposition given the lexical and 

syntactic part-of-speech (POS) context and hence 

can aid the learner with the notoriously difficult 

problem of identifying an appropriate preposition. 

Similarly, a classifier can be used to predict the 

correct choice of article in a given context. Such 

targeted systems have the advantage that they often 

achieve relatively high precision at, of course, the 

cost of recall. However, while there are a few ma-

jor learner error categories, such as prepositions 

and articles, there is also a long tail of content 

word and other errors that is not amenable to a tar-

geted approach. 

In this paper, we depart from the error-specific 

paradigm and explore a sequence modeling ap-

proach to general error detection in learner writing. 

This approach is completely agnostic as to the er-

ror type. It attempts to predict the location of an 
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error in a sentence based on observations gathered 

from a supervised training phase on an error-

annotated learner corpus. Features used here are 

based on an n-gram language model, POS tags, 

simple string features that indicate token length 

and capitalization, and linguistic analysis by a con-

stituency parser. We train and evaluate the method 

on a sizeable subset of the corpus. We show the 

contribution of the different feature types and per-

form a manual error analysis to pinpoint shortcom-

ings of the system and to get a more accurate idea 

of the system’s precision. 

2. Related work 

Error-specific approaches comprise the majority of 

recent work in learner error detection. Two of the 

most studied error types in learner English are 

preposition and article errors since they make up a 

large percentage of errors in learner writing (16% 

and 13% respectively in the Cambridge Learner 

Corpus, without considering spelling and punctua-

tion errors). The most widely used approach for 

detecting and correcting these errors is classifica-

tion, with lexical and POS features gleaned from a 

window around the potential preposition/article 

site in a sentence. Some recent work includes Cho-

dorow et al. (2007), De Felice and Pulman (2008), 

Gamon (2010), Han et al. (2010), Izumi et al. 

(2004), Tetreault and Chodorow (2008), Ro-

zovskaya and Roth (2010a, 2010b). Gamon et al. 

(2008) and Gamon (2010) used a language model 

in addition to a classifier and combined the classi-

fier output and language model scores in a meta-

classifier. These error-specific methods achieve 

high precision (up to 80-90% on some corpora) but 

only capture highly constrained error types such as 

preposition and determiner errors. 

There has also been research on error-detection 

methods that are not designed to identify a specific 

error type. The basic idea behind these error-

agnostic approaches is to identify an error where 

there is a particularly unlikely sequence compared 

to the patterns found in a large well-formed corpus. 

Atwell (1986) used low-likelihood sequences of 

POS tags as indicators for the presence of an error. 

Sjöbergh (2005) used a chunker to detect unlikely 

chunks in native Swedish writing compared to the 

chunks derived from a large corpus of well-formed 

Swedish writing. Bigert and Knutsson (2002) em-

ployed a statistical method to identify a variety of 

errors in Swedish writing as rare sequences of 

morpho-syntactic tags. They significantly reduced 

false positives by using additional methods to de-

termine whether the unexpected sequence is due to 

phrase or sentence boundaries or due to rare single 

tags. Chodorow and Leacock (2000) utilized mutu-

al information and chi-square statistics to identify 

typical contexts for a small set of targeted words 

from a large well-formed corpus. Comparing these 

statistics to the ones found in a novel sentence, 

they could identify unlikely contexts for the target-

ed words that were often good indicators of the 

presence of an error. Sun et al. (2007) mined for 

patterns that consist of POS tags and function 

words. The patterns are of variable length and can 

also contain gaps. Patterns were then combined in 

a classifier to distinguish correct from erroneous 

sentences. Wagner et al. (2007) combined parse 

probabilities from a set of statistical parsers and 

POS tag n-gram probabilities in a classifier to de-

tect ungrammatical sentences. Okanohara and Tsu-

jii (2007) differed from the previous approaches in 

that they directly used discriminative language 

models to distinguish correct from incorrect sen-

tences, without the direct modeling of error-

indicating patterns. Park and Levy (2011) use a 

noisy channel model with a base language model 

and a set of error-specific noise models for error 

detection and correction. 

In contrast to previous work, we cast the task as 

a sequence modeling problem. This provides a 

flexible framework in which multiple statistical 

and linguistic signals can be combined and cali-

brated by supervised learning. The approach is er-

ror-agnostic and can easily be extended with 

additional statistical or linguistic features. 

3. Error detection by sequence modeling 

Errors consist of a sub-sequence of tokens in a 

longer token sequence. They can be identified by a 

combination of internal and contextual features, 

the latter requiring a notion of Markov window (a 

window around a token in which relevant infor-

mation is likely to be found). This is similar to 

tasks such as named entity recognition (NER) or 

part-of-speech tagging, where sequence modeling 

has proven to be successful.  

We choose a Maximum Entropy Markov Model 

(MEMM, McCallum et al. 2000) as the modeling 

technique. In NER, the annotation convention uses 
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three labels for a token “O” (outside of NE), “B” 

(beginning of NE), and “I” (inside of NE). For our 

purpose we reduced the set of labels to just “O” 

and “I” since most of the errors are relatively short. 

Conditional Random Fields (Lafferty et al. 

2001) are considered to be superior to MEMMs in 

learning problems affected by label bias (Bottou 

1991). In our scheme, however, there are only two 

states “O” and “I”, and both states can transition to 

each other. Since there are no states with asymmet-

ric transition properties that would introduce a bias 

towards states with fewer transitions, label bias is 

not a problem for us. 

Figure 1 shows the structure of our MEMM with 

a Markov order of five (the diagram only shows 

the complete set of arcs for the last state). The in-

put sentence contains the token sequence the past 

year I was stayed … with the error was stayed. In-

stead of using the tokens themselves as observa-

tions, we chose to use POS tags assigned by an 

automatic tagger (Toutanova et al. 2003). This 

choice was motivated by data sparseness. Learning 

a model that observes individual lexical items and 

predicts a sequence of error/non-error tags would 

be ideal, but given the many different error types 

and triggering contexts for an error, such a model 

would require much more training data. A large set 

of features that serve as constraints on the state 

transition models are extracted for each state. The-

se features are described in Section 5.  

Note that the model structure would lend itself 

to a factorial conditional random field (McCallum 

et al. 2003) which allows the joint labeling of POS 

tags and state labels. This would, however, require 

training data that is labeled for both errors and 

POS tags. 

 
Figure 1: MEMM model for error detection, the 

full set of dependencies is only shown for the last 

state. 

4. Detecting errors in the Cambridge 

Learner Corpus  

The learner corpus used to train and evaluate the 

system is the Cambridge Learner Corpus (CLC). It 

consists of essays (scripts) written as part of the 

University of Cambridge English for Speakers of 

Other Languages (ESOL) examinations. The cor-

pus contains about 30 million words of learner 

English. All errors are annotated and include, when 

possible, a single suggested correction. Errors are 

categorized into 87 error types. 

We performed a number of preprocessing steps 

on the data. On the assumption that learners have 

access to a spell checker, errors that were marked 

as spelling errors were corrected based on the an-

notations. Confused words (their/there) were treat-

ed in the same way, given that they are corrected 

by a modern proofing tool such as the one in Mi-

crosoft Word. In addition, British English spelling 

conventions were changed to those of American 

English. Sentences containing errors that had no 

suggested rewrite were eliminated. Finally, only 

lexical errors are covered in this work. For punctu-

ation and capitalization we removed the error an-

notations, retaining the original (erroneous) 

punctuation and capitalization. 

We grouped the remaining 60 error classifica-

tions into eight categories: Content word, Inflec-

tional morphology, Noun phrase errors, 

Preposition errors, Multiple errors, Other errors 

involving content words, Other errors involving 

function words and Derivational morphology. The 

distribution of error categories is shown in Table 1. 

Error Class Freq Pct 

Content word insertion, dele-

tion or choice 
185,201 21% 

Inflectional morphology and 

agreement of content words 
157,660 18% 

Noun phrase formation: De-

terminers and quantifiers 
130,829 15% 

Preposition error 124,902 14% 

Multiple: Adjacent and nested 

annotations 
113,615 13% 

Other content word errors 79,596 9% 

Other function word errors: 

anaphors and conjunctions 
65,034 7% 

Derivational morphology of 

content words 
39,213 4% 

Table 1: Error types in the CLC. 
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The multiple error class includes any combination 

of error types where the error annotations are either 

nested or adjacent. The other categories are more 

focused: the errors are of a particular class and 

their adjacent context is correct, although there 

may be another error annotation a single token 

away. Content word errors involve the insertion, 

deletion and substitution of nouns, verbs, adjec-

tives and adverbs. Further analysis of this error 

category on a random sample of 200 instances re-

veals that the majority (72%) of content word er-

rors involve substitutions, while deletions account 

for 10% of the errors and insertions for 18%. Most 

substitutions (63%) involve the wrong choice of a 

word that is somewhat semantically related to the 

correct choice. Inflectional morphology includes 

all inflection errors for content words as well as 

subject-verb agreement errors. The inflectional 

errors include many cases of what might be con-

sidered spelling errors, for example *dieing/dying. 

Similarly, the derivational morphology errors in-

clude all derivational errors for content words – 

and also include many errors that may be consid-

ered as spelling errors. Noun formation errors in-

clude all annotations involving determiners and 

quantifiers: inflection, derivation, countability, 

word form and noun-phrase-internal agreement. 

Preposition errors include all annotations that in-

volve prepositions: insertion, deletion, substitution 

and a non-preposition being used in place of a 

preposition. There are two other categories: those 

involving the remaining function words (anaphors 

and conjunctions) and those involving remaining 

content words (collocation, idiom, negative for-

mation, argument structure, word order, etc.). 

It is important to highlight the challenges inher-

ent in this data set. First of all, the problem is high-

ly skewed since only 7.3% of tokens in the test set 

are involved in an error. Second, since we included 

correct learner sentences in the development and 

test sets in the proportion they occur in the overall 

corpus, only 47% of sentences in the test set con-

tain error annotations, greatly increasing the likeli-

hood of false positives. 

5. Features 

5.1 Language model features 

The language model (LM) features comprise a 

total of 29 features. Each of these features is calcu-

lated from n-gram probabilities observed at and 

around the current token. All LM features are 

based on scores from a 7-gram language model 

with absolute discount smoothing built from the 

Gigaword corpus (Gao et al. 2001, Nguyen et al. 

2007). 

We group the language model features concep-

tually into five categories: basic features, ratio fea-

tures, drop features, entropy delta features and 

miscellaneous. All probabilities are log probabili-

ties, and n in the n-grams ranges from 1 to 5. All 

features are calculated for each token w of the to-

kens w0…wi in a sentence. 

Basic LM features consist of two features: the 

unigram probability of w and the average n-gram 

probability of all n-grams in the sentence that con-

tain w. 

Ratio features are based on the intuition that er-

rors can be characterized as involving tokens that 

have a very low ratio of higher order n-gram prob-

abilities to lower order n-gram probabilities. In 

other words, these are tokens that are part of an 

unlikely combination of otherwise likely smaller n-

grams. These features are calculated as the ratio of 

the average x-gram probability of all x-grams con-

taining w to the average y-gram probability of all 

y-grams containing w. The values for x and y are: 5 

and 1, 4 and 1, 3 and 1, 2 and 1, 5 and 4, 4 and 3, 3 

and 2. 

Drop features measure either the drop or in-

crease in n-gram probability across token w. For 

example, the bigram drop at wi is the delta between 

the bigram probability of the bigram starting at i-1 

to the bigram probability of the bigram starting at i. 

Drop features are calculated for n-grams with 2 ≤ n 

≤ 5. 

Entropy delta features offer another way to look 

at the changes of n-gram probability across a token 

w. Forward entropy for wi is defined as the entropy 

of the string wi…wn where n is the index of the last 

token in the sentence. We calculate the entropy of 

an n-gram as the language model probability of 

string wi…wn divided by the number of tokens in 

that string. Backward entropy is calculated analo-

gously for w0…wi. For n-grams with 1 ≤ n ≤ 5, we 

also calculate, at each index i into the token array, 

the delta between the n-gram entropy of the n-gram 

starting at i and the n-gram starting at i+1 (forward 

sliding entropy). Similarly the delta between the n-

gram entropy of the n-gram starting at i and the n-

gram starting at i-1 (backward sliding entropy) is 

calculated.  
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There are four miscellaneous language model 

features. Three of them, minimum ratio to random, 

average ratio to random, and overall ratio to ran-

dom address the fact that a “good” n-gram is likely 

to have a much higher probability than an n-gram 

with the same tokens in random order. For all n-

grams where 2 ≤ n ≤ 5 we calculate the ratio be-

tween the n-gram probability and the sum of the 

unigram probabilities. For a token wi we produce 

the minimum ratio to random (the minimum ratio 

of all n-grams including w) and the average ratio 

to random (the average of all ratios of the n-grams 

including w). Overall ratio to random is obtained 

by looping through each n-gram where 2 ≤ n ≤ 5 

that includes wi and summing the n-gram proba-

bilities (sum1) as well as the unigram probabilities 

of all unigrams in these n-grams (sum2). The ratio 

feature is then sum1/sum2. The final feature ad-

dresses the intuition that an erroneous word may 

cause n-grams that contain the word to be less like-

ly than adjacent but non-overlapping n-grams. 

Overlap to adjacent ratio is the sum of probabili-

ties of n-grams including wi, divided by the sum of 

probabilities of n-grams that are adjacent to wi but 

do not include it.  

Note that this use of a host of language model 

features is substantially different from using a sin-

gle language model score on hypothesized error 

and potential correction to filter out unlikely cor-

rection candidates as in Gamon et al. (2008) and 

Gamon (2010).  

5.2 String features 

String features capture information about the char-

acters in a token and the tokens in a sentence. Two 

binary features indicate whether a token is capital-

ized (initial capitalization or all capitalized), one 

feature indicates the token length in characters and 

one feature measures the number of tokens in the 

sentence. 

5.3 Linguistic Analysis features 

Each sentence is linguistically analyzed by a 

PCFG-LA parser (Petrov et al., 2006) trained on 

the Penn Treebank (Marcus et al., 1993). A num-

ber of features are extracted from the constituency 

tree to assess the syntactic complexity of the whole 

sentence, the syntactic complexity of the local en-

vironment of a token, and simple constituency in-

formation for each token. These features are: label 

of the parent and grandparent node, number of sib-

ling nodes, number of siblings of the parent, pres-

ence of a governing head node, label of the 

governing head node, and length of path to the 

root. An additional feature indicates whether the 

POS tag assigned by the parser does not match the 

tag assigned by the POS tagger, which may indi-

cate a tagging error. 

6. Experiments 

6.1 Design 

For our experiments we use three different mutual-

ly exclusive random subsets of CLC. 50K sentenc-

es are used for training of the models (larger data 

sets exceeded the capabilities of our MEMM train-

er). In this set, we only include sentences that con-

tain at least one annotated error. We also 

experimented using a mix of error-free and errone-

ous sentences, but the resulting models turned out 

to be extremely skewed towards always predicting 

the majority state “O” (no error). 20K sentences 

(including both erroneous and correct sentences) 

are used for parameter tuning and testing, respec-

tively. 

Each token in the data is annotated with one of 

the states “O” or “I”. Performance is measured on 

a per token basis, i.e. each mismatch between the 

predicted state and the annotated state is counted as 

an error, each match is counted as a correct predic-

tion. 

We use the development set to tune two parame-

ters: the size of the Markov window and a prior to 

prevent overfitting. The latter is a Gaussian prior 

(or quadratic regularizer) where the mean is fixed 

to zero and the variance is left as a free parameter. 

We perform a grid search to find values for the 

parameters that optimize the model’s F1 score on 

the development data. 

In order to be able to report precision and recall 

curves, we use a technique similar to the one de-

scribed in Minkov et al. (2010): we introduce an 

artificial feature with a constant value at training 

time. At test time we perform multiple runs, modi-

fying the weight on the artificial feature. This 

weight variation influences the model’s prior pro-

pensity to assign each of the two states, allowing 

us to measure a precision/recall tradeoff.  
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6.2 Performance of feature sets 

Figure 2 illustrates the performance of three differ-

ent feature sets and combinations. The baseline is 

using only language model features and standard 

POS tags, which tops out at about 20% precision. 

Adding the string features discussed in the previ-

ous section, and partially lexicalized (PL) POS 

tags, where we used POS tags for content word 

tokens and the lexicalized token for function 

words, we get a small but consistent improvement. 

We obtain the best performance when all features 

are used, including the linguistic analysis features 

(DepParse). We found that a high-order model 

with a Markov window size of 14 performed best 

for all experiments with a top F1 score. F1 at low-

er orders was significantly worse. Training time for 

the best models was less than one hour. 

6.3 Predicting error types 

In our next experiment, we tried to determine how 

the sequence modeling approach performs for in-

dividual error types. Here we trained eight differ-

ent models, one for each of the error types in Table 

1. As in the previous experiments, the development 

and test files contained error-free sentences. The 

optimal Markov window size ranged from 8 to 15. 

Note that our general sequence model described in 

the previous sections does not recognize different 

error types, so it was necessary to train one model 

per error type for the experiments in this section. 

Figure 3 shows the results from this series of 

experiments. We omit the results for other content 

word error, other function word and multiple er-

rors in this graph since these relatively ill-defined 

error classes performed rather poorly. As Figure 3 

illustrates, derivational errors and preposition er-

rors achieve by far the best results. The fact that 

the individual precision never reaches the level of 

the general sequence model (Figure 2) can be at-

tributed to the much smaller overall set of errors in 

each of the eight training sets. In Figure 4 we com-

pare the sequence modeling results for prepositions 

with results from the preposition component of the 

current version of the system described in Gamon 

(2010) on the same test set. That system consists of 

a preposition-specific classifier, a language model 

and a meta-classifier that combines evidence from 

the classifier and the language model. The se-

quence model approach outperforms the classifier 

of that system, but the full system including lan-

guage model and meta-classifier achieves much 

higher precision than the sequence modeling ap-

proach. 

6.4 Learning curve experiments 

An obvious question that arises is how much train-

ing data we need for an error detection sequence 

model, i.e. how does performance degrade as we 

decrease the amount of training data from the 50K 

error-annotated sentences that were used in the 

previous experiments. To this end we produced 

random subsets of the training data in 20% incre-

ments. For each of these training sets, we deter-

mined the resulting F1 score by first performing 

parameter tuning on the development set and then 

measuring precision and recall of the best model 

on the test set. Results are shown in Figure 5: at 

20% of training data, precision starts to increase at 

the cost of recall. At 80% of the training data, re-

call starts to trend up as well. This upward trend of 

both precision and recall indicates that increasing 

the amount of training data is likely to further im-

prove results. 

6.5 Error  analysis 

The precision values obtained in our experi-

ments are low, but they are also based on the 

strictest possible measure of accuracy: an error 

prediction is only counted as correct if it exactly 

matches a location and annotation in the CLC. A 

manual analysis of 400 randomly selected sentenc-

es containing “false positives”, where the system 

had 29% precision and 10% recall, by the strictest 

calculation, showed that 14% of the “false posi-

tives” identified an error that was either not anno-

tated in CLC or was an error type not covered by 

the system such as punctuation or case (recall from 

Section 4 that for these errors we removed the er-

ror annotations but retained the original string). An 

additional 16% were adjacent to an error annota-

tion. 12% had error annotations within 2-4 tokens 

from the predicted error. Foreign language and 

other unknown proper names comprised an addi-

tional 6%. Finally, 9% were due to tokenization 

problems or all-upper case input that throws off the 

POS tagger. Thus the precision reported in Figure 

2 through Figure 6 is really a lower bound. 30% of 

the “false positives” either identify, or are adjacent 

to, an error. 

185



Sentence length has a strong influence on the 

accuracy of the sequence model. For sentences less 

than 7 tokens long, average precision is approxi-

mately 7%, whereas longer sentences average at 

29% precision. This observation fits with the fact 

that high-order models perform best in the task, i.e. 

the more context a model can access, the more re-

liable its predictions are. Shorter sentences are also 

less likely to contain an error: only 12% of short 

sentences contain an error, as opposed to 46% of 

sentences of seven tokens or longer. 

For sentences that are at least 7 tokens long, er-

ror predictions on the first and last two tokens (the 

last token typically being punctuation) have an av-

erage precision of 22% as compared to an average 

of 30% at all other positions. Other unreliable error 

predictions include those involving non-alphabetic 

characters (quotes, parentheses, symbols, numbers) 

with 1% precision and proper name tags with 10% 

precision. Many of the predictions on NNP tags 

identify, by and large, unknown or foreign names 

(Cricklewood, Cajamarca). Ignoring system flags 

on short sentences, symbols and NNP tags would 

improve precision with little cost to recall. 

We also experimented with a precision/recall 

metric that is less harsh but at the same time realis-

tic for error detection. For this “soft metric” we 

count correct and incorrect predictions at the error 

level instead of the token level. An error is defined 

as a consecutive sequence of n error tags, where n 

≥ 1.  

 

 
Figure 2: Precision and recall of different feature sets. 

 
Figure 3: Precision and recall of different error models. 
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Figure 4: Preposition precision and recall. 

 
Figure 5: Learning curve. 

 
Figure 6: Precision and recall for adjacent annotated error 
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A predicted error counts as being correct with re-

spect to an annotated error if the following two 

criteria are met: 

a) At least one predicted error token is part of 

an annotated error or is directly adjacent to 

an annotated error 

b) No more than two predicted error tokens 

fall outside the annotated error.  

Criterion (a) establishes that predicted and annotat-

ed error are overlapping or at least directly adja-

cent. Criterion (b) ensures that the predicted error 

is “local” enough to the annotated error and does 

not include too much irrelevant context, but it still 

allows an annotated error to be flanked by predict-

ed error tokens. Figure 6 illustrates the preci-

sion/recall characteristics of the best model when 

using this soft metric as compared to the strict met-

ric. We also included a “per sentence” metric in 

Figure 6, where we measure precision and recall at 

the level of identifying a sentence as containing an 

error or not, in other words when using the model 

as a detector for ungrammatical sentences. In addi-

tion we show for each of the three metrics how the 

results change if short sentences (shorter than 7 

tokens) are excluded from the evaluation. 

7. Conclusion and future work 

We have shown that a discriminative high order 

sequence model can be used to detect errors in 

English learner writing. This enables a general ap-

proach to error detection, at the cost of requiring 

annotated data. High-order models outperform 

lower order models significantly for this problem. 

It is obvious that there are several avenues to 

pursue in order to improve upon these initial re-

sults. Two possibilities that we would like to high-

light are the model structure and the feature set. As 

mentioned in Section 3, instead of using a separate 

POS tagger we could follow McCallum et al. 

(2003) and design a model that jointly predicts two 

sequences: POS tags and error tags. As for feature 

sets, we conducted some preliminary additional 

experiments where we added a second set of lan-

guage model features, based on a different lan-

guage model, namely the Microsoft web n-gram 

model (Wang et al. 2010). The addition of these 

features raised both precision and recall.  

Finally, an error detection system is only of 

practical use if it is combined with a component 

that suggests possible corrections. For future work, 

we envision a combination of generic error detec-

tion with a corpus-based lookup system that finds 

alternative strings that have been observed in simi-

lar contexts. All these alternatives can then be 

scored by a language model in the original context 

of the user input, allowing only those suggestions 

to be shown to the user that achieve a better lan-

guage model score than the original input. This 

combination of error detection and error correction 

has the advantage that the error detection compo-

nent can be used to provide recall, i.e. it can be 

allowed to operate at a lower precision level. The 

error correction component, on the other hand, 

then reduces the number of false flags by vetting 

potential corrections by language model scores. 
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