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Abstract

A description of a system for measuring the
compositionality of collocations within the
framework of the shared task of the Distribu-
tional Semantics and Compositionality work-
shop (DISCo 2011) is presented. The system
exploits the intuition that a highly composi-
tional collocation would tend to have a consid-
erable semantic overlap with its constituents
(headword and modifier) whereas a colloca-
tion with low compositionality would share
little semantic content with its constituents.
This intuition is operationalised via three con-
figurations that exploit cosine similarity mea-
sures to detect the semantic overlap between
the collocation and its constituents. The sys-
tem performs competitively in the task.

1 Introduction

Collocations or multiword expressions vary in the
degree to which a native speaker is able to under-
stand them based on the interaction of their con-
stituents’ individual meanings. The concept of com-
positionality of a collocation captures this notion.
The shared task of the DISCo 2011 workshop (Bie-
mann and Giesbrecht, 2011) consists in comparing
systems’ compositionality scores against composi-
tionality scores based on human judgements. Sys-
tems were evaluated on the match of the compo-
sitional scores generated by the system and those
based on human judgements – specifically taking the
mean of the absolute difference of these scores. Ad-
ditionally the organisers also classified the human-
derived scores into three coarse categories of com-
positionality: non-compositional (low), somewhat

compositional (medium) and compositional (high).
Systems were required to produce an additional
compositionality labelling into these three coarse
categories and were evaluated on the precision of
this labelling.

The methods used by our system for measuring
compositionality take inspiration from the work of
McCarthy et al. (2003), who measured the simi-
larity between a phrasal verb (a main verb and a
preposition like blow up) and its main verb (blow)
by comparing the words that are closely semanti-
cally related to each, and use this similarity as an
indicator of compositionality. Our method for mea-
suring compositionality is considerably different as
it instead directly compares the semantic similar-
ity between the headword and the collocation and
between the modifier and the collocation by com-
puting a cosine similarity score between word co-
occurrence vectors that represent the headword, the
modifier and the collocation (see 3.2). Our system
can be regarded as fully unsupervised as it does not
employ any parsers in its processing or any external
data other than the corpus and the collocation lists
provided by the organisers.

The rest of the paper is organised as follows: Sec-
tion 2 describes the corpora and the collocation list
provided by the task organisers. Section 3 intro-
duces some definitions and describes the three con-
figurations in detail. Section 4 presents the results
and concludes.

2 Data

Shared task participants were provided with a list of
collocations of three grammatical forms: adjective-
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noun collocations (A-N), subject-verb collocations
(S-V) and verb-object collocations (V-O). Our sys-
tem assumes that each collocation consists of a
headword and a modifier and it interprets these con-
stituents in each grammatical form as follows: A-N:
adjective - modifier, noun - headword; S-V: subject
- modifier, verb - headword; V-O: verb - headword,
object - modifier.

As a corpus, our system uses a random sample of
500,000 documents from the plain-text, non-parsed
version of the English ukWaC corpus (Baroni et al.,
2009).

3 System description

Our system can be employed in three different con-
figurations. All three rely in representing words
and collocations as word co-occurrence vectors and
measure semantic similarity using the cosine mea-
sure.

3.1 Preliminary definitions

These definitions are largely based on the con-
struction of first-order context vectors, word co-
occurrence vectors and second-order context vectors
via global selection as described in Schütze (1998)
and in Purandare and Pedersen (2004) by consider-
ing context windows of 20 words centred at a target
word.

The first-order context vector is a vector repre-
senting a token of a word, or equivalently a position
p in a document. Dimensions of the vector are word
types w, and the value on dimension w is a count
of the frequency with which w occurs in a specified
window around p in a given document doc.

C1(p)(w) = ∑
p′ 6=p

p−10≤p′
p′≤p+10

(1 if w = doc(p′), else 0) (1)

In this work the dimensions are the 2,000 non-
function words that are most frequent in the corpus1.
The word co-occurrence vector (or simply word
vector) is a vector recording the co-occurrence be-
haviour of a particular word type w in a corpus. As

1We employ a modified version of the stop word
list supplied with Ted Pedersen’s Text-NSP package
(http://www.d.umn.edu/~tpederse/nsp.html)

such it can be defined by summation over first-order
context vectors:

W(w) = ∑
p

(1 if w = doc(p), else 0) ·C1(p) (2)

And the second-order context vector is a further
vector representing an instance of a word. For a par-
ticular location p, it is defined to be sum of the word
vectors of words in a given window around p

C2(p) = ∑
p′ 6=p

p−10≤p′
p′≤p+10

W(doc(p)) (3)

Although the above are defined for types and to-
kens of words, they can be generalised to multiword
expressions in various ways. In this work, for any
multiword expression type x y, its tokens are taken
to be occurrences of the sequence xγy, where γ can
be any sequence of intervening words of length l,
0≤ l ≤ 3. By taking the position of x as the position
of the multiword token, and taking the first position
after the token as position p + 1, the definitions of
C1, W and C2 can be carried over to multiword ex-
pressions.

All the configurations described below use the co-
sine measure between vectors, defined in the stan-
dard way

cos(v,w) =
∑

N
i=1 viwi√

∑
N
i=1 v2

i ∑
N
i=1 w2

i

(4)

3.2 System configurations
For each collocation in the test set, the first configu-
ration of our system starts off by building word vec-
tors for the collocation, its headword and its modi-
fier.

The first configuration of the system outputs the
average of two cosine similarity measures as the
compositionality score for the collocation:

c1 =
1
2

[
cos(W(x y) ,W(x))

+cos(W(x y) ,W(y))

]
(5)

where W(x y) is the word vector representing the
collocation whose constituents are x and y, and
W(x) and W(y) are the word vectors representing
each constituent x and y, respectively.
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The second configuration of our system consid-
ers the occurrences of the headword when accompa-
nied by the modifier forming the collocation sepa-
rately from occurrences of the headword appearing
on its own and compares them. If y is the headword
of a collocation and coll(p) is a Boolean function
that determines whether the word at position p forms
a collocation with x, let

Wx(y) = ∑
p

(1 if
doc(p) = y
coll(p,x)

, else 0) ·C1(p) (6)

be the word vector computed from all the occur-
rences of the headword y that form a collocation
with x and conversely, let

Wx̄(y) = ∑
p

(1 if
doc(p) = y
qcoll(p,x)

, else 0) ·C1(p) (7)

be the word vector representing the occurrences of y
not engaging in a collocation with x. In this configu-
ration, the compositionality score is then computed
by

c2 = cos
(
Wx (y) ,Wx̄ (y)

)
(8)

The intuition behind this configuration is that if
the headword tends to co-occur with more or less the
same words in both cases (producing a high cosine
score), then the meaning of the headword is simi-
lar regardless of whether the collocation’s modifier
is present or not, implying a high degree of com-
positionality. If on the other hand, the headword
co-occurs with somewhat differing words in the two
cases (a low cosine score), then we assume that the
presence of the collocation’s modifier is markedly
changing the meaning of the headword, implying a
low degree of compositionality.

In its third configuration, our system employs
clustering techniques in order to exploit semantic
differences that may naturally emerge from each
context in which the collocation and its constituents
are used. Different senses of a collocation might
have different compositionality measures as can be
seen in these two example sentences employing the
collocation great deal:

1. Two cans of soup for the price of one is such a
great deal!

C2(y) C2(y) C2(x)

C2(x y)C2(x)
C2(x y)

C2(y)

C2(y)

C2(x)C2(x y)

C2(x)
C2(x)

C2(y) C2(x y)

Figure 1: Example of a clustered second-order context
vector space.

2. The tsunami caused a great deal of damage to
the country’s infrastructure.

In Word Sense Induction, clustering is used to group
occurrences of a target word according to its sense or
usage in context (see e.g. Pedersen (2010)) as it is
expected that each cluster will represent a different
sense or usage of the target word. However, since
the contexts that human annotators referred to when
judging the compositionality of the collocations was
not provided, our system employs a workaround that
uses a weighted average when measuring composi-
tionality. This workaround is explained in what fol-
lows.

In this configuration, the system first builds word
vectors for the 20,000 most frequent words in the
corpus (equation 2), and then uses these to compute
the second-order context vectors for each occurrence
of the collocation and its constituents in the corpus
(equation 3). After context vectors for all occur-
rences have been computed, they are clustered using
CLUTO’s repeated bisections algorithm2. The vec-
tors are clustered across a small number K of clus-
ters (we employed K = 4). We expect that each clus-
ter will represent a different contextual usage of the
collocation, its headword and its modifier. Figure 1
depicts how a context vector space could be parti-
tioned with K = 4.

The system then for each cluster k builds the word
vectors (equation 2) Wk(x y), Wk(x), and Wk(y) for
the collocation, its headword and its modifier, from
the contexts grouped within the cluster k. The com-
positionality measure for the third configuration is
then basically a weighted average over the clusters

2http://glaros.dtc.umn.edu/gkhome/views/cluto/
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of the c1 score using each cluster, that is:

c3 =
K

∑
k=1

‖k‖
N

1
2

[
cos(Wk(x y),Wk(x))

+cos(Wk(x y),Wk(y))

]
(9)

where ‖k‖ is the number of contexts in cluster k
and N is the total number of contexts across all clus-
ters.

For all three configurations, the value reported as
the numeric compositionality score was the corre-
sponding value obtained from equations (5), (8) or
(9), multiplied by 100. Each configuration’s nu-
meric scores ci were binned into the three coarse
compositionality classes by comparing them with
the configuration’s maximum value through equa-
tion (10).

coarse(ci) =


high if 2

3 max≤ ci

medium if 1
3 max < ci < 2

3 max
low if ci ≤ 1

3 max
(10)

4 Results and conclusion

Table 1 shows the evaluation results for the three
system configurations and two baselines. The left-
hand side of the table shows the average difference
between the gold-standard numeric score and each
configuration’s numeric score. The right-hand side
reports the precision on binning the numeric scores
into the coarse classes. Evaluation scores are re-
ported on all collocations and on the collocation sub-
types separately. Row R is the baseline suggested
by the workshop organisers, assigning random nu-
meric scores, in turn binned into the coarse cate-
gories. Row A shows the performance of a con-
stant output baseline, assigning all collocations the
mean gold-standard numeric score from the training
set: 66.45, and then applying the binning strategy
of equation (10) to this – which always assigns the
coarse category high.

The first thing to note from this table is that con-
figurations 1 and 2 generally outperform configu-
ration 3, both on the mean difference and coarse
scores. Configuration 1 slightly outperforms con-
figuration 2 on the mean numeric difference scores,
whilst configuration 2 is very close to and slightly

C Average differences (numeric) Precision (coarse)

ALL A-N S-V V-O ALL A-N S-V V-O

1 17.95 18.56 20.80 15.58 53.4 63.5 19.2 62.5

2 18.35 19.62 20.20 15.73 54.2 63.5 19.2 65.0

3 25.59 24.16 32.04 23.73 44.9 40.4 42.3 52.5

R 32.82 34.57 29.83 32.34 29.7 28.8 30.0 30.8

A 16.86 17.73 15.54 16.52 58.5 65.4 34.6 65.0

Table 1: Evaluation results of the three system configura-
tions and two baselines on the test dataset. Best system
scores on each grammatical subtype highlighted in bold.

better than configuration 1 on the coarse precision
scores. The exception is that configuration 3 was the
best performer on the coarse precision scoring for
the S-V subtype.

The R baseline is outperformed by configurations
1, 2 and 3; roughly speaking where 1 and 2 out-
perform R by d, configuration 3 outperforms R by
around d/2. The A baseline generally outperforms
all our system configurations. It seems to be also a
quite competitive baseline for other systems partici-
pating in the shared task.

The other trend apparent from the table is that per-
formance on the V-O and A-N subtypes tends to ex-
ceed that on the the S-V subtype.

An examination of the gold standard test
files shows that the distribution over the
low/medium/high categories is similar for both
V-O and A-N, in both cases close to 0.08/0.27/0.65,
with high covering nearly two-thirds of cases,
whilst for S-V the distribution is quite different:
0.0/0.654/0.346, with medium covering nearly
two-thirds of cases. This is reflected in the A
baseline precision scores, as for each subtype these
will necessarily be the proportion of gold-standard
high cases. This explains for example why the A
baseline is much poorer on the S-V cases (34.6)
than on the other cases (65.0, 65.4).

Looking further into the differences between the
three subtypes, Figure 2 shows the gold standard nu-
meric score distribution across the three collocation
subtypes (Test GS), and the corresponding distribu-
tions for scores from the system’s first configuration
(Conf 1). This shows in more detail the nature of
the poorer performance on S-V, with the gold stan-
dard having a peak around 50-60, and the system
having a peak around 70-80. For the other subtypes
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Figure 2: The distribution of the gold standard numeric
score vs. the distribution of the system’s first configura-
tion numeric scores.

A-N S-V V-O

Instances 177254 11092 121317

Avg intervening 0.0684 0.3867 0.4612

Table 2: Some corpus statistics: the number of matched
collocations per subtype (Instances) and the average
number of intervening words per subtype (Avg interven-
ing).

the contrast in the distributions seems broadly con-
sistent with the mean numeric difference scores of
Table 1.

One can speculate on the reasons for the system’s
poorer performance on the S-V subtype. The sys-
tem treats intervening words in a collocation in a
particular way, namely by ignoring them. This is
one option, and another would be to include them as
features counted in the vectors. Table 2 shows the
average intervening words in the occurrences of the
collocations. S-V and V-O are alike in this respect,
both being much more likely to present intervening
words than collocations of the A-N subtype. So the
explanation of the poorer performance on S-V can-
not lie there. Also because the average number of
intervening words is low, we believe it is unlikely
that including them as features will impact perfor-
mance significantly.

Table 2 also gives the number of matched collo-
cations per subtype. The number for the S-V collo-
cations is an order of magnitude smaller than for the
other subtypes. Although the collocations supplied
by the organisers are in their base form, the system
attempts to match them ’as is’ in the unlemmatised

version of the corpus. Whilst for A-N and V-O the
base-form sequences relatively frequently do double
service as inflected forms, this is far less frequently
the case for the S-V sequences (e.g. user see (S-
V) is far less common than make money (V-O) ).
This much smaller number of occurrences for S-V
cases, or the fact that they are drawn from syntac-
tically special contexts, may be a factor in the rel-
atively poorer performance. This perhaps is also a
factor in the earlier noted fact that although config-
uration 3 was generally outperformed, on the S-V
subtype the reverse occurs.

The unlemmatised version of the corpus was used
because initial experimentation with the validation
set produced slightly better results when employing
raw words as features rather than lemmas. A possi-
bility for future work would be to to refer to lemmas
for matching collocations in the corpus, but to con-
tinue to use unlemmatised words as features.

Other areas for future investigation involve the ef-
fects of weighting schemes (such as IDF) and the
use of similarity measures other than cosine, as
well as alternatives in configurations 2 and 3. For
example, configuration 2 could involve the modifier
in the computation of the compositionality score,
and configuration 3 could create separate clustering
spaces for collocation, headword and modifier and
compute similarity scores based on vectors represen-
ting these clusters.

In sum, the simplest configuration of a totally un-
supervised system yielded surprisingly good results
at measuring compositionality of collocations in raw
corpora, and whereas there is scope for further de-
velopment and refinement, the system as it is consti-
tutes a robust baseline to compare against more ela-
borate systems.
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