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Abstract

Since its introduction into the NLP community,
pointwise mutual information has proven to be
a useful association measure in numerous nat-
ural language processing applications such as
collocation extraction and word space models.
In its original form, it is restricted to the anal-
ysis of two-way co-occurrences. NLP prob-
lems, however, need not be restricted to two-
way co-occurrences; often, a particular prob-
lem can be more naturally tackled when for-
mulated as a multi-way problem. In this pa-
per, we explore two multivariate generaliza-
tions of pointwise mutual information, and ex-
plore their usefulness and nature in the extrac-
tion of subject verb object triples.

1 Introduction

Mutual information (Shannon and Weaver, 1949) is
a measure of mutual dependence between two ran-
dom variables. The measure – and more specifically
its instantiation for specific outcomes called point-
wise mutual information (PMI) – has proven to be a
useful association measure in numerous natural lan-
guage processing applications. Since its introduc-
tion into the NLP community (Church and Hanks,
1990), it has been used in order to tackle or im-
prove upon several NLP problems, including col-
location extraction (ibid.) and word space mod-
els (Pantel and Lin, 2002). In its original form, it is
restricted to the analysis of two-way co-occurrences.
NLP problems, however, need not be restricted to
two-way co-occurrences; often, a particular prob-
lem can be more naturally tackled when formulated

as a multi-way problem. Notably, the framework
of tensor decomposition, that has recently perme-
ated into the NLP community (Turney, 2007; Ba-
roni and Lenci, 2010; Giesbrecht, 2010; Van de
Cruys, 2010), analyzes language issues as multi-
way co-occurrences. Up till now, little attention has
been devoted to the weighting of such multi-way co-
occurrences (which, for the research cited above, re-
sults either in using no weighting at all, or in apply-
ing an ad-hoc weighting solution without any theo-
retical underpinnings).

In this paper, we explore two possible generaliza-
tions of pointwise mutual information for multi-way
co-occurrences from a theoretical point of view. In
section 2, we discuss some relevant related work,
mainly in the field of information theory. In sec-
tion 3 the two generalizations of PMI are laid out in
more detail, based on their global multivariate coun-
terparts. Section 4 then discusses some applications
in the light of NLP, while section 5 concludes and
hints at some directions for future research.

2 Previous work

Research into the generalization of mutual informa-
tion was pioneered in two seminal papers. The first
one to explore the interaction of multiple random
variables in the scope of information theory was
McGill (1954). McGill described a first generaliza-
tion of mutual information based on the notion of
conditional entropy. This first generalization, called
interaction information, is described in section 3.2.1
below. A second generalization, solely based on
the commonalities of the random variables, was de-
scribed by Watanabe (1960). This generalization,
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called total correlation is presented in section 3.2.2.

3 Theory

3.1 Mutual information
Mutual information is a measure of the amount of
information that one random variable contains about
another random variable. It is the reduction in
the uncertainty of one random variable due to the
knowledge of the other.

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

(1)

Pointwise mutual information is a measure of as-
sociation that looks at particular instances of the two
random variablesX and Y . More specifically, point-
wise mutual information measures the difference be-
tween the probability of their co-occurrence given
their joint distribution and the probability of their
co-occurrence given the marginal distributions of X
and Y (thus assuming the two random variables are
independent).

pmi(x, y) = log
p(x, y)
p(x)p(y)

(2)

Note that mutual information (equation 1) yields
the expected PMI value over all possible instances of
random variables X and Y .

Ep(X,Y )[pmi(X,Y )] (3)

Furthermore, note that PMI may be positive or
negative, but its expected outcome over all events
(i.e. the global mutual information) is always non-
negative.

3.2 Multivariate mutual information
In this section, the two generalizations for multivari-
ate distributions are presented. For both generaliza-
tions, we examine their standard form (which looks
at the interaction between the random variables as a
whole) and their specific instantiation (that looks at
particular outcomes of the random variables). Anal-
ogously to PMI, it is these specific instantiations
of the measures that are able to weigh specific co-
occurrences according to their importance in the cor-
pus. As with PMI, the value for the global case ought

to be the expected value for all the instantiations of
the specific measure.

3.2.1 Interaction information
Interaction information (McGill, 1954) – also

called co-information (Bell, 2003) – is based on the
notion of conditional mutual information. Condi-
tional mutual information is the mutual information
of two random variables conditioned on a third one.

I(X;Y |Z)

=
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
(4)

which can be rewritten as

∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log
p(z)p(x, y, z)
p(x, z)p(y, z)

(5)

For the case of three variables, the interaction in-
formation is then defined as the conditional mutual
information subtracted by the standard mutual infor-
mation.

I1(X;Y ;Z) = I(X;Y |Z)− I(X;Y )
= I(X;Z|Y )− I(X;Z)
= I(Y ;Z|X)− I(Y ;Z) (6)

Expanded, this gives the following equation:

I1(X;Y ;Z)

=
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log
p(z)p(x, y, z)
p(x, z)p(y, z)

−
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

(7)

We can now define specific interaction informa-
tion as follows1:

1Note that – compared to equation 7 – the two subparts in
the right-hand side of the equation have been swapped. For the
three-variable case, this gives exactly the same outcome except
for a change in sign. The swap is necessary in order to ensure a
proper set-theoretic measure (Fano, 1961; Reza, 1994).
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SI1(x, y, z) = log
p(x, y)
p(x)p(y)

− log
p(z)p(x, y, z)
p(x, z)p(y, z)

= log
p(x, y)p(y, z)p(x, z)
p(x)p(y)p(z)p(x, y, z)

(8)

Interaction information – as well as specific in-
teraction information – can equally be defined for
n > 3 variables.

3.2.2 Total correlation
Total correlation (Watanabe, 1960) – also called

multi-information (Studený and Vejnarová, 1998)
quantifies the amount of information that is shared
among the different random variables, and thus ex-
presses how related a particular group of random
variables are.

I2(X1, X2, . . . , Xn)

=
∑

x1∈X1,
x2∈X2,

...
xn∈Xn

p(x1, x2, . . . , xn) log
p(x1, x2, . . . , xn)

Πn
i=1p(xi)

(9)

Analogously to the definition of pointwise mu-
tual information, we can straightforwardly define the
correlation for specific instances of the random vari-
ables, which we coin specific correlation.

SI2(x1, x2, . . . , xn) = log
p(x1, x2, . . . , xn)

Πn
i=1p(xi)

(10)
For the case of three variables, this gives the follow-
ing equation:

SI2(x, y, z) = log
p(x, y, z)

p(x)p(y)p(z)
(11)

Note that this measure has been used in NLP tasks
before, notably for collocation extraction (Villada
Moirón, 2005).

4 Application

In this section, we explore the performance of the
measures defined above in an NLP context, viz. the
extraction of salient subject verb object triples. This
research has been carried out for Dutch. The Twente

Nieuws Corpus (Ordelman, 2002), a 500M Dutch
word corpus, has been automatically parsed with
the Dutch dependency parser ALPINO (van Noord,
2006), and all subject verb object triples with fre-
quency f ≥ 3 have been extracted. Next, a ten-
sor T of size I × J × K has been constructed,
containing the three-way co-occurrence frequencies
of the I most frequent subjects by the J most fre-
quent verbs by the K most frequent objects, with
I = 10000, J = 1000,K = 10000. Finally, two
new tensors U and V have been constructed, such
that Uijk = SI1(Tijk) and Vijk = SI2(Tijk), i.e.
tensor U has been weighted using specific interac-
tion information (equation 8) and tensor V has been
weighted using specific correlation (equation 11).

Table 1 shows the top five subject verb object
triples that received the highest specific interaction
information score, while table 2 gives the top five
subject verb object triples that gained the highest
specific correlation score (both with f > 30).

Note that both methods are able to extract salient
subject verb object triples, such as prototypical svo
combinations (peiling geeft opinie weer ‘poll repre-
sents opinion’, helikopter vuurt raket af ‘helicopter
fires rocket’) and fixed expressions (Dutch proverbs
such as de wal keert het schip ‘the circumstances
change the course’ and de vlag dekt de lading ‘the
content corresponds to the title’).

subject verb object SI1

peiling geef weer opinie 18.20
‘poll’ ‘represent’ ‘opinion’
helikopter vuur af raket 17.57
‘helicopter’ ‘fire’ ‘rocket’
Man bijt hond 17.15
‘man’ ‘bite’ ‘dog’
verwijt snijd hout 17.10
‘reproach’ ‘cut’ ‘wood’
wal keer schip 17.01
‘quay’ ‘turn’ ‘ship’

Table 1: Top five subject verb object triples with highest
specific interaction information score

Comparing both methods, the results seem to in-
dicate that the extracted triples are similar for both
weightings. This, however, is not consistently the
case: the results can differ significantly for partic-
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subject verb object SI2

verwijt snijd hout 8.05
‘reproach’ ‘cut’ ‘wood’
helikopter vuur af raket 7.75
‘helicopter’ ‘fire’ ‘rocket’
peiling geef weer opinie 7.64
‘poll’ ‘represent’ ‘opinion’
vlag dek lading 7.21
‘flag’ ‘cover’ ‘load’
argument snijd hout 7.17
‘argument’ ‘cut’ ‘wood’

Table 2: Top five subject verb object triples with highest
specific correlation score

ular instances. This becomes apparent when com-
paring table 3 and table 4, which for each method
contain the top five combinations for the Dutch verb
speel ‘play’.

Table 3 indicates that specific interaction informa-
tion picks up on prototypical svo combinations (ork-
est speelt symfonie ‘orchestra plays symphony’; also
note the 4 other triples that come from bridge game
descriptions). Specific correlation (table 4), on the
other hand, picks up on the expression een rol spe-
len ‘play a role’, and extracts salient subjects that go
with the expression.

subject verb object SI1

orkest speel symfonie 11.65
‘orchestra’ ‘play’ ‘symphony’
leider speel ruiten 10.29
‘leader’ ‘play’ ‘diamonds’
leider speel harten 10.20
‘leader’ ‘play’ ‘hearts’
leider speel schoppen 10.01
‘leader’ ‘play’ ‘spades’
leider speel klaveren 9.89
‘leader’ ‘play’ ‘clubs’

Table 3: Top five combinations with highest specific in-
teraction information scores for verb speel

In order to quantitatively assess the aptness of the
two methods for the extraction of salient svo triples,
we performed a small-scale manual evaluation of the
100 triples that scored the highest for each measure.

subject verb object SI2

nationaliteit speel rol 4.12
‘nationality’ ‘play’ ‘role’
afkomst speel rol 4.06
‘descent’ ‘play’ ‘role’
toeval speel rol 4.04
‘coincidence’ ‘play’ ‘role’
motief speel rol 4.04
‘motive’ ‘play’ ‘role’
afstand speel rol 4.02
‘distance’ ‘play’ ‘role’

Table 4: Top five combinations with highest specific cor-
relation scores for verb speel

A triple is considered salient when it is made up of
a fixed (multi-word) expression, or when it consists
of a fixed expression combined with a salient sub-
ject or object (e.g. argument snijd hout ‘argument
cut wood’). The bare frequency tensor (without any
weighting) was used as a baseline. The results are
presented in table 5.

measure precision

baseline .00
SI1 .24
SI2 .31

Table 5: Manual evaluation results for the extraction of
salient svo triples

The results indicate that both measures are able to
extract a significant number of salient triples com-
pared to the frequency baseline, which is not able
to extract any salient triples at all. Comparing both
measures, specific correlation clearly performs best
(.31 versus .24 for specific interaction information).

Additionally, we computed Kendall’s τb to com-
pare the rankings yielded by the two different meth-
ods (over all triples). The correlation between both
rankings is τb = 0.21, indicating that the results
yielded by both methods – though correlated – differ
to a significant extent.

These are, of course, preliminary results, and a
more thorough evaluation is necessary to confirm the
tendencies that emerge.
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5 Conclusion

In this paper, we presented two multivariate gen-
eralizations of mutual information, as well as their
instantiated counterparts specific interaction infor-
mation and specific correlation, that are useful for
weighting multi-way co-occurrences in NLP tasks.
The main goal of this paper is to show that there is
not just one straightforward generalization of point-
wise mutual information for the multivariate case,
and NLP researchers that want to exploit multi-way
co-occurrences in an information-theoretic frame-
work should take this fact into account.

Moreover, we have applied the two different mea-
sures to the extraction of subject verb object triples,
and demonstrated that the results may differ signif-
icantly. It goes without saying that these are just
exploratory and rudimentary observations; more re-
search into the exact nature of both generalizations
and their repercussions for NLP – as well as a proper
quantitative evaluation – are imperative.

This brings us to some avenues for future work.
More research needs to be carried with regard to the
exact nature of the dependencies that both measures
capture. Preliminary results show that they extract
different information, but it is not clear what the
exact nature of that information is. Secondly, we
want to carry out a proper quantitative evaluation
on different multi-way co-occurrence (factorization)
tasks, in order to indicate which measure works best,
and which measure might be more suitable for a par-
ticular task.
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