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Abstract

In this paper, we present a first attempt to
characterize the semantic deviance of com-
posite expressions in distributional seman-
tics. Specifically, we look for properties of
adjective-noun combinations within a vector-
based semantic space that might cue their lack
of meaning. We evaluate four different com-
positionality models shown to have various
levels of success in representing the mean-
ing of AN pairs: the simple additive and
multiplicative models of Mitchell and Lap-
ata (2008), and the linear-map-based models
of Guevara (2010) and Baroni and Zamparelli
(2010). For each model, we generate com-
posite vectors for a set of AN combinations
unattested in the source corpus and which
have been deemed either acceptable or seman-
tically deviant. We then compute measures
that might cue semantic anomaly, and com-
pare each model’s results for the two classes of
ANs. Our study shows that simple, unsuper-
vised cues can indeed significantly tell unat-
tested but acceptable ANs apart from impos-
sible, or deviant, ANs, and that the simple ad-
ditive and multiplicative models are the most
effective in this task.

1 Introduction

Statistical approaches to describe, represent and un-
derstand natural language have been criticized as
failing to account for linguistic ‘creativity’, a prop-
erty which has been accredited to the compositional
nature of natural language. Specifically, criticisms

against statistical methods were based on the ar-
gument that a corpus cannot significantly sample a
natural language because natural language is infi-
nite (Chomsky, 1957). This cricticism also applies
to distributional semantic models that build seman-
tic representations of words or phrases in terms of
vectors recording their distributional co-occurrence
patterns in a corpus (Turney and Pantel, 2010), but
have no obvious way to generalize to word combi-
nations that have not been observed in the corpus.
To address this problem, there have been several re-
cent attempts to incorporate into distributional se-
mantic models a component that generates vectors
for unseen linguistic structures by compositional op-
erations in the vector space (Baroni and Zamparelli,
2010; Guevara, 2010; Mitchell and Lapata, 2010).

The ability to work with unattested data leads to
the question of why a linguistic expression might
not be attested in even an extremely large and well-
balanced corpus. Its absence might be motivated
by a number of factors: pure chance, the fact that
the expression is ungrammatical, uses a rare struc-
ture, describes false facts, or, finally, is nonsensi-
cal. One criticism from generative linguists is pre-
cisely that statistical methods could not distinguish
between these various possibilities.

The difficulty of solving this problem can be il-
lustrated by the difference in semantics between the
adjective-noun pairs in (1a) and (1b):

(1) a. blue rose
b. residential steak

Although it may be the case that you have never ac-
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tually seen a blue rose, the concept is not inconceiv-
able. On the other hand, the concept of a residen-
tial steak is rather unimaginable, and intuitively its
absence in a corpus is motivated by more than just
chance or data sparseness.

The present paper is a first attempt to use com-
positionality and distributional measures to distin-
guish nonsensical, or semantically deviant, linguis-
tic expression from other types of unattested struc-
tures. The task of distinguishing between unattested
but acceptable and unattested but semantically de-
viant linguistic expressions is not only a way to ad-
dress the criticism about the meaning of ‘unattest-
edness’, but also a task that could have a large im-
pact on the (computational) linguistic community as
a whole (see Section 2.1).

Our specific goal is to automatically detect se-
mantic deviance in attributive Adjective-Noun (AN)
expressions, using a small number of simple cues in
the vectorial representation of an AN as it is gener-
ated from the distributional vectors of its component
A and N by four compositional models found in the
literature. The choice of AN as our testbed is moti-
vated by two facts: first of all, ANs are common,
small constituents containing no functional mate-
rial, and secondly, ANs have already been studied in
compositional distributional semantics (Baroni and
Zamparelli, 2010; Guevara, 2010; Mitchell and La-
pata, 2010).

It is important to note that in this research we talk
about ‘semantically deviant’ expressions, but we do
not exclude the possibility that such expressions are
interpreted as metaphors, via a chain of associations.
In fact, distributional measures are desirable models
to account for this, since they naturally lead to a gra-
dient notion of semantic anomaly.

The rest of this paper is structured as follows.
Section 2 discusses relevant earlier work, introduc-
ing the literature on semantic deviance as well as
compositional methods in distributional semantics.
Section 3 presents some hypotheses about cues of
semantic deviance in distributional space. Our ex-
perimental setup and procedure are detailed in Sec-
tion 4, whereas the experiments’ results are pre-
sented and analyzed in Section 5. We conclude by
summarizing and proposing future directions in Sec-
tion 6.

2 Related work

2.1 Semantic deviance

As far as we know, we are the first to try to model
semantic deviance using distributional methods, but
the issue of when a complex linguistic expression is
semantically deviant has been addressed since the
1950’s in various areas of linguistics. In compu-
tational linguistics, the possibility of detecting se-
mantic deviance has been seen as a prerequisite to
access metaphorical/non-literal semantic interpreta-
tions (Fass and Wilks, 1983; Zhou et al., 2007). In
psycholinguistics, it has been part of a wide debate
on the point at which context can make us perceive a
‘literal’ vs. a ‘figurative’ meaning (Giora, 2002). In
theoretical generative linguistics, the issue was orig-
inally part of a discussion on the boundaries between
syntax and semantics. Cases like Chomsky’s clas-
sic “Colorless green ideas sleep furiously” can actu-
ally be regarded as violations of very fine-grained
syntactic selectional restrictions on the arguments
of verbs or modifiers, on the model of *much com-
puter (arguably a failure of much to combine with a
noun +COUNT). By 1977, even Chomsky doubted
that speakers could in general have intuitions about
whether ill-formedness was syntactic or semantic
(Chomsky, 1977, p. 4). The spirit of the selectional
approach persists in Asher (2011), who proposes a
detailed system of semantic types plus a theory of
type coercion, designed to account for the shift in
meaning seen in, e.g., (2) (lunch as food or as an
event).

(2) Lunch was delicious but took forever.

A practical problem with this approach is that a
full handmade specification of the features that de-
termine semantic compatibility is a very expensive
and time-consuming enterprise, and it should be
done consistently across the whole content lexicon.
Moreover, it is unclear how to model the intuition
that naval fraction, musical North or institutional
acid sound odd, in the absence of very particular
contexts, while (2) sounds quite natural. Whatever
the nature of coercion, we do not want it to run so
smoothly that any combination of A and N (or V and
its arguments) becomes meaningful and completely
acceptable.
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2.2 Distributional approaches to meaning
composition

Although the issue of how to compose meaning has
attracted interest since the early days of distribu-
tional semantics (Landauer and Dumais, 1997), re-
cently a very general framework for modeling com-
positionality has been proposed by Mitchell and La-
pata (Mitchell and Lapata, 2008; Mitchell and La-
pata, 2009; Mitchell and Lapata, 2010). Given two
vectors u and v, they identify two general classes of
composition models, (linear) additive models:

p = Au + Bv (1)

where A and B are weight matrices, and multiplica-
tive models:

p = Cuv

where C is a weight tensor projecting the uv ten-
sor product onto the space of p. Mitchell and La-
pata derive two simplified models from these gen-
eral forms: The simplified additive model given by
p = αu + βv, and a simplified multiplicative ap-
proach that reduces to component-wise multiplica-
tion, where the i-th component of the composed vec-
tor is given by: pi = uivi. Mitchell and Lapata
evaluate the simplified models on a wide range of
tasks ranging from paraphrasing to statistical lan-
guage modeling to predicting similarity intuitions.
Both simple models fare quite well across tasks
and alternative semantic representations, also when
compared to more complex methods derived from
the equations above. Given their overall simplic-
ity, good performance and the fact that they have
also been extensively tested in other studies (Baroni
and Zamparelli, 2010; Erk and Padó, 2008; Guevara,
2010; Kintsch, 2001; Landauer and Dumais, 1997),
we re-implement here both the simplified additive
and simplified multiplicative methods (we do not,
however, attempt to tune the weights of the additive
model, although we do apply a scalar normalization
constant to the adjective and noun vectors).

Mitchell and Lapata (as well as earlier re-
searchers) do not exploit corpus evidence about
the p vectors that result from composition, despite
the fact that it is straightforward (at least for short
constructions) to extract direct distributional evi-
dence about the composite items from the corpus

(just collect co-occurrence information for the com-
posite item from windows around the contexts in
which it occurs). The main innovation of Guevara
(2010), who focuses on adjective-noun combina-
tions (AN), is to use the co-occurrence vectors of
corpus-observed ANs to train a supervised compo-
sition model. Guevara, whose approach we also re-
implement here, adopts the full additive composi-
tion form from Equation (1) and he estimates the
A and B weights (concatenated into a single ma-
trix, that acts as a linear map from the space of con-
catenated adjective and noun vectors onto the AN
vector space) using partial least squares regression.
The training data are pairs of adjective-noun vec-
tor concatenations, as input, and corpus-derived AN
vectors, as output. Guevara compares his model
to the simplified additive and multiplicative models
of Mitchell and Lapata. Corpus-observed ANs are
nearer, in the space of observed and predicted test
set ANs, to the ANs generated by his model than
to those from the alternative approaches. The addi-
tive model, on the other hand, is best in terms of
shared neighbor count between observed and pre-
dicted ANs.

The final approach we re-implement is the one
proposed by Baroni and Zamparelli (2010), who
treat attributive adjectives as functions from noun
meanings to noun meanings. This is a standard ap-
proach in Montague semantics (Thomason, 1974),
except noun meanings here are distributional vec-
tors, not denotations, and adjectives are (linear)
functions learned from a large corpus. Unlike in
Guevara’s approach, a separate matrix is generated
for each adjective using only examples of ANs con-
taining that adjective, and no adjective vector is
used: the adjective is represented entirely by the ma-
trix mapping nouns to ANs. In terms of Mitchell
and Lapata’s general framework, this approach de-
rives from the additive form in Equation (1) with the
matrix multiplying the adjective vector (say, A) set
to 0, the other matrix (B) representing the adjective
at hand, and v a noun vector. Baroni and Zamparelli
(2010) show that their model significantly outper-
forms other vector composition methods, including
addition, multiplication and Guevara’s approach, in
the task of approximating the correct vectors for pre-
viously unseen (but corpus-attested) ANs. Simple
addition emerges as the second best model.
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See Section 4.3 below for details on our re-
implementations. Note that they follow very closely
the procedure of Baroni and Zamparelli (2010), in-
cluding choices of source corpus and parameter val-
ues, so that we expect their results on the quality of
the various models in predicting ANs to also hold
for our re-implementations.

3 Simple indices of semantic deviance

We consider here a few simple, unsupervised mea-
sures to help us distinguish the representation that a
distributional composition model generates for a se-
mantically anomalous AN from the one it generates
for a semantically acceptable AN. In both cases, we
assume that the AN is not already part of the model
semantic space, just like you can distinguish be-
tween parliamentary tomato (odd) and marble iPad
(OK), although you probably never heard either ex-
pression.

We hypothesize that, since the values in the di-
mensions of a semantic space are a distributional
proxy to the meaning of an expression, a mean-
ingless expression should in general have low val-
ues across the semantic space dimensions. For ex-
ample, a parliamentary tomato, no longer being a
vegetable but being an unlikely parliamentary event,
might have low values on both dimensions char-
acterizing vegetables and dimensions characterizing
events. Thus, our first simple measure of seman-
tic anomaly is the length of the model-generated
AN. We hypothesize that anomalous AN vectors are
shorter than acceptable ANs.

Second, if deviant composition destroys or ran-
domizes the meaning of a noun, as a side effect we
might expect the resulting AN to be more distant, in
the semantic space, from the component noun. Al-
though even a marble iPad might have lost some es-
sential properties of iPads (it could for example be
an iPad statue you cannot use as a tablet), to the ex-
tent that we can make sense of it, it must retain at
least some characteristics of iPads (at the very least,
it will be shaped like an iPad). On the other hand, we
cannot imagine what a parliamentary tomato should
be, and thus cannot attribute even a subset of the reg-
ular tomato properties to it. We thus hypothesize that
model-generated vectors of deviant ANs will form
a wider angle (equivalently, will have a lower co-

sine) with the corresponding N vectors than accept-
able ANs.

Finally, if an AN makes no sense, its model-
generated vector should not have many neighbours
in the semantic space, since our semantic space is
populated by nouns, adjectives and ANs that are
commonly encountered in the corpus, and should
thus be meaningful. We expect deviant ANs to
be “semantically isolated”, a notion that we opera-
tionalize in terms of a (neighborhood) density mea-
sure, namely the average cosine with the (top 10)
nearest neighbours. We hypothesize that model-
generated vectors of deviant ANs will have lower
density than model-generated acceptable ANs.

4 Experimental setup

4.1 Semantic space

Our initial step was to construct a semantic space for
our experiments, consisting of a matrix where each
row vector represents an adjective, noun or AN. We
first introduce the source corpus, then the vocabulary
of words and ANs that we represent in the space,
and finally the procedure adopted to build the vec-
tors representing the vocabulary items from corpus
statistics, in order to obtain the semantic space ma-
trix. We work here with a “vanilla” semantic space
(essentially, we follow the steps of Baroni and Zam-
parelli (2010)), since our focus is on the effect of
different composition methods given a common se-
mantic space. We leave it to further work to study
how choices in semantic space construction affect
composition operations.

4.1.1 Source corpus

We use as our source corpus the concate-
nation of the Web-derived ukWaC corpus
(http://wacky.sslmit.unibo.it/),
a mid-2009 dump of the English Wikipedia
(http://en.wikipedia.org) and the British
National Corpus (http://www.natcorp.
ox.ac.uk/). The corpus has been tokenized,
POS-tagged and lemmatized with the TreeTagger
(Schmid, 1995), and it contains about 2.8 billion
tokens. We extract all statistics at the lemma level,
ignoring inflectional information.
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4.1.2 Semantic space vocabulary

The words/ANs in the semantic space must of
course include the items that we need for our exper-
iments (adjectives, nouns and ANs used for model
training and as input to composition). Moreover, in
order to study the behaviour of the test items we are
interested in (that is, model-generated AN vectors)
within a large and less ad-hoc space, we also include
many more adjectives, nouns and ANs in our vocab-
ulary not directly relevant to our experimental ma-
nipulations.

We populate our semantic space with the 8K most
frequent nouns and 4K most frequent adjectives
from the corpus (excluding, in both cases, the top
50 most frequent elements). We extended this vo-
cabulary to include two sets of ANs (33K ANs cu-
mulatively), for a total of 45K vocabulary items in
the semantic space.

To create the ANs needed to run and evaluate the
experiments described below, we focused on a set
of adjectives which are very frequent in the corpus
so that they will be in general able to combine with
wide classes of nouns, making the unattested cases
more interesting, but not so frequent as to have such
a general meaning that would permit a free combi-
nation with nearly any noun. The ANs were there-
fore generated by crossing a selected set of 200 very
frequent adjectives (adjectives attested in the corpus
at least 47K times, and at most 740K) and the set
of the 8K nouns in our semantic space vocabulary,
producing a set of 4.92M generated ANs.

The first set of ANs included in the semantic
space vocabulary is a randomly sampled set of 30K
ANs from the generated set which are attested in
the corpus at least 200 times (to avoid noise and fo-
cus on ANs for which we can extract reasonably ro-
bust distributional data). We also extracted any unat-
tested ANs from the set of generated set (about 3.5M
unattested ANs), putting them aside to later assem-
ble our evaluation material, described in Section 4.2.

To add further variety to the semantic space, we
included a less controlled second set of 3K ANs ran-
domly picked among those that are attested and are
formed by the combination of any of the 4K adjec-
tives and 8K nouns in the vocabulary.

4.1.3 Semantic space construction

For each of the items in our vocabulary, we first
build 10K-dimensional vectors by recording their
sentence-internal co-occurrence with the top 10K
most frequent content words (nouns, adjectives or
verbs) in the corpus. The raw co-occurrence counts
are then transformed into Local Mutual Information
scores (Local Mutual Information is an association
measure that closely approximates the commonly
used Log-Likelihood Ratio while being simpler to
compute (Baroni and Lenci, 2010; Evert, 2005)).

Next, we reduce the full co-occurrence matrix
applying the Singular Value Decomposition (SVD)
operation, like in LSA and related distributional
semantic methods (Landauer and Dumais, 1997;
Rapp, 2003; Schütze, 1997). The original 45K-by-
10K-dimensional matrix is reduced in this way to a
45K-by-300 matrix, where vocabulary items are rep-
resented by their coordinates in the space spanned
by the first 300 right singular vectors of the SVD
solution. This step is motivated by the fact that we
will estimate linear models to predict the values of
each dimension of an AN from the dimensions of the
components. We thus prefer to work in a smaller and
denser space. As a sanity check, we verify that we
obtain state-of-the-art-range results on various se-
mantic tasks using this reduced semantic space (not
reported here for space reason).

4.2 Evaluation materials

Our goal is to study what happens when composi-
tional methods are used to construct a distributional
representation for ANs that are semantically deviant,
compared to the AN representations they generate
for ANs they have not encountered before, but that
are semantically acceptable.

In order to assemble these lists, we started from
the set of 3.5M unattested ANs described in Sec-
tion 4.1.2 above, focusing on 30 randomly chosen
adjectives. For each of these, we randomly picked
100 ANs for manual inspection (3K ANs in total).
Two authors went through this list, marking those
ANs that they found semantically highly anomalous,
no matter how much effort one would put in con-
structing metaphorical or context-dependent inter-
pretations, as well as those they found completely
acceptable (so, rating was on a 3-way scale: deviant,
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intermediate, acceptable). The rating exercise re-
sulted in rather low agreement (Cohen’s κ=0.32),
but we reasoned that those relatively few cases (456
over 3K) where both judges agreed the AN was odd
should indeed be odd, and similarly for the even
rarer cases in which they agreed an AN was com-
pletely acceptable (334 over 3K). We thus used the
agreed deviant and acceptable ANs as test data.

Of 30 adjectives, 5 were discarded for either tech-
nical reasons or for having less than 5 agreed de-
viant or acceptable ANs. This left us with a de-
viant AN test set comprising of 413 ANs, on av-
erage 16 for each of the 25 remaining adjectives.
Some examples of ANs in this set are: academic
bladder, blind pronunciation, parliamentary potato
and sharp glue. The acceptable (but unattested) AN
test set contains 280 ANs, on average 11 for each of
the 25 studied adjectives. Examples of ANs in this
set include: vulnerable gunman, huge joystick, aca-
demic crusade and blind cook. The evaluation sets
can be downloaded from http://www.vecchi.
com/eva/resources.html.

There is no significant difference between the
length of the vectors of the component nouns in the
acceptable vs. deviant AN sets (two-tailed Welch’s t
test; t=−0.25; p>0.8). This is important, since at
least one of the potential cues to deviance we con-
sider (AN vector length) is length-dependent, and
we do not want a trivial result that can simply be
explained by systematic differences in the length of
the input vectors.

4.3 Composition methods
As discussed in Section 2.2, the experiment was car-
ried out across four compositional methods.

Additive AN vectors (add method) are simply
obtained by summing the corresponding adjective
and noun vectors after normalizing them. Multi-
plicative vectors (mult method) were obtained by
component-wise multiplication of the adjective and
noun vectors, also after normalization. Confirm-
ing the results of Baroni and Zamparelli (2010),
non-normalized versions of add and mult were also
tested, but did not produce significant results (in
the case of multiplication, normalization amounts to
multiplying the composite vector by a scalar, so it
only affects the length-dependent vector length mea-
sure). It is important to note that, as reported in

Baroni and Zamparelli (2010), the mult method can
be expected to perform better in the original, non-
reduced semantic space because the SVD dimen-
sions can have negative values, leading to counter-
intuitive results with component-wise multiplication
(multiplying large opposite-sign values results in
large negative values instead of being cancelled out).
The tests of Section 5, however, are each run in the
SVD-reduced space to remain consistent across all
models. We leave it to future work to explore the
effect on the performance of using the non-reduced
space for the models for which this option is com-
putationally viable.

In the linear map (lm) approach proposed by
Guevara (2010), a composite AN vector is obtained
by multiplying a weight matrix by the concatenation
of the adjective and noun vectors, so that each di-
mension of the generated AN vector is a linear com-
bination of dimensions of the corresponding adjec-
tive and noun vectors. That is, the 600 weights in
each of the 300 rows of the weight matrix are the
coefficients of a linear equation predicting the val-
ues of a single dimension in the AN vector as a lin-
ear combination (weighted sum) of the 300 adjective
and 300 noun dimensions. Following Guevara, we
estimate the coefficients of the equation using (mul-
tivariate) partial least squares regression (PLSR) as
implemented in the R pls package (Mevik and
Wehrens, 2007), with the latent dimension param-
eter of PLSR set to 50, the same value used by Ba-
roni and Zamparelli (2010). Coefficient matrix es-
timation is performed by feeding the PLSR a set
of input-output examples, where the input is given
by concatenated adjective and noun vectors, and the
output is the vector of the corresponding AN directly
extracted from our semantic space (i.e., the AN vec-
tors used in training are not model-generated, but
directly derived from corpus evidence about their
distribution). The matrix is estimated using a ran-
dom sample of 2K adjective-noun-AN tuples where
the AN belongs to the set of 30K frequently attested
ANs in our vocabulary.

Finally, in the adjective-specific linear map
(alm) method of Baroni and Zamparelli (2010), an
AN is generated by multiplying an adjective weight
matrix with a noun vector. The weights of each of
the 300 rows of the weight matrix are the coefficients
of a linear equation predicting the values of one of
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the dimensions of the AN vector as a linear com-
bination of the 300 dimensions of the component
noun. The linear equation coefficients are estimated
separately for each of the 25 tested adjectives from
the attested noun-AN pairs containing that adjective
(observed adjective vectors are not used), again us-
ing PLSR with the same parameter as above. For
each adjective, the training N-AN vector pairs cho-
sen are those available in the semantic space for each
test set adjective, and range from 100 to more than
500 items across the 25 adjectives.

4.4 Experimental procedure

Using each composition method, we generate com-
posite vectors for all the ANs in the two (acceptable
and deviant) evaluation sets (see Section 4.2 above).
We then compute the measures that might cue se-
mantic deviance discussed in Section 3 above, and
compare their values between the two AN sets. In
order to smooth out adjective-specific effects, we z-
normalize the values of each measure across all the
ANs sharing an adjective before computing global
statistics (i.e., the values for all ANs sharing an ad-
jective from the two sets are transformed by sub-
tracting their mean and dividing by their variance).
We then compare the two sets, for each composition
method and deviance cue, by means of two-tailed
Welch’s t tests. We report the estimated t score,
that is, the standardized difference between the mean
acceptable and deviant AN values, with the corre-
sponding significance level. For all our cues, we
predict t to be significantly larger than 0: Accept-
able AN vectors should be longer than deviant ones,
they should be nearer – that is, have a higher cosine
with – the component N vectors and their neighbour-
hood should be denser – that is, the average cosines
with their top neighbours should be higher than the
ones of deviant ANs with their top neighbours.

5 Results

The results of our experiments are summarized in
Table 1. We see that add and mult provide signif-
icant results in the expected direction for 2 over 3
cues, only failing the cosine test. With the lm model,
acceptable and deviant ANs are indistinguishable
across the board, whereas alm captures the distinc-
tion in terms of density.

LENGTH COSINE DENSITY

method t sig. t sig. t sig.
add 7.89 * 0.31 2.63 *
mult 3.16 * -0.56 2.68 *
lm 0.16 0.55 -0.23
alm 0.48 1.37 3.12 *

Table 1: t scores for difference between acceptable and
deviant ANs with respect to 3 cues of deviance: length
of the AN vector, cosine of the AN vector with the com-
ponent noun vector and density, measured as the average
cosine of an AN vector with its nearest 10 neighbours in
semantic space. For all significant results, p<0.01.

The high scores in the vector length analyses of
both the addition and the multiplication models are
an indication that semantically acceptable ANs tend
to be composed of similar adjectives and nouns, i.e.,
those which occur in similar contexts and we can as-
sume are likely to belong to the same domain, which
sounds plausible.

In Baroni and Zamparelli (2010), the alm model
performed far better than add and mult in approxi-
mating the correct vectors for unseen ANs, while on
this (in a sense, more metalinguistic) task add and
mult work better, while alm is successful only in the
more sophisticated measure of neighbor density.

The lack of significant results for the cosine mea-
sure is disappointing, but not entirely surprising. A
large angle between N and AN might be a feature of
impossible ANs common to various types of pos-
sible ANs: idioms (a red herring is probably far
from herring in semantic space), non-subsective ad-
jectives (stone lion vs. lion; fake butterfly vs. but-
terfly), plus some metaphorical constructions (aca-
demic crusade vs. crusade—one of several ANs
judged acceptable in our study, which can only be
taken as metaphors). Recall, finally, that the vector
for the base N collapses together all the meanings
of an ambiguous N. The adjective might have a dis-
ambiguating effect which would increase the cosine
distance.

To gain a better understanding of the neighbor-
hood density test we performed a detailed analysis
of the nearest neighbors of the AN vectors generated
by the three models in which the difference in neigh-
bor distance was significant across deviant and ac-
ceptable ANs: alm, multiplication and addition. For
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each of the ANs, we looked at the top 10 semantic-
space neighbors generated by each of the three mod-
els, focusing on two aspects: whether the neighbor
was a single A or N, rather than AN, and whether
the neighbor contained the same A or N as the AN
is was the neighbor of (as in blind regatta / blind
athlete or biological derivative / partial derivative).
The results are summarized in Table 2.

method status A N A1= N1=
only only A2 N2

add
accept 11.9 8.7 14.6 2.4
deviant 12.5 6.8 14.6 2.3

mult
accept 6.9 8.0 0.7 0.1
deviant 2.7 7.3 0.5 0.1

alm
accept 4.9 17.7 7.0 0.0
deviant 7.1 19.6 6.2 0.0

Table 2: Percentage distributions of various properties of
the top 10 neighbours of ANs in the acceptable (2800)
and deviant (4130) sets for add, mult and alm. The last
two columns express whether the neighbor contains the
same Adjective or Noun as the target AN.

In terms of the properties we measured, neighbor
distributions are quite similar across acceptable and
deviant ANs. One interesting finding is that the sys-
tem is quite ‘adjective-driven’: particularly for the
additive model (where we can imagine that some Ns
with low dimensional values do not shift much the
adjective position in the multidimensional space),
less so in the alm method, and not at all for mult. To
put the third and forth columns in context, the subset
of the semantic space used to generate the SVD from
which the neighbors are drawn contained 2.69% ad-
jectives, 5.24% nouns and 92.07% ANs. With re-
spect to the last two columns, it is interesting to ob-
serve that matching As are frequent for deviant ANs
even in alm, a model which has never seen A-vectors
during training. Further qualitative evaluations show
that in many deviant AN cases the similarity is be-
tween the A in the target AN and the N of the neigh-
bor (e.g. academic bladder / honorary lectureship),
while the opposite effect seems to be much harder to
find.

6 Conclusion and future work

The main aim of this paper was to propose a new
challenge to the computational distributional seman-

tics community, namely that of characterizing what
happens, distributionally, when composition leads
to semantically anomalous composite expressions.
The hope is, on the one hand, to bring further sup-
port to the distributional approach by showing that it
can be both productive and constrained; and on the
other, to provide a more general characterization of
the somewhat elusive notion of semantic deviance –
a notion that the field of formal semantics acknowl-
edges but might lack the right tools to model.

Our results are very preliminary, but also very en-
couraging, suggesting that simple unsupervised cues
can significantly tell unattested but acceptable ANs
apart from impossible, or at least deviant, ones. Al-
though, somewhat disappointingly, the model that
has been shown in a previous study (Baroni and
Zamparelli, 2010) to be the best at capturing the se-
mantics of well-formed ANs turns out to be worse
than simple addition and multiplication.

Future avenues of research must include, first of
all, an exploration on the effect on each model when
tested in the non-reduced space where computation-
ally possible, or using different dimensionality re-
duction methods. A preliminary study demonstrates
an enhanced performance of the mult method in the
full space.

Second, we hope to provide a larger benchmark
of acceptable and deviant ANs, beyond the few hun-
dreds we used here, and sampling a larger typology
of ANs across frequency ranges and adjective and
noun classes. To this extent, we are implementing
a crowd-sourcing study to collect human judgments
from a large pool of speakers on a much larger set of
ANs unattested in the corpus. Averaging over mul-
tiple judgments, we will also be able to characterize
semantic deviance as a gradient property, probably
more accurately.

Next, the range of cues we used was quite limited,
and we intend to extend the range to include more
sophisticated methods such as 1) combining multi-
ple cues in a single score; 2) training a supervised
classifier from labeled acceptable and deviant ANs,
and studying the most distinctive features discov-
ered by the classifier; 3) trying more complex unsu-
pervised techniques, such as using graph-theoretical
methods to characterize the semantic neighborhood
of ANs beyond our simple density measure.

Finally, we are currently not attempting a typol-

8



ogy of deviant ANs. We do not distinguish cases
such as parliamentary tomato, where the adjective
does not apply to the conceptual semantic type of
the noun (or at least, where it is completely undeter-
mined which relation could bridge the two objects),
from oxymorons such as dry water, or vacuously
redundant ANs (liquid water) and so on. We real-
ize that, at a more advanced stage of the analysis,
some of these categories might need to be explicitly
distinguished (for example, liquid water is odd but
perfectly meaningful), leading to a multi-way task.
Similarly, among acceptable ANs, there are spe-
cial classes of expressions, such as idiomatic con-
structions, metaphors or other rhetorical figures, that
might be particularly difficult to distinguish from
deviant ANs. Again, more cogent tasks involving
such well-formed but non-literal constructions (be-
yond the examples that ended up by chance in our
acceptable set) are left to future work.
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