
Proceedings of the TextGraphs-6 Workshop, pages 60–68,
Portland, Oregon, USA, 19-24 June 2011. c©2011 Association for Computational Linguistics

From ranked words to dependency trees: two-stage unsupervised
non-projective dependency parsing

Anders Søgaard
Center for Language Technology

University of Copenhagen
soegaard@hum.ku.dk

Abstract

Usually unsupervised dependency parsing
tries to optimize the probability of a corpus
by modifying the dependency model that was
presumably used to generate the corpus. In
this article we explore a different view in
which a dependency structure is among other
things a partial order on the nodes in terms of
centrality or saliency. Under this assumption
we model the partial order directly and derive
dependency trees from this order. The result is
an approach to unsupervised dependency pars-
ing that is very different from standard ones in
that it requires no training data. Each sentence
induces a model from which the parse is read
off. Our approach is evaluated on data from 12
different languages. Two scenarios are consid-
ered: a scenario in which information about
part-of-speech is available, and a scenario in
which parsing relies only on word forms and
distributional clusters. Our approach is com-
petitive to state-of-the-art in both scenarios.

1 Introduction

Unsupervised dependency parsers do not achieve
the same quality as supervised or semi-supervised
parsers, but in some situations precision may be less
important compared to the cost of producing manu-
ally annotated data. Moreover, unsupervised depen-
dency parsing is attractive from a theoretical point
of view as it does not rely on a particular style of an-
notation and may potentially provide insights about
the difficulties of human language learning.

Unsupervised dependency parsing has seen rapid
progress recently, with error reductions on English

(Marcus et al., 1993) of about 15% in six years
(Klein and Manning, 2004; Spitkovsky et al., 2010),
and better and better results for other languages
(Gillenwater et al., 2010; Naseem et al., 2010),
but results are still far from what can be achieved
with small seeds, language-specific rules (Druck et
al., 2009) or using cross-language adaptation (Smith
and Eisner, 2009; Spreyer et al., 2010).

The standard method in unsupervised dependency
parsing is to optimize the overall probability of the
corpus by assigning trees to its sentences that cap-
ture general patterns in the distribution of part-of-
speech (POS). This happens in several iterations
over the corpus. This method requires clever initial-
ization, which can be seen as a kind of minimal su-
pervision. State-of-the-art unsupervised dependency
parsers, except Seginer (2007), also rely on manu-
ally annotated text or text processed by supervised
POS taggers. Since there is an intimate relationship
between POS tagging and dependency parsing, the
POS tags can also be seen as a seed or as partial an-
notation. Inducing a model from the corpus is typi-
cally a very slow process.

This paper presents a new and very different ap-
proach to unsupervised dependency parsing. The
parser does not induce a model from a big corpus,
but with a few exceptions only considers the sen-
tence in question. Itdoesuse a larger corpus to
induce distributional clusters and a ranking of key
words in terms of frequency and centrality, but this
is computationally efficient and is only indirectly re-
lated to the subsequent assignment of dependency
structures to sentences. The obvious advantage of
not relying on training data is that we do not have to

60

worry about whether the test data reflects the same
distribution as the target data (domain adaptation),
and since our models are much smaller, parsing will
be very fast.

The parser assigns a dependency structure to a se-
quence of words in two stages. It first decorates
the n nodes of what will become our dependency
structure with word forms and distributional clus-
ters, constructs a directed acyclic graph from the
nodes inO(n2), and ranks the nodes using iterative
graph-based ranking (Page and Brin, 1998). Subse-
quently, it constructs a tree from the ranked list of
words using a simpleO(n log n) parsing algorithm.

Our parser is evaluated on the selection of 12
dependency treebanks also used in Gillenwater et
al. (2010). We consider two cases: parsing raw text
and parsing text with information about POS.

Strictly unsupervised dependency parsing is of
course a more difficult problem than unsupervised
dependency parsing of manually annotated POS se-
quences. Nevertheless ourstrictly unsupervised
parser, which only sees word forms, performs signif-
icantly better than structural baselines, and it outper-
forms the standard POS-informed DMV-EM model
(Klein and Manning, 2004) on 3/12 languages. The
full parser, which sees manually annotated text, is
competitive to state-of-the-art models such as E-
DMV PR AS 140 (Gillenwater et al., 2010).1

1.1 Preliminaries

The observed variables in unsupervised dependency
parsing are a corpus of sentencess = s1, . . . , sn
where each wordwj in si is associated with a POS
tagpj. The hidden variables are dependency struc-
turest = t1, . . . , tn wheresi labels the vertices of
ti. Each vertex has a single incoming edge, possibly
except one called the root of the tree. In this work
and in most other work in dependency parsing, we
introduce an artificial root node so that all vertices
decorated by word forms have an incoming edge.

A dependency structure such as the one in Fig-
ure 1 is thus a tree decorated with labels and aug-
mented with a linear order on the nodes. Each edge
(i, j) is referred to as a dependency between a head
word wi and a dependent wordwj and sometimes

1Naseem et al. (2010) obtain slightly better results, but only
evaluate on six languages. They made their code public, though:
http://groups.csail.mit.edu/rbg/code/dependency/

written wi → wj . Let w0 be the artificial root of
the dependency structure. We use→+ to denote the
transitive closure on the set of edges. Both nodes
and edges are typically labeled. Since a dependency
structure is a tree, it satisfies the following three
constraints: A dependency structure over a sentence
s : w1, . . . , wn is connected, i.e.:

∀wi ∈ s.w0 →
+ wi

A dependency structure is alsoacyclic, i.e.:

¬∃wi ∈ s.wi →
+ wi

Finally, a dependency structure issingle-headed,
i.e.:

∀wi.∀wj.(w0 → wi ∧ w0 → wj)⇒ wi = wj

If we also require that each vertex other than the
artificial root node has an incoming edge we have a
complete characterization of dependency structures.
In sum, a dependency structure is a tree with a lin-
ear order on the leaves where the root of the tree
for practical reasons is attached to an artificial root
node. The artificial root node makes it easier to im-
plement parsing algorithms.

Finally, we defineprojectivity, i.e. whether the
linear order is projective wrt. the dependency tree,
as the property of dependency trees that ifwi → wj

it also holds that all words in betweenwi and wj

are dominated bywi, i.e. wi →
+ wk. Intuitively,

a projective dependency structure contains no cross-
ing edges. Projectivity is not a necessary property
of dependency structures. Some dependency struc-
tures are projective, others are not. Most if not
all previous work in unsupervised dependency pars-
ing has focused on projective dependency parsing,
building on work in context-free parsing, but our
parser is guaranteed to produce well-formed non-
projective dependency trees. Non-projective pars-
ing algorithms for supervised dependency parsing
have, for example, been presented in McDonald et
al. (2005) and Nivre (2009).

1.2 Related work

Dependency Model with Valence (DMV) by Klein
and Manning (2004) was the first unsupervised de-
pendency parser to achieve an accuracy for manually

61

POS-tagged English above a right-branching base-
line.

DMV is a generative model in which the sentence
root is generated and then each head recursively gen-
erates its left and right dependents. For eachsi ∈ s,
ti is assumed to have been built the following way:
The arguments of a headh in direction d are gen-
erated one after another with the probability that no
more arguments ofh should be generated in direc-
tion d conditioned onh, d and whether this would be
the first argument ofh in directiond. The POS tag of
the argument ofh is generated givenh andd. Klein
and Manning (2004) use expectation maximization
(EM) to estimate probabilities with manually tuned
linguistically-biased priors.

Smith and Eisner (2005) use contrastive es-
timation instead of EM, while Smith and Eis-
ner (2006) use structural annealing which penal-
izes long-distance dependencies initially, gradually
weakening the penalty during training. Cohen et
al. (2008) use Bayesian priors (Dirichlet and Logis-
tic Normal) with DMV. All of the above approaches
to unsupervised dependency parsing build on the
linguistically-biased priors introduced by Klein and
Manning (2004).

In a similar way Gillenwater et al. (2010) try
to penalize models with a large number of dis-
tinct dependency types by using sparse posteriors.
They evaluate their system on 11 treebanks from the
CoNLL 2006 Shared Task and the Penn-III treebank
and achieve state-of-the-art performance.

An exception to using linguistically-biased priors
is Spitkovsky et al. (2009) who use predictions on
sentences of lengthn to initialize search on sen-
tences of lengthn + 1. In other words, their method
requires no manual tuning and bootstraps itself on
increasingly longer sentences.

A very different, but interesting, approach is taken
in Brody (2010) who use methods from unsuper-
vised word alignment for unsupervised dependency
parsing. In particular, he sees dependency parsing
as directional alignment from a sentence (possible
dependents) to itself (possible heads) with the mod-
ification that words cannot align to themselves; fol-
lowing Klein and Manning (2004) and the subse-
quent papers mentioned above, Brody (2010) con-
siders sequences of POS tags rather than raw text.
Results are below state-of-the-art, but in some cases

better than the DMV model.

2 Ranking dependency tree nodes

The main intuition behind our approach to unsuper-
vised dependency parsing is that the nodes near the
root in a dependency structure are in some sense the
most important ones. Semantically, the nodes near
the root typically express the main predicate and
its arguments. Iterative graph-based ranking (Page
and Brin, 1998) was first used to rank webpages
according to their centrality, but the technique has
found wide application in natural language process-
ing. Variations of the algorithm presented in Page
and Brin (1998) have been used in keyword extrac-
tion and extractive summarization (Mihalcea and Ta-
rau, 2004), word sense disambiguation (Agirre and
Soroa, 2009), and abstractive summarization (Gane-
san et al., 2010). In this paper, we use it as the first
step in a two-step unsupervised dependency parsing
procedure.

The parser assigns a dependency structure to a se-
quence of words in two stages. It first decorates
the n nodes of what will become our dependency
structure with word forms and distributional clus-
ters, constructs a directed acyclic graph from the
nodes inO(n2), and ranks the nodes using iterative
graph-based ranking. Subsequently, it constructs
a tree from the ranked list of words using a sim-
pleO(n log n) parsing algorithm. This section de-
scribes the graph construction step in some detail
and briefly describes the iterative graph-based rank-
ing algorithm used.

The first step, however, is assigning distributional
clusters to the words in the sentence. We use a hi-
erarchical clustering algorithm to induce 500 clus-
ters from the treebanks using publicly available soft-
ware.2 This procedure is quadratic in the number of
clusters, but linear in the size of the corpus. The
cluster names are bitvectors (see Figure 1).

2.1 Edges

The text graph is now constructed by adding dif-
ferent kinds of directed edges between nodes. The
edges are not weighted, but multiple edges between
nodes will make transitions between these nodes in

2http://www.cs.berkeley.edu/∼pliang/software/brown-
cluster-1.2.zip

62

iterative graph-based ranking more likely. The dif-
ferent kinds of edges play the same role in our model
as the rule templates in the DMV model, and they
are motivated below.

Some of the edge assignments discussed below
may seem rather heuristic. The edge template was
developed on development data from the English
Penn-III treebank (Marcus et al., 1993). Our edge
selection was incremental considering first an ex-
tended set of candidate edges with arbitrary param-
eters and then considering each edge type at a time.
If the edge type was helpful, we optimized any pos-
sible parameters (say context windows) and went on
to the next edge type: otherwise we disregarded it.3

Following data set et al. (2010), we apply the best
setting for English to all other languages.
Vine edges.Eisner and Smith (2005) motivate a vine
parsing approach to supervised dependency parsing
arguing that language users have a strong prefer-
ence for short dependencies. Reflecting preference
for short dependencies, we first add links between
all words and their neighbors and neighbors’ neigh-
bors. This also guarantees that the final graph is con-
nected.
Keywords and closed class words.We use a key-
word extraction algorithm without stop word lists to
extract non-content words and the most important
content words, typically nouns. The algorithm is a
crude simplification of TextRank (Mihalcea and Ta-
rau, 2004) that does not rely on linguistic resources,
so that we can easily apply it to low-resource lan-
guages. Since we do not use stop word lists, highly
ranked words will typically be non-content words,
followed by what is more commonly thought of as
keywords. Immediate neighbors to top-100 words
are linked to these words. The idea is that non-
content words may take neighboring words as ar-
guments, but dependencies are typically very local.
The genuine keywords, ranked 100–1000, may be
heads of dependents further away, and we therefore
add edges between these wordswi and their neigh-
boring wordswj if |i− j| ≤ 4.
Head-initial/head-final. It is standard in unsuper-
vised dependency parsing to compare against a

3The search was simplified considerably. For example, we
only considered symmetric context windows, where left context
length equals length of right context, and we binned this length
considering only values 1, 2, 4, 8 and all.

structural baseline; either left-attach, i.e. all words
attach to their left neighbor, or right-attach. Which
structural baseline is used depends on the language
in question. It is thus assumed that we know enough
about the language to know what structural baseline
performs best. It is therefore safe to incorporate this
knowledge in our unsupervised parsers; our parsers
are still as ”unsupervised” as our baselines. If a lan-
guage has a strong left-attach baseline, like Bulgar-
ian, the first word in the sentence is likely to be very
central for reasons of economy of processing. The
language is likely to be head-initial. On the other
hand, if a language has a strong right-attach base-
line, like Turkish, the last word is likely to be cen-
tral. The language is likely to be head-final. Some
languages like Slovene have strong (< 20%) left-
attachand right-attach baselines, however. We in-
corporate the knowledge that a language has a strong
left-attach or right-attach baseline if more than one
third of the dependencies are attachments to a im-
mediate left, resp. right, neighbor. Specifically, we
add edges from all nodes to the first element in the
sentence if a language has a strong left-attach base-
line; and from all edges to the last (non-punctuation)
element in the sentence if a language has a strong
right-attach baseline.

Word inequality. An edge is added between two
words if they have different word forms. It is not
very likely that a dependent and a head have the
same word form.

Cluster equality. An edge is added between two
words if they are neighbors or neighbors’ neighbors
and belong to the same clusters. If so, the two words
may be conjoined.

Morphological inequality. If two words wi, wj in
the same context (|i − j| ≤ 4) share prefix or suf-
fix, i.e. the first or last three letters, we add an edge
between them.

2.2 Edges using POS

Verb edges.All words are attached to all words with
a POS tag beginning with ”V. . . ”.

Finally, when we have access to POS information,
we do not rely on vine edges besides left-attach, and
we do not rely on keyword edges or suffix edges ei-
ther.

63

2.3 Ranking

Given the constructed graph we rank the nodes using
the algorithm in Page and Brin (1998), also known
as PageRank. The input to this algorithm is any di-
rected graphG = 〈E,V 〉 and the output is an as-
signmentPR : V → R of a score, also referred to
as PageRank, to each vertex in the graph such that all
scores sum to 1. A simplified version of PageRank
can be defined recursively as:

PR(v) = Σw∈Bv

PR(w)

L(w)

whereBv is the set of vertices such that(w, v) ∈
E, andL(w) is the number of outgoing links from
w, i.e. |{(u, u′)|(u, u′) ∈ E, u = w}|. In addi-
tion to this, Page and Brin (1998) introduces a so-
called damping factor to reflect that fact that Internet
users do not continue crawling web sites forever, but
restart, returning to random web sites. This influ-
ences centrality judgments and therefore should be
reflected in the probability assignment. Since there
is no obvious analogue of this in our case, we sim-
plify the PageRank algorithm and do not incorpo-
rate damping (or equivalent, set the damping factor
to 1.0).

Note, by the way, that although our graphs are
non-weighted and directed, like a graph of web
pages and hyperlinks (and unlike the text graphs in
Mihalcea and Tarau (2004), for example), several
pairs of nodes may be connected by multiple edges,
making a transition between them more probable.
Multiple edges provide a coarse weighting of the un-
derlying minimal graph.

2.4 Example

In Figure 1, we see an example graph of word nodes,
represented as a matrix, and a derived dependency
structure.4 We see that there are four edges from
The to market and six fromThe to crumbles, for
example. We then compute the PageRank of each
node using the algorithm described in Page and
Brin (1998); see also Figure 1. The PageRank val-
ues rank the nodes or the words. In Sect. 3, we de-
scribe a method for building a dependency tree from

4The dependency structure in Figure 1 contains dependency
labels such as ’SBJ’ and ’ROOT’. These are just included for
readability. We follow the literature on unsupervised depen-
dency parsing and focus only on unlabeled dependency parsing.

from/to The market crumbled .
The 0 4 6 3
market 4 0 5 3
crumbled 4 4 0 4
. 3 4 6 0
PR(%) 22.8 24.1 30.3 22.7

Figure 1: Graph, pagerank (PR) and predicted depen-
dency structure for sentence 5, PTB-III Sect. 23.

a ranking of the nodes. This method will produce
the correct analysis of this sentence; see Figure 1.
This is because the PageRank scores reflect syntac-
tic superiority; the root of the sentence typically has
the highest rank, and the least important nodes are
ranked lowly.

3 From ranking of nodes to dependency
trees

Consider the example in Figure 1 again. Once we
have ranked the nodes in our dependency structure,
we build a dependency structure from it using the
parsing algorithm in Figure 2. The input of the
graph is a list of ranked wordsπ = 〈n1, . . . , nm〉,
where each nodeni corresponds to a sentence posi-
tion npr2ind(i) decorated by a word formwpr2ind(i),
where pr2ind : {1, . . . ,m} → {1, . . . ,m} is a
mapping from rank to sentence position.

The interesting step in the algorithm is the head
selection step. Each word is assigned a head taken
from all the previously used heads and the word to
which a head was just assigned. Of these words,
we simply select the closest head. If two possible
heads are equally close, we select the one with high-
est PageRank.

Our parsing algorithm runs inO(n log n), since
it runs over the ranked words in a single pass con-
sidering only previously stored words as possible
heads, and guarantees connectivity, acyclicity and
single-headedness, and thus produces well-formed
non-projective dependency trees. To see this, re-
member that wellformed dependency trees are such
that all nodes but the artificial root nodes have a sin-
gle incoming edge. This follows immediately from

64

1: π = 〈n1, . . . , nm〉 # the ranking of nodes
2: H = 〈n0〉 # possible heads
3: D = ∅ # dependency structure
4: pr2ind : {1, . . . ,m} → {1, . . . ,m} # a mapping from rank to sentence position
5: for ni ∈ π do
6: if |H|=1 then
7: c = 0 # used to ensure single-headedness
8: else
9: c = 1

10: end if
11: nj′ = arg minnj∈H[c:] |pr2ind(i)− pr2ind(j)| # select head ofwj

12: H = ni ∪H # makeni a possible head
13: D = {(wpr2ind (i) ← wpr2ind(j′))} ∪D # add new edge toD
14: end for
15: return D

Figure 2: Parsing algorithm.

the fact that each node is assigned a head (line 11).
Furthermore, the dependency tree must be acyclic.
This follows immediately from the fact that a word
can only attach to a word with higher rank than it-
self. Connectivity follows from the fact that there
is an artificial root node and that all words attach to
this node or to nodes dominated by the root node.
Finally, we ensure single-headedness by explicitly
disregarding the root node once we have attached the
node with highest rank to it (line 6–7). Our parsing
algorithm does not guarantee projectivity, since the
iterative graph-based ranking of nodes can permute
the nodes in any order.

4 Experiments

We use exactly the same experimental set-up as
Gillenwater et al. (2010). The edge model was
developed on development data from the English
Penn-III treebank (Marcus et al., 1993), and we eval-
uate on Sect. 23 of the English treebanks and the test
sections of the remaining 11 treebanks, which were
all used in the CoNLL-X Shared Task (Buchholz and
Marsi, 2006). Gillenwater et al. (2010) for some
reason did not evaluate on the Arabic and Chinese
treebanks also used in the shared task. We also fol-
low Gillenwater et al. (2010) in only evaluating our
parser on sentences of at most 10 non-punctuation
words and in reporting unlabeled attachment scores
excluding punctuation.

4.1 Strictly unsupervised dependency parsing

We first evaluate the strictly unsupervised parsing
model that has no access to POS information. Since
we are not aware of other work in strictly unsuper-
vised multi-lingual dependency parsing, so we com-
pare against the best structural baseline (left-attach
or right-attach) and the standard DMV-EM model
of Klein and Manning (2004). The latter, however,
has access to POS information and should not be
thought of as a baseline. Results are presented in
Figure 3.

It is interesting that we actually outperform DMV-
EM on some languages. On average our scores are
significantly better (p < 0.01) than the best struc-
tural baselines (3.8%), but DMV-EM with POS tags
is still 3.0% better than our strictly unsupervised
model. For English, our system performs a lot worse
than Seginer (2007).

4.2 Unsupervised dependency parsing
(standard)

We then evaluate our unsupervised dependency
parser in the more standard scenario of parsing sen-
tences annotated with POS. We now compare our-
selves to two state-of-the-art models, namely DMV
PR-AS 140 and E-DMV PR-AS 140 (Gillenwater et
al., 2010). Finally, we also report results of the IBM
model 3 proposed by Brody (2010) for unsupervised
dependency parsing, since this is the only recent pro-

65

baseline EM ours
Bulgarian 37.7 37.8 41.9
Czech 32.5 29.6 28.7
Danish 43.7 47.2 43.7
Dutch 38.7 37.1 33.1
English 33.9 45.8 36.1
German 27.2 35.7 36.9
Japanese 44.7 52.8 56.5
Portuguese 35.5 35.7 35.2
Slovene 25.5 42.3 30.0
Spanish 27.0 45.8 38.4
Swedish 30.6 39.4 34.5
Turkish 36.6 46.8 45.9
AV 34.5 41.3 38.3

Figure 3: Unlabeled attachment scores (in %) on raw text.
(EM baseline has access to POS.)

posal we are aware of that departs significantly from
the DMV model. The results are presented in Fig-
ure 4.

Our results are on average significantly better than
DMV PR-AS 140 (2.5%), and better than DMV PR-
AS 140 on 8/12 languages. E-DMV PR-AS 140 is
slightly better than our model on average (1.3%),
but we still obtain better results on 6/12 languages.
Our results are a lot better than IBM-M3. Naseem
et al. (2010) report better results than ours on Por-
tuguese, Slovene, Spanish and Swedish, but worse
on Danish.

5 Error analysis

In our error analysis, we focus on the results for
German and Turkish. We first compare the results
of the strictly unsupervised model on German with
the results on German text annotated with POS. The
main difference between the two models is that more
links to verbs are added to the sentence graph prior
to ranking nodes when parsing text annotated with
POS. For this reason, the latter model improves con-
siderably in attaching verbs compared to the strictly
unsupervised model:

acc strict-unsup unsup
NN 43% 48%
NE 41% 39%
VVFIN 31% 100%
VAFIN 9% 86%
VVPP 13% 53%

While the strictly unsupervised model is about as

Figure 5: Predicted dependency structures for sentence 4
in the German test section; strictly unsupervised (above)
and standard (below) approach. Red arcs show wrong
decisions.

good at attaching nouns as the model with POS, it
is much worse attaching verbs. Since more links
to verbs are added, verbs receive higher rank, and
this improves f-scores for attachments to the artifi-
cial root node:

f-score strict-unsup unsup
to root 39.5% 74.0%
1 62.3% 69.6%
2 7.4% 24.4%
3–6 0 22.4%
7 0 0

This is also what helps the model with POS when
parsing the example sentence in Figure 5. The POS-
informed parser also predicts longer dependencies.

The same pattern is observed in the Turkish data,
but perhaps less dramatically so:

acc strict-unsup unsup
Noun 43% 42%
Verb 41% 51%

The increase in accuracy is again higher with
verbs than with nouns, but the error reduction was
higher for German.

f-score strict-unsup unsup
to root 57.4% 90.4%
1 65.7% 69.6%
2 32.1% 26.5%
3–6 11.6% 24.7%
7 0 12.5%

The parsers predict more long dependencies for
Turkish than for German; precision is generally
good, but recall is very low.

6 Conclusion

We have presented a new approach to unsupervised
dependency parsing. The key idea is that a depen-

66

DMV PR-AS 140 E-DMV PR-AS 140 ours IBM-M3
Bulgarian 54.0 59.8 52.5
Czech 32.0 54.6 42.8
Danish 42.4 47.2 55.2 41.9
Dutch 37.9 46.6 49.4 35.3
English 61.9 64.4 50.2 39.3
German 39.6 35.7 50.4
Japanese 60.2 59.4 58.3
Portuguese 47.8 49.5 52.8
Slovene 50.3 51.2 44.1
Spanish 62.4 57.9 52.1
Swedish 38.7 41.4 45.5
Turkish 53.4 56.9 57.9
AV 48.4 52.2 50.9

Figure 4: Unlabeled attachment scores (in %) on text annotated with POS.

dency structure also expresses centrality or saliency,
so by modeling centrality directly, we obtain infor-
mation that we can use to build dependency struc-
tures. Our unsupervised dependency parser thus
works in two stages; it first uses iterative graph-
based ranking to rank words in terms of central-
ity and then constructs a dependency tree from the
ranking. Our parser was shown to be competitive to
state-of-the-art unsupervised dependency parsers.

References

Eneko Agirre and Aitor Soroa. 2009. Personalizing
pagerank for word sense disambiguation. InEACL.

Samuel Brody. 2010. It depends on the translation: un-
supervised dependency parsing via word alignment. In
EMNLP.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
CoNLL.

Shay Cohen, Kevin Gimpel, and Noah Smith. 2008. Un-
supervised bayesian parameter estimation for depen-
dency parsing. InNIPS.

Gregory Druck, Gideon Mann, and Andrew McCal-
lum. 2009. Semi-supervised learning of dependency
parsers using generalized expectation criteria. InACL-
IJCNLP.

Jason Eisner and Noah A. Smith. 2005. Parsing with soft
and hard constraints on dependency length. InIWPT.

K Ganesan, C Zhai, and J Han. 2010. Opinosis: a graph-
based approach to abstractive summarization of highly
redudant opinions. InCOLING.

Jennifer Gillenwater, Kuzman Ganchev, Joao Graca, Fer-
nando Pereira, and Ben Taskar. 2010. Sparsity in de-
pendency grammar induction. InACL.

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: models of de-
pendency and constituency. InACL.

Mitchell Marcus, Mary Marcinkiewicz, and Beatrice
Santorini. 1993. Building a large annotated corpus
of English: the Penn Treebank.Computational Lin-
guistics, 19(2):313–330.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency parsing
using spanning tree algorithms. InHLT-EMNLP.

Rada Mihalcea and Paul Tarau. 2004. Textrank: bringing
order into texts. InEMNLP.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark
Johnson. 2010. Using universal linguistic knowledge
to guide grammar induction. InEMNLP.

Joakim Nivre. 2009. Non-projective dependency parsing
in expected linear time. InACL-IJCNLP.

Larry Page and Sergey Brin. 1998. The anatomy of a
large-scale hypertextual web search engine. InInter-
national Web Conference.

Yoav Seginer. 2007. Fast unsupervised incremental pars-
ing. In ACL.

Noah Smith and Jason Eisner. 2005. Contrastive estima-
tion: training log-linear models on unlabeled data. In
ACL.

Noah Smith and Jason Eisner. 2006. Annealing struc-
tural bias in multilingual weighted grammar induction.
In COLING-ACL.

David Smith and Jason Eisner. 2009. Parser adaptation
and projection with quasi-synchronous grammar fea-
tures. InEMNLP.

Valentin Spitkovsky, Hiyan Alshawi, and Daniel Juraf-
sky. 2009. Baby steps: how ”less is more” in unsu-
pervised dependency parsing. InNIPS Workshop on
Grammar Induction, Representation of Language and
Language Learning.

67

Valentin Spitkovsky, Hiyan Alshawi, Daniel Jurafsky,
and Christopher Manning. 2010. Viterbi training im-
proves unsupervised dependency parsing. InCoNNL.

Kathrin Spreyer, Lilja Øvrelid, and Jonas Kuhn. 2010.
Training parsers on partial trees: a cross-language
comparison. InLREC.

68

