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Abstract 

We present the first work on applying sta-
tistical techniques to unrestricted Quanti-
fier Scope Disambiguation (QSD), where 
there is no restriction on the type or the 
number of quantifiers in the sentence. We 
formulate unrestricted QSD as learning to 
build a Directed Acyclic Graph (DAG) and 
define evaluation metrics based on the 
properties of DAGs. Previous work on sta-
tistical scope disambiguation is very lim-
ited, only considering sentences with two 
explicitly quantified noun phrases (NPs). In 
addition, they only handle a restricted list 
of quantifiers. In our system, all NPs, ex-
plicitly quantified or not (e.g. definites, 
bare singulars/plurals, etc.), are considered 
for possible scope interactions. We present 
early results on applying a simple model to 
a small corpus. The preliminary results are 
encouraging, and we hope will motivate 
further research in this area. 

1 Introduction 

There are at least two interpretations for the fol-
lowing sentence: 
(1) Every line ends with a digit. 

In one reading, there is a unique digit (say 2) at the 
end of all lines. This is the case where the quanti-
fier A outscopes (aka having wide-scope over) the 
quantifier Every. The other case is the one in which 

Every has wide-scope (or alternatively A has nar-
row-scope), and represents the reading in which 
different lines could possibly end with distinct dig-
its. This phenomenon is known as quantifier scope 
ambiguity.  

Shortly after the first efforts to build natural lan-
guage understanding systems, Quantifier Scope 
Disambiguation (QSD) was realized to be very 
difficult. Woods (1978) was one of the first to sug-
gest a way to get around this problem. He pre-
sented a framework for scope-underspecified 
semantic representation. He suggests representing 
the Logical Form (LF) of the above sentence as: 
(2) <Every x Line> 

<A y Digit> 
Ends-with(x, y) 

in which, the relative scope of the quantifiers is 
underspecified. Since then scope underspecifica-
tion has been the most popular way to deal with 
quantifier scope ambiguity in deep language 
understanding systems (e.g. Boxer (Bos 2004), 
TRAINS (Allen et al. 2007), BLUE (Clark and 
Harrison 2008), and DELPH-IN1). Scope under-
specification works in practice, only because many 
NLP applications (e.g. machine translation) could 
be achieved without quantifier scope disambigua-
tion. QSD on the other hand, is critical for many 
other NLP tasks such as question answering sys-
tems, dialogue systems and computing entailment. 

Almost all efforts in the 80s and 90s on QSD 
adopt heuristics based on the lexical properties of 
the quantifiers, syntactic/semantic properties of the 
sentences, and discourse/pragmatic cues (VanLehn 
                                                             
1 http://www.delph-in.net/ 
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1978, Moran 1988, Alshawi 1992). For example, it 
is widely known that in English, the quantifier 
each tends to have the widest scope. Also, the sub-
ject of a sentence often outscopes the direct ob-
ject. 2  In cases where these heuristics conflict, 
(manually) weighted preference rules are adopted 
to resolve the conflict (Hurum 1988, , Pafel 1997). 

In the last decade there has been some effort to 
apply statistical and machine learning (ML) tech-
niques to QSD. All the previous efforts, however, 
suffer from the following two limitations (see sec-
tion 2 for details): 
• They only allow scoping two NPs per sentence. 
• The NPs must be explicitly quantified (e.g. they 

ignore definites or bare singulars/plurals), and 
the quantifiers are restricted to a predefined list. 

In this paper, we present the first work on applying 
statistical techniques to unrestricted QSD, where 
we put no restriction on the type or the number of 
NPs to be scoped in a sentence. In fact, every two 
NPs, explicitly quantified or not (including defi-
nites, indefinites, bare singulars/plurals, pronouns, 
etc.), are examined for possible scope interactions. 
Scoping only two quantifiers per sentence, the pre-
vious work defines QSD as a single classification 
task (e.g. 0 where the first quantifier has wide-
scope, and 1 otherwise). As a result standard met-
rics for classification tasks are used for evaluation 
purposes. We formalize the unrestricted form of 
QSD as learning to build a DAG over the set of NP 
chunks in the sentence. We define accuracy, preci-
sion and recall metrics based on the properties of 
DAGs for evaluation purposes. 

We report the application of our model to a 
small corpus. As seen later, the early results are 
promising and shall motivate further research on 
applying ML techniques to unrestricted QSD. In 
fact, they set a baseline for future work in this area.  

The structure of this paper is as follows. Section 
(2) reviews the related work. In (3) we briefly de-
scribe our corpus. We formalize the problem of 
quantifier scope disambiguation for multiple quan-
tifiers in section (4) and define some evaluation 
metrics in (5). (6) presents our model including the 
kinds of features we have used. We present our 
experiments in (7) and give a discussion of the re-
sults in (8). (9) summarizes the current work and 
gives some directions for the future work. 

                                                             
2 Allen (1995) discusses some of these heuristics and gives an 
algorithm to incorporate those for scoping while parsing.  

2 Related work 

Earlier we mentioned that a standard approach to 
deal with quantifier scope ambiguity is scope un-
derspecification. More recent underspecification 
formalisms such as Hole Semantics (Bos 1996), 
Minimal Recursion Semantics (Copestake et al. 
2001), and Dominance Constraints (Egg et al. 
2001), present constraint-based frameworks. Every 
constraint forces one term to be in the scope of 
another, hence filters out some of the possible 
readings. For example, one may add a constraint to 
an underspecified representation (UR) to force is-
land constraints. Constraints can be added incre-
mentally to the UR as the sentence processing goes 
deeper (e.g. at the discourse and/or pragmatic 
level). The main drawback with these formalisms 
is that they only allow for hard constraints; that is 
every scope-resolved representation must satisfy 
all the constraints in order to be a valid interpreta-
tion of the sentence.  In practice, however, most 
constraints that can be drawn from discourse or 
pragmatic knowledge have a soft nature; that is, 
they describe a scope preference that is allowed to 
be violated, though at a cost.  

Motivated by the above problem, Koller et al. 
(2008) define an underspecified scope representa-
tion based on regular tree grammars, which allows 
for both hard constraints and weighted soft con-
straints. They present a PCFG-style algorithm that 
computes the reading, which satisfies all the hard 
constraints and has the maximum product of the 
weights. However, they assume that the weights 
are already given. Their algorithm, for example, 
can be used in traditional QSD approaches with 
weighted heuristics to systematically compute the 
best reading. The main question though is how to 
automatically learn those weights. One solution is 
using corpus-based methods to learn soft con-
straints and the cost associated with their violation, 
in terms of features and their weights. 

To the best of our knowledge, there have been 
three major efforts on statistical scope disambigua-
tion for English. Higgins and Sadock (2003), hence 
HS03, is the first work among these systems. They 
define a list of quantifiers that they consider for 
scope disambiguation. This list does not include 
definites, indefinites, and many other challenging 
scope phenomena. They extract all sentences from 
the Wall Street journal section of the Penn Tree-
bank, containing exactly two quantifiers from this 
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list. This forms a corpus of 890 sentences, each 
labeled with the relative scope of the two quantifi-
ers, with the possibility of no scope interaction. 
The no scope interaction case happens to be the 
majority class in their corpus and includes more 
than 61% of the sentences, defining a baseline for 
their QSD system. They achieve the inter-
annotator agreement of only 52% on this task. 

They treat QSD as a classification task with 
three possible classes (wide scope, narrow scope, 
and no scope interaction). Three forms of feature 
are incorporated into the classifier: part-of-speech 
(POS) tags, lexical features, and syntactic proper-
ties. Several classification models including naïve 
Bayes classifier, maximum entropy classifier, and 
single-layer perceptron are tested, among which 
the single-layer perceptron performs the best, with 
the accuracy of 77%. 

Galen and MacCartney (2004), hence GM04, 
build a corpus of 305 sentences from LSAT and 
GRE logic games, each containing exactly two 
quantifiers from an even more restricted list of 
quantifiers. They use an additional label for the 
case where the two scopings are equivalent (as in 
the case of two existentials). In around 70% of the 
sentences in their corpus, the first quantifier has 
wide scope, defining a majority class baseline of 
70% for their QSD system.3 Three classifiers are 
tried: naïve Bayes, logistics regression, and support 
vector machine (SVM), among which SVM per-
forms the best and achieves the accuracy of 94%. 

In a recent work, Srinivasan and Yates (2009) 
study the usage of pragmatic knowledge in finding 
the preferred scoping of natural language sen-
tences. The sentences are all extracted from 5-
grams in Web1Tgram (from Google, Inc) and 
share the same syntactic structure: an active voice 
English sentence of the form (S (NP (V (NP | 
PP)))). For the task of finding the most preferred 
reading, they annotate 46 sentences, each contain-
ing two quantifiers: Every and A, where the first 
quantifier is always A. Each sentence is annotated 
with one of the two labels (Every has wide scope 
or not). They use a totally different approach for 
finding the preferred reading. The n-grams in 
Web1Tgram are used to extract relations such as 
Live(Person, City), and to estimate the expected 
cardinality of the two classes, which form the ar-
guments of the relation, that is Person and City. 
                                                             
3 They do not report any inter-annotator agreement. 

They decide on the preferred scoping by compar-
ing the size of the two classes, achieving the accu-
racy of 74% on their test set. The main advantage 
of this work is that it is open domain. 

3 Our corpus  

The fact that HS03, in spite of ignoring challeng-
ing scope phenomena and scoping only two quanti-
fiers per sentence, achieve the IAA of 52% shows 
how hard scope disambiguation could be for hu-
mans. It becomes enormously more challenging 
when there is no restriction on the type or the 
number of quantifiers in the sentence, especially 
when NPs without explicit quantifiers such as de-
finites, indefinites, and bare singulars/plurals are 
taken into account. As a matter of fact, our own 
early effort to annotate part of the Penn Treebank 
with full scope information soon proved to be too 
ambitious. Instead, we picked a domain that covers 
most challenging phenomena in scope disambigua-
tion, while keeping the scope disambiguation fairly 
intuitive. This made building the first corpus of 
English text with full quantifier scope information 
feasible. Our domain of choice is the description of 
tasks about editing plain text files, in other words, 
a natural language interface for text editors such as 
SED, AWK, or EMACS. Figure (1) gives some 
sentences from the corpus. The reason behind 
scoping in this domain being fairly intuitive is that 
given any of these sentences, a conscious knowl-
edge of scoping is critical in order to be able to 
accomplish the explained task. 

Our corpus consists of 500 sentences manually 
extracted from the web. The sentences have been 
labeled with gold standard NP chunks, where each 
NP chunk has been indexed with a number 1 
through n (n is the number of chunks in the sen-
tence). The annotators are asked to use outscoping 
relations represented by ‘>’ to specify the relative 
scope of every pair 1≤i,j≤n, with an option to leave 

1. Print [1/ every line] of [2/ the file] that starts 
with [3/ a digit] followed by [4/ punctuation]. 
QSD: {2>1, 2>3, 1>3, 2>4, 1>4} 

2. Delete [1/ the first character] of [2/ every word] 
and [3/ the first word] of  [4/ every line] in [5/ 
the file]. 
QSD: {5>4, 5>3, 4>3, 5>2, 5>1, 2>1} 

Figure 1. Two NP-chunked sentences with QSDs 
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the pair unscoped. For example a relation (2>3) 
states that the second NP in the sentence outscopes 
(aka dominates) the third NP. Since outscoping 
relation is transitive, for the convenience of the 
annotation, the outscoping relations are allowed to 
be cascaded forming dominance chains. For exam-
ple, the scoping for the sentence 2 in figure (1) can 
alternatively be represented as shown in (3). 
(3) (5>2>1 ; 5>4>3) 

As a result, every pair <i,j> (1≤i<j≤n) is implicitly 
labeled with one of the three labels: 

i. Wide scope: either explicitly given by the 
annotator as i>j or implied using the transi-
tive property of outscoping4 

ii. Narrow scope: either explicitly given by the 
annotator as j>i or implied using the transi-
tive property of outscoping 

iii. No interaction: where neither wide scope nor 
narrow scope could be inferred from the 
given scoping.5 

We achieved the IAA of 75% (based on Cohen’s 
kappa score) on this corpus, significantly better 
than the 52% IAA of HS03, especially considering 
the fact that we put no restriction on the type of the 
quantification. Our sentence-level IAA is around 
66%. The details of the corpus, and the annotation 
scheme are beyond the scope of this paper and can 
be found in Manshadi et al. (2011). 

4 Formalization  

Outscoping is an anti-symmetric transitive relation, 
so it defines an order over the chunks. Since we do 
not force every two chunks to be involved in an 
outscoping relation, QSD defines a partial order 
over the NP chunks. Formally, 
Definition 1: Given a sentence S with NP chunks 
1..n, a relation P over {1..n} is called a QSD for S, 
if and only if P is a partial order. 

Definition 2: Given a sentence S with NP chunks 
1..n, and the QSD P, we say (chunk) i outscopes 
(chunk) j if and only if  (i>j)  ∈ P. 
                                                             
4 That is if i outscopes j and j outscopes k then i outscopes k. 
5 The no interaction class includes two cases: no scope interac-
tion and logical equivalence which means we follow the three-
label scheme of HS03 as opposed to the four-label scheme of 
GM04. This is because when there is a logical equivalence, 
except for trivial cases, there are no clear criteria based on 
which one can decide whether there is a scope interaction or 
not. Furthermore, distinguishing these two cases does not 
make much difference in practice. 

Definition 3: Given a sentence S with NP chunks 
1..n, and the QSD P, chunk i is said to be disjoint 
with chunk j if and only if   

(i>j) ∉ P ∧ (j>i) ∉ P. 

4.1 QSD and directed acyclic graphs 

Partial orders can be represented using Directed 
Acyclic Graphs (DAGs) in which dominance (aka 
reachability) determines the order. More precisely, 
every DAG G over n nodes v1..vn defines a partial 
order PG over the set {v1..vn} in which, vi precedes 
vj in PG if and only if vi dominates6 vj in G.  

Definition 4: Given a sentence S with NP chunks 
1..n, every DAG G over n nodes (labeled 1…n) 
defines a QSD PG for S, such that 

(i>j)  ∈ PG ⇔ i dominates j in G 

For example figure (2a,b) represent the DAGs cor-
responding to the QSD of sentence 2 in figure (1) 
and the QSD in (3) respectively. Following defini-
tion 3 and 4, the no interaction relation defined in 
section (3) translates to corresponding nodes in the 
DAG being disjoint7. Therefore the three types of 
scope interaction defined in i, ii, and iii (section 3), 
translate to the following relations in a DAG. 
(4) Wide Scope (WS): i dominates j 

Narrow Scope (NS): j dominates i 
No Interaction (NI): i and j are disjoint. 

5 Evaluation metrics  

Intuitively the similarity of two QSDs, given for a 
sentence S, can be defined as the ratio of the chunk 
pairs that have the same label in both QSDs to the 
total number of pairs. For example, consider the 

                                                             
6 Given a DAG G=(V, E), node u is said to immediately 
dominate node v if and only if (u,v)  ∈ E. “dominates” is the 
reflexive transitive closure of “immediately dominates”. 
7 The nodes u and v of the DAG G are said to be disjoint if 
neither u dominates v nor v dominates u. 

                      
       (a)             (b) 

Figure 2. Scopings represented as DAGs 
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two DAGs in figure (2). Although looking differ-
ent, both DAGs define the same partial order (i.e. 
QSD). This is because the partial order represented 
by a DAG G corresponds to the transitive closure 
(TC) of G. 

5.1 Transitive closure 

The transitive closure of G, shown as G+, is de-
fined as follows: 
(5) G+= {(i,j) | i dominates j in G} 

For example, figure (2a) is the transitive closure of 
the DAG in figure (2b). Given this, the similarity 
metric mentioned above can be formally defined as 
the number of (unordered) pairs of node that match 
between G1

+ and G2
+ divided by the total number 

of (unordered) pairs. 

Definition 5: Similarity measure or σ. 
Given sentence S with n NP chunks and two scop-
ings represented by DAGs G1 and G2, we define: 

M(G1, G2)= { {i,j} |    
((i,j) ∈ G1

+ ∧ (i,j) ∈ G2
+) ∨ 

((j,i) ∈ G1
+ ∧ (j,i) ∈ G2

+) ∨   
((i,j),(j,i) ∉ G1

+ ∧ (i,j),(j,i) ∉ G2
+) } 

σ(G1, G2) = 2|M(G1, G2)|/ [n(n-1)] 

Where |.| represents the cardinality of a set. σ is a 
value between 0 and 1 (inclusive) where 1 means 
that the QSDs are equivalent and 0 means that they 
do not agree on the label of any pair. σ is useful for 
measuring the similarity of two scope annotations 
when calculating IAA. It can also be used as an 
accuracy metric for evaluating an automatic scope 
disambiguation system where the similarity of a 
predicted QSD is calculated respect to a gold stan-
dard QSD. In fact, if n =2, σ is equivalent to the 
metric that HS03 use to evaluate their system.  

The similarity metric defined above has some 
disadvantages. For example, HS03 report that more 
than 61% of the scope relations in their corpus are 
of type no interaction. Using this metric, a model 
that leaves everything unscoped has more than 
61% percent accuracy on their corpus! In fact, the 
output of a QSD system on pairs with no interac-
tion is not practically important. 8 What is more 

                                                             
8 In practice the target language is often first order logic or a 
variant of that. When a pair is labeled NI in gold standard data, 
if there exist valid interpretations (satisfying hard constraints) 
in which either of the two quantifiers can be in the scope of 

important is to recover the pairs with scope interac-
tion correctly. The standard way to address this is 
to define precision/recall metrics. 

Definition 6: Precision and Recall (TC version) 
Given the gold standard DAG Gg and the predicted 
DAG Gp, we define the precision (P) and the recall 
(R) as follows: 

TP = | { (i,j) |  (i,j) ∈ Gp
+ ∧ (i,j) ∈ Gg

+} | 
N = | { (i,j) |  (i,j) ∈ Gp

+} | 

M = | { (i,j) | (i,j) ∈ Gg
+} | 

P = TP / N 
R = TP / M 

5.2 Transitive reduction 

The TC-based metrics implicitly count some 
matching pairs more than once. For example, if in 
both QSDs we have 1>2 and 2>3, then 1>3 is im-
plied, so counting it as another match is redundant 
and favors toward higher accuracies. Naturally, 
there are so many redundancies in TC. To address 
this issue, we define another set of metrics based 
on the concept of transitive reduction (TR). Given 
a directed graph G, the transitive reduction of G, 
represented as G 

-, is intuitively a graph with the 
same reachability (i.e. dominance) relation but 
with no redundant edges. More formally, the tran-
sitive reduction of G is a graph G 

- such that  
• (G -)+ = G+  
• ∀ G′,    (G′)+ = G+  ⇒   |G -| ≤ |G′ | 

For example, figure (2b) represents the transitive 
reduction of the DAG in figure (2a). Fortunately if 
a directed graph is acyclic, its transitive reduction 
is unique (Aho et al., 1972). Therefore, defining 
TR-based precision/recall metrics is valid. 

Definition 7: Precision and Recall (TR version) 
Simply replace every ‘+’ in definition 6 with a ‘-‘. 

6 The model 

We extend HS03’s approach for scoping two NPs 
per sentence to the general case of n NPs. Every 
pair of chunks <i,j> (where  1≤i<j≤n) is treated as 
an independent sample to be classified as one of 
the three classes defined in (3), that is WS, NS, or 
NI. Therefore a sentence with n NP chunks con-
sists of C(n, 2)=n(n-1)/2 samples. The average 
                                                                                                
the other, then the ordering of this pair does not matter; that is 
switching the order of such pairs result in equivalent formulas. 
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number of NPs per sentence in the corpus is 3.7, so 
the corpus provides 1850 samples. Since the scop-
ing of each pair is predicted independent of the 
other pairs in the sentence, it may result in an ill-
formed scoping, i.e. a scoping with cycles. As ex-
plained later, this case did not happen in our cor-
pus. A MultiClass SVM (Crammer et al. 2001), 
referred to as SVM-MC in the rest of the paper, is 
used as the classifier. We provide more supervision 
by annotating data with the following labels.  

I. Determiner features 
For every NP chunk, we tag pre-determiner (/PD), 
determiner (/D), possessive determiner (/POS), and 
number (/CD) (if they exist) as part of the deter-
miner (see figure 3). Given the pair <i,j>, for ei-
ther of the chunks i and j, and every tag mentioned 
above, we use a binary feature, which shows 
whether this tag exists in that chunk or not. For 
tags that do exist (except /CD) the lexical word is 
also used as a feature. 

II. Semantic head features  
We tag the semantic head of the NP and use its 
lexical word as feature. Also the plurality of the 
NP (/S tag for plurals) is used as a binary feature.  

III. 3. Dependency features 
The above two sets of feature are about the indi-
vidual properties of the chunks. But this last cate-
gory represents how each NP contributes to the 
semantics of the whole sentence. We borrow from 
Manshadi et al. (2009) the concept of Dependency 
Graph (DG), which encodes this information in a 
compact way. DG represents the argument struc-
ture of the predicates that form the logical form of 
a sentence. The DG of a sentence with n NP 
chunks contains n+1 nodes labeled 0..n. Node i 
(i>0) represents the predicate or the conjunction of 
the predicates that describes the NP chunk i, and 
node 0 represents the main predicate (or conjunc-
tion of predicates) of the sentence. An edge from i 

to j shows that chunk i is an argument of a predi-
cate represented by node j.  

For example, in sentence (1) of figure (3), 
chunk 1 is clearly the argument of the verb Print 
(the main predicate of the sentence), therefore 
there is an edge from 1 to 0 in the DG of this sen-
tence as shown in figure (4a). Also, chunks 2..4 are 
part of the description of chunk 1, so they are the 
arguments of the predicate(s) describing chunk 1. 
This means that there must be edges from nodes 
2..4 to node 1 in the DG. Similarly for sentence 2 
in figure (3), chunk 5 is part of the description 
(hence an argument of the predicates) of chunks 2 
and 4; chunks 2 and 4 are part of the description of 
1 and 3 respectively; and 1 and 3 are both argu-
ments of the verb Delete, the main predicate of the 
sentence, resulting in the DG given in figure (4b). 

The following features are extracted from the 
DG for every sample <i,j>(1≤i<j≤n): 

- Does i (or j) immediately dominate 0? 
- Does i (or j) immediately dominate j (or i)? 
- Does i (or j) dominate j (or i)? 
- Are i,j siblings ? 
- Do i,j share the same child? 

Note that DG has a close relationship with the de-
pendency tree of a sentence; for example, it shows 
the dependency relation(s) between a noun or verb 
and their modifier(s). Therefore it actually encodes 
some syntactic properties of a sentence. 

7 Experiments 

100 sentences from the corpus were picked at ran-
dom as the development set, in order to study the 
relevant features and their contribution to QSD. 
The rest of the corpus (400 sentences) was then 
used to do a 5 fold cross validation. We used 
SVMMulticlass from SVM-light toolkit (Joachims 
1999) as the classifier.  

            
    (a)                (b) 

Figure 4. Dependency Graphs for figure (3) sentences 
 

1. Print [1/ every/D line/H] of [2/ the/D file/H] that 
starts with [3/ two/CD digits/H/S] followed by [4/ 
punctuation/H]. 

2. Delete [1/ the/D first character/H] of [2/ every/D 
word/H] and [3/ the/D first word/H] of  [4/ 
every/D line/H] in [5/ the/D file/H]. 

Figure 3. Labeling determiners and head nouns 
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Before giving the results, we define a baseline. 
HS03 use the most frequent label as the baseline 
and the similarity metric given in definition (5) to 
evaluate the performance. Since more than 61% of 
the labels in their corpus is NI, the baseline system 
(that leaves every sentence unscoped) has the accu-
racy above 61%. In our corpus, the majority class 
is WS containing around 35% of the samples. NS 
and NI each contain 34% and 31% of the samples 
respectively. This means that there is a slight ten-
dency for having scope preference in chronological 
order. Therefore, the linear order of the chunks (i.e. 
from left to right) defines a reasonable baseline.  
The results of our experiments are shown in table 
1. The table lists the parameters P, R, and F-score9 
for our SVM-MC model vs. the baseline system. 
For each system, two sets of metrics have been 
reported: TC-based and TR-based.  

Table 2 lists the sentence-level accuracy of the 
system. We computed two metrics for sentence-
level accuracy: Acc and Acc-EZ. In calculating Acc, 
a sentence is considered correct if all the labels 
(including NI) exactly match the gold standard la-
bels. However, this is an unnecessarily tough met-
ric. As mentioned before (footnote 8), in practice 
the output of the system for the samples labeled NI 
is not important; all we care is that all outscoping 
(i.e. WS/NS) relations are recovered correctly. In 
other words, in practice, the system’s recall is the 
most important parameter. Regarding this fact, we 
define Acc-EZ as the percentage of sentences with 
100% recall (ignoring the value of precision). 

In order to compare our system with that of 
HS03, we applied our model unmodified to their 
corpus using the same set-up, a 10-fold cross vali-
dation. However, since their corpus is not anno-
tated with DG, we translated our dependency 
features to the properties of the Penn Treebank’s 
phrase structure trees. Table (3) lists the accuracy 

                                                             
9 F-score is defined as F=2PR/(P+R). 

of their best model, their baseline, and our SVM-
MC model. As seen in this table, their model out-
performs ours. This, however, is not surprising. 
First, although we trained our model on their cor-
pus, the feature engineering of our model was done 
based on our own development set. Second, since 
our corpus is not annotated with phrase structure 
trees, our model does not use any of their features 
that can only be extracted from phrase structure 
trees. It remains for future work to incorporate the 
features extracted from phrase structure trees 
(which is not already encoded in DG) and evaluate 
the performance of the model on either corpus. 

8 Discussion 

As seen in tables 1 and 2, for a first effort at full 
quantifier scope disambiguation, the results are 
promising. The constraint-based F-score of 78% is 
already higher than the inter-annotator agreement, 
which is 75% (measured using the TC-based simi-
larity metric; see definition 5). Furthermore, our 
system outperforms the baseline, by more than 
40% (judging by the constraint-based F-score). 
This is significant, comparing to the work of HS03, 
which outperforms the baseline by 16%.  

We mentioned before that in our corpus in aver-
age there are around 4 NPs per sentence resulting 
in 6 samples per sentence. Therefore the chance of 
predicting all the labels correctly is very slim. 
However, the baseline (i.e. the left to right order) 
does a good job and predicts the correct QSD for 
27% of the sentences. At the sentence level, our 
model does not reach the IAA, but the performance 
(62%) is not much lower than the IAA (66%). 

A question may arise that since the model treats 

 σ 

Baseline  61.1% 
HS04 77.0% 

Our Model 73.3% 

Table 3. Comparison with HS04 system on their dataset 

 P R F 

Baseline (TC) 31.8% 49.7% 38.8% 

Baseline (TR) 27.4% 33.9% 30.3% 

SVM-MC (TC) 73.0% 84.7% 78.4% 

SVM-MC (TR) 70.6% 76.2% 73.2% 

Table 1. Constraint-level results 

 Acc Acc-EZ 

Baseline 27.0% 43.8% 
SVM-MC 62.3% 78.0% 

Table 2. Sentence level accuracy 
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the pairs of NP independently, what guarantees 
that the scopings are valid; that is the predicted 
directed graphs are in fact DAGs. For example, for 
a sentence with 3 NP chunks, the classifier may 
predict that 1>2, 2>3, and 3>1, which results in a 
loop! As a matter of fact, there is nothing in the 
model that guarantees the validness of the pre-
dicted scopings. In spite of that, surprisingly all 
generated graphs in our tests were in fact DAGs! 
In order to explain this fact, we run two experi-
ments. In the first experiment, corresponding to 
every sentence S in the corpus with n chunks, we 
generated a random directed graph over n nodes. 
Only 10% of the graphs had cycles. It means that 
more than 90% of randomly generated directed 
graphs with n nodes (where the distribution of n is 
its distribution in our corpus) are acyclic. In the 
second experiment, for every sentence with n 
chunks, we created the samples <i,j> by randomly 
selecting values for all the features. We then tested 
the classifier in our original set-up, a 5-fold cross 
validation. In this case, only 4% of the sentences 
were assigned inconsistent labeling. This means 
that chances of having a loop in the scoping are 
small even when the classifier is trained on sam-
ples with randomly valued features, therefore it is 
not surprising that a classifier trained on the actual 
data learns some useful structures which make the 
chance of assigning inconsistent labels very slim.  

In general, if the classifier predicts such incon-
sistent scopings, the PCFG-style algorithm of 
Koller et al. (2008) comes handy in order to find a 
valid scoping with the highest weight. 

9 Summary and future work 

We presented the first work on unrestricted statis-
tical scope disambiguation in which all NP chunks 
in a sentence are considered for possible scope in-
teractions. We defined the task of full scope dis-
ambiguation as assigning a directed acyclic graph 
over n nodes to a sentence with n NP chunks. We 
then defined some metrics for evaluation purposes 
based on the two well-known concepts for DAGs: 
transitive closure and transitive reduction.  

We use a simple model for automatic QSD. Our 
model treats QSD as a ternary classification task 
on every pair of NP chunks. A multiclass SVM 
together with some POS, lexical and dependency 
features is used to do the classification. We apply 
this model to a corpus of English text in the do-

main of editing plain text files, which has been 
annotated with full scope information. The pre-
liminary results reach the F-score of 73% (based 
on transitive reduction metrics) at the constraint 
level and the accuracy of 62% at the sentence 
level. The system outperforms the baseline by a 
high margin (43% at the constraint level and 35% 
at the sentence level).  

Our ternary SVM-based classification model is 
a preliminary model, used for justification of our 
theoretical framework. Many improvements are 
possible, for example, directly predicting the whole 
DAG as a structured output. Also, the features that 
we use are rather basic. There are other linguisti-
cally motivated features that can be incorporated, 
e.g. some properties of the phrase structure trees, 
not already encoded in dependency graphs. 

Another problem with the current system is that 
the extra supervision has been provided by manu-
ally labeling the data (e.g. with dependency 
graphs). This could be done automatically by ap-
plying off the shelf parsers or POS taggers, possi-
bly by adapting them to our domain.  

Although we consider all NPs for scope resolu-
tion, scopal operators such as negation, mo-
dal/logical operators have been ignored in this 
work. We also do not distinguish distributive vs. 
collective reading of plurals in the current sys-
tem.10 Incorporating scopal operators and handling 
distributivity vs. collectivity would be the next step 
in expanding this work. 

Finally, since hand annotation of scope infor-
mation is very challenging, applying semi-
supervised or even unsupervised techniques to 
QSD is very demanding. In fact, leveraging unla-
beled data to do QSD seems quite promising. This 
is because domain dependent knowledge plays a 
critical role in scope disambiguation and this 
knowledge can be learned from unlabeled data us-
ing unsupervised methods. 
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