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Introduction

The Fifth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-5) was held
on 23 June 2011 following the ACL HLT 2011 conference in Portland, Oregon. Like the first four
SSST workshops in 2007, 2008, 2009, and 2010, it aimed to bring together researchers from different
communities working in the rapidly growing field of structured statistical models of natural language
translation.

During these past five years, statistical machine translation research has seen a movement toward not
only tree-structured and syntactic models incorporating stochastic synchronous/transduction grammars,
but also increasingly semantic models. There is no doubt that issues of deep syntax and shallow
semantics are closely linked, and this encouraging trend has been reflected at recent SSST workshops.
Semantic SMT research now includes context-dependent WSD (word sense disambiguation) for SMT
(Carpuat and Wu 2007, 2008; Chan, Ng and Chiang 2007; Giménez and Màrquez 2007); SRL (semantic
role labeling) for SMT (Wu and Fung 2009); and SRL for MT evaluation (Lo and Wu 2010, 2011).

In order to emphasize structure and representation at semantic and not only syntactic levels,
“Semantics” has been explicitly added to the name of this year’s Workshop (the acronym remains
SSST), and is a special workshop theme.

We selected 15 papers for this year’s workshop. Many either directly fall under the special theme of
Semantics in SMT, or span the area between deep syntax and shallow semantics, illustrating the variety
of semantic representations and models that are relevant to current statistical MT.

SRL predicate-argument structure clearly emerges as a useful representation for many aspects of SMT
and MT evaluation. Wu and Palmer show that it is possible to automatically learn accurate cross-
lingual SRL mappings between Chinese and English SRL annotated bitext. Input-side SRL is used to
define reordering rules for Chinese-English word alignment (Meyers, Kosaka, Liao and Xue), and to
improve pairwise translation hypothesis ranking (Pighin and Màrquez). Output-side SRL informs rule
extraction in hierarchichal phrase-based SMT (Gao and Vogel), and provides structure for meaningfully
comparing translation hypotheses and references in MT evaluation (Lo and Wu).

WSD also emerges as a prominent research direction with semantically richer SMT models designed to
address ambiguity in translation lexical choice. Banchs and Costa-jussa use Latent Semantic Indexing
to build a context-dependent phrase-based SMT model. Jiang, Du and Way integrate input paraphrases
into SMT via confusion networks. Lefever and Hoste show that dedicated classifiers learned on
parallel corpora outperform phrase-based SMT on a cross-lingual WSD task. SMT can also be seen
as a tool to enrich semantic resources: McCrae, Espinoza, Ponsoda, Aguado-de-Cea and Cimiano
propose several strategies for automatically translating ontologies and taxonomies, leveraging their rich
semantic structure to compensate for the weakness of standard text translation methods.

A rich range of syntactic and tree-based approaches for learning translation rules is also seen.
Attardi, Chanev and Miceli Barone learn reordering rules for a decoding approach drivenby a input-
side dependency parser to guide reordering. Hanneman and Lavie describe a method for inducing
nonterminals in synchronous/transduction grammars, by clustering nonterminal-pairs across input and
output languages. Na and Lee propose a method for encoding alternative binarizations of a single input-
side dependency tree into a forest by merging vertices before extracting translation rules. Hanneman,
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Burroughs and Lavie extract synchronous/transduction grammar rules combining input-side and output-
side parse tree information with the highly lexicalized approach of hierarchical phrase-based methods.
Input-side parse features are incorporated within a maximum-entropy reordering approach by Xiang, Ge
and Ittycheriah. On the formal side, Saers and Wu show how to simplify calculation of rule expectations
for expectation-maximization training of transduction grammars as well as monolingual grammars, by
reifying rules directly into the hypergraph representation of a deductive system so that a rule becomes
an extra child rather than meta-information of a hyperedge.

Thanks once again this year are due to our authors and our Program Committee for making the SSST
workshop another success.

Dekai Wu, Marianna Apidianaki, Marine Carpuat, and Lucia Specia
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Automatic Projection of Semantic Structures:
an Application to Pairwise Translation Ranking

Daniele Pighin Lluı́s Màrquez
TALP Research Center

Universitat Politècnica de Catalunya
{pighin,lluism}@lsi.upc.edu

Abstract

We present a model for the inclusion of se-
mantic role annotations in the framework of
confidence estimation for machine translation.
The model has several interesting properties,
most notably: 1) it only requires a linguis-
tic processor on the (generally well-formed)
source side of the translation; 2) it does
not directly rely on properties of the transla-
tion model (hence, it can be applied beyond
phrase-based systems). These features make
it potentially appealing for system ranking,
translation re-ranking and user feedback eval-
uation. Preliminary experiments in pairwise
hypothesis ranking on five confidence estima-
tion benchmarks show that the model has the
potential to capture salient aspects of transla-
tion quality.

1 Introduction

The ability to automatically assess the quality of
translation hypotheses is a key requirement to-
wards the development of accurate and depend-
able translation models. While it is largely agreed
that proper transfer of predicate-argument structures
from source to target is a very strong indicator of
translation quality, especially in relation to ade-
quacy (Lo and Wu, 2010a; 2010b), the incorpora-
tion of this kind of information in the Statistical Ma-
chine Translation (SMT) evaluation pipeline is still
limited to few and isolated cases, e.g., (Giménez and
Màrquez, 2010).

In this paper, we propose a general model for
the incorporation of predicate-level semantic anno-
tations in the framework of Confidence Estimation

(CE) for machine translation, with a specific focus
on the sub-problem of pairwise hypothesis ranking.
The model is based on the following underlying as-
sumption: by observing how automatic alignments
project semantic annotations from source to target
in a parallel corpus, it is possible to isolate features
that are characteristic of good translations, such as
movements of specific arguments for some classes
of predicates. The presence (or absence) of these
features in automatic translations can then be used as
an indicator of their quality. It is important to stress
that we are not claiming that the projections pre-
serve the meaning of the original annotation. Still,
it should be possible to observe regularities that can
be helpful to rank alternative translation hypotheses.

The general workflow (which can easily be ex-
tended to cope with different annotation layers,
such as sequences of meaningful phrase boundaries,
named entities or sequences of chunks or POS tags)
is exemplified in Figure 1. During training (on the
left), the system receives a parallel corpus of source
sentences and the corresponding reference transla-
tions. Source sentences are annotated with a lin-
guistic processor. The annotations are projected us-
ing training alignments, obtaining gold projections
that we can use to learn a model that captures cor-
rect annotation movements, i.e., observed in refer-
ence translations. At test time, we want to assess
the quality of a translation hypothesis given a source
sentence. As shown on the right side of Figure 1, the
first part of the process is the same as during train-
ing: the source sentence is annotated, and the an-
notation is projected onto the translation hypothesis
via automatic alignments. The model is then used
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Figure 1: Architectural overview.

to compare the observed projection against the ex-
pected projection given the source annotation. The
distance between the two projections (observed and
expected) can then be used as a measure of the qual-
ity of the hypothesis.

As it only considers one-sided annotations, our
framework does not require the availability of com-
parable linguistic processors and linguistic annota-
tions, tagsets, etc., on both sides of the translation
process. In this way, it overcomes one of the main
obstacles to the adoption of linguistic analysis for
MT confidence estimation. Furthermore, the fact
that source data is generally well-formed lowers the
requirements on the linguistic processor in terms of
robustness to noisy data, making it possible to em-
ploy a wider range of linguistic processors.

Within this framework, in this paper we describe
our attempt to bridge Semantic Role Labeling (SRL)
and CE by modeling proposition-level semantics for
pairwise translation ranking. The extent to which
this kind of annotations are transferred from source
to target has indeed a very high correlation with re-
spect to human quality assessments (Lo and Wu,
2010a; 2010b). The measure that we propose is then
an ideal addition to already established CE mea-
sures, e.g., (Specia et al., 2009; Blatz et al., 2004),
as it attempts to explicitly model the adequacy of
translation hypotheses as a function of predicate-
argument structure coverage. While we are aware of
the fact that the current definition of the model can
be improved in many different ways, our preliminary
investigation, on five English to Spanish translation

benchmarks, shows promising accuracy on the dif-
ficult task of pairwise translation ranking, even for
translations with very few distinguishing features.

To capture different aspects of the projection of
SRL annotations we employ two instances of the
abstract architecture shown in Figure 1. The first
works at the proposition level, and models the cor-
rect movement of arguments from source to target.
The second works at the argument level, and models
the fluency and adequacy of individual arguments
within each predicate-argument structure. The mod-
els that we learn during training are simple phrase-
based translation models working on different kinds
of sequences, i.e., role labels in the former case and
words in the latter. To evaluate the adequacy of an
automatically projected proposition or argument, we
force the corresponding translation model to gener-
ate it (via constrained decoding). The reachability
and confidence of each translation are features that
we exploit to compare alternative translations, by
combining them in a simple voting scheme.

To score systems which are not under our direct
control (the typical scenario in CE benchmarks), we
introduce a component that generates source-target
alignments for any pair of aligned test sentences.
This addition has the nice property of allowing us
to handle the translation as a black-box, decoupling
the evaluation from a specific system and, in theory,
allowing the model to cope with phrase-based, rule-
based or hierarchical systems alike, as well as with
human-generated translations.

The rest of the paper is structured as follows: in
Section 2 we will review a selection of related work;
in Section 3 we will detail our approach; in Section 4
we will present the results of our evaluation; finally,
in Section 5 we will draw our conclusions.

2 Related work

Confidence estimation is the sub-problem within
MT evaluation concerned with the assessment of
translation quality in the absence of reference trans-
lations. A relevant initial work on this topic is
the survey by Blatz et al. (2004), in which the au-
thors define a rich set of features based on source
data, translation hypotheses, n-best lists and model
characteristics to classify translations as “good”
or “bad”. In their observations, they conclude
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that the most relevant features are those based on
source/target pairs and on characteristics of the
translation model.

Specia et al. (2009) build on top these results by
designing a feature-selection framework for confi-
dence estimation. Translations are considered as
black-boxs (i.e., no system or model-dependent fea-
tures are employed), and novel features based on the
number of content words, a POS language model on
the target side, punctuation and number matchers in
source and target translations and the percentage of
uni-grams are introduced. Features are selected via
Partial Least Squares (PLS) regression (Wold et al.,
1984). Inductive Confidence Machines (Papadopou-
los et al., 2002) are used to estimate an optimal
threshold to distinguish between “good” and “bad”
translations. Even though the authors show that a
small set of shallow features and some supervision
can produce good results on a specific benchmark,
we are convinced that more linguistic features are
needed for these methods to perform better across a
wider spectrum of domains and applications.

Concerning the usage of SRL for SMT, Wu and
Fung (2009) reported a first successful application of
semantic role labels to improve translation quality.
They note that improvements in translation quality
are not reflected by traditional MT evaluation met-
rics (Doddington, 2002; Papineni et al., 2002) based
on n-gram overlaps. To further investigate the topic,
Lo and Wu (2010a; 2010b) involved human annota-
tors to demonstrate that the quality of semantic role
projection on translated sentences is very highly cor-
related with human assessments.

Giménez and Màrquez (2010) describe a frame-
work for MT evaluation and meta-evaluation com-
bining a rich set of n-gram-based and linguistic met-
rics, including several variants of a metric based on
SRL. Automatic and reference translations are anno-
tated independently, and the lexical overlap between
corresponding arguments is employed as an indica-
tor of translation quality. The authors show that syn-
tactic and semantic information can achieve higher
reliability in system ranking than purely lexical mea-
sures.

Our original contribution lies in the attempt to ex-
ploit SRL for assessing translation quality in a CE
scenario, i.e., in the absence of reference transla-
tions. By accounting for whole predicate-argument

sequences as well as individual arguments, our
model has the potential to capture aspects which
relate both to the adequacy and to the fluency of
a translation. Furthermore, we outline a general
framework for the inclusion of linguistic processors
in CE that has the advantage of requiring resources
and software tools only on the source side of the
translation, where well-formed input can reasonably
be expected.

3 Model

The task of semantic role labeling (SRL) consists
in recognizing and automatically annotating seman-
tic relations between a predicate word (not nec-
essarily a verb) and its arguments in natural lan-
guage texts. The resulting predicate-argument struc-
tures are commonly referred to as propositions, even
though we will also use the more general term anno-
tations.

In PropBank (Palmer et al., 2005) style anno-
tations, which our model is based on, predicates
are generally verbs and roles are divided into two
classes: core roles (labeled A0, A1, . . . A5), whose
semantic value is defined by the predicate syntactic
frame, and adjunct roles (labeled AM-*, e.g., AM-
TMP or AM-LOC) 1 which are a closed set of verb-
independent semantic labels accounting for predi-
cate aspects such as temporal, locative, manner or
purpose. For instance, in the sentence “The com-
mission met to discuss the problem” we can iden-
tify two predicates, met and discuss. The corre-
sponding annotations are “[A0 The commission] [pred
met] [AM-PRP to discuss the problem]” and “[A0 The
commission] met to [pred discuss] [A1 the problem]”.
Here, A0 and A1 play the role of prototypical sub-
ject and object, respectively, and AM-PRP is an ad-
junct modifier expressing a notion of purpose.

Sentence annotations are inherently non-
sequential, as shown by the previous example in
which the predicate and one of the arguments of
the second proposition (i.e., discuss and A1) are
completely embedded within an argument of the
first proposition (i.e., AM-PRP). Following a widely
adopted simplification, the annotations in a sentence
are modeled independently. Furthermore we de-

1The actual role labels are in the form Arg0, . . . Arg1 and
ArgM-*, but we prefer to adopt their shorter form.
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scribe each annotation at two levels: a proposition
level, where we model the movement of arguments
from source to target; and an argument level, were
we model the adequacy and fluency of individual
argument translations. The comparison of two
alternative translations takes into account all these
factors but it models each of them independently,
i.e., we consider how properly each propositions is
rendered in each hypothesis, and how properly each
argument is translated within each proposition.

3.1 Annotation and argument projection

At the proposition level, we simply represent the se-
quence of role-label in each proposition, ignoring
their lexical content with the exception of the pred-
icate word. Considering the previous example, the
sentence would then be represented by the two se-
quences “A0 met AM-PRP” and “A0 * discuss A1”.
In the latter case, the special character “*” marks
a “gap” between A0 and the predicate word. The
annotation is projected onto the translation via di-
rect word alignments obtained through a constrained
machine translation process (i.e., we force the de-
coder to generate the desired translation). Eventual
discontinuities in the projection of an argument are
modeled as gaps. If two arguments insist on a shared
subset of words, then their labels are combined. If
the projection of an argument is a subset of the pro-
jection of the predicate word, then the argument is
discarded. If the overlap is partial, then the non-
overlapping part of the projection is represented.

If a word insertion occurs next to an argument
or the predicate, then we include it in the final se-
quence. This decision is motivated by the consider-
ation that insertions at the boundary of an argument
may be a clue of different syntactic realizations of
the same predicate across the two languages (Levin,
1993). For example, the English construct “A0 give
A2 A1” could be rendered as “doy A1 a A2” in Span-
ish. Here, the insertion of the preposition “a” at de-
coding can be an important indicator of translation
quality.

This level of detail is insufficient to model some
important features of predicate-argument structures,
such as inter-argument semantic or syntactic depen-
dencies, but it is sufficient to capture a variety of
interesting linguistic phenomena. For instance, A0-
predicate inversion translating SVO into VSO lan-

guages, or the convergence of multiple source argu-
ments into a single target argument when translating
into a morphologically richer language. We should
also stress again that we are not claiming that the
structures that we observe on the target side are lin-
guistically motivated, but only that they contain rel-
evant clues to assess quality aspects of translation.

As for the representation of individual arguments,
we simply represent their surface form, i.e., the
sequence of words spanning each argument. So,
for example, the argument representations extracted
from “[A0 The commission] [pred met] [AM-PRP to
discuss the problem]” would be “The commission”,
“met”, “to discuss the problem”. To project each ar-
gument we align all its words with the target side.
The leftmost and the rightmost aligned words de-
fine the boundaries of the argument in the target sen-
tence. All the words in between (including eventual
gaps) are considered as part of the projection of the
argument. This approach is consistent with Prop-
Bank style annotations, in which arguments are con-
tiguous word sequences, and it allows us to employ a
standard translation model to evaluate the fluency of
the argument projection. The rationale here is that
we rely on proposition level annotations to convey
the semantic structure of the sentence, while at the
argument level we are more interested in evaluating
the lexical appropriateness of their realization.

The projection of a proposition and its arguments
for an example sentence is shown in Figure 2. Here,
s is the original sentence and h1 and h2 are two
translation hypotheses. The figure shows how the
whole proposition (p) and the predicate word (pred)
along with its arguments (A0, A1 and A2) are repre-
sented after projection on the two hypotheses. As we
can observe, in both cases thank (the predicate word)
gets aligned with the word gracias. For h1, the de-
coder aligns I (A0) to doy, leaving a gap between A0
and the predicate word. The gap gets filled by gen-
erating the word las. Since the gap is adjacent to at
least one argument, las is included in the representa-
tion of p for h1. In h2, the projection of A0 exactly
overlaps the projection of the predicate (“Gracias”),
and therefore A0 is not included in n for h2.

3.2 Comparing hypotheses

At test time, we want to use our model to com-
pare translation pairs and recognize the most reli-
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s I thank the commissioner for the detailed reply
h1 Doy las gracias al comisario por la detallada respuesta
h2 Gracias , al señor comisario por para el respuesta

p A0 thank A1 A2 pred thank
h1 A0 +las gracias A1 A2 h1 gracias
h2 Gracias A1 A2 h2 Gracias

A1 the commissioner A0 I
h1 al comisario h1 doy
h2 al señor comisario h2 Gracias

A2 for the detailed reply
h2 por la detallada respuesta
h2 para el respuesta

Figure 2: Comparison between two alternative transla-
tions h1 and h2 for the source sentence s.

able. Let s be the source sentence, and h1 and h2

be two translation hypotheses. For each proposition
p in s, we assign a confidence value to its represen-
tation in h1 and h2, i.e., p1 and p2, by forcing the
proposition-level translation system to generate the
projection observed in the corresponding hypothe-
sis. The reachability of p1 (respectively, p2) and the
decoder confidence in translating p as p1 are used as
features to estimate p1 (p2) accuracy. Similarly, for
each argument a in each proposition p we generate
its automatic projection on h1 and h2, i.e., a1 and
a2. We force the argument-level decoder to translate
a into a1 and a2, and use the respective reachability
and translation confidence as features accounting for
their appropriateness.

The best translation hypothesis (h1 or h2) is then
selected according to the following decision func-
tion:

h∗ = arg max
i∈{0,1}

∑
k

fk(hi, hj 6=i, s) (1)

where each feature function fk(·, ·, ·) defines a com-
parison measure between its first two arguments, and
returns 1 if the first argument is greater (better) than
the second, and 0 otherwise. In short, the decision
function selects the hypothesis that wins the highest
number of comparisons.

The feature functions that we defined account
for the following factors, the last three being eval-
uated once for each proposition in s: (1) Num-
ber of successfully translated propositions; (2) Av-
erage translation confidence for projected proposi-
tions; (3) Number of times that a proposition in hi

has higher confidence than the corresponding propo-
sition in hi 6=j ; (4) Number of successfully translated
arguments; (5) Average translation confidence for
projected arguments; (6) Number of times that an
argument in hi has higher confidence than the corre-
sponding argument in hi 6=j .

With reference to Figure 2, the two translation hy-
potheses have been scored 4 (very good) and 2 (bad)
by human annotators. The score assigned by the
proposition decoder to p1 is higher than p2, hence
comparisons (2) and (3) are won by h1. Accord-
ing to the arguments decoder, h1 does a better job
at representing A0 and A2; h2 is better at rendering
A1, and pred is a tie. Therefore, h1 also prevails
according to (6). Given the very high confidence as-
signed to the translation of A2 in h1, the hypothesis
also prevails in (5). In this case, (1) and (4) do not
contribute to the decision as the two projections have
the same coverage.

4 Evaluation

In this section, we present the results obtained by
applying the proposed method to the task of rank-
ing consistency, or pairwise ranking of alternative
translations: that is, given a source sentence s, and
two candidate translations h1 and h2, decide which
one is a better translation for s. Pairwise ranking
is a simplified setting for CE that is general enough
to model the selection of the best translation among
a finite set of alternatives. Even though it cannot
measure translation quality in isolation, a reliable
pairwise ranking model would be sufficient to solve
many common practical CE problems, such as sys-
tem ranking, user feedback filtering or hypotheses
re-ranking.

4.1 Datasets

We ran our experiments on the human assessments
released as part of the ACL Workshops on Machine
Translations in 2007 (Callison-Burch et al., 2007),
2008 (Callison-Burch et al., 2008), 2009 (Callison-
Burch et al., 2009) and 2010 (Callison-Burch et al.,
2010). These datasets will be referred to as wm-
tYY(t) in the remainder, YY being the last two digits
of the year of the workshop and t = n for newswire
data or t = e for Europarl data. So, for example,
wmt08e is the Europarl test set of the 2008 edition
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of the workshop. As our system is trained on Eu-
roparl data, newswire test sets are to be considered
out-of-domain. All the experiments are relative to
English to Spanish translations.

The wmt08, wmt09 and wmt10 datasets provide
a ranking among systems within the range [1,5] (1
being the worst system, and 5 the best). The dif-
ferent datasets contain assessments for a different
number of systems, namely: 11 for wmt08(e), 10 for
wmt08(n), 9 for wmt09 and 16 for wmt10n. Gener-
ally, multiple annotations are available for each an-
notated sentence. In all cases in which multiple as-
sessments are available, we used the average of the
assessments.

The wmt07 dataset would be the most interesting
of all, in that it provides separate assessments for
the two main dimensions of translation quality, ade-
quacy and fluency, as well as system rankings. Un-
luckily, the number of annotations in this dataset is
very small, and after eliminating the ties the num-
bers are even smaller. As results on such small num-
bers would not be very representative, we decided
not to include them in our evaluation.

We also evaluated on the dataset described
in (Specia et al., 2010), which we will refer to as
specia. As the system is based on Europarl data, it
is to be considered an in-domain benchmark. The
dataset includes results produced by four different
systems, each translation being annotated by only
one judge. Given the size of the corpus (the output
of each system has been annotated on the same set
of 4,000 sentences), this dataset is the most repre-
sentative among those that we considered. It is also
especially interesting for two other reasons: 1) sys-
tems are assigned a score ranging from 1 (bad) to 4
(good as it is) based on the number of edits required
to produce a publication-ready translation. There-
fore, here we have an absolute measure of transla-
tion accuracy, as opposed to relative rankings; 2)
each system involved in the evaluation has very pe-
culiar characteristics, hence they are very likely to
generate quite different translations for the same in-
put sentences.

4.2 Setup
Our model consists of four main components: an
automatic semantic role labeler (to annotate source
sentences); a lexical translation model (to gener-

ate the alignments required to map the annotations
onto a translation hypothesis); a translation model
for predicate-argument structures, to assign a score
to projected annotations; and a translation model for
role fillers, to assign a score to the projection of each
argument.

To automatically label our training data with se-
mantic roles we used the Swirl system2 (Surdeanu
and Turmo, 2005) with the bundled English mod-
els for syntactic and semantic parsing. On the
CoNLL-2005 benchmark (Carreras and Màrquez,
2005), Swirl sports an F1-measure of 76.46. This
figure drops to 75 for mixed data, and to 65.42 on
out-of-domain data, which we can regard as a con-
servative estimate of the accuracy of the labeler on
wmt benchmarks.

For all the translation tasks we employed the
Moses phrase-based decoder3 in a single-factor con-
figuration. The -constraint command line pa-
rameter is used to force Moses to output the desired
translation. For the English to Spanish lexical trans-
lation model, we used an already available model
learned using all available wmt10e data.

To build the proposition level translation system,
we first annotated all the English sentences from the
wmt10e (en→es) training set with Swirl; then, we
forced the lexical translation model to generate the
alignments for the reference translations and pro-
jected the annotations on the target side. The process
resulted in 2,493,476 parallel annotations. 5,000 an-
notations were held-out for model tuning. The train-
ing data was used to estimate a 5-gram language
model and the translation model, which we later op-
timized on held-out data.

As for the argument level translator, we trained
it on parallel word sequences spanning the same
role in an annotation and its projection. Each such
pair constitutes a training example for the argu-
ment translator, each argument representation being
modeled independently from the others. With the
same setup used for the proposition translator, we
collected 4,578,480 parallel argument fillers from
wmt10e en→es training data, holding out 20,000
pairs for model tuning.

2http://www.surdeanu.name/mihai/swirl/
3http://www.statmt.org/moses/
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4.3 A note on recall

The main limitation of the model in its current im-
plementation is its low recall. The translation model
that we use to generate the alignments is mostly re-
sponsible for it. In fact, in approximately 35% of the
cases the constrained translation model is not able
to generate the required hypothesis. An obvious im-
provement would consist in using just an alignment
model for this task, instead of resorting to transla-
tion, for instance following the approach adopted in
(Esplà et al., 2011). It should also be noted that,
while this component adds the interesting property
of decoupling the measure from the system that pro-
duced the hypothesis, it is not strictly necessary in
all those cases in which translation alignments are
already available, e.g., for N-best re-ranking.

The second component that suffers from recall
problems is the semantic role labeler, which fails in
annotating sentences in approximately 6% of the re-
maining cases. These failures are by and large due
to the lack of proper verbal predicates in the target
sentence, and as such expose a limiting factor of the
underlying model. In another 3% of the cases, an
annotation is produced but it cannot be projected on
the hypothesis, since the predicate word on the target
side gets deleted during translation.

Another important consideration is that no mea-
sure for CE is conceived to be used in isolation, and
our measure is no exception. In combination with
others, the measure should only trigger when ap-
propriate, i.e., when it is able to capture interesting
patterns that are significant to discriminate transla-
tion quality. If it abstains, the other measures would
compensate for the missing values. In this respect,
we should also consider that not being able to pro-
duce a translation may be inherently considered an
indicator of translation quality.

4.4 Results

Table 1 lists, in each block of rows, pairwise classifi-
cation accuracy results obtained on a specific bench-
mark. The benchmarks are sorted in order of re-
verse relevance, the largest benchmark (specia) be-
ing listed first. In each row, we show results obtained
for different configurations in which the variable is
the distance d between two assessment scores. So,
for example, the row d = 1 accounts for all the

specia Corr Wrong Und(%) Acc(%)

d = 1 1076 656 14.26 62.12
d = 2 272 84 11.00 76.40
d = 3 30 8 13.64 78.95
d ≥ 1 1378 748 13.72 64.82
d ≥ 2 302 92 11.26 76.65
d ≥ 3 30 8 13.64 78.95

wmt10n Corr Wrong Und(%) Acc(%)

d = 1 428 374 15.04 53.37
d = 2 232 196 18.01 54.21
d = 3 98 74 16.50 56.98
d ≥ 1 784 664 16.20 54.14
d ≥ 2 356 290 17.60 55.11
d ≥ 3 124 94 16.79 56.88

wmt09n Corr Wrong Und(%) Acc(%)

d = 1 70 60 19.75 53.85
d = 2 30 40 20.45 42.86
d = 3 26 10 18.18 72.22
d ≥ 1 134 116 19.87 53.60
d ≥ 2 64 56 20.00 53.33
d ≥ 3 34 16 19.35 68.00

wmt08n Corr Wrong Und(%) Acc(%)

d = 1 64 36 12.28 64.00
d = 2 26 24 19.35 52.00
d = 3 12 6 18.18 66.67
d ≥ 1 104 70 14.71 59.77
d ≥ 2 40 34 17.78 54.05
d ≥ 3 14 10 14.29 58.33

wmt08e Corr Wrong Und(%) Acc(%)

d = 1 62 34 21.31 64.58
d = 2 40 30 10.26 57.14
d = 3 22 8 11.76 73.33
d ≥ 1 134 80 15.75 62.62
d ≥ 2 72 46 10.61 61.02
d ≥ 3 32 16 11.11 66.67

Table 1: Results on five confidence estimation bench-
marks. An n next to the task name (e.g. wmt08n) stands
for a news (i.e. out of domain) corpus, whereas an e (e.g.
wmt08e) stands for a Europarl (i.e. in domain) corpus.
The specia corpus is in-domain.

comparisons in which the distance between scores
is exactly one, while row d ≥ 2 considers all the
cases in which the distance is at least 2. For each
test, the columns show: the number of correct (Corr)
and wrong (Wrong) decisions, the percentage of un-
decidable cases (Und), i.e., the cases in which the
scoring function cannot decide between the two hy-
potheses, and the accuracy of classification (Acc)
measured without considering the unbreakable ties.
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The accuracy for d ≥ 1, i.e., on all the available
annotations, is shown in bold.

First, we can observe that the results are above the
baseline (an accuracy of 50% for evenly distributed
binary classification) on all the benchmarks and for
all configurations. The only outlier is wmt09n for
d = 2, with an accuracy of 42.86%. Across the
different datasets, results vary from promising (spe-
cia and wmt08e, where accuracy is generally above
60%) to mildly good (wmt10n), but across all the
board the method seems to be able to provide useful
clues for confidence estimation.

As expected, the accuracy of classification tends
to increase as the difference between hypotheses be-
comes more manifest. In four cases out of six, the
accuracy for d = 3 is above 60%, with the notable
peaks on specia, wmt09n and wmt08e where it goes
over 70% (on the first, it arrives almost at 80%).
Unluckily, very few translations have very different
quality (a measure of the difficulty of the task). Nev-
ertheless, the general trend seems to support the re-
liability of the approach.

When we consider the results on the whole
datasets (i.e., d ≥ 1), pairwise classification accu-
racy ranges from 54% (for wmt09n and wmt10n,
both out-of-domain), to 63-64% (for specia and
wmt08e, both in-domain). Interestingly, the perfor-
mance on wmt08n, which is also out-of-domain, is
closer to in-domain benchmarks, i.e., 60%. These
figures suggest that the method is consistently reli-
able on in-domain data, but also out-of-domain eval-
uation can benefit from its application. The differ-
ence in performance between wmt08n and the other
out-of-domain benchmarks will be reason of further
investigation as future work, as well as the drop in
performance for d = 2 on three of the benchmarks.

5 Conclusions

We have presented a model to exploit the rich in-
formation encoded by predicate-argument structures
for confidence estimation in machine translation.
The model is based on a battery of translation sys-
tems, which we use to study the movement and
the internal representation of propositions and ar-
guments projected from source to target via auto-
matic alignments. Our preliminary results, obtained
on five different benchmarks, suggest that the ap-

proach is well grounded and that semantic annota-
tions have the potential to be successfully employed
for this task.

The model can be improved in many ways, its ma-
jor weakness being its low recall as discussed in Sec-
tion 4.3. Another area in which there is margin for
improvement is the representation of predicate ar-
gument structures. It is reasonable to assume that
different representations could yield very different
results. Introducing more clues about the seman-
tic content of the whole predicate argument struc-
ture, e.g., by including argument head words in the
representation of the proposition, or considering a
more fine-grained representation at the proposition
level, could make it possible to assess the quality of
a translation reducing the need to back-off to indi-
vidual arguments. As for the representation of ar-
guments, a first and straightforward improvement
would be to train a separate model for each argument
class, or to move to a factored model that would al-
low us to model explicitly the insertion of words or
the overlap of argument words due to the projection.

Another important research direction involves the
combination of this measure with already assessed
metric sets for CE, e.g., (Specia et al., 2010), to un-
derstand to what extent it can contribute to improve
the overall performance. In this respect, we would
also like to move from a heuristic scoring function
to a statistical model.

Finally, we would like to test the generality of the
approach by designing other features based on the
same “annotate, project, measure” framework, as we
strongly believe that it is an effective yet simple way
to combine several linguistic features for machine
translation evaluation. For example, we would like
to apply a similar framework to model the movement
of chunks or POS sequences.
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Abstract
We argue that failing to capture the degree of
contribution of each semantic frame in a sen-
tence explains puzzling results in recent work
on the MEANT family of semantic MT eval-
uation metrics, which have disturbingly in-
dicated that dissociating semantic roles and
fillers from their predicates actually improves
correlation with human adequacy judgments
even though, intuitively, properly segregat-
ing event frames should more accurately re-
flect the preservation of meaning. Our anal-
ysis finds that both properly structured and
flattened representations fail to adequately ac-
count for the contribution of each seman-
tic frame to the overall sentence. We then
show that the correlation of HMEANT, the hu-
man variant of MEANT, can be greatly im-
proved by introducing a simple length-based
weighting scheme that approximates the de-
gree of contribution of each semantic frame
to the overall sentence. The new results
also show that, without flattening the struc-
ture of semantic frames, weighting the degree
of each frame’s contribution gives HMEANT
higher correlations than the previously best-
performing flattened model, as well as HTER.

1 Introduction

In this paper we provide a more concrete answer
to the question: what would be a better represen-
tation, structured or flat, of the roles in semantic
frames to be used in a semantic machine transla-
tion (MT) evaluation metric? We compare recent
studies on the MEANT family of semantic role la-
beling (SRL) based MT evaluation metrics (Lo and
Wu, 2010a,b, 2011a,b) by (1) contrasting their vari-
ations in semantic role representation and observing

disturbing comparative results indicating that segre-
gating the event frames in structured role representa-
tion actually damages correlation against human ad-
equacy judgments and (2) showing how SRL based
MT evaluation can be improved beyond the current
state-of-the-art compared to previous MEANT vari-
ants as well as HTER, through the introduction of
a simple weighting scheme that reflects the degree
of contribution of each semantic frame to the overall
sentence. The weighting scheme we propose uses
a simple length-based heuristic that reflects the as-
sumption that a semantic frame that covers more to-
kens contributes more to the overall sentence transla-
tion. We demonstrate empirically that when the de-
gree of each frame’s contribution to its sentence is
taken into account, the properly structured role rep-
resentation is more accurate and intuitive than the
flattened role representation for SRL MT evaluation
metrics.
For years, the task of measuring the performance

of MT systems has been dominated by lexical n-
gram based machine translation evaluation met-
rics, such as BLEU (Papineni et al., 2002), NIST
(Doddington, 2002), METEOR (Banerjee and Lavie,
2005), PER (Tillmann et al., 1997), CDER (Leusch
et al., 2006) and WER (Nießen et al., 2000). These
metrics are excellent at ranking overall systems by
averaging their scores over entire documents. How-
ever, as MT systems improve, the shortcomings of
such metrics are becoming more apparent. Though
containing roughly the correct words, MT output at
the sentence remains often quite incomprehensible,
and fails to preserve the meaning of the input. This
results from the fact that n-gram based metrics are
not as reliable at ranking the adequacy of transla-
tions of individual sentences, and are particularly
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poor at reflecting translation quality improvements
involving more meaningful word sense or semantic
frame decisions—which human judges have no trou-
ble distinguishing. Callison-Burch et al. (2006) and
Koehn and Monz (2006), for example, study situ-
ations where BLEU strongly disagrees with human
judgment of translation quality.
Newer avenues of research seek substitutes for

n-gram based MT evaluation metrics that are bet-
ter at evaluating translation adequacy, particularly at
the sentence level. One line of research emphasizes
more the structural correctness of translation. Liu
and Gildea (2005) propose STM, a metric based on
syntactic structure, that addresses the failure of lex-
ical similarity based metrics to evaluate translation
grammaticality. However, the problem remains that
a grammatical translation can achieve a high syntax-
based score yet still make significant errors arising
from confusion of semantic roles. On the other hand,
despite the fact that non-automatic, manually evalu-
ated metrics, such as HTER (Snover et al., 2006), are
more adequacy oriented exhibit much higher correla-
tion with human adequacy judgment, their high labor
cost prohibits widespread use. There has also been
work on explicitly evaluating MT adequacy by ag-
gregating over a very large set of linguistic features
(Giménez and Màrquez, 2007, 2008) and textual en-
tailment (Pado et al., 2009).

2 SRL based MT evaluation metrics

A blueprint for more direct assessment of mean-
ing preservation across translation was outlined by
Lo and Wu (2010a), in which translation utility is
manually evaluated with respect to the accuracy of
semantic role labels. A good translation is one from
which human readers may successfully understand
at least the basic event structure—“who did what
to whom, when, where and why” (Pradhan et al.,
2004)–which represents the most essential meaning
of the source utterances. Adopting this principle,
the MEANT family of metrics compare the seman-
tic frames in reference translations against those that
can be reconstructed from machine translation out-
put.
Preliminary results reported in (Lo and Wu,

2010b) confirm that the blueprint model outper-
forms BLEU and similar n-gram oriented evalu-

ation metrics in correlation against human ade-
quacy judgments, but does not fare as well as
HTER. The more complete study of Lo and Wu
(2011a) introduces MEANT and its human variants
HMEANT, which implement an extended version of
blueprint methodology. Experimental results show
that HMEANT correlates against human adequacy
judgments as well as the more expensive HTER,
even though HMEANT can be evaluated using low-
cost untrained monolingual semantic role annotators
while still maintaining high inter-annotator agree-
ment (both are far superior to BLEU or other sur-
face oriented evaluation metrics). The study also
shows that replacing the human semantic role la-
belers with an automatic shallow semantic parser
yields an approximation that is still vastly superior
to BLEU while remaining about 80% as closely cor-
related with human adequacy judgments as HTER.
Along with additional improvements to the accu-
racy of the MEANT family of metrics, Lo and Wu
(2011b) study the impact of each individual seman-
tic role to themetric’s correlation against human ade-
quacy judgments, as well as the time cost for humans
to reconstruct the semantic frames and compare the
translation accuracy of the role fillers.
In general, the MEANT family of SRL MT eval-

uation metrics (Lo and Wu, 2011a,b) evaluate the
translation utility as follows. First, semantic role
labeling is performed (either manually or automat-
ically) on both the reference translation (REF) and
the machine translation output (MT) to obtain the
semantic frame structure. Then, the semantic pred-
icates, roles and fillers reconstructed from the MT
output are compared to those in the reference trans-
lations. The number of correctly and partially cor-
rectly annotated arguments of each type in each
frame of the MT output are collected in this step:

Ci,j ≡ # correct ARG i of PRED i in MT
Pi,j ≡ # partially correct ARG j of PRED i in MT
Mi,j ≡ total # ARG j of PRED i in MT
Ri,j ≡ total # ARG j of PRED i in REF

In the following three subsections, we describe
how the translation utility is calculated using these
counts in (a) the original blueprint model, (b) the
first version of HMEANT and MEANT using struc-
tured role representations, and (c) the more accu-
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Figure 1: The structured role representation for the
blueprint SRL-based MT evaluation metric as proposed
in Lo and Wu (2010a,b), with arguments aggregated into
core and adjunct classes.

rate flattened-role implementation of HMEANT and
MEANT.

2.1 Structured core vs. adjunct role
representation

Figure 1 depicts the semantic role representation
in the blueprint model of SRL MT evaluation metric
proposed by Lo and Wu (2010a,b). Each sentence
consists of a number of frames, and each frame con-
sists of a predicate and two classes of arguments, ei-
ther core or adjunct. The frame precision/recall is
the weighted sum of the number of correctly trans-
lated roles (where arguments are grouped into the
core and adjunct classes) in a frame normalized by
the weighted sum of the total number of all roles in
that frame in the MT/REF respectively. The sen-
tence precision/recall is the sum of the frame preci-
sion/recall for all frames averaged by the total num-
ber of frames in the MT/REF respectively. The SRL
evaluation metric is then defined in terms of f-score
in order to balance the sentence precision and recall.
More precisely, assuming the above definitions of
Ci,j , Pi,j , Mi,j and Ri,j , the sentence precision and
recall are defined as follows.

precision =

∑
i

wpred+
∑

t
wt

(∑
j∈t

(Ci,j+wpartialPi,j)
)

wpred+
∑

t
wt

(∑
j∈t

Mi,j

)
# frames in MT

recall =

∑
i

wpred+
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Figure 2: The structured role representation for the
MEANT family of metrics as proposed in Lo and Wu
(2011a).

where wpred is the weight for predicates, and wt
where t ∈ {core, adj} is the weight for core argu-
ments and adjunct arguments. These weights rep-
resent the degree of contribution of the predicate
and different classes of arguments (either core or ad-
junct) to the overall meaning of the semantic frame
they attach to. In addition,wpartial is a weight control-
ling the degree to which “partially correct” transla-
tions are penalized. All the weights can be automat-
ically estimated by optimizing the correlation with
human adequacy judgments.
We conjecture that the reason for the low correla-

tion with human adequacy judgments of this model
as reported in Lo and Wu (2010b) is that the ab-
straction of arguments actually reduces the repre-
sentational power of the original predicate-argument
structure in SRL. Under this representation, all the
arguments in the same class, e.g. all adjunct argu-
ments, are weighted uniformly. The assumption that
all types of arguments in the same class have the
same degree of contribution to their frame is obvi-
ously wrong, and the empirical results confirm that
the assumption is too coarse.

2.2 Structured role representation
Figure 2 shows the structured role representation

used in the MEANT family of metrics as proposed
in Lo and Wu (2011a), which avoids aggregating ar-
guments into core and adjunct classes. The design
of the MEANT family of metrics addresses the in-
correct assumption in the blueprint model by assum-
ing each type of argument has a unique weight repre-
senting its degree of contribution to the overall sen-
tence translation. Thus, the number of dimensions of
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the weight vector is increased to allow an indepen-
dent weight to be assigned to each type of argument.
Unlike the previous representation in the blueprint
model, there is no aggregation of arguments into
core and adjunct classes. Each sentence consists of a
number of frames, and each frame consists of a pred-
icate and a number of arguments of type j.
Under the new approach, the frame preci-

sion/recall is the weighted sum of the number of cor-
rectly translated roles in a frame normalized by the
weighted sum of the total number of all roles in that
frame in the MT/REF respectively. Similar to the
previous blueprint representation, the sentence pre-
cision/recall is the sum of the frame precision/recall
for all frames averaged by the total number of frames
in the MT/REF respectively. More precisely, fol-
lowing the previous definitions of Ci,j , Pi,j , Mi,j ,
Ri,j ,wpred andwpartial, the sentence precision and re-
call are redefined as follows.

precision =

∑
i

wpred+
∑

j
wj(Ci,j+wpartialPi,j)

wpred+
∑

j
wjMi,j

#frames in MT

recall =

∑
i

wpred+
∑

j
wj(Ci,j+wpartialPi,j)

wpred+
∑

j
wjRi,j

# frames in REF

where wj is the weight for the arguments of type j.
Theseweights represent the degree of contribution of
different types of arguments to the overall meaning
of their semantic frame.

2.3 Flat role representation
Figure 3 depicts the flat role representation used in

themore accurate variants ofMEANT as proposed in
Lo andWu (2011b). This representation ismotivated
by the studies of the impact of individual seman-
tic role. The highly significant difference between
this flat representation and both of the previous two
structured role representations is that the semantic
frames in the sentence are no longer segregated.
The flat role representation desegregates the frame

structure, resulting in a flat, single level structure.
Therefore, there is no frame precision/recall. The
sentence precision/recall is the weighted sum of the
number of correctly translated roles in all frames nor-
malized by the weighted sum of the total number of

roles in all frames in theMT/REF respectively. More
precisely, again assuming the previous definitions of
Ci,j , Pi,j , Mi,j , Ri,j and wpartial, the sentence preci-
sion and recall are redefined as follows.

Cpred ≡ total # correctly translated predicates
Mpred ≡ total # predicates in MT
Rpred ≡ total # predicates in REF

precision =
wpredCpred +

∑
j
wj

(∑
i
(Ci,j + wpartialPi,j)

)
wpredMpred +

∑
j
wj

(∑
i
Mi,j

)
recall =

wpredCpred +
∑

j
wj

(∑
i
(Ci,j + wpartialPi,j)

)
wpredRpred +

∑
j
wj

(∑
i
Ri,j

)
Note that there is a small modification of the defini-
tion of wpred and wj . Instead of the degree of contri-
bution to the overall meaning of the semantic frame
that the roles attached to, wpredand wj now represent
the degree of contribution of the predicate and the ar-
guments of type j to the overall meaning of the entire
sentence.
It is worth noting that the semantic role features in

the ULC metric proposed by Giménez and Màrquez
(2008) also employ a flat feature-based represen-
tation of semantic roles. However, the definition
of those semantic role features adopts a different
methodology for determining the role fillers’ transla-
tion accuracy, which prevents a controlled consistent
environment for the comparative experiments that
the present work focuses on.

3 Experimental setup

The evaluation data for our experiments consists
of 40 sentences randomly drawn from the DARPA
GALE program Phase 2.5 newswire evaluation cor-
pus containing Chinese input sentence, English ref-
erence translations, and themachine translation from
three different state-of-the-art GALE systems. The
Chinese and the English reference translation have
both been annotated with gold standard PropBank
(Palmer et al., 2005) semantic role labels. The
weightswpred, wcore, wadj, wj and wpartial can be esti-
mated by optimizing correlation against human ade-
quacy judgments, using any of themany standard op-
timization search techniques. In the work of Lo and
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Figure 3: The flat role representation for the MEANT family of metrics as proposed in Lo and Wu (2011b) .

Wu (2011b), the correlations of all individual roles
with the human adequacy judgments were found to
be non-negative, therefore we found grid search to
be quite adequate for estimating the weights. We use
linear weighting because we would like to keep the
metric’s interpretation simple and intuitive.

Following the benchmark assessment in NIST
MetricsMaTr 2010 (Callison-Burch et al., 2010), we
assess the performance of the semantic MT evalua-
tion metric at the sentence level using the summed-
diagonal-of-confusion-matrix score. The human ad-
equacy judgments were obtained by showing all
three MT outputs together with the Chinese source
input to a human reader. The human reader was in-
structed to order the sentences from the three MT
systems according to the accuracy of meaning in
the translations. For the MT output, we ranked the
sentences from the three MT systems according to
their evaluation metric scores. By comparing the
two sets of rankings, a confusion matrix is formed.
The summed diagonal of confusion matrix is the per-
centage of the total count when a particular rank by
the metric’s score exactly matches the human judg-
ments. The range of possible values of summed di-
agonal of confusion matrix is [0,1], where 1 means
all the systems’ ranks determined by the metric are
identical with that of the human judgments and 0
means all the systems’ ranks determined by the met-
ric are different from that of the human judgment.

Since the summed diagonal of confusion matrix
scores only assess the absolute ranking accuracy,
we also report the Kendall’s τ rank correlation co-
efficients, which measure the correlation of the pro-
posed metric against human judgments with respect
to their relative ranking of translation adequacy. A
higher the value for τ indicates the more similar the
ranking by the evaluation metric to the human judg-
ment. The range of possible values of correlation

Table 1: Sentence-level correlations against human ade-
quacy judgments as measured by Kendall’s τ and summed
diagonal of confusion matrix as used in MetricsMaTr
2010. “SRL - blueprint” is the blueprint model described
in section 2.1. “HMEANT (structured)” is HMEANT us-
ing the structured role representation described in sec-
tion 2.2. “HMEANT (flat)” is HMEANT using the flat
role representation described in section 2.3.
Metric Kendall MetricsMaTr
HMEANT (flat) 0.4685 0.5583
HMEANT (structured) 0.4324 0.5083
SRL - blueprint 0.3784 0.4667

coefficient is [-1,1], where 1 means the systems are
ranked in the same order as the human judgment and
-1 means the systems are ranked in the reverse order
as the human judgment.

4 Round 1: Flat beats structured

Our first round of comparative results quantita-
tively assess whether a structured role representation
(that properly preserves the semantic frame struc-
ture, which is typically hierarchically nested in com-
positional fashion) outperforms the simpler (but less
intuitive, and certainly less linguistically satisfying)
flat role representation.
As shown in table 1, disturbingly, HMEANT us-

ing flat role representations yields higher correla-
tions against human adequacy judgments than us-
ing structured role representations, regardless of
whether role types are aggregated into core and
adjunct classes. The results are consistent for
both Kendall’s tau correlation coefficient and Met-
ricsMaTr’s summed diagonal of confusion matrix.
HMEANT using a flat role representation achieved
a Kendall’s tau correlation coefficient and summed
diagonal of confusion matrix score of 0.4685 and
0.5583 respectively, which is superior to both
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Figure 4: The new proposed structured role representa-
tion, incorporating a weighting scheme reflecting the de-
gree of contribution of each semantic frame to the overall
sentence.

HMEANT using a structured role representation
(0.4324 and 0.5083 respectively) and the blueprint
model (0.3784 and 0.4667 respectively).
Error analysis, in light of these surprising results,

strongly suggests that the problem lies in the design
which uniformly averages the frame precision/recall
over all frames in a sentence when computing the
sentence precision/recall. This essentially assumes
that each frame in a sentence contributes equally
to the overall meaning in the sentence translation.
Such an assumption is trivially wrong and could well
hugely degrade the advantages of using a structured
role representation for semanticMT evaluation. This
suggests that the structured role representation could
be improved by also capturing the degree of contri-
bution of each frame to the overall sentence transla-
tion.

5 Capturing the importance of each frame

To address the problem in the previousmodels, we
introduce a weighting scheme to reflect the degree
of contribution of each semantic frame to the overall
sentence. However, unlike the contribution of each
role to a frame, the contribution of each frame to
the overall sentence cannot be estimated across sen-
tences. This is because unlike semantic roles, which
can be identified by their types, frames do not neces-
sarily have easily defined types, and their construc-
tion is also different from sentence to sentence so that
the positions of their predicates in the sentence are

the only way to identify the frames. However, the
degree of contribution of each frame does not depend
on the position of the predicate in the sentence. For
example, the two sentences I met Tom when I was go-
ing home andWhen I was walking home, I saw Tom have
similar meanings. The verbs met and saw are the
predicates of the key event frames which contribute
more to the overall sentences, whereas going and
walking are the predicates of the minor nested event
frames (in locative manner roles of the key event
frames) and contribute less to the overall sentences.
However, the two sentences are realized with differ-
ent surface constructions, and the two key frames are
in different positions. Therefore, the weights learned
from one sentence cannot directly be applied to the
other sentence.
Instead of estimating the weight of each frame us-

ing optimization techniques, wemake an assumption
that a semantic frame filled with more word tokens
expresses more concepts and thus contributes more
to the overall sentence. Following this assumption,
we determine the weights of each semantic frame by
its span coverage in the sentence. In other words,
the weight of each frame is the percentage of word
tokens it covers in the sentence.
Figure 4 depicts the structured role representa-

tion with the proposed new frame weighting scheme.
The significant difference between this representa-
tion and the structured role representation in the
MEANT variants proposed in Lo and Wu (2011a)
is that each frame is now assigned an independent
weight, which is its span coverage in the MT/REF
when obtaining the frame precision/recall respec-
tively.
As in Lo and Wu (2011a), each sentence consists

of a number of frames, and each frame consists of
a predicate and a number of arguments of type j.
Each type of argument is assigned an independent
weight to represent its degree of contribution to the
overall meaning of the semantic frame they attached
to. The frame precision/recall is the weighted sum
of the number of correctly translated roles in a frame
normalized by the weighted sum of the number of all
roles in that frame in the MT/REF. The sentence pre-
cision/recall is the weighted sum of the frame preci-
sion/recall for all frames normalized by the weighted
sum of the total number of frames in MT/REF re-
spectively. More precisely, again assuming the ear-
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lier definitions of Ci,j , Pi,j , Mi,j , Ri,j , wpred and
wpartial in section 2, the sentence precision and recall
are redefined as follows.

mi ≡ # tokens filled in frame i of MT
total # tokens in MT

ri ≡ # tokens filled in frame i of REF
total # tokens in REF

precision =

∑
i mi

wpred+
∑

j
wj(Ci,j+wpartialPi,j)

wpred+
∑

j
wjMi,j∑

i mi

recall =

∑
i ri

wpred+
∑

j
wj(Ci,j+wpartialPi,j)

wpred+
∑

j
wjRi,j∑

i ri

where mi and ri are the weights for frame i, in the
MT/REF respectively. These weights estimate the
degree of contribution of each frame to the overall
meaning of the sentence.

6 Round 2: Structured beats flat

We now assess the performance of the new pro-
posed structured role representation, by comparing
it with the previous models under the same experi-
mental setup as in section 4. We have also run con-
trastive experiments against BLEU and HTER un-
der the same experimental conditions. In addition,
to investigate the consistency of results for the au-
tomated variants of MEANT, we also include com-
parative experiments where shallow semantic pars-
ing (ASSERT) replaces human semantic role label-
ers for each model of role representation.
Figure 5 shows an example where HMEANTwith

the frame weighting scheme outperforms HMEANT
using other role representations in correlation against
human adequacy judgments. IN is the Chinese
source input. REF is the corresponding refer-
ence translation. MT1, MT2 and MT3 are the
three corresponding MT output. The human ade-
quacy judgments for this set of translation are that
MT1>MT3>MT2. HMEANT with the proposed
frame weighting predicts the same ranking order
as the human adequacy judgment, while HMEANT
with the flat role representation and HMEANT
with the structured role representation without frame

weighting both predict MT3>MT1>MT2. There
are four semantic frames in IN while there are only
three semantic frames in the REF. This is because
the predicate 造成 in IN is translated in REF as had
which is not a predicate. However, for the same
frame, both MT1 and MT2 translated ARG1不利影
响 into the predicate affect, while MT3 did not trans-
late the predicate 造成 and translated the ARG1 不
利影响 into the noun phrase adverse impact. There-
fore, using the flat role representation or the previ-
ous structured role representation which assume all
frames have an identical degree of contribution to the
overall sentence translation, MT1’s and MT2’s sen-
tence precision is greatly penalized for having one
more extra frame than the reference. In contrast, ap-
plying the frame weighting scheme, the degree of
contribution of each frame is adjusted by its token
coverage. Therefore, the negative effect of the less
important extra frames is minimized, allowing the
positive effect of correctly translating more roles in
more important frames to be more appropriately re-
flected.
Table 2 shows that HMEANT with the proposed

new frameweighting scheme correlatesmore closely
with human adequacy judgments than HMEANT
using the previous alternative role representations.
The results from Kendall’s tau correlation coeffi-
cient and MetricsMaTr’s summed diagonal of con-
fusion matrix analysis are consistent. HMEANT
using the frame-weighted structured role represen-
tation achieved a Kendall’s tau correlation coef-
ficient and summed diagonal of confusion matrix
score of 0.2865 and 0.575 respectively, bettering
both HMEANT using the flat role representation
(0.4685 and 0.5583) and HMEANT using the pre-
vious un-frame-weighted structured role representa-
tion (0.4324 and 0.5083).
HMEANT using the improved structured role rep-

resentation also outperforms other commonly used
MT evaluation metrics. It correlates with human ad-
equacy judgments more closely than HTER (0.4324
and 0.425 in Kendall’s tau correlation coefficient and
summed diagonal of confusionmatrix, respectively).
It also correlates with human adequacy judgments
significantly more closely than BLEU (0.1982 and
0.425).
Turning to the variants that replace human SRL

with automated SRL, table 2 shows that MEANT
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Figure 5: Example input sentence along with reference and machine translations, annotated with semantic frames in
Propbank format. The MT output is annotated with semantic frames by minimally trained humans. HMEANT with
the new frame-weighted structured role representation successfully ranks the MT output in an order that matches with
human adequacy judgments (MT1>MT3>MT2), whereas HMEANT with a flat role representation or the previous
un-frame-weighted structured role representation fails to rank MT1 and MT3 in an order that matches with human
adequacy judgments. See section 6 for details.
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Table 2: Sentence-level correlations against human ade-
quacy judgments as measured by Kendall’s τ and summed
diagonal of confusion matrix as used in MetricsMaTr
2010. “SRL - blueprint”, “HMEANT (structured)” and
“HMEANT (flat)” are the same as in table 1. “MEANT
(structured)” and “MEANT (flat)” use automatic rather
than human SRL. “MEANT (frame)” and “HMEANT
(frame)” are MEANT/HMEANT using the structured
role representation with the frame weighting scheme de-
scribed in section 5.
Metric Kendall MetricsMaTr
HMEANT (frame) 0.4865 0.575
HMEANT (flat) 0.4685 0.5583
HMEANT (structured) 0.4324 0.5083
HTER 0.4324 0.425
SRL - blueprint 0.3784 0.4667
MEANT (frame) 0.3514 0.4333
MEANT (structured) 0.3423 0.425
MEANT (flat) 0.3333 0.425
BLEU 0.1982 0.425

using the new frame-weighted structured role repre-
sentation yields an approximation that is about 81%
as closely correlated with human adequacy judgment
as HTER, and is better than all previous MEANT
variants using alternative role representations. All
results consistently confirm that using a structured
role representation with the new frame weighting
scheme, which captures the event structure and an
approximate degree of contribution of each frame to
the overall sentence, outperforms using a flat role
representation for SRL based MT evaluation met-
rics.

7 Conclusion

We have shown how the MEANT family of SRL
based MT evaluation metrics is significantly im-
proved beyond the state-of-the-art for both HTER
and previous variants of MEANT, through the in-
troduction of a simple but well-motivated weight-
ing scheme to reflect the degree of contribution of
each semantic frame to the overall sentence trans-
lation. Following the assumption that a semantic
frame filled with more word tokens tends to express
more concepts, the new model weight each frame
by its span coverage. Consistent experimental re-
sults have been demonstrated under conditions uti-

lizing both human and automatic SRL. Under the
new frame weighted representation, properly nested
structured semantic frame representations regain an
empirically preferred position over the less intuitive
and linguistically unsatisfying flat role representa-
tions.
One future direction of this work will be to com-

pare MEANT against the feature based and string
based representations of semantic relations in ULC.
Such a comparison could yield a more complete
credit/blame perspective on the representationmodel
when operating under the condition of using auto-
matic SRL.
Another interesting extension of this work would

be to investigate the discriminative power of the
MEANT family of metrics to distinguish distances
in translation adequacy. In this paper we confirmed
that the MEANT family of metrics are stable in cor-
relation with human ranking judgments of transla-
tion adequacy. Further studies could focus on the
correlation of the MEANT family of metrics against
human scoring. We also plan to experiment on meta-
evaluating MEANT on a larger scale in other genres
and for other language pairs.
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Abstract

To facilitate the application of semantics in
statistical machine translation, we propose
a broad-coverage predicate-argument struc-
ture mapping technique using automated re-
sources. Our approach utilizes automatic
syntactic and semantic parsers to gener-
ate Chinese-English predicate-argument struc-
tures. The system produced a many-to-many
argument mapping for all PropBank argu-
ment types by computing argument similarity
based on automatic word alignment, achieving
80.5% F-score on numbered argument map-
ping and 64.6% F-score on all arguments. By
measuring predicate-argument structure sim-
ilarity based on the argument mapping, and
formulating the predicate-argument structure
mapping problem as a linear-assignment prob-
lem, the system achieved 84.9% F-score us-
ing automatic SRL, only 3.7% F-score lower
than using gold standard SRL. The map-
ping output covered 49.6% of the annotated
Chinese predicates (which contains predicate-
adjectives that often have no parallel annota-
tions in English) and 80.7% of annotated En-
glish predicates, suggesting its potential as a
valuable resource for improving word align-
ment and reranking MT output.

1 Introduction

As the demand for semantically consistent machine
translation rises (Wu and Fung, 2009a), the need
for a comprehensive semantic mapping tool has be-
come more apparent. With the current architecture
of machine translation decoders, few ways of in-
corporating semantics in MT output include using

word sense disambiguation to select the correct tar-
get translation (Carpuat and Wu, 2007) and reorder-
ing/reranking MT output based on semantic con-
sistencies (Wu and Fung, 2009b) (Carpuat et al.,
2010). While a comprehensive semantic mapping
tool can supplement or improve the results of such
techniques, there are many other exciting ideas we
can explore: with automatic SRL, we can improve
coverage (and possibly accuracy) of Chinese seman-
tic class generation (Wu et al., 2010) by running the
system on a large, unannotated parallel corpus. Us-
ing predicate-argument mappings as constraints, it
may be possibly to improve SRL output by perform-
ing joint inference of SRL in source and target lan-
guages simultaneously, much like what Burkett and
Klein (2008) was able to achieve with syntactic pars-
ing.

As the foundation of many machine translation
decoders (DeNeefe and Knight, 2009), word align-
ment has continuously played an important role in
machine translation. There have been several at-
tempts to improve word alignment, most of which
have focused on tree-to-tree alignments of syntac-
tic structures (Zhang et al., 2007; Mareček, 2009a).
Our hypothesis is that the predicate-argument struc-
ture alignments can abstract away from language
specific syntactic variation and provide a more ro-
bust, semantically coherent alignment across sen-
tences.

We begin by running GIZA++ (Och and Ney,
2003), one of the most popular alignment tools, to
obtain automatic word alignments between parallel
English/Chinese corpora. To achieve a broader cov-
erage of semantic mappings than just those anno-
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tated in parallel PropBank-ed corpora, we attempt
to map automatically generated predicate-argument
structures. For each Chinese and English verb pred-
icate pairs within a parallel sentence, we exam-
ine the quality of both the predicate and argument
alignment (using GIZA++ word alignment output)
and devise a many-to-many argument mapping tech-
nique. From that, we pose predicate-argument map-
ping as a linear assignment problem (optimizing the
total similarity of the mapping) and solve it with
the Kuhn-Munkres method (Kuhn, 1955). With
this approach, we were able to incur only a small
predicate-argument F-score degradation over using
manual PropBank annotation. The output also pro-
vides much more fine-grained argument mapping
that can be used for downstream MT applications.

2 Related work

Our basic approach to semantic mapping is similar
to the idea of semantic similarity based on triangu-
lation between parallel corpora outlined in Resnik
(2004) and Madnani et al. (2008a; 2008b), but is
implemented here quite differently. It is most sim-
ilar in execution to the work of (Mareček, 2009b),
which improves word alignment by aligning tec-
togrammatical trees in a parallel English/Czech cor-
pus. The Czech corpus is first lemmatized because
of the rich morphology, and then the word alignment
is “symmetrized”. However, this approach does not
explicitly make use of the predicate-argument struc-
ture to confirm the alignments or to suggest new
ones.

Padó and Lapata (2005; 2006) used word align-
ment and syntax based argument similarity to
project English FrameNet semantic roles to German.
The approach relied on annotated semantic roles on
the source side only, precluding joint inferenece of
the projection using reference or automatic target
side semantic roles.

Fung et al. (2007) demonstrated that there is
poor semantic parallelism between Chinese-English
bilingual sentences. Their technique for im-
proving Chinese-English predicate-argument map-
ping (ARGChinese,i 7→ ARGEnglish,j) consists of
matching predicates with a bilingual lexicon, com-
puting cosine-similarity (based on lexical transla-
tion) of arguments and tuning on an unannotated

parallel corpus. The system differs from ours in
that it only provided one-to-one mapping of num-
bered arguments and may not be able to detect
predicate mapping with no lexical relations that are
nevertheless semantically related. Later, Wu and
Fung (2009b) used parallel semantic roles to im-
prove MT system outputs. Given the outputs from
Moses (Koehn et al., 2007), a machine translation
decoder, they reordered the outputs based on the best
predicate-argument mapping. The resulting system
showed a 0.5 point BLEU score improvement even
though the BLEU metric often discounts improve-
ment in semantic consistency of MT output.

Choi et al. (2009) (and later Wu et al. (2010))
showed how to enhance Chinese-English verb align-
ments by exploring predicate-argument structure
alignment using parallel PropBanks. The result-
ing system showed improvement over pure GIZA++
alignment. Those two systems differs from ours
in that they operated on gold standard parses and
semantic roles. The systems also did not pro-
vide explicit argument mapping between the aligned
predicate-argument structures.

3 Resources

To perform automatic semantic mapping, we need
an annotated corpus to evaluate the results. In addi-
tion, we also need a word aligner, a syntactic parser,
and a semantic role labeler (as well as annotated and
unannotated corpora to train each system).

3.1 Corpus

We used the portion of the Penn Chinese TreeBank
with word alignment annotation as the basis for eval-
uating semantic mapping. The word-aligned por-
tion, containing around 2000 parallel sentences, is
exclusive to Xinhua News (and covers around 50%
of the Xinhua corpus in the Chinese TreeBank). We
then merged the word alignment annotation with the
TreeBank and PropBank annotation of Ontonotes
4.0 (Hovy et al., 2006), which includes a wide ar-
ray of data sources like broadcast news, news wire,
magazine, web text, etc. A small percentage of the
2000 sentences were discarded because of tokeniza-
tion differences. We dubbed the resulting 1939 par-
allel sentences as the triple-gold Xinhua corpus.
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3.2 Word Alignment
We chose GIZA++ (Och and Ney, 2003) as our word
alignment tool primarily because of its popularity,
though there are other alternatives like Lacoste-
Julien et al. (2006).

3.3 Phrase Structure Parsing
We chose the Berkeley Parser (Petrov and Klein,
2007) for phrase structure parsing since it has been
tested on both English and Chinese corpora and can
be easily retrained.

3.4 Semantic Role Labeling
For semantic role labeling (SRL), we built our own
system using a fairly standard approach: SRL is
posed as a multi-class classification problem requir-
ing the identification of argument candidates for
each predicate and their argument types. Typi-
cally, argument identification and argument label-
ing are performed in two separate stages because of
time/resource constraints during training/labeling.
For our system, we chose LIBLINEAR (Fan et al.,
2008), a library for large linear classification prob-
lems, as the classifier. This alleviated the need to
separate the identification and labeling stages: argu-
ment identification is trained simply by incorporat-
ing the “NOT-ARG” label into the training data.

Most the of the features used by the classifier are
standard features found in many SRL systems; these
include:

Predicate predicate lemma and its POS tag

Voice indicates the voice of the predicate. For En-
glish, we used the six heuristics detailed by
Igo (2007), which detects both ordinary and
reduced passive constructions. For Chinese,
we simply detected the presence of passive in-
dicator words (those with SB, LB POS tags)
amongst the siblings of the predicate.

Phrase type phrase type of the constituent

Subcategorization phrase structure rule expanding
the predicate parent

Head word the head word and its POS tag of the
constituent

Parent head word whether the head word of the
parent is the same as the head word of the con-
stituent

Position whether the constituent is before or after
the predicate

Path the syntactic tree path from the predicate to
the constituent (as well as various path general-
ization methods)

First word first word and its POS tag of the con-
stituent

Last word last word and its POS tag of the con-
stituent

Syntactic frame the siblings of the constituent

Constituent distance the number of potential con-
stituents with the same phrase type between the
predicate and the constituent

We also created many bigrams (and a few trigrams)
of the above features.

By default, LIBLINEAR uses the one-vs-all ap-
proach for multi-class classification. This does not
always perform well for some easily confusable
class labels. Also, as noted by Xue (2004), cer-
tain features are strong discriminators for argument
identification but not for argument labeling, while
the reverse is true for others. Under such condi-
tions, mixing arguments and non-arguments within
the same class may produce sub-optimal results for a
binary classifier. To address these issues, we built a
pairwise multi-class classifier (using simple major-
ity voting) on top of LIBLINEAR.

The resulting English SRL system, evaluated
using the CoNLL 2005 methodology, achieved a
77.3% F-score on the WSJ corpus, comparable to
the leading system (Surdeanu and Turmo, 2005) us-
ing a single parser output. The Chinese SRL system,
on the other hand, achieved 74.4% F-score on the
triple-gold Xinhua corpus (similar but not directly
comparable to Wu et al. (2006) and Xue (2008)
because of differences in TreeBank/PropBank revi-
sions as well as differences in test set).

4 Predicate-arguments mapping

4.1 Argument mapping
To produce a good predicate-argument mapping, we
needed to consider 2 things: whether good argument
mapping can be produced based on argument type
only, and whether each argument only maps to one
argument in the target language.
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4.1.1 Predicate-dependent argument mapping
Theoretically, PropBank numbered arguments are

supposed to be consistent across predicates: ARG0
typically denotes the agent of the predicate and
ARG1 the theme. While this consistency may hold
true for predicates in the same language, as Fung et
al. (2007) noted, this is not a reliable indicator when
mapping predicate-arguments between Chinese and
English. For example, when comparing the Prop-
Bank frames of the English verb arrive and the syn-
onymous Chinese verb抵达, we see ARG1 (entity in
motion) for arrive.01 is equivalent to ARG0 (agent)
of 抵达.01 while ARG4 (end point, destination) is
equivalent to ARG1 (destiny).

4.1.2 Many-to-many argument mapping
Just as there are shortcomings in assuming pred-

icate independent argument mappings, assuming
one-to-one argument mapping may also be overly
restrictive. For example, in the following Chinese
sentence:
大 通道 建设 搞搞搞活活活了大 西南的 物流
big passage construction invigorated big southwest’s material flow

the predicate搞活(invigorate) has 2 arguments:

• ARG0: 大 通道 建设 (big passage construc-
tion)

• ARG1: 大 西南的物流 (big southwest’s ma-
terial flow)

In the parallel English sentence:

Construction of the main passage has activated the
flow of materials in the great southwest

activate has 3 arguments:

• ARG0: construction of the main passage

• ARG1: the flow of materials

• ARGM-LOC: in the great southwest

In these parallel sentences, ARG1 of搞活 should be
mapped to both ARG1 and ARGM-LOC of activate.

While the English translation of搞活, invigorate,
is not a direct synonym of activate, they at least have
some distant relationship as indicated by sharing
the inherited hypernym make in the WordNet (Fell-
baum, 1998) database. The same cannot be said for
all predicate-pairs. For example, in the following
parallel sentence fragments:

街上 客流 如如如 潮
on the street people flow like the tide

the Chinese predicate-argument structure for
如(like) is:

• ARG0: 客流 (flow of guests)

• ARG1: 潮 (tide)

• ARGM-LOC:街上 (on the street)

while the English predicate-argument structure for
flow is:

• ARG1: people

• ARGM-LOC: on the street

• ARGM-MNR: like the tide

Semantically, the predicate-argument pairs are
equivalent. The argument mapping, however, is
more complex:

• 如.ARG0⇐⇒ flow.ARG1, flow.V

• 如.V,如.ARG1⇐⇒ flow.ARGM-MNR

• 如.ARGM-LOC⇐⇒ flow.ARGM-LOC

Table 1 details the argument mapping for the
triple-gold Xinhua data. The mapping distribution
for ARG0 and ARG1 is relatively deterministic (and
similar to ones found by Fung et al. (2007)). Map-
pings involving ARG2-5 and modifier arguments,
on the other hand, are much more varied. Typically,
when there is a many-to-many argument mapping,
it’s constrained to a one-to-two or two-to-one map-
ping. Much more rarely is there a case of a two-to-
two or even more complex mapping.

4.2 Word alignment based argument mapping

To achieve optimal mappings between parallel
predicate-argument structure, we would like to max-
imize the number of words in the mapped argument
set (over the entire set of arguments) while minimiz-
ing the number of unaligned words in the mapped
argument set.

Let ac,i and ac,j denote arguments in Chinese and
English respectively, AI as a set of arguments, Wc,i

as words in argument ac,i, and mape(ai) = We,i

as the word alignment function that takes the source
argument and produces a set of words in the target
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arg type A0 A1 A2 A3 A4 ADV BNF DIR DIS EXT LOC MNR PRP TMP TPC V
A0 1610 79 25 0 0 28 1 0 0 0 8 5 1 11 1 9
A1 432 2665 128 11 0 83 9 12 0 0 29 12 5 21 3 142
A2 43 310 140 8 3 55 6 9 0 2 20 10 1 4 1 67
A3 2 14 21 7 0 2 4 2 0 0 1 2 1 0 1 4
A4 1 37 9 3 6 0 0 0 0 0 1 0 1 0 0 4
ADV 33 36 9 6 0 307 2 5 6 0 44 121 6 11 2 19
CAU 1 0 0 0 0 1 0 0 0 0 0 0 16 0 0 1
DIR 1 13 3 2 0 1 0 3 0 0 3 0 0 0 0 20
DIS 2 0 0 0 0 69 0 0 40 0 2 1 3 3 0 0
EXT 0 4 0 0 0 26 0 0 0 0 0 0 0 0 0 2
LOC 23 65 13 1 0 3 1 0 0 0 162 0 0 5 0 4
MNR 9 9 5 0 0 260 0 0 0 1 3 34 0 0 0 25
MOD 1 0 0 0 0 159 0 0 0 0 0 0 0 0 0 84
NEG 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 5
PNC 3 23 11 4 0 1 6 1 0 0 1 2 35 2 0 8
PRD 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1
TMP 14 21 2 0 0 235 0 3 0 1 8 16 0 647 0 6
V 25 28 22 1 0 211 1 0 1 0 2 12 0 0 0 3278

Table 1: Chinese argument type (column) to English argument type (row) mapping on triple-gold Xinhua corpus

language sentence. We define precision as the frac-
tion of aligned target words in the mapped argument
set:

Pc,I =
|(∪i∈Imape(ac,i)) ∩ (∪j∈JWe,j)|

|∪i∈Imape(ac,i)|
(1)

and recall as the fraction of source words in the
mapped argument set:

Rc,I =

∑
i∈I |Wc,i|∑
∀i |Wc,i|

(2)

We then choose Ac,I that optimizes the F1-score of
Pc and Rc:

Ac,I = arg max
I

2 · Pc,I ·Rc,I

Pc,I +Rc,I
= Fc,I (3)

Finally, to constrain both source and target argument
set, we optimize:

Ac,I , Ae,J = arg max
I,J

2 · Fc,I · Fe,J

Fc,I + Fe,J
= FIJ (4)

To measure similarity between a single pair of
source, target arguments, we define:

Pij =
|mape(ac,i) ∪Wj |
|mape(ac,i)|

, Rij =
|mapc(ae,j) ∪Wi|
|mapc(ae,j)|

(5)

To generate the set of argument mapping pairs, we
simply choose all pairs of ac,i, ae,j ∈ Ac,I , Ae,J

where Fij ≥ ε (ε > 0).
Directly optimizing equation 4 requires exhaus-

tive search of all argument set combinations between
the source and target, which is NP-complete. While
the typical number of arguments for each predicate
is relatively small, this is nevertheless inefficient.
We performed the following greedy-based approx-
imation with quadratic complexity:

1. Compute the best (based on F-score of equa-
tion 5) pair of source-target argument mappings
for each source argument (target argument may
be reused)

2. Select the remaining argument pair with the
highest F-score

3. Insert the pair in Ac,I , Ae,J if it increases FIJ ,
else discard

4. repeat until all argument pairs are exhausted

5. repeat 1-4 reversing the source and target direc-
tion

6. merge the output of the 2 directions

Much like GIZA++ word alignment where the out-
put of each direction produces only one-to-many
mappings, merging the output of the two directions
produces many-to-many mappings.
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4.3 One-to-one predicate-argument mapping
To find the best predicate-argument mapping be-
tween Chinese and English parallel sentences, we
assume each predicate in a Chinese or English sen-
tence can only map to one predicate in the target
sentence. As noted by Wu et al. (2010), this as-
sumption is mostly valid for the Xinhua news cor-
pus, though occasionally, a predicate from one sen-
tence may align more naturally to two predicates in
the target sentence. This typically occurs with verb
conjunctions. For example the Chinese phrase “观
光 旅游” (sightseeing and tour) is often translated
to the single English verb “travel”. As noted by Xue
and Palmer (2009), the Chinese PropBank annotates
predicative adjectives, which tend not to have an
equivalent in the English PropBank. Additionally,
some verbs in one language are nominalized in the
other. This results in a good portion of Chinese or
English predicates in parallel sentences not having
an equivalent in the other language.

With the one-to-one mapping constraint, we op-
timize the mapping by maximizing the sum of the
F1-scores (as defined by equation 4) of the predi-
cates and arguments in the mapping. Let PC and PE

denote the sets of predicates in Chinese and English
respectively, with G(PC , PE) = {g : PC 7→ PE} as
the set of possible mappings between the two predi-
cate sets, then the optimal mapping is:

g∗ = arg max
g∈G

∑
i,j∈g

FCi,Ej (6)

To turn this into a classic linear assignment problem,
we define Cost(PCi , PEj ) = 1 − FCi,Ej , and (6)
becomes:

g∗ = arg min
g∈G

∑
i,j∈g

Cost(PC,i, PE,j) (7)

(7) can be solved in polynomial time with the Kuhn-
Munkres algorithm (Kuhn (1955)).

5 Experimental setup

5.1 Reference predicate-argument mapping
To generate reference predicate-argument map-
pings, we ran the mapping system described in sec-
tion 4.2 with a cutoff threshold of FCi,Ej < 0.65
(i.e., alignments with F-score below 0.65 are dis-
carded). We reviewed a small random sample of the

output and found it to have both high precision and
recall, with only occasional discrepancies caused by
possible word alignment errors. If one-to-one argu-
ment mapping is imposed, the reference predicate-
argument mapping will lose 8.2% of the alignments.
For mappings using automatic word alignment, we
chose a cutoff threshold of FCi,Ej < 0.15. This can
easily be tuned for higher precision or recall based
on application needs.

5.2 Parser, SRL, GIZA++

We trained the Berkeley parser and our SRL sys-
tem on Ontonotes 4.0, excluding the triple-gold Xin-
hua sections as well as the non-English or Chinese
sourced portion of the corpus. GIZA++ was trained
on 400K parallel Chinese-English sentences from
various sources with the default parameters. For
the word mapping functions mape(ac), mapc(ae)
in equation 5, instead of taking the word align-
ment intersection of the source-target and target-
source directions as Padó and Lapata (2006), we
used the two alignment outputs seperately (using the
Chinese-English output when projecting Chinese ar-
gument to English words, and vice versa). On av-
erage (from the 400K corpus), an English sentence
contains 28.5% more tokens than the parallel Chi-
nese sentence (even greater at 36.2% for the Xinhua
portion). Taking either the intersection or union will
significantly affect recall or precision of the align-
ment.

6 Results

6.1 Semantic role labeling

We first provide some results of the SRL system on
the triple-gold Xinhua corpus in table 2. Unlike the
conventional wisdom which expects English SRL
to outperform Chinese SRL, when running on the
Chinese-sourced Xinhua parallel corpus, our SRL
actually performed better on Chinese than English
(74.4% vs 71.8% F-score). The Berkeley parser
output also seemed to be of higher quality on Chi-
nese; the system was able to pick out better con-
stituent candidates in Chinese than English, as ev-
idenced by the higher recall for oracle SRL (92.6%
vs 91.1%). Comparing the quality of the output by
argument type, we found the only argument type
where the Chinese SRL system performed signifi-
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language type P R F1

Chinese
CoNLL 77.9% 71.1% 74.4%
oracle 100% 92.6% 96.1%

word match 84.8% 74.6% 79.4%

English
CoNLL 75.6% 68.4% 71.8%
oracle 100% 91.1% 95.2%

word match 82.7% 69.4% 75.5%

Table 2: SRL results on triple-gold Xinhua corpus. “arg
match” is the standard CoNLL 2005 evaluation metric,
“oracle” is the oracle SRL based on automatic parser out-
put, and “word match” is scoring based on length of ar-
gument overlap with the reference

cantly worse is ARG0 (almost 10% F-score lower).
This is likely caused by dropped pronouns in Chi-
nese sentences (Yang and Xue, 2010), making it
harder for both the syntactic and semantic parsers
to identify the correct subject.

We also report the SRL result scored at word level
instead of at argument level (79.4% F-score for Chi-
nese and 75.5% for English). The CoNLL 2005
shared task scoring (Surdeanu and Turmo, 2005)
discounts arguments that are not a perfect word span
match, even if the system output is semantically
close to the reference argument. While this is im-
portant in some applications of SRL, for other ap-
plications like improving word alignment with SRL,
improving recall on approximate arguments may be
a better trade-off than having high precision on per-
fectly matched arguments. We noticed that while
overall improvement in SRL improves both word
level and argument level performance, for other-
wisely identical systems, we can slightly favor word
level performance (up to 1-3% F-score) by includ-
ing positive training samples that are not a perfect
argument match.

6.2 Predicate-argument mapping

Table 3 details the results of Chinese-English
predicate-argument mapping. Using automatic SRL
and word alignment, the system achieved an 84.9%
F-score, only 3.7% F-score less than using gold stan-
dard SRL annotation. When looking at only ar-
guments, however, the differences are larger: au-
tomatic SRL based output produced an 80.5% F-
score for core arguments. While this compares fa-
vorably to Fung et al. (2007)’s 72.5% (albeit with

Evaluation gold P R F1
predicate- yes 88.7% 88.5% 88.6%
argument no 84.6% 85.3% 84.9%

A0-5 label
yes 97.8% 96.2% 97.0%
no 87.0% 74.9% 80.5%

A0-5 span no 67.9% 57.9% 62.5%

all arg label
yes 84.0% 79.3% 81.6%
no 70.3% 59.8% 64.6%

all arg span no 61.6% 52.2% 56.5%

Table 3: Predicate-argument mapping results

different sections of the corpus), it’s 16.5% F-score
lower than gold SRL based output. When including
all arguments, automatic SRL based output achieved
64.6% while the gold SRL based output achieved
81.6%. This indicates that the mapping result for
all arguments is limited by errors in word alignment.
We also report the results of automatic SRL on both
producing the correct argument mappings and word
spans (62.5% for core arguments and 56.5% for all
arguments). This may be relevant for applications
such as joint inference between word alignment and
SRL.

We also experimented with discriminative
(reweighing) word alignment based on part-of-
speech tags of the words to improve the mapping
system but were not able to achieve better results.
This may be due to the top few POS types account-
ing for most of the words in a language, therefore it
did not prove to be a strong discriminator.

6.3 Mapping coverage

Table 4 provides predicate and word coverage de-
tails of the predicate-argument mapping, another
potentially relevant statistic for applications of
predicate-argument mapping. High coverage of
predicates and words in the mappings may provide
more relevant constraints to help reorder MT output
or rerank word alignment. We expect labeling En-
glish nominalized predicate-arguments will help in-
crease both predicate and word coverage in the map-
ping output.

In order to build a comprehensive probability
model of Chinese-English predicate-argument map-
ping, we applied the mapping technique on an unan-
notated 400K parallel sentence corpus. Automatic
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output type language coverage

triple-gold

predicate Chinese 50.0%
predicate English 81.3%

word Chinese 66.0%
word English 64.2%

automatic

predicate Chinese 49.6%
predicate English 80.7%

word Chinese 57.4%
word English 55.4%

Table 4: Predicate-argument mapping coverage. Predi-
cate coverage denotes the number of mapped predicates
over all predicates in the corpus, word coverage denotes
the number of words in the mapped predicate-arguments
over all words in the corpus

language
PropBank appeared appeared

verb framesets in corpus in mapping
Chinese 16122 8591 7109
English 5473 3689 3121

Table 5: Frameset coverage on the 400K parallel sentence
corpus

SRL found 1.6 million Chinese predicate instances
and 1.3 million English predicate instances. The
mapping system found around 700K predicate-pairs
(with FC,E < 0.3). Table 5 shows the number of
unique verbs in the corpus and contained in the map-
ping results within the Chinese and English Prop-
Bank verb framesets. The corpus also included some
verbs that do not appear in PropBank framesets.

7 Conclusion and future work

We proposed a broad-coverage predicate-argument
mapping system using automatically generated word
alignment and semantic role labeling. We also
provided a competitive Chinese and English SRL
system using a LIBLINEAR classifier and pair-
wise multi-class classification approach. By explor-
ing predicate-argument structure, the mapping sys-
tem is able to generate mappings between seman-
tically similar predicate-argument structures con-
taining non-synonymous predicates, achieving an
84.9% F-score, only 3.7% lower than the F-score
of gold-standard SRL based mappings. Utilizing
word alignment information, the system was able
to provide detailed many-to-many argument map-

pings (occurs in 8.2% of the reference mappings)
for core arguments and modifier arguments, achiev-
ing an 80.5% F-score for core arguments and 64.6%
F-score for all arguments.

While our experiment with discriminative word
alignment based on POS tags did not show improve-
ment, there are other word grouping/weighing met-
rics like n-gram based clustering, verb classification,
term frequency, that may be more appropriate for se-
mantic mapping. With the advent of a predicate-
argument annotation resource for nominalization,
Ontonotes 5, we plan to update our SRL system
to produce nominalized predicate-arguments. This
would potentially increase the predicate-argument
mapping coverage in the corpus as well as increasing
the accuracy of mapping (by reducing the number of
unmappable predicate-arguments), making the map-
ping more useful for downstream applications.

We are also experimenting with a probabilis-
tic approach to predicate-argument mapping to im-
prove the robustness of mapping against word align-
ment errors. Using the output of the current sys-
tem on a large corpus, we can establish mod-
els for p(prede|predc), p(arge|predc, prede, argc)
and refine them through iterations of expectation-
maximization. If this approach shows promise, the
next step would be to explore integrating the map-
ping model directly into GIZA++ for joint inference
of word alignment and predicate-argument mapping.
Other statistical translation specific applications we
would like to explore include extensions of MT out-
put reordering (Wu and Fung, 2009b) and rerank-
ing using predicate-argument mapping, as well as
predicate-argument projection onto the target lan-
guage as an evaluation metric for MT output.
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David Mareček. 2009b. Using tectogrammatical align-
ment in phrase-based machine translation. In Proceed-
ings of WDS 2009 Contributed Papers, pages 22—27.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.
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Abstract

To increase the model coverage, source-
language paraphrases have been utilized to
boost SMT system performance. Previous
work showed that word lattices constructed
from paraphrases are able to reduce out-of-
vocabulary words and to express inputs in
different ways for better translation quality.
However, such a word-lattice-based method
suffers from two problems: 1) path dupli-
cations in word lattices decrease the capac-
ities for potential paraphrases; 2) lattice de-
coding in SMT dramatically increases the
search space and results in poor time effi-
ciency. Therefore, in this paper, we adopt
word confusion networks as the input struc-
ture to carry source-language paraphrase in-
formation. Similar to previous work, we use
word lattices to build word confusion net-
works for merging of duplicated paths and
faster decoding. Experiments are carried out
on small-, medium- and large-scale English–
Chinese translation tasks, and we show that
compared with the word-lattice-based method,
the decoding time on three tasks is reduced
significantly (up to 79%) while comparable
translation quality is obtained on the large-
scale task.

1 Introduction

With the rapid development of large-scale parallel
corpus, research on data-driven SMT has made good
progress to the real world applications. Currently,
for a typical automatic translation task, the SMT
system searches and exactly matches the input sen-
tences with the phrases or rules in the models. Obvi-

ously, if the following two conditions could be sat-
isfied, namely:

• the words in the parallel corpus are highly
aligned so that the phrase alignment can be per-
formed well;

• the coverage of the input sentence by the paral-
lel corpus is high;

then the “exact phrase match” translation method
could bring a good translation.

However, for some language pairs, it is not easy
to obtain a huge amount of parallel data, so it is not
that easy to satisfy these two conditions. To allevi-
ate this problem, paraphrase-enriched SMT systems
have been proposed to show the effectiveness of in-
corporating paraphrase information. In terms of the
position at which paraphrases are incorporated in the
MT-pipeline, previous work can be organized into
three different categories:

• Translation model augmentation with para-
phrases (Callison-Burch et al., 2006; Marton et
al., 2009). Here the focus is on the translation
of unknown source words or phrases in the in-
put sentences by enriching the translation table
with paraphrases.

• Training corpus augmentation with para-
phrases (Bond et al., 2008; Nakov, 2008a;
Nakov, 2008b). Paraphrases are incorporated
into the MT systems by expanding the training
data.

• Word-lattice-based method with para-
phrases (Du et al., 2010; Onishi et al.,
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2010). Instead of augmenting the transla-
tion table, source-language paraphrases are
constructed to enrich the inputs to the SMT
system. Another directly related work is to
use word lattices to deal with multi-source
translation (Schroeder et al., 2009), in which
paraphrases are actually generated from the
alignments of difference source sentences.

Comparing these three methods, the word-lattice-
based method has the least overheads because:

• The translation model augmentation method
has to re-run the whole MT pipeline once
the inputs are changed, while the word-lattice-
based method only need to transform the new
input sentences into word lattices.

• The training corpus augmentation method re-
quires corpus-scale expansion, which drasti-
cally increases the computational complexity
on large corpora, while the word-lattice-based
method only deals with the development set
and test set.

In (Du et al., 2010; Onishi et al., 2010), it is also
observed that the word-lattice-based method per-
formed better than the translation model augmen-
tation method on different scales and two different
language pairs in several translation tasks. Thus
they concluded that the word-lattice-based method
is preferable for this task.

However, there are still some drawbacks for the
word-lattice-based method:

• In the lattice construction processing, dupli-
cated paths are created and fed into SMT de-
coders. This decreases the paraphrase capacity
in the word lattices. Note that we use the phrase
“paraphrase capacity” to represent the amount
of paraphrases that are actually built into the
word lattices. As presented in (Du et al., 2010),
only a limited number of paraphrases are al-
lowed to be used while others are pruned during
the construction process, so duplicate paths ac-
tually decrease the number of paraphrases that
contribute to the translation quality.

• The lattice decoding in SMT decoder have
a very high computational complexity which

makes the system less feasible in real time ap-
plication.

Therefore, in this paper, we use confusion net-
works (CNs) instead of word lattices to carry para-
phrase information in the inputs for SMT decoders.
CNs are constructed from the aforementioned word
lattices, while duplicate paths are merged to increase
paraphrase capacity (e.g. by admitting more non-
duplicate paraphrases without increasing the input
size). Furthermore, much less computational com-
plexity is required to perform CN decoding instead
of lattice decoding in the SMT decoder. We car-
ried out experiments on small-, medium- and large-
scale English–Chinese translation tasks to compare
against a baseline PBSMT system, the translation
model augmentation of (Callison-Burch et al., 2006)
method and the word-lattice-based method of (Du et
al., 2010) to show the effectiveness of our novel ap-
proach.

The motivation of this work is to use CN as
the compromise between speed and quality, which
comes from previous studies in speech recog-
nition and speech translation: in (Hakkani-Tür
et al., 2005), word lattices are transformed into
CNs to obtain compact representations of multiple
aligned ASR hypotheses in speech understanding;
in (Bertoldi et al., 2008), CNs are also adopted
instead of word lattices as the source-side inputs
for speech translation systems. The main contribu-
tion of this paper is to show that this compromise
also works for SMT systems incorporating source-
language paraphrases in the inputs.

Regarding the use of paraphrases SMT system,
there are still other two categories of work that are
related to this paper:

• Using paraphrases to improve system optimiza-
tion (Madnani et al., 2007). With an English–
English MT system, this work utilises para-
phrases to reduce the number of manually
translated references that are needed in the
parameter tuning process of SMT, while pre-
served a similar translation quality.

• Using paraphrases to smooth translation mod-
els (Kuhn et al., 2010; Max, 2010). Either
cluster-based or example-based methods are
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proposed to obtain better estimation on phrase
translation probabilities with paraphrases.

The rest of this paper is organized as follows:
In section 2, we present an overview of the word-
lattice-based method and its drawbacks. Section 3
proposes the CN-based method, including the build-
ing process and its application on paraphrases in
SMT. Section 4 presents the experiments and results
of the proposed method as well as discussions. Con-
clusions and future work are then given in Section
5.

2 Word-lattice-based method

Compared with translation model augmentation
with paraphrases (Callison-Burch et al., 2006),
word-lattice-based paraphrasing for PBSMT is in-
troduced in (Du et al., 2010). A brief overview of
this method is given in this section.

2.1 Lattice construction from paraphrases

The first step of the word-lattice-based method is to
generate paraphrases from parallel corpus. The al-
gorithm in (Bannard and Callison-Burch, 2005) is
used for this purpose by pivoting through phrases
in the source- and the target- languages: for each
source phrase, all occurrences of its target phrases
are found, and all the corresponding source phrases
of these target phrases are considered as the potential
paraphrases of the original source phrase (Callison-
Burch et al., 2006). A paraphrase probability
p(e2|e1) is defined to reflect the similarities between
two phrases, as in (1):

p(e2|e1) =
∑

f

p(f |e1)p(e2|f) (1)

where the probability p(f |e1) is the probability that
the original source phrase e1 translates as a partic-
ular phrase f on the target side, and p(e2|f) is the
probability that the candidate paraphrase e2 trans-
lates as the source phrase. Here p(e2|f) and p(f |e1)
are defined as the translation probabilities estimated
using maximum likelihood by counting the observa-
tions of alignments between phrases e and f in the

wx wy

...

q1 q2 ... qm

...wx+1 wy

...wx+1wx-1 wy+1

q1q2 … qm

......

wx ... wy+1wx-1

Figure 1: Construct word lattices from paraphrases.

parallel corpus, as in (2) and (3):

p(e2|f) ≈ count(e2, f)∑
e2
count(e2, f)

(2)

p(f |e1) ≈
count(f, e1)∑
f count(f, e1)

(3)

The second step is to transform input sentences
in the development and test sets into word lattices
with paraphrases extracted in the first step. As il-
lustrated in Figure 1, given a sequence of words
{w1, . . . , wN} as the input, for each of the para-
phrase pairs found in the source sentence (e.g. pi =
{q1, . . . , qm} for {wx, . . . , wy}), add in extra nodes
and edges to make sure those phrases coming from
paraphrases share the same start nodes and end
nodes with that of the original ones. Subsequently
the following empirical methods are used to assign
weights on paraphrases edges:

• Edges originating from the input sentences are
assigned weight 1.

• The first edges for each of the paraphrases are
calculated as in (4):

w(e1pi
) =

1

k + i
(1 <= i <= k) (4)

where 1 stands for the first edge of paraphrase
pi, and i is the probability rank of pi among
those paraphrases sharing with a same start
node, while k is a predefined constant as a
trade-off parameter for efficiency and perfor-
mance, which is related to the paraphrase ca-
pacity.

• The rest of the edges corresponding to the para-
phrases are assigned weight 1.
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The last step is to modify the MT pipeline to tune
and evaluate the SMT system with word lattice in-
puts, as is described in (Du et al., 2010; Onishi et
al., 2010).

For further discussion, a real example of the gen-
erated word lattice is illustrated in Figure 2. In
the word lattice, double-line circled nodes and solid
lined edges come from originated from the origi-
nal sentence, while others are generated from para-
phrases. Word, weight and ranking of each edge are
displayed in the figure. By adopting such an input
structure, the diversity of the input sentences is in-
creased to provide more flexible translation options
during the decoding process, which has been shown
to improve translation performance (Du et al., 2010).

2.2 Path duplication and decoding efficiency

As can be seen in Figure 2, the construction pro-
cess in the previous steps tends to generate duplicate
paths in the word lattices. For example, there are two
paths from node 6 to node 11 with the same words
“secretary of state” but different edge probabilities
(the path via node 27 and 28 has the probability
1/12, while the path via node 26 and 9 has the prob-
ability 1/99). This is because the aforementioned
straightforward construction process does not track
path duplications from different spans on the source
side. Since the number of admitted paraphrases is
restricted by parameter k in formula (4), the path
duplication will decrease the paraphrase capacity to
a certain extend.

Moreover, state of the art PBSMT decoders (e.g.
Moses (Koehn et al., 2007)) have a much higher
computational complexity for lattice structures than
for sentences. Thus even though only the test sen-
tences need to be transformed into word lattices, de-
coding time is still too slow for real-time applica-
tions.

Motivated by transforming ASR word-graphs into
CNs (Bertoldi et al., 2008), we adopt CN as the
trade-off between efficiency and quality. We aim to
merge duplicate paths in the word lattices to increase
paraphrase capacity, and to speed up the decoding
process via CN decoding. Details of the proposed
method are presented in the following section.

3 Confusion-network-based method

CNs are weighted direct graphs where each path
from the start node to the end node goes through
all the other nodes. Each edge is labelled with a
word and a probability (or weight). Although it is
commonly required to normalize the probability of
edges between two consecutive nodes to sum up to
one, from the point of view of the decoder, this is
not a strict constraint as long as any score is pro-
vided (similar to the weights on the word lattices in
the last section, and we prefer to call it “weight” in
this case).

The benefits of using CNs are:

1. the ability to represent the original word lattice
with a highly compact structure;

2. all hypotheses in the word lattice are totally or-
dered, so that the decoding algorithm is mostly
retained except for the collection of translation
options and the handeling of ε edges (Bertoldi
et al., 2008), which requires much less compu-
tational resources than the lattice decoding.

The rest of this section details the construction pro-
cess of the CNs and the application in paraphrase-
enriched SMT.

3.1 Confusion Network building
We build our CN from the aforementioned word lat-
tices. Previous studies provide several methods to
do this. (Mangu et al., 2000) propose a method to
cluster lattice words on the similarity of pronuncia-
tions and frequency of occurrence, and then to create
CNs using cluster orders. Although this method has
a computational complexity of O(n3), the SRILM
toolkit (Stolcke, 2002) provides a modified algo-
rithm which runs much faster than the original ver-
sion. In (Hakkani-Tür et al., 2005), a pivot algorithm
is proposed to form CNs by normalizing the topol-
ogy of the input lattices.

In this paper, we use the modified method
of (Mangu et al., 2000) provided by the SRILM
toolkit to convert word lattices into CNs. Moreover,
we aim to obtain CNs with the following guidelines:

• Cluster the lattice words only by topological
orders and edge weights without considering
word similarity. The objective is to reduce the
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Figure 2: An example of a real paraphrase lattice. Note that it is a subsection of the whole word lattice that is too big
to fit into this page, and edge weights have been evenly distributed for CN conversion as specified by formula (5).

impact of path duplications in the building pro-
cess, since duplicate words will bias the impor-
tance of paths.

• Assign edge weights by the ranking of para-
phrase probabilities, rather than by poste-
rior probabilities from the modified method
of (Mangu et al., 2000). This is similar to that
given in formula (4). The reason for this is to
reduce the impact of path duplications on the
calculation of weights.

Thus, we modified the construction process as fol-
lows:

1. For each of the input word lattices, replace
word texts with unique identifiers (to make the
lattice alignment uncorrelated to the word sim-
ilarity, since in this case, all words in the lattice
are different from each other).

2. Evenly distribute edge weights for each of the
lattices by modifying formula (4) as in (5):

w(ejpi
) =

1
Mi
√

(k + i)
(1 <= i <= k) (5)

where 1 <= j <= Mi, given ejpi is the jth

edge of paraphrase pi, and Mi is the number of
words in pi. This is to avoid large weights on
the paraphrase edges for lattice alignments.

3. Transform the weighted word lattices into CNs
with the SRILM toolkit, and the paraphrase
ranking information is carried on the edges.

4. Replace the word texts in step 1, and then for
each column of the CN, merge edges with same
words by keeping those with the highest rank-
ing (a smaller number indicates a higher rank-
ing, and edges from the original sentences will
always have the highest ranking). Note that to
assign ranking for each ε edge which does not
appear in the word lattice, we use the ranking of
non-original edges (in the same column) which
have the closest posterior probability to it. (As-
sign ranking 1 if failed to find a such edge).

5. Reassign the edge weights: 1) edges from orig-
inal sentences are assigned with weight 1; 2)
edges from paraphrases are assigned with an
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empirical method as in (6):

w(ecnpi
) =

1

k + i
(1 <= i <= k) (6)

where ecnpi
are edges corresponding with para-

phrase pi, and i is the probability rank of pi in
formula (4), while k is also defined in formula
(4).

A real example of a constructed CN is depicted
in Figure 3, which is correspondent with the word
lattice in Figure 2. Unlike the word lattices, all the
nodes in the CN are generated from the original sen-
tence, while solid lined edges come from the orig-
inal sentence, and dotted lined edges correspond to
paraphrases.

As in shown in the Figures, duplicate paths in the
word lattices have been merged into CN edges by
step 4. For example, the two occurrences of “sec-
retary of state” in the word lattices (one path from
node 6 to 11 via 27 and 28, and one path from node
6 to 11 via 26 and 9 in the word lattice) are merged
to keep the highest-ranked path in the CN (note
there is one ε edge between node 9 and 10 to ac-
complish the merging operation). Furthermore, each
edge in the CN is assigned a weight by formula (6).
This weight assignment procedure penalizes paths
from paraphrases according to the paraphrase prob-
abilities, in a similar manner to the aforementioned
word-lattice-based method.

3.2 Modified MT pipeline
By transforming word lattices into CNs, dupli-
cate paths are merged. Furthermore the new fea-
tures on the edges are introduced by formula (6),
which is then tuned on the development set using
MERT (Och, 2003) in the log-linear model (Och and
Ney, 2002). Since the SMT decoders are able to
perform CN decoding (Bertoldi et al., 2008) in an
efficient multi-stack decoding way, decoding time is
drastically reduced compared to lattice decoding.

The training steps are then modified as fol-
lows: 1) Extract phrase table, reordering table, and
build target-side language models from parallel and
monolingual corpora respectively for the PBSMT
model; 2) Transform source sentences in the devel-
opment set into word lattices, and then transform
them into CNs using the method proposed in Sec-
tion 3.1; 3) Tune the PBSMT model on the CNs via

the development set. Note that the overhead of the
evaluation steps are: transform each test set sentence
into a word lattice, and also transform them into a
CN, then feed them into the SMT decoder to obtain
decoding results.

4 Experiments

4.1 Experimental setup

Experiments were carried out on three English–
Chinese translation tasks. The training corpora com-
prise 20K, 200K and 2.1 million sentence pairs,
where the former two corpora are derived from FBIS
corpus1 which is sentence-aligned by Champollion
aligner (Ma, 2006), the latter corpus comes from
HK parallel corpus,2 ISI parallel corpus,3 other news
data and parallel dictionaries from LDC.

The development set and the test set for the 20K
and 200K corpora are randomly selected from the
FBIS corpus, each of which contains 1,200 sen-
tences, with one reference. For the 2.1 million cor-
pus, the NIST 2005 Chinese–English current set
(1,082 sentences) with one reference is used as the
development set, and NIST 2003 English–Chinese
current set (1,859 sentences) with four references is
used as the test set.

Three baseline systems are built for comparison:
Moses PBSMT baseline system (Koehn et al., 2007),
a realization of the translation model augmentation
system described in (Callison-Burch et al., 2006)
(named “Para-Sub” hereafter), and the word-lattice
based system proposed in (Du et al., 2010).

Word alignments on the parallel corpus are per-
formed using GIZA++ (Och and Ney, 2003) with
the “grow-diag-final” refinement. Maximum phrase
length is set to 10 words and the parameters in the
log-linear model are tuned by MERT (Och, 2003).
All the language models are 5-gram built with the
SRILM toolkit (Stolcke, 2002) on the monolingual
part of the parallel corpora.

4.2 Paraphrase acquisition

The paraphrases data for all paraphrase-enriched
system is derived from the “Paraphrase Phrase Ta-

1Paragraph-aligned corpus with LDC number
LDC2003E14.

2LDC number: LDC2004T08.
3LDC number: LDC2007T09.
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Figure 3: An example of a real CN converted from a paraphrase lattice. Note that it is a subsection of the whole CN
that is converted from the word lattice in Figure 2.

ble”4 of TER-Plus (Snover et al., 2009). Further-
more, the following two steps are taken to filter out
noise paraphrases as described in (Du et al., 2010):

1. Filter out paraphrases with probabilities lower
than 0.01.

2. Filter out paraphrases which are not observed
in the phrase table. This objective is to guar-
antee that no extra out-of-vocabulary words are
introduced into the paraphrase systems.

The filtered paraphrase table is then used to generate
word lattices and CNs.

4.3 Experimental results
The results are reported in BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006) scores.

Table 1 compares the performance of four sys-
tems on three translation tasks. As can be observed
from the Table, for 20K and 200K corpora, the
word-lattice-based system accomplished the best re-
sults. For the 20K corpus, the CN outperformed
the baseline PBSMT by 0.31 absolute (2.15% rel-
ative) BLEU points and 1.5 absolute (1.99% rela-
tive) TER points. For the 200K corpus, it still out-
performed the “Para-Sub” by 0.06 absolute (0.26%
relative) BLEU points and 0.15 absolute (0.23% rel-
ative) TER points. Note that for the 2.1M corpus,
although CN underperformed the best word lattice
by an insignificant amount (0.06 absolute, 0.41%

4http://www.umiacs.umd.edu/˜snover/terp/
downloads/terp-pt.v1.tgz

relative) in terms of BLEU points, it has the best
performance in terms of TER points (0.22 abso-
lute, 0.3% relative than word lattice). Furthermore,
the CN outperformed “Para-Sub” by 0.36 absolute
(2.55% relative) BLEU points and 1.37 absolute
(1.84% relative) TER points, and also beat the base-
line PBSMT system by 0.45 absolute (3.21% rela-
tive) BLEU points and 1.82 absolute (2.43% rela-
tive) TER points. The paired 95% confidence in-
terval of significant test (Zhang and Vogel, 2004)
between the “Lattice” and “CN” system is [-0.19,
+0.38], which also suggests that the two system has
a comparable performance in terms of BLEU.

In Table 2, decoding time on test sets is re-
ported to compare the computational efficiency of
the baseline PBSMT, word-lattice-based and CN-
based methods. Note that word lattice construc-
tion time and CN building time (including word lat-
tice construction and conversion from word lattices
into CNs with the SRILM toolkit (Stolcke, 2002))
are counted in the decoding time and illustrated in
the table within parentheses respectively. Although
both word-lattice-based and CN-based methods re-
quire longer decoding times than the baseline PB-
SMT system, it is observed that compared with the
word lattices, CNs reduced the decoding time signif-
icantly on three tasks, namely 52.06% for the 20K
model, 75.75% for the 200K model and 78.88% for
the 2.1M model. It is also worth noting that the
“Para-Sub” system has a similar decoding time with
baseline PBSMT since only the translation table is
modified.

37



20K 200K 2.1M
System BLEU TER BLEU TER BLEU TER

Baseline PBSMT 14.42 75.30 23.60 63.65 14.04 74.88
Para-Sub 14.78 73.75 23.41 63.84 14.13 74.43

Word-lattice-based 15.44 73.06 25.20 62.37 14.55 73.28
CN-based 14.73 73.8 23.47 63.69 14.49 73.06

Table 1: Comparison on PBSMT, “Para-Sub”, word-lattice and CN-based methods.

System FBIS testset (1,200 inputs) NIST testset (1,859 inputs)
20K model 200K model 2.1M model

Baseline 21 min 41 min 37 min
Lattice 102 min (+ 15 sec) 398 min (+ 20 sec) 559 min (+ 21 sec)

CN 48 min (+ 61 sec) 95 min (+ 96 sec) 116 min (+ 129 sec)

Table 2: Decoding time comparison of PBSMT, word-lattice (“Lattice”) and CN-based (“CN”) methods.

4.4 Discussion

From the performance and decoding time reported in
the last section, it is obvious that on large scale cor-
pora, the CN-based method significantly reduced the
computational complexity while preserved the sys-
tem performance of the best lattice-based method.
Thus it makes the paraphrase-enriched SMT system
more applicable to real-world applications. On the
other hand, for small- and medium-scale data, CNs
can be used as a compromise between speed and
quality, since decoding time is much less than word
lattices, and compared with the “Para-Sub” system,
the only overhead is the transforming of the input
sentences.

It is also interesting that the relative performance
of the CNs increases gradually with the size of the
training corpus, which indicates that it is more suit-
able for models built from large scale data. Consid-
ering the decoding time, it is preferable to use CNs
instead of word lattices for such translation tasks.
However, for the small- and medium-scale data, the
CN system is not competitive even compared with
the baseline. In this case it suggests that, on these
two tasks, the coverage issue is not solved by in-
corporating paraphrases with the CN structure. It
might because of the ambiguity that introduced by
CNs harms the decoder to choose the appropriate
source words from paraphrases. On the other hand,
this ambiguity could be decreased with translation
models trained on a large corpus, which provides
enough observations for the decoders to favour para-

phrases.

5 Conclusion and future work

In this paper, CNs are used instead of word lattices
to incorporate paraphrases into SMT. Transforma-
tion from word lattices into CNs is used to merge
path duplications, and decoding time is drastically
reduced with CN decoding. Experiments are carried
out on small-, medium- and large-scale English–
Chinese translation tasks and confirm that compared
with word lattices, it is much more computationally
efficient to use CNs, while no loss of performance is
observed on the large-scale task.

In the future, we plan to apply more features
such as source-side language models and phrase
length (Onishi et al., 2010) on the CNs to obtain bet-
ter system performance. Furthermore, we will carry
out this work on other language pairs to show the ef-
fectiveness of paraphrases in SMT systems. We will
also investigate the reason for its lower performance
on the small- and medium-scale corpora, as well as
the impact of the paraphrase filtering procedure on
translation quality.
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Abstract

Translation requires non-isomorphic
transformation from the source to the
target. However, non-isomorphism can
be reduced by learning multi-word units
(MWUs). We present a novel way of
representating sentence structure based
on MWUs, which are not necessarily
continuous word sequences. Our pro-
posed method builds a simpler structure
of MWUs than words using words
as vertices of a dependency structure.
Unlike previous studies, we collect
many alternative structures in a packed
forest. As an application of our proposed
method, we extract translation rules in
form of a source MWU-forest to the
target string, and verify the rule coverage
empirically. As a consequence, we
improve the rule coverage compare to a
previous work, while retaining the linear
asymptotic complexity.

1 Introduction

Syntax is the hierarchical structure of a natu-
ral language sentence. It is generally repre-
sented with tree structures using phrase struc-
ture grammar (PSG) or dependency grammar

Figure 1: A pair of sentences that require long
distance reordering (dashed line) and discontinuous
translation (thick line)

(DG). Although the state-of-the-art statistical
machine translation (SMT) paradigm is phrase-
based SMT (PBSMT), many researchers have
attempted to utilize syntax in SMT to over-
come the weaknesses of PBSMT. An emerging
paradigm alternative to PBSMT is syntax-based
SMT, which embeds the source and/or target
syntax in its translation model (TM). Utilizing
syntax in TM has two advantages over PBSMT.

The first advantage is that syntax eases global
reordering between the source and the target
language. Figure 1 shows that we need global
reordering in a complex real situation, where
a verbal phrase requires a long distance move-
ment. PBSMT often fails to handle global re-
ordering, for example, from subject-verb-object
(SVO) to SOV transformation where V should
be moved far away from the original position in
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Table 1: Statistics of the corresponding target words
for the continuous word sequences in the source lan-
guage, or vice versa. C denotes consistent, O over-
lapped, D discontinuous, and N null.

Word Alignment C O D N
Manual 25 60 10 5

Automatic 20 55 15 5

the source language. This is because of the two
distance-based constraints in PBSMT: the dis-
tortion model cost and the distortion size limit.
For the distortion model cost, PBSMT sets zero
cost to the monotone translation and penalizes
the distorted translations as the distortion grows
larger. For the distortion size limit, a phrase can
only be moved from its original position within
a limit. Therefore, PBSMT fails to handle long
distance reordering. Syntax-based SMT man-
ages global reordering as structural transforma-
tion. Because reordering occurs at the sub-
structure level such as constituents or treelets
in syntax-based SMT, the transformation of the
sub-structure eventually yields the reordering of
the whole sentence.

The second advantage of using syntax in TM
is that syntax guides us to discontinuous trans-
lation patterns. Because PBSMT regards only
a continuous sequence of words as a transla-
tion pattern, it often fails to utilize many use-
ful discontinuous translation patterns. For ex-
ample, two discontinuous source words corre-
spond to a target word in Figure 1. In our in-
spection of the training corpus, a continuous
word sequence often corresponds to a set of
discontinuous words in the target language, or
vice versa (Table 1). Discontinuous translation
patterns frequently appear in many languages
(Søgaard and Kuhn, 2009). Syntax-based SMT
overcomes the limitations of PBSMT because it
finds discontinuous patterns along with the hier-

Figure 2: The maximum branching factor (BF) and
depth factor (DF) in a dependency tree in our corpus

archical structure. For example, the two discon-
tinuous source words have a head-dependent re-
lation (Figure 3). Especially with the depen-
dency tree, we can easily identify patterns that
have non-projectivity (Na et al., 2010). How-
ever, syntax-based patterns such as constituents
or treelets do not sufficiently cover various use-
ful patterns, even if we have the correct syn-
tactic analysis (Chiang, 2010). For this reason,
many researchers have proposed supplementary
patterns such as an intra/inter constituent or se-
quence of treelets (Galley et al., 2006; Shen et
al., 2008).

Unlike PSG, DG does not include non-
terminal symbols, which represent constituent
information. This makes DG simpler than PSG.
For instance, it directly associates syntatic role
with the structure, but introduces a difficulty in
syntax-based SMT. The branching factor of a
dependency tree becomes larger when a head
word dominates many dependents. We ob-
serve that the maximum branching factor of
an automatically parsed dependency tree ranges
widely, while most trees have depth under a cer-
tain degree (Figure 2). This indicates that we
have a horizontally flat dependency tree struc-
ture. The translation patterns extracted from the
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flat dependency tree are also likely to be flat.
Unfortunately, the flat patterns are less appli-
cable at the decoding stage. When one of the
modifiers does not match, for instance, we fail
to apply the translation pattern. Therefore, we
need a more generally applicable representation
for syntax-based SMT using DG.

We propose a novel representation of DG that
regards a set of words as a unit of the depen-
dency relations, similar to (Ding, 2006; Wu et
al., 2009; Na et al., 2010). Unlike their work,
we consider many alternatives without prede-
fined units, and construct a packed forest of the
multi-word units (MWUs) from a dependency
tree. For brevity, we denote the forest based on
MWUs as an MWU-forest. Because all pos-
sible alternatives are exponentially many, we
give an efficient algorithm that enumerates the
k-best alternatives in section 3. As an appli-
cation, we extract translation patterns in form
of a source MWU-forest to the target string in
order to broaden the coverage of the extracted
patterns for syntax-based SMT in section 4. We
also report empirical results related to the use-
fulness of the extracted pattern in section 5. The
experimental results show that the MWU-forest
representation gives more applicable translation
patterns than the original word-based tree.

2 Related Work

Previous studies have proposed merging alter-
native analyses to deal with analysis errors for
two reasons: 1) the strongest alternative is not
necessarily the correct analysis, and 2) most
alternatives contain similar elements such as
common sub-trees. For segmentation alterna-
tives, Dyer et al. (2008) proposed a word lattice
that represents exponentially large numbers of
segmentations of a source sentence, and inte-
grates reordering information into the lattice as

well. For parsing alternatives, Mi et al. (2008)
suggested a packed forest that encodes alterna-
tive PSG derivations. Futher, Mi et al. (2010)
combined the two approaches in order to bene-
fit from both.

The translation literature also shows that
translation requires non-isomorphic transfor-
mation from the source to the target. This yields
translation divergences such as head-switching
(Dorr, 1994). Ding and Palmer (2005) reported
that the percentage of the head-swapping cases
is 4.7%, and that of broken dependencies is
59.3% between Chinese and English. The large
amount of non-isomorphism, however, will be
reduced by learning MWUs such as elementary
trees (Eisner, 2003).

There are few studies that consider a depen-
dency structure based on MWUs. Ding (2006)
suggested a packed forest which consists of the
elementary trees, and described how to find
the best decomposition of the dependency tree.
However, Ding (2006) did not show how to de-
termine the MWUs and restrict them to form
a subgraph from a head. For opinion mining,
Wu et al. (2009) also utilized a dependency
structure based on MWUs, although they re-
stricted MWUs with predefined relations. Na
et al. (2010) proposed an MWU-based depen-
dency tree-to-string translation rule extraction,
but considered only one decomposition for ef-
ficiency. Our proposed method includes addi-
tional units over Ding’s method, such as a se-
quence of subgraphs within a packed forest. It
is also more general than Wu et al.’s method
because it does not require any predefined re-
lations. We gain much better rule coverage
against Na et al.’s method, while retaining linear
asymptotical computational time.
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Figure 3: A dependency tree of the source sentence
in Figure 1

3 MWU-based Dependency Forest

There are two advantages when we use the
MWU-forest representaion with DG. First, we
express the discontinuous patterns in a vertex,
so that we can extract more useful translation
patterns beyond continuous ones for syntax-
based SMT. Second, an MWU-forest contains
many alternative structures which may be sim-
pler structures than the original tree in terms of
the branching factor and the maximum depth.
Wu et al. (2009) utilized an MWU-tree to iden-
tify the product features in a sentence easily.

As in previous literature in syntax-based
SMT using DG, we only consider thewell-
formed MWUs where an MWU is either a
treelet (a connected sub-graph), or a sequence
of treelets under a common head. In other
words, each vertex in an MWU-forest is either
“fixed on head” or “floating with children”. The
formal definitions can be found in (Shen et al.,
2008).

We propose encoding multiple dependency
structures based on MWUs into a hypergraph.
A hypergraph is a compact representation of
exponetially many variations in a polynomi-
nal space. Unlike PSG, DG does not have

Figure 4: An MWU-forest of Figure 3. The dashed
line indicates the alternative hyperedges.

non-terminals that represent the linguistically
motivated, intermediate structure such as noun
phrases and verb phrases. For this simplicity,
Tu et al. (2010) proposed a dependency forest
as a hypergraph, regarding a word as a vertex
with a span that ranges for all its descendants.
The dependency forest offers tolerence of pars-
ing errors.

Our representation is different from the de-
pendency forest of Tu et al. (2010) since a ver-
tex corresponds to multiple words as well as
words. Note that our representation is also
capable of incorporating multiple parse trees.
Therefore, MWU-forests will also be tolerant
of the parsing error if we provide multiple parse
trees. In this work, we concentrate on the ef-
fectiveness of MWUs, and hence utilize the
best dependency parse tree. Figure 4 shows an
MWU-forest of the dependency tree in Figure
3.

More formally, a hypergraphH = 〈V, E〉
consists of the verticesV and hyperedges
E. We assume that a length-J sentence has
a dependency graph which is single-headed,
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acyclic, and rooted, i.e.hj is the index of the
head word of thej-th word, or0 if the word is
the root. Each vertexv = {j|j ∈ [1, J ]} de-
notes a set of the indices of the words that satis-
fies the well-formed constraint. Each hyperedge
e = 〈tails(e), head(e)〉 denotes a set of the de-
pendency relations betweenhead(e) and∀v ∈
tails(e). We include a special nodev0 ∈ V

that denotes the dummy root of an MWU-forest.
Note thatv0 does not appear intails(e) for all
hyperedges. We denote|e| is the arity of hyper-
edgee, i.e. the number of tail nodes, and the
arity of a hypergraph is the maximum arity over
all hyperedges. Also, letσ(v) be the indices of
the words that the head lays out of the vertex,
i.e. σ(v) = {j|hj 6∈ v ∧ j ∈ v}, andτ(v) be
the indices of the direct dependent words of the
vertex, i.e. τ(v) = {j|hj ∈ v ∧ j 6∈ v}. Let
OUT (v) and IN(v) be the outgoing and in-
coming hyperedges of a vertexv, respectively.

It is challenging to weight the hyperedges
based on dependency grammar because a de-
pendency relation is a binary relation from a
head to a dependent. Tu et al. (2010) assigned
a probability for each hyperedge based on the
score of the binary relation. We simply prefer
the hyperedges that have lower arity by scoring
as follows:

c(e) =

∑
v∈tails(e) |v|

|e|

p(e) =
c(e)∑

e′∈IN(head(e)) c(e′)

We convert a dependency tree into a hyper-
graph in two steps using the Inside-Outside al-
gorithm. Algorithm 1 shows the pseudo code
of our proposed method. At the first step, we
find the k-best incoming hyperedges for each
vertex (line 3-8), and compute the inside proba-
bility (line 9), in bottom-up order. At the sec-
ond step, we compute the outside probability

Algorithm 1 Build Forest
1: Initialize V

2: for v ∈ V in bottom-up orderdo
3: Create a chartC = |τ(v)|2

4: for chart span[p, q] do
5: Initialize C[p, q] if ∃v s.t. [p, q] = v or

σ(v)
6: CombineC[p, i] andC[i + 1, q]
7: end for
8: SetIN(v) to the k-best inC[TOP ]
9: Setβ(v) as in Eq. 1

10: end for
11: for v ∈ V in top-down orderdo
12: Setα(v) as in Eq. 2
13: end for
14: Prune oute if p(e) ≤ δ

15: return v0

(line 12) for each vertex in a top-down manner.
Finally we prune out less probable hyperedges
(line 14) similar to (Mi et al., 2008). The inside
and outside probabilities are defined as follows:

β(v) =
∑

e∈IN(v)

p(e)
∏

d∈tails(e)

β(d) (1)

whereβ(v) = 1.0 if IN(v) = ∅, and

α(v) =
∑

h∈OUT (v)
e∈IN(head(h))

α(head(e))p(e)

|OUT (v)|

·
∏

d∈tails(e)\{v}

β(d) (2)

whereα(v) = 1.0 if OUT (v) = ∅.
In practice, we restrict the number of words

in a vertex in the initialization (line 1). We ap-
proximate all possible alternative MWUs that
include each word as follows:
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Figure 5: A sub-forest of Figure 4 with annotation
of aspan andcspan for each vertex. We omit the
span if it is not consistent.

• A horizontal vertex is a sequence of modi-
fiers for a common head word, and

• A vertical vertex is a path from a word to
one of the ancestors, and

• A combination of the horizontal vertices
and the vertical vertices, and

• A combination of the vertical vertices and
the vertical vertices.

The computational complexity of the initial-
izaion directly affects the complexity of the en-
tire procedure. For each word, generating the
horizontal vertices takesO(b2), and the vertical
vertices takeO(bd−1), whereb is the maximum
branching factor andd is the maximum depth
of a dependency tree. The two combinations
takeO(bd+1) andO(b2(d−1)) time to initialize
the vertices. However, it takesO(mm+1) and
O(m2(m−1)) if we restrict the maximum num-
ber of the words in a vertex to a constantm.

Ding and Palmer (2005) insisted that the
Viterbi decoding of an MWU-forest takes lin-
ear time. In our case, we enumerate the k-best
incoming hyperedeges instead of the best one.
Because each enumeration takesO(k2|τ(v)|3),

Table 2: The extracted rules in Figure 5. N denotes
the non-lexicalized rules with variablesxi for each
v ∈ tails(e), and L denotes the lexicalized rule.

head(e) tails(e) rhs(γ)

N

{3} {8} : x1 x1

{8} {4} : x1, {5} : x2 whenx1 x2

{3, 8} {4, 5} : x1 whenx1

{3, 8} {4} : x1, {5} : x2 whenx1 x2

{4, 5} {6, 7} : x1 I’m in x1

{5} {6, 7} : x1 in x1

L

{6, 7}

N/A

the States
{4} I’m
{5} in
{4, 5} I’m in
{5, 6} in the State
{3, 8} When

the total time complexity also becomes linear
to the length of the sentencen similar to Ding
and Palmer (2005), i.e.O(|V |k2|τ(v)|3), where
|V | = O(na2(a−1)) anda = min(m, b, d).

4 MWU-Forest-to-String Translation
Rule Extraction

As an application of our proposed MWU-forest,
we extract translation rules for syntax-based
SMT. Forest-based translation rule extraction
has been suggested by Mi and Huang (2008)
although their forest compacts the k-best PSG
trees. The extraction procedure is essentially
the same as Galley et al. (2004), which iden-
tifies the cutting points (frontiers) and extracts
the sub-structures from a root to frontiers.

The situation changes in DG because DG
does not have intermediate representation. At
the dependency structure, a node corresponds
to two kinds of target spans. We borrow the
definitions of the aligned span (aspan), and the
covered span (cspan) from Na et al. (2010), i.e.
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• aspan(v) = [min(av), max(av)], and

• cspan(v) =
aspan(v)

⋃
d∈tails(e)
e∈IN(v)

cspan(d)

, whereav = {i|j ∈ v ∧ (i, j) ∈ A}. Figure 5
showsaspans andcspans of a sub-forest of of
the MWU-forest in the previous example.

Each span type yields a different rule type:
aspan yields a lexicalized rule without any
variables, andcspan yields a non-lexicalized
rule with variables for the dependents of the
head word. For example, Table 2 shows the ex-
tracted rule in Figure 5.

In our MWU-forest, the rule extraction pro-
cedure is almost identical to a dependency
tree-to-string rule extraction except we regard
MWUs as vertices. Letfj and ei be thej-th
source andi-th target word, respectively. As an
MWU itself has a internal structure, a lexical
rule is a tree-to-string translation rule. There-
fore, a lexicalized rule is a pair of the source
wordss and the target wordst as follows:

s(v) = {fj |j ∈ v}

t(v) = {ei|i ∈ aspan(v)} (3)

In addition, we extract the non-lexicalized
rules from a hyperedgee to cspan of the
head(e). A non-lexicalized rule is a pair of the
source words in the vertices of a hyperedge and
thecspan of the target words with substitutions
of cspan(d) for eachd ∈ tails(e). We abstract
d on the source withσ(d) for non-lexicalized
rules (row 2 in Table 2). We define the source
wordss and the target wordst as follows:

s(e) = {fj |j ∈ head(e) ∨ j ∈ σ(d)}

t(e) = {ei|i ∈ cspan(v) ∧ i 6∈ cspan(d)}

∪ {xi|d↔ xi} (4)

Algorithm 2 Extract Rules(H = 〈V, E〉)

1: Γ = ∅
2: for v ∈ V do
3: if aspan(v) is consistentthen
4: Γ← Γ ∪ 〈 s(v) , t(v) 〉 as in Eq. 3
5: end if
6: if cspan(v) is consistentthen
7: for e ∈ IN(v) do
8: if cspan(d)∀d ∈ tails(e) then
9: Γ← Γ∪ 〈 s(e), t(e) 〉 as in Eq. 4

10: end if
11: end for
12: end if
13: end for
14: return Γ

whered ∈ tails(e).
More formally, we extract a synchronous tree

substitution grammar (STSG) which regards the
MWUs as non-terminals.

Definition 1 A STSG using MWU (STSG-
MWU) is a 6-tuple G = 〈ΣS , ΣT , ∆, Γ, S, φ〉,
where:

• ΣS and ΣT are finite sets of terminals
(words, POSs, etc.) of the source and tar-
get languages, respectively.

• ∆ is a finite set ofMWUs in the source
language, i.e.∆ = {ΣS}+

• Γ is a finite set of production rules
where a production ruleγ : X →
〈 lhs(γ) , rhs(γ), φ 〉, which is a relation-
ship from∆ to {x ∪ ΣT } ∗, whereφ is the
bijective function from the source vertices
to the variablesx in rhs(γ). The asterisk
represents the Kleenstar operation, and

• S is the start symbol used to represent the
whole sentence, i.e.γ0 : S → 〈 X , X 〉.
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For each type of span, we only extract the
rules if the target span has consistent word
alignments, i.e. span 6= ∅ ∧ ∀i ∈ span,
{j|(i, j) ∈ A ∩ (i′, j) ∈ A s.t. i′ 6∈ span} = ∅.
Algorithm 2 shows the pseudo code of the
extraction. Because a vertex hasaspan and
csapn, we extract a lexicalized rule (line 3-5)
and/or non-lexicalized rules (line 6-12) for each
vertex.

5 Experiment

We used the training corpus provided for the
DIALOG Task in IWSLT10 between Chinese
and English . The corpus is a collection of
30,033 sentence pairs and consists of dialogs in
travel situations (10,061) and parts of the BTEC
corpus (19,972). Details about the provided
corpus are described in (Paul, 2009). We used
the Stanford Parser1 to obtain word-level de-
pendency structures of Chinese sentences, and
GIZA++ 2 to obtain word alignments of the
biligual corpus.

We extracted the SCFG-MWU from the
biligual corpus with word alignment. In or-
der to investigate the coverage of the extracted
rule, we counted the number of the recovered
sentences, i.e. counted if the extracted rule
for each sentence pair generates the target sen-
tence by combining the extracted rules. As we
collected many alternatives in an MWU-forest,
we wanted to determine the importance of each
source fragment. Mi and Huang (2008) penal-
ized a ruleγ by the posterior probability of its
tree fragmentlhs(γ). This posterior probability
is also computed in the Inside-Outside fashion
that we used in Algorithm 1. Therefore, we re-
garded the fractional count of a ruleγ as

1http://nlp.stanford.edu/software/lex-parser.shtml,
Version 1.6.4

2http://code.google.com/p/giza-pp/

Figure 6: The rule coverage according to the number
of the words in a vertex.

c(γ) =
αβ(lhs(γ))

αβ(v0)

We prioritized the rule according to the frac-
tional count. The priority is used when we com-
bine the rules to restore the target sentence us-
ing the extracted rule for each sentence. We var-
ied the maximum size of a vertexm, and the
number of incoming hyperedgesk. Figure 6
shows the emprical result.

6 Discussion

Figure 6 shows that we need MWU to broaden
the coverage of the extracted translation rules.
The rule coverage increases as the number of
words in an MWU increases, and almost con-
verges atm = 6. Our proposed method re-
cover around 75% of the sentences in the cor-
pus when we properly restrictm andk. This is
a great improvement over Na et al. (2010), who
reported around 60% of the rule coverage with-
out the limitaion of the size of MWUs. They
only considered the best decomposition of the
dependency tree, while our proposed method
collects many alternative MWUs into an MWU-
forest. When we considered the best decom-
position (k = 1), the rule coverage dropped to
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Figure 7: The frequency of the recovery according
to the length of the sentences in 1,000 sentences

around 65%. This can be viewed as an indirect
comparison between Na et al. (2010) and our
proposed method in this corpus.

Figure 7 shows that the frequency of suc-
cess and failure in the recovery depends on the
length of the sentences. As the length of sen-
tences increase, the successful recovery occurs
less frequently. We investigated the reason of
failure in the longer sentences. As a result, the
two main sources of the failure are the word
alignment error and the dependency parsing er-
ror.

Our proposed method does not include all
translation rules in PBSMT because of the syn-
tactic constraint. Generally speaking, our pro-
posed method cannot deal with MWUs that do
not satisfy the well-formed constraint. How-
ever, ill-formed MWUs seems to be useful as
well. For example, our proposed method dose
not allow ill-formed vertices in an MWU-forest
as shown in Figure 8. This would be problem-
atic when we use an erroneuos parsing result.
Because dealing with parsing error has been
studied in literature, our proposed method has
the potential to improve thought future work.

Figure 8: An illustration of ill-formed MWUs

7 Conclusion

We have presented a way of representing sen-
tence structure using MWUs on DG. Because of
the absence of the intermdiate representation in
DG, we built a simpler structure of MWUs than
words using words as vertices of a dependency
structure. Unlike previous studies, we collected
many alternative structures using MWUs in a
packed forest, which is novel. We also ex-
tracted MWU-forest-to-string translation rules,
and verified the rule coverage empirically. As a
consequence, we improvemed the rule coverage
compared with a previous work, while retaining
the linear asymptotic complexity. We will ex-
pand our propose method to develop a syntax-
based SMT system in the future, and incoporate
the parsing error by considering multiple syn-
tactic analyses.
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Abstract

Mistranslation of an ambiguous word can have
a large impact on the understandability of a
given sentence. In this article, we describe
a thorough evaluation of the translation qual-
ity of ambiguous nouns in three different se-
tups. We compared two statistical Machine
Translation systems and one dedicated Word
Sense Disambiguation (WSD) system. Our
WSD system incorporates multilingual infor-
mation and is independent from external lex-
ical resources. Word senses are derived auto-
matically from word alignments on a parallel
corpus. We show that the two WSD classifiers
that were built for these experiments (English–
French and English–Dutch) outperform the
SMT system that was trained on the same cor-
pus. This opens perspectives for the integra-
tion of our multilingual WSD module in a sta-
tistical Machine Translation framework, in or-
der to improve the automated translation of
ambiguous words, and by consequence make
the translation output more understandable.

1 Introduction

Word Sense Disambiguation (WSD) is the NLP
task that consists in assigning a correct sense to
an ambiguous word in a given context. Tradition-
ally, WSD relies on a predefined monolingual sense-
inventory such as WordNet (Fellbaum, 1998) and
WSD modules are trained on corpora, which are
manually tagged with senses from these inventories.
A number of issues arise with these monolingual su-
pervised approaches to WSD. First of all, there is a
lack of large sense-inventories and sense-tagged cor-
pora for languages other than English. Furthermore,

sense inventories such as WordNet contain very fine-
grained sense distinctions that make the sense dis-
ambiguation task very challenging (even for human
annotators), whereas very detailed sense distinctions
are often irrelevant for practical applications. In ad-
dition to this, there is a growing feeling in the com-
munity that WSD should be used and evaluated in
real application such as Machine Translation (MT)
or Information Retrieval (IR) (Agirre and Edmonds,
2006).

An important line of research consists in the de-
velopment of dedicated WSD modules for MT. In-
stead of assigning a sense label from a monolin-
gual sense-inventory to the ambiguous words, the
WSD system has to predict a correct translation for
the ambiguous word in a given context. In (Vick-
rey et al., 2005), the problem was defined as a word
translation task. The translation choices of ambigu-
ous words are gathered from a parallel corpus by
means of word alignment. The authors reported
improvements on two simplified translation tasks:
word translation and blank filling. The evaluation
was done on an English-French parallel corpus but
is confronted with the important limitation of hav-
ing only one valid translation (the aligned transla-
tion in the parallel corpus) as a gold standard trans-
lation. Cabezas and Resnik (2005) tried to improve
an SMT system by adding additional translations to
the phrase table, but were confronted with tuning
problems of this dedicated WSD feature. Specia
(2006) used an inductive logic programming-based
WSD system which was tested on seven ambigu-
ous verbs in English-Portuguese translation. The lat-
ter systems already present promising results for the
use of WSD in MT, but really significant improve-
ments in terms of general machine translation qual-
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ity were for the first time obtained by Carpuat and
Wu (2007) and Chan et al. (2007). Both papers
describe the integration of a dedicated WSD mod-
ule in a Chinese-English statistical machine trans-
lation framework and report statistically significant
improvements in terms of standard MT evaluation
metrics.

Stroppa et al. (2007) take a completely dif-
ferent approach to perform some sort of implicit
Word Sense Disambiguation in MT. They introduce
context-information features that exploit source sim-
ilarity, in addition to target similarity that is modeled
by the language model, in an SMT framework. For
the estimation of these features that are very simi-
lar to the typical WSD local context features (left
and right context words, Part-of-Speech of the focus
phrase and context words), they use a memory-based
classification framework.

The work we present in this paper is different
from previous research in two aspects. Firstly,
we evaluate the performance of two state-of-the-art
SMT systems and a dedicated WSD system on the
translation of ambiguous words. The comparison is
done against a manually constructed gold-standard
for two language pairs, viz. English–French and
English–Dutch. Although it is crucial to measure the
general translation quality after integrating a dedi-
cated WSD module in the SMT system, we think it is
equally interesting to conduct a dedicated evaluation
of the translation quality on ambiguous nouns. Stan-
dard SMT evaluation metrics such as BLEU (Pap-
ineni et al., 2002) or edit-distance metrics (e.g. Word
Error Rate) measure the global overlap of the trans-
lation with a reference, and are thus not very sen-
sitive to WSD errors. The mistranslation of an am-
biguous word might be a subtle change compared to
the reference sentence, but it often drastically affects
the global understanding of the sentence.

Secondly, we explore the potential benefits of a
real multilingual approach to WSD. The idea to use
translations from parallel corpora to distinguish be-
tween word senses is based on the hypothesis that
different meanings of a polysemous word are often
lexicalized across languages (Resnik and Yarowsky,
2000). Many WSD studies have incorporated this
cross-lingual evidence idea and have successfully
applied bilingual WSD classifiers (Gale and Church,
1993; Ng et al., 2003; Diab and Resnik, 2002) or

systems that use a combination of existing Word-
Nets with multilingual evidence (Tufiş et al., 2004).
Our WSD system is different in the sense that it is
independent from a predefined sense-inventory (it
only uses the parallel corpus at hand) and that it
is truly multilingual as it incorporates information
from four other languages (French, Dutch, Span-
ish, Italian and German depending on the target lan-
guage of the classifier). Although our classifiers are
still very preliminary in terms of the feature set and
parameters that are used, we obtain interesting re-
sults on our test sample of ambiguous nouns. We
therefore believe our system can have a real added
value for SMT, as it can easily be trained for differ-
ent language pairs on exactly the same corpus which
is used to train the SMT system, which should make
the integration a lot easier.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the two machine transla-
tion systems we evaluated, while section 3 describes
the feature construction and learning algorithm of
our multilingual WSD system. Section 4 gives an
overview of the experimental setup and results. We
finally draw conclusions and present some future re-
search in Section 5.

2 Statistical Machine Translation Systems

For our experiments, we analyzed the behavior
of two phrase-based statistical machine translation
(SMT) systems on the translation of ambiguous
nouns. SMT generates translations on the basis
of statistical models whose parameters are derived
from the analysis of sentence-aligned parallel text
corpora. Phrase-based SMT is considered as the
dominant paradigm in MT research today. It com-
bines a phrase translation model (which is based on
the noisy channel model) and a phrase-based de-
coder in order to find the most probable translation e
of a foreign sentence f (Koehn et al., 2003). Usually
the Bayes rule is used to reformulate this translation
probability:

argmaxep(e|f) = argmaxep(f |e)p(e)

This allows for a language model p(e) that guar-
antees the fluency and grammatical correctness of
the translation, and a separate translation model
p(f |e) that focusses on the quality of the transla-
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tion. Training of both the language model (on mono-
lingual data) as well as the translation model (on
bilingual text corpora) requires large amounts of text
data.

Research has pointed out that adding more train-
ing data, both for the translation as for the lan-
guage models, results in better translation quality,
(Callison-Burch et al., 2009). Therefore it is impor-
tant to notice that our comparison of the two SMT
systems is somewhat unfair, as we compared the
Moses research system (that was trained on the Eu-
roparl corpus) with the Google commercial system
that is trained on a much larger data set. It remains
an interesting exercise though, as we consider the
commercial system as the upper bound of how far
current SMT can get in case it has unlimited access
to text corpora and computational resources.

2.1 Moses
The first statistical machine translation system we
used is the off-the-shelf Moses toolkit (Koehn et al.,
2007). As the Moses system is open-source, well
documented, supported by a very lively users fo-
rum and reaches state-of-the-art performance, it has
quickly been adopted by the community and highly
stimulated development in the SMT field. It also fea-
tures factored translation models, which enable the
integration of linguistic and other information at the
word level. This makes Moses a good candidate to
experiment with for example a dedicated WSD mod-
ule, that requires more enhanced linguistic informa-
tion (such as lemmas and Part-of-Speech tags).
We trained Moses for English–French and English–
Dutch on a large subsection of the Europarl corpus
(See Section 3 for more information on the corpus),
and performed some standard cleaning. Table 1 lists
the number of aligned sentences after cleaning the
bilingual corpus, and the number of uni-, bi- and tri-
grams that are comprised by the language model.

2.2 Google
In order to gain insights in the upper bounds for
current SMT, we also analyzed the output of the
Google Translate API1 for our set of ambiguous
nouns. Google Translate currently supports 57 lan-
guages. As both the amount of parallel and mono-

1http://code.google.com/apis/language/
translate/overview.html

French Dutch
Number of bilingual sentence pairs

872.689 873.390
Number of ngrams

unigrams 103.027 173.700
bigrams 1.940.925 2.544.554
trigrams 2.054.906 1.951.992

Table 1: Statistics resulting from the Moses training
phase

lingual training data as well as the computer power
are crucial for statistical MT, Google (that disposes
of large computing clusters and a network of data
centers for Web search) has very valuable assets at
its disposal for this task. We can only speculate
about the amount of resources that Google uses to
train its translation engine. Part of the training data
comes from transcripts of United Nations meetings
(in six official languages) and those of the Euro-
pean Parliament (Europarl corpus). Google research
papers report on a distributed infrastructure that is
used to train on up to two trillion tokens, which re-
sult in language models containing up to 300 billion
ngrams (Brants et al., 2007).

3 ParaSense

This section describes the ParaSense WSD system:
a multilingual classification-based approach to
Word Sense Disambiguation. Instead of using
a predefined monolingual sense-inventory such
as WordNet, we use a language-independent
framework where the word senses are derived
automatically from word alignments on a parallel
corpus. We used the sentence-aligned Europarl
corpus (Koehn, 2005) for the construction of our
WSD module. The following six languages were
selected: English (our focus language), Dutch,
French, German, Italian and Spanish. We only
considered the 1-1 sentence alignments between
English and the five other languages. This way we
obtained a six-lingual sentence-aligned subcorpus
of Europarl, that contains 884.603 sentences per
language. For our experiments we used the lexical
sample of twenty ambiguous nouns that was also
used in the SemEval-2010 ”Cross-Lingual Word
Sense Disambiguation” (CLWSD) task (Lefever
and Hoste, 2010b), which consists in assigning a
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correct translation in five supported target languages
(viz. French, Italian, Spanish, German and Dutch)
for an ambiguous focus word in a given context.

In order to detect all relevant translations
for the twenty ambiguous focus words, we ran
GIZA++ (Och and Ney, 2003) with its default set-
tings on our parallel corpus. The obtained word
alignment output was then considered to be the clas-
sification label for the training instances for a given
classifier (e.g. the French translation resulting from
the word alignment is the label that is used to train
the French classifier). This way we obtained all
class labels (or oracle translations) for all training
instances for our five classifiers (English as an input
language and French, German, Dutch, Italian and
Spanish as target languages). For the experiments
described in this paper, we focused on the English–
French and English–Dutch classifiers.

We created two experimental setups. The first
training set contains the automatically generated
word alignment translations as labels. A postpro-
cessing step was applied on these translations in or-
der to automatically filter leading and trailing deter-
miners and prepositions from the GIZA++ output.
For the creation of the second training set, we man-
ually verified all word alignment correspondences
of the ambiguous words. This second setup gives
an idea of the upperbound performance in case the
word alignment output could be further improved for
our ambiguous nouns.

3.1 Classifier

To train our WSD classifiers, we used the memory-
based learning (MBL) algorithms implemented in
TIMBL (Daelemans and van den Bosch, 2005),
which has successfully been deployed in previous
WSD classification tasks (Hoste et al., 2002). We
performed very basic heuristic experiments to de-
fine the parameter settings for the classifier, leading
to the selection of the Jeffrey Divergence distance
metric, Gain Ratio feature weighting and k = 7 as
number of nearest neighbours. In future work, we
plan to use an optimized word-expert approach in
which a genetic algorithm performs joint feature se-
lection and parameter optimization per ambiguous
word (Daelemans et al., 2003).

3.2 Feature Construction

For the feature vector construction, we combine lo-
cal context features that were extracted from the En-
glish sentence and a set of binary bag-of-words fea-
tures that were extracted from the aligned transla-
tions in the four other languages (that are not the
target language of the classifier).

3.2.1 Local Context Features
We extract the same set of local context features

from both the English training and test instances. All
English sentences were preprocessed by means of a
memory-based shallow parser (MBSP) (Daelemans
and van den Bosch, 2005) that performs tokeniza-
tion, Part-of-Speech tagging and text chunking. The
preprocessed English instances were used as input
to build a set of commonly used WSD features:

• features related to the focus word itself being
the word form of the focus word, the lemma,
Part-of-Speech and chunk information,

• local context features related to a window of
three words preceding and following the focus
word containing for each of these words their
full form, lemma, Part-of-Speech and chunk in-
formation

These local context features are to be considered
as a basic feature set. The Senseval evaluation ex-
ercises have shown that feeding additional informa-
tion sources to the classifier results in better system
performance (Agirre and Martinez, 2004). In fu-
ture experiments we plan to integrate a.o. lemma
information on the surrounding content words and
semantic analysis (e.g. Singular Value Decomposi-
tion (Gliozzo et al., 2005)) in order to detect latent
correlations between terms.

3.2.2 Translation Features
In addition to the commonly deployed local con-

text features, we also extracted a set of binary bag-
of-words features from the aligned translations that
are not the target language of the classifier (e.g.
for the French classifier, we extract bag-of-words
features from the Italian, Spanish, Dutch and Ger-
man aligned translations). We preprocessed all
aligned translations by means of the Treetagger
tool (Schmid, 1994) that outputs Part-of-Speech and
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lemma information. Per ambiguous focus word, a
list of all content words (nouns, adjectives, adverbs
and verbs) that occurred in the aligned translations
of the English sentences containing this word, was
extracted. This resulted in one binary feature per se-
lected content word per language. For the construc-
tion of the translation features for the training set,
we used the Europarl aligned translations.

As we do not dispose of similar aligned trans-
lations for our test instances (where we only have
the English test sentences at our disposal), we had
to adopt a different strategy. We decided to use
the Google Translate API to automatically generate
translations for all English test instances in the five
target languages. This automatic translation pro-
cess can be done using whatever machine translation
tool, but we chose the Google API because of its
easy integration. Online machine translation tools
have already been used before to create artificial
parallel corpora that were used for NLP tasks such
as for instance Named Entity Recognition (Shah et
al., 2010). Similarly, Navigli and Ponzetto (2010)
used the Google Translate API to enrich BabelNet, a
wide-coverage multilingual semantic network, with
lexical information for all languages.

Once the automatic aligned translations were gen-
erated, we preprocessed them in the same way as we
did for the aligned training translations. In a next
step, we again selected all content words from these
translations and constructed the binary bag-of-words
features.

4 Evaluation

To evaluate the two machine translation systems as
well as the ParaSense system on their performance
on the lexical sample of twenty ambiguous words,
we used the sense inventory and test set of the Sem-
Eval Cross-Lingual Word Sense Disambiguation
task. The sense inventory was built up on the ba-
sis of the Europarl corpus: all retrieved translations
of a polysemous word were manually grouped into
clusters, which constitute different senses of that
given word. The test instances were selected from
the JRC-ACQUIS Multilingual Parallel Corpus2 and
BNC3. There were in total 50 test instances for each

2http://wt.jrc.it/lt/Acquis/
3http://www.natcorp.ox.ac.uk/

of the twenty ambiguous words in the sample. To la-
bel the test data, native speakers assigned three valid
translations from the predefined clusters of Europarl
translations to each test instance. A more detailed
description of the construction of the data set can
be found in (Lefever and Hoste, 2010a). As eval-
uation metric, we used a straightforward accuracy
measure that divides the number of correct answers
by the total amount of test instances. As a baseline,
we selected the most frequent lemmatized transla-
tion that resulted from the automated word align-
ment (GIZA++).

The output of the ParaSense WSD module con-
sists of a lemmatized translation of the ambiguous
focus word in the target language. The output of
the two statistical machine translation systems,
however, is a translation of the full English input
sentence. Therefore we manually selected the
translation of the ambiguous focus word from the
full translation, and made sure the translation was
put in its base form (masculine singular form for
nouns and adjectives, infinitive form for verbs).

Table 2 lists the accuracy figures for the baseline,
two flavors of the ParaSense system (with and with-
out correction of the word alignment output), Moses
and Google for English–French and English–Dutch.

A first conclusion is that all systems beat the
most frequent sense baseline. As expected, the
Google system (where there was no limitation on
the training data) achieves the best results, but for
French the considerable difference in training size
only leads to modest performance gains compared
to the ParaSense System. Another interesting obser-
vation is that the ParaSense system that uses manu-
ally verified translation labels hardly beats the sys-
tem that uses automatically generated class labels.
This is promising as it makes the manual interven-
tions on the data superfluous and leads to a fully au-
tomatic system development process.

Figure 1 illustrates the accuracy figures for French
for all three systems (for the ParaSense system we
used the flavor that incorporates the non-validated
translation labels) on all individual test words.

The three curves follow a similar pattern, except
for some words where Moses (mood, scene, side) or
both Moses and ParaSense (figure) perform worse.
As the curves show, some words (e.g. coach, figure,
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Figure 1: Accuracy figures per system for all 20 test words

French Dutch
Baseline 63% 59%

ParaSense system
Non Corrected 75% 68%
word alignment labels
Corrected word 76% 68%
alignment labels

SMT Systems
Moses 71% 63%
Google 78% 74%

Table 2: Accuracy figures averaged over all twenty test
words

match, range) are particularly hard to disambiguate,
while others obtain very high scores (e.g. letter, mis-
sion, soil). The almost perfect scores for the latter
can be explained by the fact that these words all have
a very generic translation in French (respectively let-
tre, mission, sol) that can be used for all senses of
the word, although there might be more suited trans-
lations for each of the senses depending on the con-
text. As the manual annotators could pick three good
translations for each test instance, the most generic
translation often figures between the gold standard
translations.

The low scores for some other words can often be
explained through the relationship with the number
of training instances (corresponding to the frequency

Number of Number of
Instances Translations

coach 66 11
education 4380 55
execution 489 26
figure 2298 167
job 7531 184
letter 1822 75
match 109 21
mission 1390 46
mood 100 26
paper 3650 94
post 998 68
pot 63 27
range 1428 145
rest 1739 80
ring 143 46
scene 284 50
side 3533 261
soil 287 16
strain 134 40
test 1368 92

Table 3: Number of instances and classes for all twenty
test words in French

of the word in the training corpus) and the ambigu-
ity (number of translations) per word. As is shown
in Table 3, both for coach and match there are very
few examples in the corpus, while figure and range

57



are very ambiguous (respectively 167 and 145 trans-
lations to choose from).

The main novelty of our ParaSense system lies in
the application of a multilingual approach to per-
form WSD, as opposed to the more classical ap-
proach that only uses monolingual local context fea-
tures. Consequently we also ran a set of additional
experiments to examine the contribution of the dif-
ferent translation features to the WSD performance.
Table 4 shows the accuracy figures for French and
Dutch for a varying number of translation features
including the other four languages: Italian, Span-
ish, French and Dutch for the French classifier or
French for the Dutch classifier. The scores clearly
confirm the validity of our hypothesis: the classifiers
using translation features are constantly better than
the one that merely uses English local context fea-
tures. For French, the other two romance languages
seem to contribute most: the classifier that uses Ital-
ian and Spanish bag-of-words features achieves the
best performance (75.50%), whereas the classifier
that incorporates German and Dutch translations ob-
tains the worst scores (71.90%). For Dutch, the in-
terpretation of the scores is less straightforward: the
Italian-German combination achieves the best result
(69%), but the difference with the other classifiers
that use two romance languages (Italian-Spanish:
67.70% and Italian-French: 67.20%) is less salient
than for French. In order to draw final conclusions
on the contribution of the different languages, we
probably first need to optimize our feature base and
classification parameters. For the current experi-
ments, we use very sparse bag-of-words features that
can be optimized in different ways (e.g. feature se-
lection, reduction of the bag-of-words features by
applying semantic analysis such as Singular Value
Decomposition, etc.).

5 Conclusion

We presented a thorough evaluation of two statis-
tical Machine Translation systems and one dedi-
cated WSD system on a lexical sample of English
ambiguous nouns. Our WSD system incorporates
both monolingual local context features and bag-
of-words features that are built from aligned trans-
lations in four additional languages. The best re-
sults are obtained by Google, the SMT system that

French Dutch
Baseline 63.10 59.40

All four translation features
It, Es, De, Nl/Fr 75.20 68.10

Three translation features
It, Es, De 75.00 67.80
Es, De, Nl/Fr 74.70 66.30
It, De, Nl/Fr 75.20 68.20
It, Es, Nl/Fr 75.30 67.90
Average 75.05 67.55

Two translation features
Es, De 74.70 67.80
It, De 75.10 69.00
De, Nl/Fr 71.90 68.00
It, Es 75.50 67.70
Es, Nl/Fr 74.20 68.10
It, Nl/Fr 75.30 67.20
Average 74.45 67.96

One translation feature
De 74.50 66.50
Es 75.20 68.40
It 74.90 66.70
Nl/Fr 73.80 66.20
Average 74.60 66.95

No translation features
None 73.50 63.90

Table 4: Accuracy figures for French and Dutch for a
varying number of translation features including the other
four languages viz. Italian (It), Spanish (Es), German
(De) and French (Fr) or Dutch (Nl)

is built with no constraints on data size or compu-
tational resources. Although there is still a lot of
room for improvement on the feature base and op-
timization of the WSD classifiers, our results show
that the ParaSense system outperforms Moses that is
built with the same training corpus.

We also noticed large differences among the test
words, often related to the number of training in-
stances and the number of translations the classifier
(or decoder) has to choose from.

Additional experiments with the ParaSense sys-
tem incorporating a number of varying translations
features allow us to confirm the validity of our hy-
pothesis. The classifiers that use the multilingual
bag-of-words features clearly outperform the clas-
sifier that only uses local context features.

In future work, we want to expand our feature set
and apply a genetic algorithm to perform joint fea-
ture selection, parameter optimization and instance
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selection. In addition, we will apply semantic anal-
ysis tools (such as SVD or LSA) on our multilingual
bag-of-words sets in order to detect latent semantic
topics in the multilingual feature base. Finally, we
want to evaluate to which extent the integration of
our WSD output helps the decoder to pick the cor-
rect translation in a real SMT framework.
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Abstract

In this paper we propose several novel ap-
proaches to improve phrase reordering for
statistical machine translation in the frame-
work of maximum-entropy-based modeling.
A smoothed prior probability is introduced to
take into account the distortion effect in the
priors. In addition to that we propose multi-
ple novel distortion features based on syntac-
tic parsing. A new metric is also introduced to
measure the effect of distortion in the transla-
tion hypotheses. We show that both smoothed
priors and syntax-based features help to sig-
nificantly improve the reordering and hence
the translation performance on a large-scale
Chinese-to-English machine translation task.

1 Introduction

Over the past decade, statistical machine translation
(SMT) has evolved into an attractive area in natural
language processing. SMT takes a source sequence,
S = [s1 s2 . . . sK ] from the source language, and
generates a target sequence,T ∗ = [t1 t2 . . . tL], by
finding the most likely translation given by:

T ∗ = arg max
T

p(T |S) (1)

In most of the existing approaches, following
(Brown et al., 1993), Eq. (1) is factored using the
source-channel model into

T ∗ = arg max
T

p(S|T )pλ(T ), (2)

where the two models, the translation model,
p(S|T ), and the language model (LM),p(T ), are es-

timated separately: the former using a parallel cor-
pus and a hidden alignment model and the latter us-
ing a typically much larger monolingual corpus. The
weighting factorλ is typically tuned on a develop-
ment test set by optimizing a translation accuracy
criterion such as BLEU (Papineni et al., 2002).

In recent years, among all the proposed ap-
proaches, the phrase-based method has become
the widely adopted one in SMT due to its capa-
bility of capturing local context information from
adjacent words. Word order in the translation
output relies on how the phrases are reordered
based on both language model scores and distor-
tion cost/penalty (Koehn et al., 2003), among all
the features utilized in a maximum-entropy (log-
linear) model (Och and Ney, 2002). The distor-
tion cost utilized during the decoding is usually a
penalty linearly proportional to the number of words
in the source sentence that are skipped in a transla-
tion path.

In this paper, we propose several novel ap-
proaches to improve reordering in the phrase-based
translation with a maximum-entropy model. In Sec-
tion 2, we review the previous work that focused on
the distortion and phrase reordering in SMT. In Sec-
tion 3, we briefly review the baseline of this work.
In Section 4, we introduce a smoothed prior prob-
ability by taking into account the distortions in the
priors. In Section 5, we present multiple novel dis-
tortion features based on syntactic parsing. A new
distortion evaluation metric is proposed in Section
6 and experimental results on a large-scale Chinese-
English machine translation task are reported in Sec-
tion 7. Section 8 concludes the paper.
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2 Previous Work

Significant amount of research has been conducted
in the past on the word reordering problem in SMT.
In (Brown et al., 1993) IBM Models 3 through 5
model reordering based on the surface word infor-
mation. For example, Model 4 attempts to assign
target-language positions to source-language words
by modeling d(j|i,K,L) where j is the target-
language position,i is the source-language position,
K andL are respectively source and target sentence
lengths. These models are not effective in modeling
reordering because they do not have enough context
and lack structural information.

Phrase-based SMT systems such as (Koehn et al.,
2003) move from using words as translation units
to using phrases. One of the advantages of phrase-
based SMT systems is that the local reordering is in-
herent in the phrase translations. However, phrase-
based SMT systems capture reordering instances
and not reordering phenomena. It has trouble to pro-
duce the right translation order if the training data
does not contain the specific phrase pairs. For ex-
ample, phrases do not capture the phenomenon that
Arabic adjectives and nouns need to be reordered.

Instead of directly modeling the distance of word
movement, some phrase-level reordering models in-
dicate how to move phrases, also called orientations.
Orientations typically apply to the adjacent phrases.
Two adjacent phrases can be either placed mono-
tonically (sometimes called straight) or swapped
(non-monotonically or inverted). In (Och and Ney,
2004; Tillmann, 2004; Kumar and Byrne, 2005; Al-
Onaizan and Papineni, 2006; Xiong et al., 2006;
Zens and Ney, 2006; Ni et al., 2009), people pre-
sented models that use lexical features from the
phrases to predict their orientations. These models
are very powerful in predicting local phrase place-
ments. In (Galley and Manning, 2008) a hierar-
chical orientation model is introduced that captures
some non-local phrase reordering by a shift reduce
algorithm. Because of the heavy use of lexical fea-
tures, these models tend to suffer from data sparse-
ness problems.

Syntax information has been used for reordering,
such as in (Xia and McCord, 2004; Collins et al.,
2005; Wang et al., 2007; Li et al., 2007; Chang et
al., 2009). More recently, in (Ge, 2010) a proba-

bilistic reordering model is presented to model di-
rectly the source translation sequence and explicitly
assign probabilities to the reordering of the source
input with no restrictions on gap, length or adja-
cency. The reordering model is used to generate a re-
ordering lattice which encodes many reordering and
their costs (negative log probability). Another recent
work is (Green et al., 2010), which estimates future
linear distortion cost and presents a discriminative
distortion model that predicts word movement dur-
ing translation based on multiple features.

This work differentiates itself from all the previ-
ous work on the phrase reordering as the following.
Firstly, we propose a smoothed distortion prior prob-
ability in the maximum-entropy-based MT frame-
work. It not only takes into account the distortion
in the prior, but also alleviates the data sparseness
problem. Secondly, we propose multiple syntactic
features based on the source-side parse tree to cap-
ture the reordering phenomena between two differ-
ent languages. The correct reordering patterns will
be automatically favored during the decoding, due to
the higher weights obtained through the maximum
entropy training on the parallel data. Finally, we
also introduce a new metric to quantify the effect on
the distortions in different systems. The experiments
on a Chinese-English MT task show that these pro-
posed approaches additively improve both the dis-
tortion and translation performance significantly.

3 Maximum-Entropy Model for MT

In this section we give a brief review of a special
maximum-entropy (ME) model as introduced in (It-
tycheriah and Roukos, 2007). The model has the
following form,

p(t, j|s) =
p0(t, j|s)

Z
exp

∑

i

λiφi(t, j, s), (3)

wheres is a source phrase, andt is a target phrase.
j is the jump distance from the previously translated
source word to the current source word. During
training j can vary widely due to automatic word
alignment in the parallel corpus. To limit the sparse-
ness created by long jumps,j is capped to a win-
dow of source words (-5 to 5 words) around the last
translated source word. Jumps outside the window
are treated as being to the edge of the window. In
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Eq. (3),p0 is a prior distribution,Z is a normalizing
term, andφi(t, j, s) are the features of the model,
each being a binary question asked about the source
and target streams. The feature weightsλi can be
estimated with the Improved Iterative Scaling (IIS)
algorithm.

Several categories of features have been pro-
posed:

• Lexical features that examine source word, tar-
get word and jump;

• Lexical context features that examine the pre-
vious and next source words, and also the pre-
vious two target words;

• Segmentation features based on morphological
analysis;

• Part-of-speech (POS) features that collect the
syntactic information from the source and tar-
get words;

• Coverage features that examine the coverage
status of the source words to the left and to the
right. They fire only if the left source is open
(untranslated) or the right source is closed.

 

 
                <=-5          -4             -3             -2            -1            1              2             3              4           >=5 
                                                                                         jump 

Figure 1: Counts of jumps for words with POSNN.

4 Distortion Priors

Generally the prior distribution in Eq. (3) can con-
tain any information we know about the future.
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                                                                                        jump 

Figure 2: Counts of jumps for words with POSNT.

In (Ittycheriah and Roukos, 2007), the normalized
phrase count is utilized as the prior, i.e.

p0(t, j|s) ≈
1

l
p0(t|s) =

C(s, t)

l ∗ C(s)
(4)

wherel is the jump window size (a constant),C(s, t)
is the co-ocurrence count of phrase pair (s, t), and
C(s) is the source phrase count ofs. It can be seen
that distortionj is not taken into account in Eq. (4).
The contribution of distortion solely comes from the
features. In this work, we estimate the prior proba-
bility with distortion included,

p0(t, j|s) = p0(t|s)p(j|s, t) (5)

where p(j|s, t) is the distortion probability for a
given phrase pair (s, t).

Due to the sparseness issue in the estimation of
p(j|s, t), we choose to smooth it with the global dis-
tortion probability through

p(j|s, t) = αpl(j|s, t) + (1− α)pg(j), (6)

wherepl is the local distortion probability estimated
based on the counts of jumps for each phrase pair
in the training,pg is the global distortion probability
estimated on all the training data, andα is the inter-
polation weight. In this work,pg is estimated based
on either source POS (if it’s a single-word source
phrase) or source phrase size (if it’s more than one
word long), as shown below.

pg(j) =

{

Pg(j|POS), if |s| = 1

Pg(j||s|), if |s| > 1
(7)

63



In this way, the system can differentiate the distor-
tion distributions for single source words with differ-
ent POS tags, such as adjectives versus nouns. And
in the meantime, we also differentiate the distortion
distribution with different source phrase lengths. We
show several examples of the jump distributions in
Fig. 1 and 2 collected from 1M sentence pairs in
a Chinese-to-English parallel corpus with automatic
parsing and word alignment. Fig. 1 shows the count
histogram for single-word phrases with POS tag as
NN. The distortion withj = 1, i.e. monotone, domi-
nates the distribution with the highest count. The re-
ordering withj = −1 has the second highest count.
Such pattern is shared by most of the other POS tags.
However, Fig. 2 shows that the distribution of jumps
for NT is quite different fromNN. The jump with
j = −1 is actually the most dominant, with higher
counts than monotone translation. This is due to the
different order in English when translating Chinese
temporal nouns.

5 Distortion Features

Although the maximum entropy translation model
has an explicit indicator of distortion,j, built into
the features, we discuss in this section some novel
features that try to capture the distortion phenomena
of translation. These features are questions about the
parse tree of the source language and in particular
about the local parse node neighborhood of the cur-
rent source word being translated. Figure 3 shows an
example sentence from the Chinese-English Parallel
Treebank (LDC2009E83) and the source language
parse is displayed on the left. The features below
can be viewed as either being within a parse node
or asking about the coverage status of neighborhood
nodes.

Since these features are asking about the current
coverage, they are specific to a path in the search lat-
tice during the decoding phase of translation. Train-
ing these features is done by evaluating on the path
defined by the automatic word alignment of the par-
allel corpus sentence.

5.1 Parse Tree Modifications

The ‘de’ construction in Chinese is by now famous.
In order to ask more coherent questions about the
parse neighborhood, we modify the parse structures

to “raise” the ‘de’ structure. The parse trees anno-
tated by the LDC have a structure as shown in Fig.
4. After raising the ‘de’ structure we obtain the tree
in Fig. 5.

NP-OBJ

CP

IP

...

DEC

de

QP

...

NP

NN

Figure 4: Original parse tree from LDC.

DNP

CP

IP

...

DEC

de

QP

...

NP

NN

Figure 5: The parse tree after transformation.

The transformation has been applied to the exam-
ple shown in Figure 3. The resulting flat structure
facilitates the parse sibling feature discussed below.

5.2 Parse Coverage Feature

The first set of new features we will introduce is the
source parse coverage feature. This feature is in-
terior to a source parse node and asks if the leaves
under this parse node are covered (translated) or not
so far. The feature has the following components:

φi(SourceWord, TargetWord, SourceParseParent,
jump, Coverage).

Unary parents in the source parse tree are ex-
cluded since the feature has no ambiguity in cover-
age. In Figure 3, the ‘PP’ node above position 5 has
two children, P, NP. When translating source posi-
tion 6, this feature indicates that the PP node has a
leaf that is already covered.

5.3 Parse Sibling Feature

The second set of new features is the source parse
sibling feature. This feature asks whether the neigh-
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Figure 3: Chinese-English example.

boring parse node has been covered or not. The fea-
ture includes two types:

φi(SourceWord, TargetWord, SourceParseSibling,
jump, SiblingCoverage, SiblingOrientation)
and

φi(SourcePOS, TargetPOS, SourceParseSibling,
jump, SiblingCoverage, SiblingOrientation).

Some example features for the first type are
shown in Table 1, whereαi = eλi . The coverage
status (Cov) of the parse sibling node indicates if the
node is covered completely (1), partially (2) or not
covered (0). In order to capture the relationship of
the neighborhood node, we indicate the orientation
which can be either of{left (-1), right (1)}. Given
the example shown in Figure 3, at source position
10, the system can now ask about the ‘CP’ structure
to the left and the ‘QP’ and ‘NP’ structures to the
right. An αi of greater than 1.0 (meaningλi > 0)
indicates that the feature increases the probability of
the related target block. From these examples, it’s
clear that the system prefers to produce an empty
translation for the Chinese word “de” when the ‘QP’
and ‘NP’ nodes to the right of it are already covered
(the first two features in Table 1) and when the ‘CP’
node to left is still uncovered (the third feature). The
last feature in the table showsαi for the case when
‘CP’ has already been covered.

These features are able to capture neighborhoods
that are much larger than the original baseline model
which only asked questions about the immediate
lexical neighborhood of the current source word.

Cnt αi Tgt Src Parse Cov Orien-
Node tation

18065 2.06 e0 de QP 1 1
366153 1.99 e0 de NP 1 1
143433 3.41 e0 de CP 0 -1
99297 1.05 e0 de CP 1 -1

Table 1: Parse Sibling Word Features (e0 represents
empty target).

6 A New Distortion Evaluation Metric

MT performance is usually measured by such met-
ric as BLEU which measures the MT output as a
whole including word choice and reordering. It is
useful to measure these components separately. Un-
igram BLEU (BLEUn1) measures the precision of
word choice. We need a metric for measuring re-
ordering accuracy. The naive way of counting accu-
racy at every source position does not account for the
case of the phrasal movement. If a phrase is moved
to the wrong place, every source word in the phrase
would be penalized whereas a more reasonable met-
ric would penalize the phrase movement only once
if the phrase boundary is correct.

We propose the following pair-wise distortion
metric. From an MT output, we first extract the
source visit sequence:

Hyp:{h1,h2, . . . hn}

wherehi are the visit order of the source sentence.
From the reference, we extract the true visit se-
quence:
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Ref:{r1,r2, . . . rn}

The Pair-wise Distortion metric PDscore can be
computed as follows:

PDscore(
−→
H ) =

n
∑

i=1

I(hi = rj ∧ hi−1 = rj−1)

n

(8)
It measures how often the translation output gets
the pair-wise source visit order correct. We notice
that an MT metric named LRscore was proposed in
(Birch and Osborne, 2010). It computes the distance
between two word order sequences, which is differ-
ent from the metric we proposed here.

7 Experiments

7.1 Data and Baseline

We conduct a set of experiments on a Chinese-to-
English MT task. The training data includes the UN
parallel corpus and LDC-released parallel corpora,
with about 11M sentence pairs, 320M words in to-
tal (counted at the English side). To evaluate the
smoothed distortion priors and different features, we
use an internal data set as the development set and
the NIST MT08 evaluation set as the test set, which
includes 76 documents (691 sentences) in newswire
and 33 documents (666 sentences) in weblog, both
with 4 sets of references for each sentence. Instead
of using all the training data, we sample the training
corpus based on the dev/test set to train the system
more efficiently. The most recent and good-quality
corpora are sampled first. For the given test set, we
obtain the first 20 instances of n-grams (length from
1 to 15) from the test that occur in the training uni-
verse and the resulting sentences then form the train-
ing sample. In the end, 1M sentence pairs are se-
lected for the sampled training for each genre of the
MT08 test set.

A 5-gram language model is trained from the En-
glish Gigaword corpus and the English portion of
the parallel corpus used in the translation model
training. The Chinese parse trees are produced
by a maximum entropy based parser (Ratnaparkhi,
1997). The baseline decoder is a phrase-based de-
coder that employs both normal phrases and also
non-contiguous phrases. The value of maximum
skip is set to 9 in all the experiments. The smoothing
parameterα for distortion prior is set to 0.9 empiri-

cally based on the results on the development set.

7.2 Distortion Evaluation

We evaluate the MT distortion using the metric in
Eq. (8) on two hand-aligned test sets. Test-278 in-
cludes 278 held-out sentences. Test-52 contains the
first 52 sentences from the MT08 Newswire set, with
the Chinese input sentences manually aligned to the
first set of reference translations. From the hand
alignment, we extract the true source visit sequence
and this is the reference.

The evaluation results are in Table 2. It is shown
that the smoothed distortion prior, parse coverage
feature and parse sibling feature each provides im-
provement on the PDscore on Test-278 and Test-52.
The final system scores are 2 to 3 points absolute
higher than the baseline scores. The state visit se-
quence in the final system is closer to the true visit
sequence than that of the baseline. This indicates
the advantage of using both parse-based syntactic
features and also the smoothed prior that takes into
account of the distortion effect. We also provide
an upper-bound in the last row by computing the
PDscore between the first and second set of refer-
ences for Test-52. The number shows the agreement
between two human translators in terms of PDscore
is around 71%.

System Test-278 Test-52

ME Baseline 44.58 48.96
+Prior 45.12 49.22
+COV 45.00 49.03
+SIB 45.43 49.20
+COV+SIB 46.16 49.45
+Prior+COV+SIB 47.68 51.04
Ref1 vs. Ref2 - 70.99

Table 2: Distortion accuracy PDscore (Prior:smoothed
distortion prior; COV:parse coverage feature; SIB:parse
sibling feature).

7.3 Translation Results

Translation results on the MT08 Newswire set and
MT08 Weblog set are listed in Table 3 and Table 4
respectively. The MT performance is measured with
the widely adopted BLEU and TER (Snover et al.,
2006) metrics. We also compare the results from
different configurations with a normal phrase-based
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System Number of Features BLEU TER

PBT n/a 29.71 59.40
ME 9,008,382 32.12 56.78
+Prior 9,008,382 32.46 56.41
+COV 9,202,431 32.48 56.50
+SIB 10,088,487 32.73 56.26
+COV+SIB 10,282,536 32.94 55.97
+Prior+COV+SIB 10,282,536 33.15 55.62

Table 3: MT results on MT08 Newswire set (PBT:normal phrase-based MT; ME:Maximum-entropy baseline;
Prior:smoothed distortion prior; COV:parse coverage feature; SIB:parse sibling feature).

System Number of Features BLEU TER

PBT n/a 20.07 62.90
ME 9,192,617 22.42 60.36
+Prior 9,192,617 22.70 60.11
+COV 9,306,967 22.69 60.14
+SIB 9,847,445 22.91 59.92
+COV+SIB 9,961,795 23.04 59.78
+Prior+COV+SIB 9,961,795 23.25 59.56

Table 4: MT results on MT08 Weblog set (PBT:normal phrase-based MT; ME:Maximum-entropy baseline;
Prior:smoothed distortion prior; COV:parse coverage feature; SIB:parse sibling feature).

SMT system (Koehn et al., 2003) that is trained on
the same training data. The number of features used
in the systems are listed in the tables.

We start from the maximum-entropy baseline, a
system implemented similarly as in (Ittycheriah
and Roukos, 2007). It utilizes multiple features as
listed in Section 3, including lexical reordering fea-
tures, and produces an already significantly better
performance than the normal phrase-based MT sys-
tem (PBT). It is around 2.5 points better in both
BLEU and TER than the PBT baseline. By adding
smoothed priors, parse coverage features or parse
sibling features each separately, the MT perfor-
mance is improved by 0.3 to 0.6. The parse sibling
feature alone provides the largest individual contri-
bution. When adding both types of new features,
the improvement is around 0.6 to 0.8 on two gen-
res. Finally, applying all three results in the best
performance (the last row). On the Newswire set,
the final system is more than 3 points better than the
PBT baseline and 1 point better than the ME base-
line. On the Weblog set, it is more than 3 points
better than PBT and 0.8 better than the ME baseline.
All the MT results above are statistically significant

with p-value< 0.0001 by using the tool described in
(Zhang and Vogel, 2004).

7.4 Analysis

To better understand the distortion and translation
results, we take a closer look at the parse-based fea-
tures. In Table 5, we list the most frequent parse sib-
ling features that are related to the Chinese phrases
with “PP VV” structures. It is known that in Chi-
nese usually the preposition phrases (“PP”) are writ-
ten/spoken before the verbs (“VV”), with a different
order from English. Table 5 shows how such re-
ordering phenomenon is captured by the parse sib-
ling features. Recall that whenαi is greater than 1,
the system prefers the reordering with that feature
fired. Whenαi is smaller than 1, the system will
penalize the corresponding translation order during
the decoding search. When the coverage is equal to
1, it means “PP” has been translated before translat-
ing current “VV”. As shown in the table, those fea-
tures with coverage equal to 1 haveαi lower than 1,
which will result in penalties on incorrect translation
orders.

In Fig. 6, we show the comparison between the
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Count αi j TgtPOS SrcPOS ParseSib Cov Orien-
Node tation

3052 1.10 5 VBD VV PP 0 -1
2662 1.10 -1 VBD VV PP 0 -1
2134 1.25 4 VBD VV PP 0 -1
50 0.73 5 VBD VV PP 1 -1
39 0.84 -5 VBD VV PP 1 -1
18 0.95 -2 VBD VV PP 1 -1

Table 5: Parse Sibling Word Features related to Chinese “PP VV”.
 
Src1 

��
 ��� �� �� 	
 �� 

�
 �� , 1850� � 2005 �� , 

��
 �

 1800 � � �� ����(were) ����(at) ��������(annual) 3% 
����

 
��������

(rate) ��������
(shrinking)�  

Ref a long-term follow-up research by glacier experts at the swiss academy of 
sciences found that from 1850 to 2005 the 1,800 plus glaciers in switzerland 
were shrinking at an annual rate of 3 % . 

Baseline the swiss academy of sciences glacier experts long-term follow-up study found 
that from 2005 to 1850 , with an average of more than 1800 glaciers in 
switzerland is the reduced rate of 3 % .  

New the swiss academy of sciences glacier experts long-term follow-up study found 
that from 1850 to 2005 , more than 1800 of swiss glaciers shrinking  at an 
annual rate of 3 %.  

  
Src2 �   ! "# $%& '( ) , * + , -.-.-.-.(had been) /0/0/0/0(kidnapped) ����

(who) 12121212(german) 34343434(hostage) 56 78 9: , ;< => ?@ A BC
 DE � 

Ref but at the same time the taliban said that another german hostage who had 
been kidnapped was in extremely poor health , and had started to become 
comatose and to lose consciousness . 

Baseline but at the same time , another one was kidnapped by the taliban of the 
german hostage body very weak , began to fall into a coma and lost 
consciousness . 

New but at the same time , the taliban said that the body of another german 
hostage who was kidnapped very weak , began to fall into a coma and lost 
consciousness .  

  
 
 Figure 6: Chinese-English MT examples(Baseline:Maximum-entropy baseline; New:System with smoothed priors

and syntactic features).

ME baseline output and those from the improved
system with the parse-based features and smoothed
distortion priors. The differences are highlighted
in bold for easy understanding. The first example
shows that the new system fixes the order for “PP
VV”, while the second one shows the fix for the
translation of “CP de NP”. This is consistent with
the features we showed in Table 1 and 5. The new
features help to translate the Chinese text in the right
order.

8 Conclusion

In this paper we have presented several novel ap-
proaches that improved phrase reordering in the
framework of maximum entropy based translation.
A smoothed prior probability was proposed to take

into account the distortions in the priors. Several
novel distortion features were presented based on
the syntactic parsing. A new metric PDscore was
also introduced to measure the effect of distortion
in the translation hypotheses. We showed that both
smoothed prior and syntax-based features additively
improved the distortion and also the translation per-
formance significantly on a large-scale Chinese-
English machine translation task. How to further
take advantage of the syntactic information to im-
prove the reordering in SMT will continue to be an
interesting topic in the future.
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Abstract

We show that reifying the rules from hyper-
edge weights to first-class graph nodes au-
tomatically gives us rule expectations in any
kind of grammar expressible as a deductive
system, without any explicit algorithm for cal-
culating rule expectations (such as the inside-
outside algorithm). This gives us expecta-
tion maximization training for any grammar
class with a parsing algorithm that can be
stated as a deductive system, for free. Having
such a framework in place accelerates turn-
over time for experimenting with new gram-
mar classes and parsing algorithms—to imple-
ment a grammar learner, only the parse forest
construction has to be implemented.

1 Introduction

We propose contextual probability as a quantity that
measures how often something has been used in
a corpus, and when calculated for rules, it gives
us everything needed to calculate rule expectations
for expectation maximization. For labeled spans in
context-free parses, this quantity is called outside
probability, and in semiring (bi-) parsing, it is called
reverse value. The inside-outside algorithm for rees-
timating context-free grammar rules uses this quan-
tity for the symbols occurring in the parse forest.
Generally, the contextual probability is:

The contextual probability of something
is the sum of the probabilities

of all contexts where it was used.

For symbols participating in a parse, we could state
it like this:

The contextual probability of an item
is the sum of the probabilities

of all contexts where it was used.

. . . which is exactly what we mean with outside
probability. In semiring (bi-) parsing, this quantity
is called reverse value, but in this framework it is
also defined for rules, which means that we could
restate our boxed statement as:

The contextual probability of a rule
is the sum of the probabilities

of all contexts where it was used.

This opens up an interesting line of inquiry into what
this quantity might represent. In this paper we show
that the contextual probabilities of the rules contain
precisely the new information needed in order to cal-
culate the expectations needed to reestimate the rule
probabilities. This line of inquiry was discovered
while working on a preterminalized version of lin-
ear inversion transduction grammars (LITGs), so we
will use these preterminalized LITGs (Saers and Wu,
2011) as an example throughout this paper.

We will start by examining semiring parsing
(parsing as deductive systems over semirings, Sec-
tion 3), followed by a section on how this relates to
weighted hypergraphs, a common representation of
parse forests (Section 4). This reveals a disparity be-
tween weighted hypergraphs and semiring parsing.
It seems like we are forced to choose between the
inside-outside algorithm for context-free grammars
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on the one side, and the flexibility of grammar for-
malism and parsing algorithm development afforded
by semiring (bi-) parsing. It is, however, possible to
have both, which we will show in Section 5. An
integral part of this unification is the concept of con-
textual probability. Finally, we will offer some con-
clusions in Section 6.

2 Background

A common view on probabilistic parsing—be it
bilingual or monolingual—is that it involves the
construction of a weighted hypergraph (Billot and
Lang, 1989; Manning and Klein, 2001; Huang,
2008). This is an appealing conceptualization, as it
separates the construction of the parse forest (the ac-
tual hypergraph) from the probabilistic calculations
that need to be carried out. The calculations are,
in fact, given by the hypergraph itself. To get the
probability of the sentence (pair) being parsed, one
simply have to query the hypergraph for the value
of the goal node. It is furthermore possible to ab-
stract away the calculations themselves, by defining
the hypergraph over an arbitrary semiring. When the
Boolean semiring is used, the value of the goal node
will be true if the sentence (pair) is a member of the
language (or transduction) defined by the grammar,
and false otherwise. When the probabilistic semir-
ing is used, the probability of the sentence (pair) is
attained, and with the tropical semiring, the proba-
bility of the most likely tree is attained. To further
generalize the building of the hypergraph—the pars-
ing algorithm—a deductive system can be used. By
defining a hand-full of deductive rules that describe
how items can be constructed, the full complexi-
ties of a parsing algorithm can be very succinctly
summarized. Deductive systems to represent parsers
and semirings to calculate the desired values for the
parses were introduced in Goodman (1999).

In this paper we will reify the grammar rules
by moving them from the meta level to the object
level—effectively making them first-class citizens of
the parse trees, which are no longer weighted hyper-
graphs, but mul/add-graphs. This move allows us
to calculate rule expectations for expectation maxi-
mization (Dempster et al., 1977) as part of the pars-
ing process, which significantly shortens turn-over
time for experimenting with different grammar for-

malisms.
Another approach which achieve a similar goal is

to use a expectation semiring (Eisner, 2001; Eisner,
2002; Li and Eisner, 2009). In this semiring, all val-
ues are pairs of probabilities and expectations. The
inside-outside algorithm with the expectation semir-
ing requires the usual inside and outside calcula-
tions over the probability part of the semiring val-
ues, followed by a third traversal over the parse for-
est to populate the expectation part of the semiring
values. The approach taken in this paper also re-
quires the usual inside and outside calculations, but
o third traversal of the parse forest. Instead, the pro-
posed approach requires two passes over the rules
of the grammar per EM iteration. The asymptotic
time complexities are thus equivalent for the two ap-
proaches.

2.1 Notation

We will use w to mean a monolingual sentence,
and index the individual tokens from 0 to |w| − 1.
This means that w = w0, . . . , w|w|−1. We will fre-
quently use spans from this sentence, and denote
them wi..j , which is to be interpreted as array slices,
that is: including the token at position i, but ex-
cluding the token at position j (the interval [i, j)
over w, or wi, . . . , wj−1). A sentence w thus cor-
responds to the span w0..|w|. We will also assume
that there exists a grammar G = 〈N,Σ, S,R〉 or a
transduction grammar (over languages L0 and L1)
G = 〈N,Σ,∆, S,R〉 (depending on the context),
where N is the set of nonterminal symbols, Σ is a
set of (L0) terminal symbols, ∆ is a set of (L1) ter-
minal symbols, S ∈ N is the dedicated start symbol
and R is a set of rules appropriate to the grammar.
A stochastic grammar is further assumed to have a
parameterization function θ, that assigns probabili-
ties to all the rules in R. For general L0 tokens we
will use lower case letters from the beginning of the
alphabet, and for L1 from the end of the alphabet.
For specific sentences we will use e = e0..|e| to rep-
resent an L0 sentence and f = f0..|f | to represent an
L1 sentence.

3 Semiring parsing

Semiring parsing was introduced in Goodman
(1999), as a unifying approach to parsing. The gen-
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eral idea is that any parsing algorithm can be ex-
pressed as a deductive system. The same algorithm
can then be used for both traditional grammars and
stochastic grammars by changing the semiring used
in the deductive system. This approach thus sepa-
rates the algorithm from the specific calculations it
is used for.

Definition 1. A semiring is a tuple 〈A,⊕,⊗,0,1〉,
where A is the set the semiring is defined over, ⊕ is
an associative, commutative operator over A, with
identity element 0 and ⊗ is an associative operator
over A distributed over ⊕, with identity element 1.

Semirings can be intuitively understood by consid-
ering the probabilistic semiring: 〈R+,+,×, 0, 1〉,
that is: the common meaning of addition and
multiplication over the positive real numbers (in-
cluding zero). Although this paper will have a
heavy focus on the probabilistic semiring, sev-
eral other exists. Among the more popular are
the Boolean semiring 〈{>,⊥},∨,∧,⊥,>〉 and the
tropical semiring 〈R+ ∪ {∞},min,+,∞, 0〉 (or
〈R− ∪ {−∞},max,+,−∞, 0〉 which can be used
for probabilities in the logarithmic domain).

The deductive systems used in semiring parsing
have three components: an item representation, a
goal item and a set of deductive rules. Taking
CKY parsing (Cocke, 1969; Kasami and Torii, 1969;
Younger, 1967) as an example, the items would have
the form Ai,j , which is to be interpreted as the span
wi..j of the sentence being parsed, labeled with the
nonterminal symbol A. The goal item would be
S0,|w|: the whole sentence labeled with the start
symbol of the grammar. Since the CKY algorithm
is a very simple parsing algorithm, it only has two
deductive rules:

A→ a, Ia(wi..j)
Ai,j

0≤i≤j≤|w| (1)

Bi,k, Ck,j , A→ BC

Ai,j
(2)

Where Ia(·) is the terminal indicator function for the
semiring. The general form of a deductive rule is
that the conditions (entities over the line) yield the
consequence (the entity under the line) given that
the side conditions (to the right of the line) are satis-
fied. We will make a distinction between conditions
that are themselves items, and conditions that are

not. The non-item conditions will be called axioms,
and are exemplified above by the indicator function
(Ia(wi..j) which has a value that depends only on the
sentence) and the rules (A→ a andA→ BC which
have values that depends only on the grammar).

The indicator function might seem unnecessary,
but allows us to reason under uncertainty regarding
the input. In this paper, we will assume that we have
perfect knowledge of the input (but for generality,
we will not place it as a side condition). The func-
tion is defined such that:

∀a ∈ Σ∗ : Ia(w) =

{
1 if a = w

0 otherwise

An important concept of semiring parsing is that
the deductive rules also specify how to arrive at the
value of the consequence. Since it is the first value
computed for a node, we will call it α, and the gen-
eral way to calculate it given a deductive rule and the
α-values of the conditions is:

α(b) =
n⊗
i=1

α(ai) iff
a1, . . . , an

b
c1,...,cm

If the same consequence can be produced in several
ways, the values are summed using the ⊕ operator:

α(b) =
⊕

n,a1,...,an
such that
a1,...,an

b

n⊗
i=1

α(ai)

The α-values of axioms depend on what kind of ax-
iom it is. For the indicator function, the α-value is
the value of the function, and for grammar rules, the
α-value is the value assigned to the rule by the pa-
rameterization function θ of the grammar.

The α-value of a consequence corresponds to the
value of everything leading up to that consequence.
If we are parsing with a context-free grammar and
the probabilistic semiring, this corresponds to the in-
side probability.

3.1 Reverse values
When we want to reestimate rule probabilities, it is
not enough to know the probabilities of arriving at
different consequences, we also need to know how
likely we are to need the consequences as a condi-
tion for other deductions. These values are called
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S → A

A0,|e|,0,|f |
,

As,s,u,u, A→ ε/ε
G

,

Bs′,t,u′,v, B → [XA], X → a/x , Ia/x ( es..s′/fu..u′ )

As,t,u,v

0≤s≤s′,
0≤u≤u′,

Bs,t′,u,v′ , B → [AX], X → a/x , Ia/x ( et′..t/fv′..v )

As,t,u,v

t′≤t≤|e|,
v′≤v≤|f |,

Bs′,t,u,v′ , B → 〈XA〉, X → a/x , Ia/x ( es..s′/fv′..v )

As,t,u,v

0≤s≤s′,
v′≤v≤|f |,

Bs,t′,u′,v, B → 〈AX〉, X → a/x , Ia/x ( et′..t/fu..u′ )

As,t,u,v

t′≤t≤|e|,
0≤u≤u′

Figure 2: Deductive system describing a PLITG parser. The symbols A, B and S are nonterminal symbols, while X
represents a preterminal symbol.

S → A

A0,|e|,0,|f |
,

As,s,u,u, A→ ε/ε
G

,

Bs′,t,u′,v, B → [a/x A], Ia/x ( es..s′/fu..u′ )

As,t,u,v

0≤s≤s′,
0≤u≤u′,

Bs,t′,u,v′ , B → [A a/x ], Ia/x ( et′..t/fv′..v )

As,t,u,v

t′≤t≤|e|,
v′≤v≤|f |,

Bs′,t,u,v′ , B → 〈a/x A〉, Ia/x ( es..s′/fv′..v )

As,t,u,v

0≤s≤s′,
v′≤v≤|f |,

Bs,t′,u′,v, B → 〈A a/x 〉, Ia/x ( et′..t/fu..u′ )

As,t,u,v

t′≤t≤|e|,
0≤u≤u′

Figure 1: Deductive system describing an LITG parser.

reverse values in Goodman (1999), and outside
probabilities in the inside-outside algorithm (Baker,
1979). In this paper we will call them contextual
values, or β-values (since they are the second value
we calculate).

The way to calculate the reverse values is to start
with the goal node and work your way back to the
axioms. The reverse value is calculated to be:

β(x) =
⊕

n,i,b,a1,...,an
such that

a1,...,an
b

∧x=ai

β(b)⊗
⊗

{j|1≤j≤n,j 6=i}

α(aj)

That is: the reverse value of the consequence com-
bined with the values of all sibling conditions is cal-
culated and summed for all deductive rules where

the item is a condition.

3.2 SPLITG

After we introduced stochastic preterminalized
LITGs (Saers, 2011, SPLITG), the idea of express-
ing them in term of semiring parsing occurred. This
is relatively straight forward, producing a compact
set of deductive rules similar to that of LITGs. For
LITGs, the items take the form of bispans labeled
with a symbol. We will represent these bispans as
As,t,u,v, where A is the label, and the two spans be-
ing labeled are es..t and fu..v. Since we usually do
top-down parsing, the goal item is a virtual item (G)
than can only be reached by rewriting a nontermi-
nal to the empty bistring ( ε/ε ). Figure 1 shows the
deductive rules for LITG parsing.

A preterminalized LITG promote preterminal
symbols to a distinct class of symbols in the gram-
mar, which is only allowed to rewrite into bitermi-
nals. Factoring out the terminal productions in this
fashion allows the grammar to define one probability
distribution over all the biterminals, which is useful
for bilexica induction. It also means that the LITG

rules that produce biterminals have to be replaced
by two rules in a PLITG, resulting in the deductive
rules in Figure 2.

4 Weighted hypergraphs

A hypergraph is a graph where the nodes are con-
nected with hyperedges. A hyperedge is an edge
that can connect several nodes with one node—it has
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Figure 3: A weighted hyperedge between three nodes,
based on the rule A → BC. The tip of the arrow points
to the head of the edge, and the two ends are the tails. The
dashed line idicates where the weight of the edge comes
from.

one head, but may have any number of tails. Intu-
itively, this is a good match to context-free gram-
mars, since each rule connects one symbol on the
left hand side (the head of the hyperedge) with any
number of symbols on the right hand side (the tails
of the hyperedge). During parsing, one node is con-
structed for each labeled (bi-) span, and the nodes
are connected with hyperedges based on the valid
applications of rules. A hyperedge will be repre-
sented as [h : t1, . . . , tn] where h is the head and ti
are the tails.

When this is applied to weighted grammar, each
hyperedge can be associated with a weight, making
the hypergraph weighted. Every time an edge is tra-
versed, its weight is combined with the value travel-
ling through the edge. Weights are assigned to hy-
peredges via a weighting function w(·).

Figure 3 contains an illustration of a weighted
hyperedge. The arrow indicates the edge itself,
whereas the dotted line indicates where the weight
comes from. Since each hyperedge corresponds to
exactly one rule from a stochastic context-free gram-
mar, we can use the inside-outside algorithm (Baker,
1979) to calculate inside and outside probabilities as
well as to reestimate the probabilities of the rules.
What we cannot easily do, however, is to change the
parsing algorithm or grammar formalism.

If the weighted hyperedge approach was a one-to-
one mapping to the semiring parsing approach, we
could, but it is not. The main difference is that rules
are part of the object level in semiring parsing, but

Figure 4: The same hyperedge as in Figure 3, where the
rule has been promoted to first-class citizen. The hyper-
edge is no longer weighted.

part of the meta level in weighted hypergraphs. To
address this disparity, we will reify the rules in the
weighted hypergraph to make them nodes. Figure 4
shows the same hyperedge as Figure 3, but with the
rule as a proper node rather than a weight associ-
ated with the hyperedge. These hyperedges are ag-
nostic to what the tail nodes represent, so we can no
longer use the inside-outside algorithm to reestimate
the rule probabilities. We can, however, still calcu-
late inside probabilities. In the weighted hyperedge
approach, the inside probability of a node is:

α(p) =
⊕

n,q1,...,qn
such that

[p:q1,...qn]

w([p : q1, . . . , qn])⊗
n⊗
i=1

α(qi)

Whereas with the rules reified, the weight simply
moved into the tail product:

α(p)
⊕

n,q1,...,qn
such that

[p:q1,...qn]

n⊗
i=1

α(qi)

By virtue of the deductive system used to build the
hypergraph, we also have the reverse values, which
correspond to outside probability:

β(x) =
⊕

i,p,n,q1,...,qn
such that

[p:q1,...qn]∧x=qi

β(p)⊗
⊗

{j|1≤j≤n,j 6=i}

α(qj)

This means that we have the inside and outside prob-
abilities of the nodes, and we could shoe-horn it into
the reestimation part of the inside-outside algorithm.
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It also means that we have β-values for the rules,
which we are calculating as a side-effect of moving
them into the object level. In Section 5, we will take
a closer look at the semantics of the contextual prob-
abilities that we are in fact calculating for the reified
rules, and see how they can be used in reestimation
of the rules.

4.1 SPLITG

Using the hypergraph parsing framework for
SPLITGs turns out to be non-trivial. Where the stan-
dard LITG uses one rule to rewrite a nonterminal into
another nonterminal and a biterminal, the SPLITG

rewrites a nonterminal to a preterminal and a non-
terminal, and rewrites the preterminal into a biter-
minal. This causes problems within the hypergraph
framework, where each rule application should cor-
respond to one hyperedge. As it stands we have two
options:

1. Let each rule correspond to one hyperedge,
which means that we need to introduce preter-
minal nodes into the hypergraph. This has
a clear drawback for bracketing grammars,1

since it is now necessary to keep different sym-
bols apart. It also produces larger hypergraphs,
since the number of nodes is inflated.

2. Let hypergraphs be associated with one or two
rules, which means that we need to redefine hy-
peredges so that there are two different weight-
ing functions: one for the nonterminal weight
and one for the preterminal weight. Although
all hyperedges are associated with one nonter-
minal rule, some hyperedges are not associated
with any preterminal rule, making the pretermi-
nal weighting function partly defined.

Both of these approaches work in practice, but nei-
ther is completely satisfactory since they both rep-
resent work-arounds to shoe-horn the parsing algo-
rithm (as stated in the deductive system) into a for-
malism that is not completely compatible. By reify-
ing the rules into the object level, we rid ourselves
of this inconvenience, as we no longer differentiate
between different types of conditions.

1A bracketing grammar is a grammar where |N | = 1.

5 Reestimation of reified rules

As has been amply hinted at, the contextual prob-
abilities (outside probabilities, reverse values or β-
values) contain all new information we need about
the rules to reestimate their probability in an expec-
tation maximization (Dempster et al., 1977) frame-
work. To show that this is indeed the case, we
will rewrite the reestimation formulas of the inside-
outside algorithm (Baker, 1979) so that they are
stated in terms of contextual probability for the
rules.

In general, a stochastic context-free grammar can
be estimated from examples of trees generated by
the grammar by means of relative frequency. This
is also true for expectation maximization with the
caveat that we have multiple hypotheses over each
sentence (pair), and therefore calculate expectations
rather than discrete frequency counts. We thus com-
pute the updated parameterization function θ̂ based
on expectations from the current parameterization
function:

θ̂ (ϕ|p) =
Eθ [p→ ϕ]

Eθ [p]

Where p ∈ N and ϕ ∈ {Σ ∪ N}+ (or ϕ ∈
{(Σ∗×∆∗)∪N}+ for transduction grammars). The
expectations are calculated from the sentences in a
corpus C:

Eθ [x] =
∑
w∈C

Eθ [x|w]

The exact way of calculating the expectation on x
given a sentence depends on what x is. For nonter-
minal symbols, the expectations are given by:

Eθ [p|w] =
Eθ [p,w]

Eθ [w]

=

∑
0≤i≤j≤|w| Pr (pi,j ,w|G)

Pr (w|G)

=

∑
0≤i≤j≤|w| α(pi,j)β(pi,j)

α(S0,|w|)β(S0,|w|)

For nonterminal rules, the expectations are shown in
Figure 5. The most noteworthy step is the last one,
where we use the fact that the summation is over
the equivalence of the rule’s reverse value. Each
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Eθ [p→ qr|w] =
Eθ [p→ qr,w]

Eθ [w]

=

∑
0≤i≤k≤j≤|w| Pr

(
w0..i, pi,j , wj..|w|

∣∣G)Pr (wi..k|qi,k, G) Pr (wk..j |rk,j , G) θ (qr|p)
Pr (w|G)

=

∑
0≤i≤k≤j≤|w| β(pi,j)α(qi,k)α(rk,j)θ (qr|p)

α(S0,|w|)β(S0,|w|)

=
θ (qr|p)

∑
0≤i≤k≤j≤|w| β(pi,j)α(qi,k)α(rk,j)

α(S0,|w|)β(S0,|w|)
=

α(p→ qr)β(p→ qr)

α(S0,|w|)β(S0,|w|)

Figure 5: Expected values for nonterminal rules in a specific sentence.

Eθ [p→ a|w] =
Eθ [p→ a,w]

Eθ [w]

=

∑
0≤i≤j≤|w| Pr

(
w0..i, pi,j , wj..|w|

∣∣G) Ia(wi..j)θ (a|p)
Pr (w|G)

=

∑
0≤i≤j≤|w| β(pi,j)Ia(wi..j)θ (a|p)

α(S0,|w|)β(S0,|w|)

=
θ (a|p)

∑
0≤i≤j≤|w| β(pi,j)Ia(wi..j)
α(S0,|w|)β(S0,|w|)

=
α(p→ a)β(p→ a)

α(S0,|w|)β(S0,|w|)

Figure 6: Expected values of terminal rules in a specific sentence.

β(pi,j)α(qi,k)α(rk,j) term of the summation corre-
sponds to one instance where the rule was used in
the parse. Furthermore, the β value is the outside
probability of the consequence of the deductive rule
applied, and the two α values are the inside prob-
abilities of the sibling conditions of that deductive
rule. The entire summation thus corresponds to our
definition of the reverse value of a rule, or its outside
probability.

In Figure 6, the same process is carried out for ter-
minal rules. Again, the summation is over all possi-
ble ways that we can combine the inside probability
of the sibling conditions of the rule with the outside
probability of the consequence.

Since the expected values of both terminal and
nonterminal rules have the same form, we can gen-
eralize the formula for any production ϕ:

Eθ [p→ ϕ|w] =
α(p→ ϕ)β(p→ ϕ)

α(S0,|w|)β(S0,|w|)

Finally, plugging it all into the original rule estima-
tion formula, we have:

θ̂ (ϕ|p) =
Eθ [p→ ϕ]

Eθ [p]

=

∑
w∈C

α(p→ϕ)β(p→ϕ)
α(S0,|w|)β(S0,|w|)

∑
w∈C

∑
0≤i≤j≤|w|

α(pi,j)β(pi,j)

α(S0,|w|)β(S0,|w|)

= α(p→ ϕ)

∑
w∈C

β(p→ϕ)
α(S0,|w|)β(S0,|w|)

∑
w∈C

∑
0≤i≤j≤|w|

α(pi,j)β(pi,j)

α(S0,|w|)β(S0,|w|)

Rather than keeping track of the expectations of non-
terminals, they can be calculated from the rule ex-
pectations by marginalizing the productions:

Eθ [p] =
∑
ϕ

Eθ [p→ ϕ]
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Figure 7: The same hyperedge as in Figures 3 and 4, rep-
resented as a mul/add-subgraph.

5.1 SPLITG

Since this view of EM and parsing generalizes to de-
ductive systems with multiple rules as conditions,
we can apply it to the deductive system of SPLITGs.
It is, however, also interesting to note how the hy-
pergraph view of parsing is changed by this. We
effectively removed the weights from the edges, but
kept the feature that values of nodes depend entirely
on the values connected by incoming hyperedges. If
we assume the values to be from the Boolean semir-
ing, the hypergraphs we ended up with are in fact
and/or-graphs. That is: each node in the hypergraph
corresponds to an or-node, and each hyperedge cor-
responds to an and-node. We note that this can be
generalized to any semiring, since or is equivalent to
⊕ and and is equivalent to ⊗ for the Boolean semir-
ing, we can express a hypergraph over an arbitrary
semiring as a mul/add-graph.2 Figure 7 shows how
a hyperedge looks in this new graph form. The α-
value of a node is calculated by combining the val-
ues of all incoming edges using the operator of the
node. The β-values are also calculated using the op-
erator of the node, but with the edges reversed. For
this to work properly, the mul-nodes need to behave
somewhat different from add-nodes: each incoming
edge has to be reversed one at a time, as illustrated
in Figure 8.

6 Conclusions

We have shown that the reification of rules into the
parse forest graphs allows for a unified framework
where all calculations are performed the same way,

2Because it is much easier to pronounce than ⊗/⊕-graph.

Figure 8: Reverse values (β) are calculated by track-
ing backwards through all possible paths. This produces
three different paths for the mul/add-subgraph from Fig-
ure 7. Arrows pointing downward propagate α-values
while arrows pointing upward propagate β-values.

and where the calculations for the rules encompass
all information needed to reestimate them using ex-
pectation maximization. The contextual probability
of a rule—its outside probability—holds all infor-
mation needed to calculate expectations, which can
be exploited by promoting the rules to first-class cit-
izens of the parse forest. We have also seen how this
reification of the rules helped solve a real transla-
tion problem—induction of stochastic preterminal-
ized linear inversion transduction grammars using
expectation maximization.
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Abstract 

We present a translation model based on 

dependency trees. The model adopts a tree-

to-string approach and extends Phrase-

Based translation (PBT) by using the de-

pendency tree of the source sentence for 

selecting translation options and for reor-

dering them. Decoding is done by translat-

ing each node in the tree and combining its 

translations with those of its head in alter-

native orders with respect to its siblings. 

Reordering of the siblings exploits a heu-

ristic based on the syntactic information 

from the parse tree which is learned from 

the corpus. The decoder uses the same 

phrase tables produced by a PBT system 

for looking up translations of single words 

or of partial sub-trees. A mathematical 

model is presented and experimental re-

sults are discussed.  

1 Introduction 

Several efforts are being made to incorporate syn-

tactic analysis into phrase-base statistical transla-

tion (PBT) (Och 2002; Koehn et. al. 2003), which 

represents the state of the art in terms of robust-

ness in modeling local word reordering and effi-

ciency in decoding. Syntactic analysis is meant to 

improve some of the pitfalls of PBT: 

 Translation options selection: candidate phrases 

for translation are selected as consecutive n-

grams. This may miss to consider certain syn-

tactic phrases if their component words are far 

apart. 

 Phrase reordering: especially for languages 

with different word order, e.g. subject-verb-

object (SVO) and subject-object-verb (SVO) 

languages, long distance reordering is a prob-

lem. This has been addressed with a distance 

based distortion model (Och 2002; Koehn et al. 

2003), lexicalized phrase reordering (Tillmann, 

2004; Koehn, et.al., 2005; Al-Onaizan and Pa-

pineni, 2006), by hierarchical phrase reordering 

model (Galley and Manning, 2008) or by reor-

dering the nodes in a dependency tree (Xu et 

al., 2009) 

 Movement of translations of fertile words: a 

word with fertility higher than one can be trans-

lated into several words that do not occur con-

secutively. For example, the Italian sentence 

“Lui partirà domani” translates into German as 

“Er wird morgen abreisen”. The Italian word 

“partirà” (meaning “will leave”) translates into 

“wird gehen” in German, but the infinite “ab-

reisen” goes to the end of the sentence with a 

movement that might be quite long. 

Reordering of phrases is necessary because of dif-

ferent word order typologies of languages: consti-

tuent word order like SOV for Hindi vs. SVO for 

English; order of modifiers like noun–adjective for 

French, Italian vs. adjective-noun in English. Xu et 

al. (2009) tackle this issue by introducing a reor-

dering approach based on manual rules that are 

applied to the parse tree produced by a dependen-

cy parser. 

However the splitting phenomenon mentioned 

above requires more elaborate solutions than sim-

ple reordering grammatical rules. 

Several schemes have been proposed for im-

proving PBMT systems based on dependency 

trees.  Our approach extends basic PBT as de-
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scribed in (Koehn et. al., 2003) with the following 

differences: 

 we perform tree-to-string translation. The de-

pendency tree of the source language sentence 

allows identifying syntactically meaningful 

phrases as translation options, instead of n-

grams. However these phrases are then still 

looked up in a Phrase Translation Table (PT) 

quite similarly to PBT. Thus we avoid the 

sparseness problem that other methods based 

on treelets suffer (Quirk et al., 2005). 

 reordering of phrases is carried out traversing 

the dependency tree and selecting as options 

phrases that are children of each head. Hence a 

far away but logically connected portion of a 

phrase can be included in the reordering. 

 phrase combination is performed by combining 

the translations of a node with those of its head. 

Hence only phrases that have a syntactic rela-

tion are connected. The Language Model (LM) 

is still consulted to ensure that the combination 

is proper, and the overall score of each transla-

tion is carried along.  

 when all the links in the parse tree have been 

reduced, the root node contains candidate trans-

lations for the whole sentences 

 alternative visit orderings of the tree may pro-

duce different translations so the final transla-

tion is the one with the highest score. 

Some of the benefits of our approach include: 

1) reordering is based on syntactic phrases rather 

than arbitrary chunks 

2) computing the future cost estimation can be 

avoided, since the risk of choosing an easier n-

gram is mitigated by the fact that phrases are 

chosen according to the dependency tree 

3) since we are translating from tree to string, we 

can directly exploit the standard phrase tables 

produced by PBT tools such as giza++ (Och 

and Ney, 2000) and Moses (Koehn, 2007) 

4) integration with the parser: decoding can be 

performed incrementally while a dependency 

Shift/Reduce parser builds the parse tree (At-

tardi, 2006). 

2 The  Dependency Based Decoder 

We describe in more detail the approach by pre-

senting a simple example. 

The translation of an input sentence is generated 

by reducing the dependency tree one link at a time, 

i.e. merging one node with its parent and combin-

ing their translations, until a single node remains. 

Links must be chosen in an order that preserves 

the connectivity of the dependency tree. Since 

there is a one-to-one correspondence between 

links and nodes (i.e. the link between a node and 

its head), we can use any ordering that corres-

ponds to a topological ordering of the nodes of the 

tree. 

A sentence is a sequence of words (w1, … , wn), 

so we can use their index to identify words and 

hence each ordering is a permutation of those in-

dexes. 

Consider for example the dependency tree for 

the Italian sentence: Il ragazzo alto (“The tall 

boy”). 

 
There are only two possible topological orderings 

for this tree: 1-3-2 and 3-1-2.  

In principle the decoding process should ex-

plore all possible topological orderings for gene-

rating translations, but their number is too big, 

being proportional to the factorial of the number of 

words, so we will introduce later a criterion for 

selecting a subset of these, which conform best 

with the rules of the languages. 

Given a permutation we obtain a translation by 

merging in that order each node with its parent. 

The initialization step of the decoder creates 

nodes corresponding to the parse tree and collects 

translations for each individual word from the PT. 

 

ragazzo 

boy 

 

alto 

tall 

high 

Il 

The 

Il   ragazzo   alto 
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Case 1: Permutation 1-3-2 

The first merge step is applied to the nodes for w1 

and its head w2, performing the concatenation of 

the translations of nodes il (the) and ragazzo (boy), 

both in normal and reverse order. Hence expansion 

of this hypothesis reduces the tree to the follow-

ing, where we show also the partial translations 

associated to each node. Each translation has asso-

ciated weights (i.e. the LM weight, the translation 

model weight, etc.) and a cumulative score. The 

score is the dot product of the weights for the sen-

tence and the vector of tuning parameters for the 

model. The score is used to rank the sentences and 

also to limit how many of them are kept according 

to the beam size parameter of the algorithm. 

 

The second step merges the node for word w3 (“al-

to”) with that of its head w2 (“ragazzo”) producing 

a single node with four translations: “the boy tall”, 

“boy the tall”, “tall the boy” and “tall boy the”. 

 
Case 2: Permutation 3-1-2 

The first merge between w3 and w2 generates two 

translation fragments: “boy tall” and “tall boy”. 

The second one creates four translations: “the boy 

tall”, “boy tall the”, “the tall boy”, “tall boy the”. 

 

When the tree has been reduced to a single root 

node and the results of both permutations are col-

lected, the node will contain all eight alternative 

translations ranked according to the language 

model, so that the best one, possibly “the tall boy”, 

can be selected as overall sentence translation. 

3 Node Merge 

The operation of node merge consists of taking all 

possible translations for the two nodes and conca-

tenating them in either sequential or reverse order, 

adding them to the translation of the parent node 

and dropping the child. 

In certain cases though, for example idiomatic 

phrases, the best translation is not obtained by 

combining the individual translations of each 

word, but instead a proper translation might be 

found in the Phrase Translation Table (PT). Hence 

besides performing combination of translations, 

we also consider the sub-tree rooted at the head 

node hri of node ri. We consider the phrase corres-

ponding to the leaves of the sub-tree rooted at hri 

and all children already merged into it, including 

ri: if this phrase is present in the PT, then its trans-

lations are also added to the node. 

This is sometimes useful, since it allows the de-

coder to exploit phrases that only correspond to 

partial sub-trees that it will otherwise miss. 

4 Reordering Rules 

In order to restrict the number of permutations to 

consider, we introduce a reordering step based on 

rules that examine the dependency tree of the 

source sentence. 

The rules are dependent on the language pair 

and they can be learned automatically from the 

corpus. 

We report first a simple set of hand crafted rules 

devised for the pair Italian-English that we used as 

a baseline. 

The default ordering is to start numbering the 

left children of a node backwards, i.e. the node 

closer to the head comes first, then continuing 

with the right children in sequential order. 

Special rules handle these cases: 

1) The head is a verb: move an adverb child to 

first position.  This lets a sequence of VA VM 

V R be turned into VA VM R V, where VA is 

the POS for auxiliary verbs, VM for modals, 

V for main verb and R for adverbs. 

2) The head is a noun: move adjectives or prepo-

sitions immediately following the head to the 

beginning. 

Il ragazzo alto 

the boy tall 

boy the tall 

tall the boy 

tall boy the 

Il ragazzo 

the boy 

boy the 

alto 

tall 

high 
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4.1 Learning Reordering Rules 

In order to learn the reordering rules we created a 

word-aligned parallel corpus from 1.3 million 

source sentences selected from the parallel corpus. 

The corpus is parsed and each parse tree is ana-

lyzed using the giza++ word alignments of its 

translation to figure out node movements. 

For each source-language word, we estimate a 

unique alignment to a target-language word. If the 

source word is aligned to more than one target 

word we select the first one appearing in the 

alignment file. If a source word is not aligned to 

any word, we choose the first alignment in its des-

cendants in the dependency tree. If no alignment 

can be found in the descendants, we assume that 

the word stays in its original position. 

We reorder the source sentence according to 

this alignment, putting it in target-language order. 

We produce a training event consisting of a pair 

(context, offset) for each non-root word. The con-

text of the event consists of a set of features (the 

POS tag of a word, its dependency tag and the 

POS of its head) extracted for the word and its 

children. The outcome of the event is the offset of 

the word relative to its parent (negative for words 

that appear on the left of their parent in target-

language order, positive otherwise). 

We calculate the relative frequency of each 

event conditioned on the context, deriving rules of 

the form: 

(context, offset, Pr[Offset = offset | Context = 

context]). 

During decoding, we compute a reordering posi-

tion for each source word by adding to the word 

position to the offset predicted by the most likely 

reordering rule matching the word context (or 0 if 

no matching context is found). 

The reordering position drives the children 

combination procedure in the decoder. 

Our reordering rules are similar to those pro-

posed by Xu at al. (2009), except that we derive 

them automatically from the training set, rather 

than being hand-coded. 

4.2 Beam Search 

Search through the space of hypotheses generated 

is performed using beam search that keeps in each 

node the list of the top best translations for the 

node. The score for the translation is computed 

using the weights of the individual phrases that 

make up the translation and the overall LM proba-

bility of the combination. 

The scores are computed querying the standard 

Moses Phrase Table and the LM for the target lan-

guage; other weights uses by moses such as the 

reordering weights or the future cost estimates are 

discarded or not computed. 

5 The Model 

A mathematical model of the dependency based 

translation process can be formulated as follows. 

Consider the parse of a sentence f of length n. 

Let R denote all topological ordering of the nodes 

according to the dependency tree. 

Let fr denote the parse tree along with a consis-

tent node ordering r. Each ordering gives rise to 

several different translations. Let Er denote the set 

of translations corresponding to fr. We assign to 

each translation er  Er a probability according to 

the formula below. The final translation is the best 

result obtained through combinations over all or-

derings. 
Error! Objects cannot be created from editing field 

codes. 
Where er denotes any of the translations of f ob-

tained when nodes are combined according to 

node ordering r.  

The probability of a translation er corresponding 

to a node ordering r for a phrase f, p(er | f ) is de-

fined as: 
Error! Objects cannot be created from editing field 

codes. 
where 

Error! Objects cannot be created from editing 

field codes. andError! Objects cannot be 

created from editing field codes.denote the leaf 

words from node ri and those of its head node hri,  

respectively. 

Error! Objects cannot be created from edit-

ing field codes.is either Error! Objects cannot 
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be created from editing field codes.or Error! 

Objects cannot be created from editing field 

codes. 

p(f, e) = pPT(str(f), e) if str(f)  PT 

str(f) is the sentence at the leaves of node ri 

pLM is the Language Model probability 

pPT is the Phrase Table probability 

6 Related Work 

Yamada and Knight (2001) introduced a syntax-

based translation model that incorporated source-

language syntactic knowledge within statistical 

translation. Many similar approaches are based on 

constituent grammars, among which we mention 

(Chiang, 2005) who introduced hierarchical trans-

lation models. 

The earliest approach based on dependency 

grammars is the work by Ashlawi et al. (2000), 

who developed a tree-to-tree translation model, 

based on middle-out string transduction capable of 

phrase reordering. It translated transcribed spoken 

utterances from English to Spanish and from Eng-

lish to Japanese. Improvements were reported over 

a word-for-word baseline. 

Ambati (2008) presents a survey of other ap-

proaches based on dependency trees. 

Quirk et. al. (2005) explore a tree-to-tree ap-

proach, called treelet translation, that extracts tree-

lets, i.e. sub-trees, from both source and target 

language by means of a dependency parser. A 

word aligner is used to align the parallel corpus. 

The source dependency is projected onto the target 

language sentence in order to extract treelet trans-

lation pairs. Given a foreign input sentence, their 

system first generates its dependency tree made of 

treelets. These treelets are translated into treelets 

of the target language, according to the dependen-

cy treelet translation model. Translated treelets are 

then reordered according to a reorder model. 

The ordering model is trained on the parallel 

corpus. Treelet translation pairs are used for de-

coding. The reordering is done at the treelet level 

where all the child nodes of a node are allowed all 

possible orders. The results show marginal im-

provements in the BLEU score (40.66) in compar-

ison with Pharaoh and MSR-MT.  But the treelet 

translation algorithm is more than an order of 

magnitude slower. 

Shen et. al. (2008) present a hierarchical ma-

chine translation method from string to trees. The 

scheme uses the dependency structure of the target 

language to use transfer rules while generating a 

translation. The scheme uses well-formed depen-

dency structure which involves fixed and floating 

type structures. The floating structures allow the 

translation scheme to perform different concatena-

tion, adjoining and unification operations still be-

ing within the definition of well-formed structures. 

While decoding the scheme uses the probability of 

a word being the root, and also the left-side, right-

side generative probabilities. The number of rules 

used varies from 27 M (for a string to dependency 

system) to 140 M (baseline system). The perfor-

mance reached 37.25% for the system with 3-

grams, 39.47% for 5-grams. 

Marcu and Wong (2002) propose a joint- prob-

ability model. The model establishes a correspon-

dence between a source phrase and a target phrase 

through some concept. The reordering is inte-

grated into the joint probability model with the 

help of: 

3) Phrase translation probabilities Error! Ob-

jects cannot be created from editing field 

codes. denoting the probability that concept ci 

generates the translation Error! Objects can-

not be created from editing field codes. for 

the English and Error! Objects cannot be 

created from editing field codes. for the for-

eign language inputs. 

4) Distortion probabilities based on absolute po-

sitions of the phrases.  

Decoding uses a hill-climbing algorithm.  Perfor-

mance wise the approach records an average 

BLEU score of 23.25%, with about 2% of im-

provement over the baseline IBM system. 
Zhang et. al. (2007) present a reordering model 

that uses linguistic knowledge to guide both 

phrase reordering and translation between linguis-

tically correct phrases by means of rules. Rules are 

encoded in the form of weighted synchronous 

grammar and express transformations on the parse 

trees. They experiment also mixing constituency 

and dependency trees achieving some improve-
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ments in BLEU score (27.37%) over a baseline 

system (26.16%). 

Cherry (2008) introduces a cohesion feature in-

to a traditional phrase based decoder. It is imple-

mented as a soft constraint which is based on the 

dependency syntax of the source language. He 

reports a BLEU score improvement on French-

English translation. 

The work by Xu et al. (2009) is the closest to 

our approach. They perform preprocessing of the 

foreign sentences by parsing them with a depen-

dency parser and applying a set of hand written 

rules to reorder the children of certain nodes. The 

preprocessing is applied to both the training cor-

pus and to the sentences to translate, hence after 

reordering a regular hierarchical system can be 

applied. Translation experiments between English 

and five non SVO Asian languages show signifi-

cant improvements in accuracy in 4 out of 5 lan-

guages. With respect to our approach the solution 

by Xu et al. does not require any intervention on 

the translation tools, since the sentences are rewrit-

ten before being passed to the processing chain: on 

the other hand the whole collection has to undergo 

full parsing with higher performance costs and 

higher dependency on the accuracy of the parser. 

Dyer and Resnik (2010) introduce a translation 

model based on a Synchronous Context Free 

Grammar (SCFG). In their model, translation 

examples are stored as a context-free forest. The 

process of translation comprise two steps: tree-

based reordering and phrase transduction. While 

reordering is modeled with the context-free forest, 

the reordered source is transduced into the target 

language by a Finite State Transducer (FST). The 

implemented model is trained on those portions of 

the data which it is able to generate. An increase 

of BLEU score is achieved for Chinese-English 

when compared to the phrase based baseline. 

Our approach is a true tree-to-string model and 

differs from (Xu et al., 2009), which uses trees 

only as an intermediate representation to rearrange 

the original sentences. We perform parsing and 

reordering only on the phrases to be translated. 

The training collection is kept in the original form, 

and this has two benefits: training is not subject to 

parsing errors and our system can share the same 

model of a regular hierarchical system. 

Another difference is in the selection of transla-

tion options: our method exploits the parse tree to 

select grammatical phrases as translation options. 

7 Implementation 

The prototype decoder consists of the following 

components: 

1) A specialized table lookup server, providing 

an XML-RPC interface for querying both the 

phrase table and the LM 

2) A parser engine based on DeSR (DeSR, 2009) 

3) A reordering algorithm that adds ordering 

numbers to the output produced by DeSR in 

CoNLL-X format. Before reordering, this step 

also performs a restructuring of the parse tree, 

converting from the conventions of the Italian 

Tanl Treebank to a structure that helps the 

analysis. In particular it converts conjunctions, 

which are represented as chains, where each 

conjunct connects to the previous, to a tree 

where they are all dependent of the same head 

word. Compound verbs are also revised: in the 

dependency tree each auxiliary of a verb is a 

direct child of the main verb. For example in 

“avrebbe potuto vedere”, both the auxiliary 

“avrebbe” and the modal “potuto” depend on 

the verb “vedere”.  This steps groups all aux-

iliaries of a verb under the first one, i.e. “potu-

to”. This helps so that the full auxiliary can be 

looked up separately from the verb in the 

phrase table. 

4) A decoder that uses the output produced by 

the reordering algorithm, queries the phrase 

table and performs a beam search on the hypo-

theses produced according to the suggested 

reordering. 

8 Experimental Setup and Results 

Moses (Koehn et al., 2007) is used as a baseline 

phrase-based SMT system. The following tools 

and data were used in our experiments:  

1) the IRSTLM toolkit (Marcello and Cettolo, 

2007) is used to train a 5-gram language mod-
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el with Kneser-Ney smoothing on a set of 4.5 

million sentences from the Italian Wikipedia. 

2) the Europarl version 6 corpus, consisting of 

1,703,886 sentence pairs, is used for training. 

A tuning set of 2000 sentences from ACL 

WMT 2007 is used to tune the parameters.  

3) the model is trained with lexical reordering. 

4) the model is tuned with mert (Bertoldi, et al. ) 

5) the official test set from ACL WMT 2008 

(Callison-Burch et al., 2008), consisting of 

2000 sentences, is used as test set. 

6) the open-source parser DeSR (DeSR, 2009) is 

used to parse Italian sentences, trained on the 

Evalita 2009 corpus (Bosco et al., 2009). Pars-

er domain adaptation is obtained by adding to 

this corpus a set of 1200 sentences from the 

ACL WMT 2005 test set, parsed by DeSR and 

then corrected by hand. 

Both the training corpora and the test set had to be 

cleaned in order to normalize tokens: for example 

the English versions contained possessives split 

like this “Florence' s”. We applied the same toke-

nizer used by the parser which conforms to the 

PTB standard. 

DeSR achieved a Labeled Accuracy Score of 

88.67% at Evalita 2009, but for the purpose of 

translation, just the Unlabeled Accuracy is rele-

vant, which was 92.72%. 

The table below shows the results of our decod-

er (Desrt) in the translation from Italian to English, 

compared to a baseline Moses system trained on 

the same corpora and to the online version of 

Google translate. 

Desrt was run with a beam size of 10, since ex-

periments showed no improvements with a larger 

beam size. 

We show two versions of Desrt, one with parse 

trees as obtained by the parser and one (Desrt 

gold) where the trees were corrected by hand. The 

difference is minor and this confirms that the de-

coder is robust and not much affected by parsing 

errors. 

System BLEU NIST 

Moses 29.43 7.22 

Moses tree phrases 28.55 7.10 

Desrt gold 26.26 6.88 

Desrt 26.08 6.86 

Google Translate 24.96 6.86 

Desrt learned 24.37 6.76 
Table 1. Results of the experiments. 

Since we used the same phrase table produced by 

Moses also for Desrt, Moses has an advantage, 

because it can look up n-grams that do not corres-

pond to grammatical phrases, which Desrt never 

considers. In order to determine how this affects 

the results, we tested Moses restricting its choice 

to phrases corresponding to treelets form the parse 

tree. The result is shown in the row in the table 

labeled as “Moses tree phrases”. The score is low-

er, as expected, but this confirms that Desrt makes 

quite good use of the portion of the phrase table it 

uses. 

Since the version of the reordering algorithm we 

used produces a single reordering, the Desrt de-

coder has linear complexity on the length of the 

sentence. Indeed, despite being written in Python 

and having to query the PT as a network service, it 

is quite faster than Moses.  

9 Error Analysis 

Despite that fact that Desrt is driven by the parse 

tree, it is capable of selecting fairly good and even 

long sentences for look up in the phrase table. 

How close is the Desrt translation from those of 

the Moses baseline can be seen from this table: 

 1-gram 2-gram 3-gram 4-gram 5-gram 

NIST 7.28 3.05 1.0 0.27 0.09 

BLEU 84.73 67.69 56.94 48.59 41.78 

Sometimes Desrt fails to select a better translation 

for a verb, since it looks up prepositional phrases 

separately from the verb, while Moses often con-

nects the preposition to the verb. 

This could be improved by performing a check 

and scoring higher translations which include the 

translation of the preposition dependent on the 

verb. 

Another improvement could come from creating 

phrase tables limited to treelet phrases, i.e. phrases 

corresponding to treelets from the parser. 
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10 Enhancements 

The current algorithm needs to be improved to 

fully deal with certain aspects of long distance 

dependencies. Consider for example the sentence 

“The grass around the house is wet”. The depen-

dency tree of the sentence contains the non-

contiguous phrases “The grass” and “wet”, whose 

Italian translation must obey a morphological 

gender agreement between the subject “grass” 

(“erba”, feminine), and the adjective “wet” (“bag-

nata”). 

However, the current combination algorithm 

does not exploit this dependence, because the last 

phases of node merge will occur when the tree has 

been reduced to this: 

The PT however could tell us that “erba bagnata” 

is more likely than “erba bagnato” and allow us to 

score the former higher. 

11 Conclusions 

We have described a decoding algorithm guided 

by the dependency tree of the source sentence. By 

exploiting the dependency tree and deterministic 

reordering rules among the children of a node, the 

decoder is fast and can be kept simple by avoiding 

to consider multiple reorderings, to use reordering 

weights and to estimate future costs. 

There is still potential for improving the algo-

rithm exploiting information implicit in the PT in 

terms of morphological constraints, while main-

taining a simple decoding algorithm that does not 

involve complex grammatical transformation 

rules. 

The experiments show encouraging results with 

respect to state of the art PBT systems. We plan to 

test the system on other language pairs to see how 

it generalizes to other situations where phrase 

reordering is relevant. 
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Abstract

We use hand-coded rules and graph-aligned
logical dependencies to reorder English text
towards Chinese word order. We obtain a
1.5% higher F-score for Giza++ compared to
running with unprocessed text. We describe
this research and its implications for SMT.

1 Introduction

Some statistical machine translation (SMT) systems
use pattern-based rules acquired from linguistically
processed bitexts. They acquire these rules through
the alignment of a parsed structure in one language
with a raw string in the other language (Yamada and
Knight, 2001; Shen et al., 2008) or the alignment
of source/target language parse trees (Zhang et al.,
2008; Cowan, 2008). This paper shows that ma-
chine translation (MT) can also benefit by aligning a
“deeper” level of analysis than parsed text, which in-
cludes semantic role labeling, regularization of pas-
sives and wh constructions, etc. We create GLARF
representations (Meyers et al., 2009) for English and
Chinese sentences, in the form of directed acyclic
graphs. We describe two graph-based techniques
for reordering English sentences to be closer to that
of corresponding Chinese sentences. One technique
is based on manually created rules and the other is
based on an automatic alignment of GLARF repre-
sentations of Chinese/English sentences. After re-
ordering, we align words of the reordered English
with the words of the Chinese, using the Giza++
word aligner(Och and Ney, 2003). For both tech-
niques, the resulting alignment has a higher F-score

than Giza++ on raw text (a 0.7% to 1.5% absolute
improvement). In principle, our reordered text can
be used to improve any Chinese/English SMT sys-
tem for which Giza++ (or other word aligners) are
part of the processing pipeline.

These experiments are a first step in using
GLARF-style analyses for MT, potentially improv-
ing systems that already perform well with aligned
text lacking large gaps in surface alignment. We hy-
pothesize that SMT systems are most likely to ben-
efit from deep analysis for structures where source
and target language word order differs the most. We
propose using deep analysis to reorder such struc-
tures in one language to more closely reflect the
word order of the other language. The text would be
reordered at two stages in an SMT system: (1) prior
to acquiring a translation model; and (2) either prior
to translation (if source text is reordered) or after
translation (if target text is reordered). Our system
moves large constituents (e.g., noun post-modifiers)
to bring English word order closer to that of parallel
Chinese sentences. This improves word alignment
and is likely to improve SMT.

For this work we use two English/Chinese bitext
corpora developed by the Linguistic Data Consor-
tium (LDC): the Tides FBIS corpus and the GALE
Y1 Q4 Chinese/English Word-Alignment corpus.
We used 2300 aligned sentences from FBIS for de-
velopment purposes. We divided the GALE corpus
into into a 3407 sentence development subcorpus
(DEV) and a 1505 sentence test subcorpus (TEST).
We used the LDC’s manual alignments of the FBIS
corpus to score these data.
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2 Related Work in SMT

Four papers stand out as closely related to the
present study. (Collins et al., 2005; Wang et al.,
2007) describe experiments which use manually cre-
ated parse-tree-based rules to reorder one side of
a bitext: German/English in (Collins et al., 2005)
and English/Chinese in (Wang et al., 2007). Both
achieve BLEU score improvements for SMT: 25.2%
to 26.8% for (Collins et al., 2005) and 28.52 to 30.86
for (Wang et al., 2007). (Wang et al., 2007) uses
rules very similar to our own as they use the same
language pair, although they reorder the Chinese,
whereas we reorder the English. The most signifi-
cant differences between our research and (Collins
et al., 2005; Wang et al., 2007) are: (1) our manual
rules benefit from a level of representation “deeper”
than a surface parse; and (2) In addition to the hand-
coded rules, we also use automatic alignment-based
rules. (Wu and Fung, 2009) uses PropBank role la-
bels (Palmer et al., 2005) as the basis of a second
pass filter over an SMT system to improve the BLEU
score from 42.99 to 43.51. The main similarity to
the current study is the use of a level of represen-
tation that is “deeper” than a surface parse. How-
ever, our application of linguistic structure is more
like that of (Wang et al., 2007) and our “deep” level
connects all predicates and arguments in the sen-
tence, regardless of part of speech, rather than just
connecting verbs to their arguments. (Bryl and van
Genabith, 2010) describes an open source LFG F-
structure alignment tool with an algorithm similar to
our previous work. They evaluate their alignment
output on 20 manually-aligned German and English
F-structures. They leave the impact of their work on
MT to future research.

In addition to these papers, there has also been
some work on rule-based reordering preprocessors
to word alignment based on shallower linguistic in-
formation. For example (Crego and Mariño, 2006)
reorders based on patterns of POS tags. We hypoth-
esize that this is similar to the above approaches in
that patterns of POS tags are likely to simulate pars-
ing or chunking.

3 Preparing the Data

The two stage parsers of previous decades (Hobbs
and Grishman, 1976) generated a syntactic repre-

sentation analogous to the (more accurate) output
of current treebank-based parsers (Charniak, 2001)
and an additional second stage output that regular-
ized constructions (passive, active, relative clauses)
to representations similar to active clauses with no
gaps, e.g.,The book was read by Marywas given a
representation similar to that ofMary read the book.
Treating the active clause as canonical provides a
way to reduce variation in language and thus, mak-
ing it easier to acquire and apply statistical informa-
tion from corpora–there is more evidence for partic-
ular statistical patterns when applications learn pat-
terns and patterns more readily match data.

Two-stage parsers were influenced by linguistic
theories (Harris, 1968; Chomsky, 1957; Bresnan and
Kaplan, 1982) which distinguish a “surface” and a
“deep” level. The deep level neutralizes differences
between ways to express the same meaning–a pas-
sive likeThe cheese was eaten by ratswas analyzed
in terms of the active formRats ate the cheese. Cur-
rently “semantic parsing” refers to a similar repre-
sentation, e.g., (Wagner et al., 2007) or our own
GLARF (Meyers et al., 2009). However, the term is
also used for semantic role labelers (Gildea and Ju-
rafsky, 2002; Xue, 2008), systems which typically
label semantic relations between verbs and their ar-
guments and rarely cover arguments of other parts
of speech. Second stage semantic parsers like our
own, connect all the tokens in the sentence. Aligned
text processed in this way can (for example) repre-
sent differences in English/Chinese noun modifier
order, including relative clauses. In contrast, few
role labelers handle noun modifiers and none han-
dle relative clauses. Below, we describe the GLARF
framework and our system for generating GLARF
representations of English and Chinese sentences.

For each language, we combine several types of
information which may include: named entity (NE)
tagging, date/number regularization, recognition of
multi-word expressions (the prepositionwith respect
to, the nounhand me downand the verbad lib),
role labels for predicates of all parts of speech, regu-
larizing passives and other constructions, error cor-
rection, among other processes into a single typed
feature structure (TFS) representation. This TFS
is converted into a set of 25-tuples representing
dependency-style relations between pairs of words
in the sentence. Three types of dependencies are
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Figure 1: Word-Aligned Logic1 Dependencies

represented:surfacedependencies (close to the level
of the parser),logic1 dependencies (reflecting var-
ious regularizations) andlogic2 dependencies (re-
flecting the output of a PropBanker, NomBanker
and Penn Discourse Treebank transducer).(Palmer
et al., 2005; Xue and Palmer, 2003; Meyers et al.,
2004; Miltsakaki et al., 2004) The surface depen-
dency graph is a tree; The logic1 dependency graph
is an directed acyclic graph; and The logic2 depen-
dency graph is a directed graph with cycles, cover-
ing only a subset of the tokens in the sentence. For
these experiments, we focus on the logic1 relations,
but will sometimes use the surface relations as well.
Figure 1 is a simple dependency-based logic1 repre-
sentation ofI know the rules of tennisand its Chi-
nese translation. The edge labels name the relations
between heads and dependents, e.g.,I is the SBJ of
knowand the dashed lines indicate word level corre-
spondences. Each node is labeled with both a word
and a unique node identifier (n1, n1’, etc.)

The English system achieves F-scores for logic1
dependencies on parsed news text in the 80–90%
range and the Chinese system achieves F-scores in
the 74–84% range, depending on the complexity of
the text. The English system has been created over
the course of about 9 years, and consequently is
more extensive than the Chinese system, which has
been created over the past 3 years. The systems are
described in more detail in (Meyers et al., 2009).

The GLARF representations are created in a se-
ries of steps involving several processors. The En-
glish pipeline includes: (1) dividing text into sen-
tences; (2) running the JET NE tagger (Ji and Gr-
ishman, 2006); (3) running scripts that clean up data
(to prevent parser crashes); (4) running a parser (cur-
rently Charniak’s 2005 parser based on (Charniak,
2001)); (5) running filters that: (a) correct com-

mon parsing errors; (b) merge NE information with
the parse, resolving conflicts in constituent bound-
aries by hand-coded rules; (c) regularize numbers,
dates, times and holidays; (d) identify heads and
label relations between constituents; (e) regularize
text grammatically (filling empty subjects, resolv-
ing relative clause and Wh gaps, etc.); (f) mark con-
junction scope; (g) identify transparent constituents
(e.g., recognizing, thatA variety of different peo-
plehas the semantic features ofpeople(human), not
those ofvariety, the syntactic head of the phrase.);
among other aspects. The Chinese pipeline is simi-
lar, except that it includes the LDC word segmenter
and a PropBanker (Xue, 2008). Also, the regulariza-
tion routines are not as completely developed, e.g.,
relative clause gaps and passives are not handled
yet. The Chinese system currently uses the Berke-
ley parser (Petrov and Klein, 2007). Each of these
pipelines derives typed feature structure representa-
tions, which are then converted into the 25 tuple rep-
resentation of 3 types of dependencies between pairs
of tokens: surface, logic1 and logic2.

To insure that the logic1 graphs are acyclic, we as-
sume that certain edges are surface only and that the
resulting directed acyclic graphs can have multiple
roots. It turns out that the multiple rooted cases are
mostly limited to a few constructions, the most com-
mon being parenthetical clauses and relative clauses.
A parenthetical clause takes the main clause as an
argument. For example, inThe word ’potato’, he
claimed, is spelled with a final ’e’., the verbclaimed,
takes the entire main clause as an argument, we as-
sume thathe claimedis a dependent on the main
verb (is) spelledlabeled PARENTHETICAL in our
surface dependency structure, but that the main verb
(is) spelledis a dependent of the verbclaimed in
our logic1 structure, labeled COMPLEMENT. Thus
the logic1 surface dependency structure have dis-
tinct roots. In a relative clause, such asthe book that
I read”, we assume that the clausethat I readis a de-
pendent on the nounbookin our surface dependency
structure with the label RELATIVE, butbookis a de-
pendent on the verbread in our logic1 dependency
structure, with the label OBJ. This, means that our
logic1 dependency graphs for sentences containing
relative clauses are multi-rooted. One of the roots is
the same as the root of the surface tree and the other
root is the root of the relative clause graph (a rela-
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tive pronoun or a main verb). Furthermore, there is
a surface path connecting the relative clause root to
the rest of the graph. Noncyclic graph traversal is
possible, provide that: (1) we use the surface path to
enter the graph representing the relative clause – oth-
erwise, the traversal would skip the relative clause;
and (2) we halt the traversal if we reach this path a
second time – this avoids traversing down an end-
less path. The parenthetical and relative clause are
representative of the handful of cases in which naive
representations would introduce loops. All cases of
which we are aware have the essential properties of
one of these two cases: (1) either introducing a dif-
ferent single root of the clause; or (2) introducing an
additional root that can be bridged by a surface path.

4 Manual Reordering Rules

We derived manual rules for making the English
Word Order more like the Chinese by manually in-
specting the data. We inspected the first 100-200
sentences of the DEV corpus by first transliterating
the Chinese into English – replaced each Chinese
word with the aligned English counterpart. Several
patterns emerged which were easy to formalize into
rules in the GLARF framework. These patterns were
verified and sometimes generalized through discus-
sions with native Chinese speakers and linguists.
Our rules, similar to those of (Wang et al., 2007) are
as follows (results are discussed in section 6): (1)
Front a post-nominal PP headed by a preposition in
the list{of, in, with, about)}. (2) Front post-nominal
relative clause that begins withthator does not have
any relative pronoun, such that the main predicate is
not a copula plus adjective construction. (3) Front
post-nominal relative clause that begins withthat or
has no relative pronoun if the main predicate is a
copula+adjective construction which is not negated
by a word from the set{no neither nor never not
n’t}. (4) Front post-nominal reduced relative in the
form of a passive or adjectival phrase. (5) Move ad-
verbialsmore thanand less thanafter numbers that
they modify. (6) Move PPs that post-modify adjec-
tives to the position before the adjective. (7) Move
subordinate conjunctionsbeforeandafter to the end
of the clause that they introduce. (8) Move an ini-
tial one-word-long title (Mr., Ms., Dr., President) to
the end of the name. (9) Move temporal adverbials

(adverb, PP, subordinate clause that is semantically
temporal) to pre-verb position.

5 Automatic Node Alignment and its
Application for Word Alignment

In this experiment, we automatically derive re-
orderings of the English sentences from an align-
ment between nodes in logic1 dependency graphs
for the English (source) and Chinese (target) sen-
tences. Source/Target designations are for conve-
nience, since the direction of MT is irrelevant.

We define an alignment as a partial function from
the nodes in the source graph and the nodes in the
target graph. We, furthermore, assume that this map-
ping is 1 to 1 for most node pairs, but can be n to 1
(or 1 to n). Furthermore, we allow some nodes, in
effect, to represent multiple tokens. These are iden-
tified as part of the GLARF analysis of a particular
sentence string and reflect language-specific rules.
Thus, for our purposes, a mapping between a source
and target node, each representing a multi-word ex-
pression is 1 to 1, rather than N to N.

We identify the following types of multi-word ex-
pressions for this purpose: (a) idiomatic expressions
from our monolingual lexicons, (b) dates, (c) times
(d) numbers and (e) ACE (Grishman, 2000) NEs.
Dates, holidays and times are regularized using ISO-
TimeML, e.g., January 3, 1977 becomes 1977-03-01
and numbers are converted to Arabic numbers.

5.1 ALIGN-ALG1

This work uses a modified version of ALIGN-
ALG1, a graph alignment algorithm we previously
used to align 1990s-style two-stage parser output for
MT experiments. ALIGN-ALG1 is anO(n2) algo-
rithm, n is the maximum number of nodes in the
source and target graphs (Meyers et al., 1996; Mey-
ers et al., 1998). Given Source TreeT and Target
TreeT ′, analignment(T, T ′) is a partial function
from nodesN in T to nodesN ′ in T ′. An exhaus-
tive search of possible alignments would consider all
non-intersecting combinations of theT ×T ′ pairs of
source/target nodes – There are at mostT ! such pair-
ings whereT >= T ′.1 However, ALIGN-ALG1 as-
sumes that some of these pairings are unlikely, and

1This ignores N to 1 matches, which we allow, although rel-
atively rarely.
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favors pairings that assume the structure of the trees
correspond more closely. In particular, it is assumed
that ancestor nodes are more likely to match if most
of their descendant nodes match as well.

ALIGN-ALG1 finds the highest scoring align-
ment, where the score of an alignment is the sum
of the scores of the node pairs in the partial func-
tion. The score for each node pair(n, n′) partially
depends on the scores of a mapping from the chil-
dren ofn to the children ofn′. While the process
of calculating the scores is recursive, it can be made
efficient using dynamic programming.

ALIGN-ALG1 assumes that we alignr and r′,
the roots ofT andT ′. Calculating the scores forr
andr′, entails calculating the scores of pairs of their
children, and by extension all mappings fromN to
N ′ that obey the dominance preserving constraint:
Given nodesn1 andn2 in N and nodesn′1 andn′2
in N ′, where all 4 nodes are part of the alignment,
it cannot be the case that:n1 dominatesn2, but
n′1 does not dominaten′2. Here,dominatesmeans
is an ancestor in the dependency graph. ALIGN-
ALG1 scores each pair of nodes using the formula:
Score(n, n′) = Lex(n, n′) + ChildV al(n, n′),
whereLex(n, n′) is a score based on matching the
words labeling nodesn andn′, e.g., the score is 1 if
the pair is found in a bilingual dictionary and 0 oth-
erwise. Givenn has childrenc0, . . . , ci andn′ has
childrenc′0, . . . , c

′
j , to calculate ChildVal: (1) Cre-

ate Child-Matrix, a(i+ 1)× (j + 1) matrix (2) Fill
every position (1 <= x <= i, 1 <= x′ <= j)
with Score(x, x′) (3) Fill every position (i+1,1 <=
x′ <= j) with Score(n, x′) minus a penalty (e.g.,
- .1) for collapsing an edge. This treatsn′ andx′

as a single unit, matched ton.2 (4) Fill every po-
sition (1 <= x <= i, j+1) with Score(x, n′) mi-
nus a penalty forcollapsing an edge. Thusn + x is
paired with n’. (5) Set (i+1,j+1) to−∞. Collapsing
both source and target edges is not permitted. (6) For
all sets of positions in the matrix such that no node
or column is repeated, select the set with the high-
est aggregate score. The aggregate score is the nu-
meric value ofChildV al(n, n′). If (n,n’) is part of
the alignment that is ultimately chosen, this choice
of node pairs is also part of the alignment. There

2The slight penalty represents that collapsing edges compli-
cate the analysis and is thus disfavored (Occam’s Razor).

are at mostmax(i + 1, j + 1)! possible pairings.
Rather than calculating them all, a greedy heuristic
can reduce the calculation time with minimal effect
on accuracy: the highest scoring cell in the matrix is
chosen first, conflicting cells are eliminated, the next
highest scoring cell is chosen, etc.

Consider the example in Figure 1, assum-
ing the dashed lines connect lexical matches
(the function LEX returns 1 for these node
pairs). Where n1 and n1’ are the roots,
Score(n1, n1′) = 1 + ChildV al(n1, n1′). Cal-
culating ChildV al(n1, n1′) requires a recursive
descent down the pairs of nodes, until the bot-
tom most pair is scored.Score(n6, n6′) = 1.
Score(n5, n6′) = 0 + .9 (derived by collaps-
ing an edge and subtracting a penalty of .1).
Score(n3, n3′) = 1 + .9 = 1.9. Score(n2, n2′) =
1. ChildV al(n1, n1′) = 1 + 1.9 = 2.9. Thus
Score(n1, n1′) = 3.9. The alignment includes:
(n1, n1′), (n2, n2′), (n3, n3′), (n5, n6′), (n6, n6′).

The collapsing of edges helps recognize cases
where multiple predicates form substructures, e.g.,
take a walk, is angry, etc. in one tree can map to sin-
gle verbs in the other tree, allowing outgoing edges
from walk or angry to map to outgoing edges of the
corresponding verb, e.g., the agent and goal ofJohn
walked to the storecould map to the agent and goal
of John took a walk to the store.

In practice, ALIGN-ALG1 falls short because:
(1) Our translation dictionary does not have suffi-
cient coverage for the algorithm to perform well; (2)
The assumption that the roots of both graphs should
be aligned is often false. Parallel text often reflects
a dynamic, rather than a literal translation. In one
pair of aligned sentences in the FBIS corpus, the
English phrasethe above mentioned requestscor-
responds to: meaningthese re-
quests of Chen Shui-bian– Chen Shui-bianhas no
counterpart in the English. Parts of translations can
be omitted due to: (a) the discretion of the trans-
lators, (b) the expected world knowledge of partic-
ular language communities, (c) the cultural impor-
tance of particular information, etc.; (3) Violations
of the dominance-preserving constraint exist. The
most common type that we have observed consists
of sequences of transparent nouns andof (e.g.,se-
ries of) in English corresponding to quantifiers in
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Chinese ( ). Thus the head of the English con-
struction corresponds to the dependent of the Chi-
nese construction and vice versa.

5.2 Lexical Resources

Our primary bilingual Chinese/English dictionary
(LEX1) had insufficient coverage for ALIGN-ALG1
to be effective. LEX1 is a merger between:
The LDC 2002 Chinese-English Dictionary and
HowNet. In addition, we manually added additional
translations of units of measure from English. We
also used NEDICT, a name translation dictionary (Ji
et al., 2009) and AUTODICT, English/Chinese word
to word pairs with high similarity scores taken from
MT phase tables created as part of the (Zhang et al.,
2007) system. The NEDICT was used both for pre-
cise matches and partial matches (since, NEs can
often be synonymous with substrings of NEs). In
addition, we used some WordNet (Fellbaum, 1998)
synonyms of English to expand the coverage of all
the dictionaries, allowing English words to match
Chinese word translations of their synonyms. We
allowed additional matches of function words that
served similar functions in the two languages includ-
ing: copulas, pronouns and determiners.

Finally, we use a mutual information (MI) based
approach to find further lexical information. We run
our alignment program over the corpus two times,
the first time, we acquire statistical information
useful for generating a MI-based score. This score
is used as a lexical score on the second pass for
items that do not match any of the dictionaries. On
the first pass, we tally the frequency of each pair
of source/target wordss and t, such that neither
s, nor t are matched lexically to any other item
in the sentence. We, furthermore, keep track of
the number of times each word appears in the
corpus and the number of times each word appeared
unaligned in the corpus. We tally MI as follows:

pair−frequency2

1+(source−word−frequency×target−word−frequency)
One is added to the denominator as a variation on
add-one smoothing (Laplace, 1816), intended to
penalize low frequency scores. We calculate this
score in two ways: (a) using the global frequencies
of the source and target words; and (b) using the
frequency these words were unaligned. The larger
of the two scores is the one that is actually use.

Different lexicons are given different weights.

Matches between words in the hand-coded transla-
tion dictionary and NEDICT are given a score of
1.0. Matches in other dictionaries are allotted lower
scores to represent that these are based on automati-
cally acquired information, which we assume is less
reliable than manually coded information.3

5.3 ALIGN-ALG2

With ALIGN-ALG2, we partially address two lim-
itations of ALIGN-ALG1: (1) the assumption that
the roots of source and target graph are aligned;
and (2) the dominance-preserving constraint. Ba-
sically, we assume that structural similarity is fa-
vored, but not necessarily at the global level. Thus
it is likely that many subparts of corresponding trees
correspond closely, but not necessarily the highest
nodes in the trees.

We use ALIGN-ALG1 to align every possible pair
of S source nodes andT target nodes. Then we look
for P , the highest scoring node pair of allSXT

pairs. P and all the pairs of descendants that are
used to derive this score (the highest scoring pairs
of children, grand children, etc.) become the initial
output. Then we find all unmatched source and tar-
get children, and look up the highest scoring pair of
these nodes, and we repeat the process, adding the
resulting node pairs to the output. We continue to
repeat this process until either all the nodes are in-
cluded in the output or there is no remaining pair
with a score above a threshold score (we leave au-
tomatic methods of tuning this score to future work
and preliminarily have set this parameter to .3). This
means that: 1) some parts of the graphs are left un-
aligned (the alignment is a partial mapping); 2) the
alignment is more resilient to misalignment caused
by differences in graph structure, regardless of the
reason; and 3) the alignment may be between pair
of unconnected graphs, each containing subsets of
nodes and edges in the source and target graphs.
While more complex than ALIGN-ALG1, ALIGN-
ALG2 performs relatively quickly. After one itera-
tion using ALIGN-ALG1, scores are looked up, not
recalculated.

3Current informal weights of .2 to .6 may be replaced with
automatically tuned weights (hill-climbing, etc.) in future work.
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5.4 Treating Multiple Tokens as One

In some cases, parsing and segmentation of text
can be corrected through minor modifications to our
alignment routine. Similarly, we use bilingual lex-
ical information to determine that certain other ad-
jacent tokens should be treated as single words for
purposes of alignment.

Given a language for which segmentation is a
common source of processing error (Chinese), if a
token is unaligned, we check to see whether subdi-
viding the token into two sub-tokens would allow
one or both of these sub-tokens to be alignable with
unaligned tokens in the other language. We iter-
ate through the string one token at a time, trying
all partitions. Given a source tokenABC, consist-
ing of segmentsA, B andC, we test the two pairs of
subsequences{A, BC} and{AB, C}, to see which
of the two partitions (if any) could be aligned with
unaligned target tokens and we compare the scores
of both, selecting the highest score. Unless no par-
tition yields further source/target matches, we then
choose the highest scoring partition and add the re-
sulting node pairings to our alignment. In a similar
way, if there are a pair of aligned names consisting
of source tokenssj . . . sk and target tokenstj . . . tk,
we look for adjacent unaligned source nodes (a se-
quence of nodes ending insj−1 or beginning with
sk+1) and/or adjacent target language nodes, such
that adding these nodes to the name sequence would
produce at least as high a lexical score. The lexi-
con can also be used to match two adjacent items to
the same word. We use a similar routine that checks
our lexicons for words that are adjacent to matching
words. This is particularly meaningful for the entries
automatically acquired by means of MI, as our cur-
rent method for acquiring MI would not distinguish
between 1 to 1 and N to 1 cases. Thus MI scores
for adjacent items typically does mean that an N to
1 match is appropriate. For example, the Chinese
word had high MI with every word
in the sequence (exceptand): ambassador extraor-
dinary and plenipotentiary(example is from FBIS).
This routine was able to cause our procedure to treat
this English sequence as a single token.

5.5 Using Node Alignment for Reordering

Given a node alignment, we can attempt to reorder
the source language so that words associated with
aligned nodes reflect the order of the words label-
ing the corresponding target nodes. Specifically,
we reorder our surface phrase structure-based repre-
sentation of the source language (English) and then
print out all the words yielded from the resulting
reordered tree. Reordering takes place in a bottom
up fashion as follows: for each phraseP with chil-
drenc0 . . . cn, reorder the structure beneath the child
nodes first. Then build the new-constituent right
to left, one child at a time fromcn . . . c0. Start-
ing with an empty sequence, each item is put in
its proper place among the constituents in the se-
quence so far. At each step, place someci after some
cj in ci+1 . . . cn, such thatcj align precedes ci
and cj is after everyck in ci+1 . . . cn such that
ci align precedes ck. If cj does not exist,ci is
placed at the beginning of the sequence so far.

Definition of X align precedes Y , where X and
Y are nodes sharing the same parent: (1) LetpairsX
be the set of source/target pairs in the alignment such
that some (leaf node) descendant ofX is the source
node in the pair; (2) LetpairsY be the set of pairs
in the alignment such that some descendant ofY is
the source node in the pair; (3) letXtmax be the last
target member of a pair inpairsX , where the or-
der is determined by the word order of the target
words labeling the nodes; (4) letYtmin be the first
target member of a pair inpairsY , where the order
is determined the same way; (5) letXsmin be the
first source member of a pair inpairsx, according
to the source sentence word order; (6) letYsmax be
the last source word in a pair inpairsY ordered the
same way. (7)X align precedes Y if: Xtmax pre-
cedesYtmin and there is no source/target pairQ,R

in the alignment such that: (A)R precedes,Ytmin;
(B) Xtmax precedesR; (C)Q either precedesXsmin

or followsYsmax; (D) If Q precedesYsmax, thenR
does not precedeYtmin.

Essentially, thealign precedes operator pro-
vides a conservative way to order the source sub-
treesS1 andS2 by their aligned target sub-tree coun-
terpartsT1 andT2. The idea is that ifT1 andT2

are ordered in an opposite manner toS1 and S2,
the source subtrees should trade places. However,
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System DEV TEST
BASELINE 53.1% 49.9%
MANUAL 54.0% 50.6%

(p < .01) (not significant)
ALIGN 53.5% 51.1%

(p < .05) (p < .01)
ALIGN+MI 53.8% 51.4%

(p < .01) (p < .01)

Table 1: F Scores for Reordering Rules

a source/target pairBs, Bt can block this reorder-
ing if doing so would upset the order of the moved
constituents relative toBs andBt e.g., if before the
move,Bs precedesS2 andBt precedesT2, but af-
ter the moveS2 would precedeBs. This reordering
proceeds from right to left, halting after placingc0.

6 Results

The results summarized in table 1, provide F-scores
(the harmonic mean of precision and recall) of the
word alignment resulting from running GIZA++
with and without our reordering rules, using the
LDC’s manually created word alignments for our
DEV and TEST corpora.4 Giza++ is run with En-
glish as source and Chinese as target. Our baseline
is the result of running Giza++ on the raw text. The
statistical significance of differences from the base-
line are provided in parentheses, next to each non-
baseline score(rounded to 2 significant digits). We
divided both corpora into 20 parts and ran all ver-
sions of the program on each section. We compared
the system output for each section against the base-
line and used the sign test to calculate statistical sig-
nificance. All system output except one5 achieved
at leastp < .05 and most systems achieved signifi-
cance well belowp < .01.

Informally, we observe that the rules reordering
common noun modifiers produce most of the total

4We used F-scores, which (Fraser and Marcu, 2007) show to
correlate well with improvements in BLEU. We weighted pre-
cision and recall evenly since we do not currently have BLEU
scores for MT that use these alignments and therefore cannot
tune the weights. Our results also showed improvements in
alignment error rate (AER) (Och and Ney, 2000), which incor-
porate the “possible” and “sure” portions of the manual align-
ment into F-score, but do not seem to correlate well with BLEU.

5When run on the test corpus, the manual system outper-
formed the baseline system on only 13 out of 20 sections.

improvement. However, space limitations prevent a
detailed exploration of these differences. The results
show that for both DEV and TEST corpora, both re-
ordering approaches improve F-scores of GIZA++
over the baseline. The manual rules (MANUAL)
seem to suffer somewhat from overtraining on the
DEV corpus, as they were designed based on DEV
corpus examples, whereas the alignment based ap-
proaches (ALIGN and subsequent entries in the ta-
ble) seem resilient to these effects. The use of Mu-
tual Information (ALIGN+MI) seems to further im-
prove the F-score.

The two approaches worked for many of the same
phenomena, e.g., they fronted many of the same
noun post-modifiers. The advantage of the hand-
coded rules seems to be that they cover reordering
of words which we cannot align. For example, a
rule that fronts post-nominalof phrases operates re-
gardless of dictionary coverage. Thus the rule-based
version fronted theof phrase in the NPthe govern-
ment of the Guangxi Zhuangzu Autonomous Region
in our DEV corpus, due to the absolute application
of the rule. However, the alignment-based version
did not front the PP because the name was not found
in NEDICT. On the other hand, exceptions to this
rule were better handled by the alignment-based sys-
tem. For example, ifseries ofaligns with the quan-
tifier , the PP would be incorrectly fronted
by the manual, but not the alignment-based system.
Also, the alignment-based method can handle cases
not covered by our rules with minimal labor. Thus,
the automatic system, but not the manual-rule sys-
tem fronted the locative PPin Guangxi to the po-
sition betweenbeenandquite in the sentence:for-
eign businessmen have been quite actively investing
in Guangxi. This is closer to the Chinese, but may
have been difficult to predict with an automatic rule
for several reasons, e.g., it is not clear if all post-
verbal locative phrases should front.

We further analyzed the DEV ALIGN+MI run to
determine both how often nodes were combined to-
gether by our algorithm to produce N to 1 align-
ments and the number of reorderings undertaken. It
turns out that out of the 59,032 pairs of nodes were
aligned for 3076 sentence pairs:6 55,391 alignments

6When sentences were misparsed in one language or the
other they were not reordered by the program.
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were 1 to 1 (93.8% of the total) , 3443 alignments
were 2 to 1 (5.8% of the total) and 203 alignments
were N to 1, where N is greater than 2 (0.3% of the
total). The reordering program moved 1597 single
tokens; 2140 blocks 2 or 3 tokens long; 1203 blocks
of 4 or 5 tokens; 610 blocks of 6 or 7 tokens, 419
blocks of 8, 9 or 10 tokens, and 383 blocks of more
than 10 tokens.

7 Concluding Remarks

We have demonstrated that deep level linguistic
analysis can be used to improve word alignment re-
sults. It is natural to consider whether or not these
reorderings are likely to improve MT results. Both
the manual and alignment-based systems moved
post-nominal English modifiers to pre-nominal po-
sition, to reflect Chinese word order – other move-
ments were much less frequent. In principle, these
selective reorderings may help SMT systems iden-
tify phrasesof English that correspond tophrasesof
Chinese, thus improving the quality of the phrase ta-
bles, especially when large chunks are moved. We
would also expect that the precision of our system to
be more important than the recall, since our system
would not yield an improvement if it produced too
much noise. Further experiments with current MT
systems are needed to assess whether this is actually
the case. We are considering such tests for future re-
search, using the Moses SMT system (Koehn et al.,
2007).

Our representation had several possible advan-
tages over pure parse-based methods. We used se-
mantic features such as temporal, locative and trans-
parent (whether a low-content words inherits its se-
mantics) to help guide our alignment. The regu-
larized structure, also, helped identify long-distance
dependency relationships. We are also consider-
ing several improvements for our alignment-based
rules: (1) using additional dictionary resources such
as CATVAR (Habash and Dorr, 2003), so that cross-
part-of speech alignments can be more readily rec-
ognized; (2) finding more optimal orderings for
unaligned source language words. For example,
the alignment-based method reordereda bright star
arising from China’s policyto a bright arising from
China ’s policy star, separatingbright from star,
even thoughbright starfunction as a unit; (3) incor-

porating and using multi-word bilingual dictionary
entries.; (4) automatic methods for tuning parame-
ters of our system that are currently hand-coded; (5)
training MI on a much larger corpus; (6) investigat-
ing possible ways to merge the manual-rules with
the alignment-based approach; and (7) performing
similar experiments with English/Japanese bitexts.

We would expect both parse-based approaches
and our system to handle mismatches that cover
large distances better than more shallow approaches
to reordering, e.g., (Crego and Mariño, 2006) in the
same way that a full-parse handles constituent struc-
ture more completely than a chunker. In addition,
we would expect our approach to work best in lan-
guages where there are large differences in word or-
der, as these are exactly the cases that all predicate-
argument structure is designed to handle well (they
reduce apparent variation in structure). Towards this
end we are currently working on a Japanese/English
system. Obviously, the cost of developing GLARF
(or similar) systems are high, require linguistic ex-
pertise and may not be possible for resource-poor
languages. Nevertheless, we maintain that such sys-
tems are useful for many purposes and are there-
fore worth the cost. The GLARF system for En-
glish is available for download athttp://nlp.
cs.nyu.edu/meyers/GLARF.html.
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Abstract

We consider SCFG-based MT systems that get
syntactic category labels from parsing both
the source and target sides of parallel train-
ing data. The resulting joint nonterminals of-
ten lead to needlessly large label sets that are
not optimized for an MT scenario. This pa-
per presents a method of iteratively coarsening
a label set for a particular language pair and
training corpus. We apply this label collaps-
ing on Chinese–English and French–English
grammars, obtaining test-set improvements of
up to 2.8 BLEU, 5.2 TER, and 0.9 METEOR
on Chinese–English translation. An analysis
of label collapsing’s effect on the grammar
and the decoding process is also given.

1 Introduction

A common modeling choice among syntax-based
statistical machine translation systems is the use of
synchronous context-free grammar (SCFG), where a
source-language string and a target-language string
are produced simultaneously by applying a series of
re-write rules. Given a parallel corpus that has been
statistically word-aligned and annotated with con-
stituency structure on one or both sides, SCFG mod-
els for MT can be learned via a variety of methods.
Parsing may be applied on the source side (Liu et al.,
2006), on the target side (Galley et al., 2004), or on
both sides of the parallel corpus (Lavie et al., 2008;
Zhechev and Way, 2008).

In any of these cases, using the raw label set from
source- and/or target-side parsers can be undesir-
able. Label sets used in statistical parsers are usu-
ally inherited directly from monolingual treebank

projects, where the inventory of category labels was
designed by independent teams of human linguists.
These labels sets are not necessarily ideal for sta-
tistical parsing, let alone for bilingual syntax-based
translation models. Further, the side(s) on which
syntax is represented defines the nonterminal label
space used by the resulting SCFG. A pair of aligned
adjectives, for example, may be labeled ADJ if only
source-side syntax is used, JJ if only target-side syn-
tax is used, or ADJ::JJ if syntax from both sides
is used in the grammar. Beyond such differences,
however, most existing SCFG-based MT systems
do not further modify the nonterminal label set in
use. Those that do require either specialized de-
coders or complicated parameter tuning, or the la-
bel set may be unsatisfactory from a computational
point of view (Section 2).

We believe that representing both source-side and
target-side syntax is important. Even assuming two
monolingually perfect label sets for the source and
target languages, using label information from only
one side ignores any meaningful constraints ex-
pressed in the labels of the other. On the other hand,
using the default node labels from both sides gener-
ates a joint nonterminal set of thousands of unique
labels, not all of which may be useful. Our real pref-
erence is to use a joint nonterminal set adapted to
our particular language pair or translation task.

In this paper, we present the first step towards
a tailored label set: collapsing syntactic categories
to remove the most redundant labels and shrink the
overall source–target nonterminal set.1 There are

1The complementary operation, splitting existing labels, is
beyond the scope of this paper and is left for future work.
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two problems with an overly large label set:
First, it encourages labeling ambiguity among

rules, a well-known practical problem in SCFG-
based MT. Most simply, the same right-hand side
may be observed in rule extraction with a variety of
left-hand-side labels, each leading to a unique rule
in the grammar. The grammar may further contain
many rules with the same structure and reordering
pattern that differ only with respect to the actual la-
bels in use. Together, these properties can cause an
SCFG-based MT system to process a large number
of alternative syntactic derivations that use different
rules but produce identical output strings. Limiting
the possible number of variant labelings cuts down
on ambiguous derivations.

Second, a large label set leads to rule sparsity. A
rule whose right-hand side can only apply on a very
tightly specified set of labels is unlikely to be es-
timated reliably from a parallel corpus or to apply
in all needed cases at test time. However, a coarser
version of its application constraints may be more
frequently observed in training data and more likely
to apply on test data.

We therefore introduce a method for automati-
cally clustering and collapsing category labels, on
either one or both sides of SCFG rules, for any lan-
guage pair and choice of statistical parsers (Section
3). Turning to alignments between source and tar-
get parse nodes as an additional source of informa-
tion, we calculate a distance metric between any
two labels in one language based on the difference
in alignment probabilities to labels in the other lan-
guage. We then apply a greedy label collapsing al-
gorithm that repeatedly merges the two labels with
the closest distance until some stopping criterion is
reached. The resulting coarsened labels are used in
the SCFG rules of a syntactic machine translation
system in place of the original labels.

In experiments on Chinese–English translation
(Section 4), we find significantly improved perfor-
mance of up to 2.8 BLEU points, 5.2 TER points,
and 0.9 METEOR points by applying varying de-
grees of label collapsing to a baseline syntax-based
MT system (Section 5). In our analysis of the results
(Section 6), we find that the largest immediate effect
of coarsening the label set is to reduce the number of
fully abstract hierarchical SCFG rules present in the
grammar. These rules’ increased permissiveness, in

turn, directs the decoder’s search into a largely dis-
joint realm from the search space explored by the
baseline system. A full summary and ideas for fu-
ture work are given in Section 7.

2 Related Work

One example of modifying the SCFG nonterminal
set is seen in the Syntax-Augmented MT (SAMT)
system of Zollmann and Venugopal (2006). In
SAMT rule extraction, rules whose left-hand sides
correspond exactly to a target-side parse node t re-
tain that label in the grammar. Additional nontermi-
nal labels of the form t1+ t2 are created for rules
spanning two adjacent parse nodes, while catego-
rial grammar–style nonterminals t1/t2 and t1\t2 are
used for rules spanning a partial t1 node that is miss-
ing a t2 node to its right or left.

These compound nonterminals in practice lead to
a very large label set. Probability estimates for rules
with the same structure up to labeling can be com-
bined with the use of a preference grammar (Venu-
gopal et al., 2009), which replaces the variant label-
ings with a single SCFG rule using generic “X” la-
bels. The generic rule’s “preference” over possible
labelings is stored as a probability distribution inside
the rule for use at decoding time. Preference gram-
mars thus reduce the label set size to one for the pur-
poses of some feature calculations — which avoids
the fragmentation of rule scores due to labeling am-
biguity — but the original labels persist for specify-
ing which rules may combine with which others.

Chiang (2010) extended SAMT-style labels to
both source- and target-side parses, also introducing
a mechanism by which SCFG rules may apply at run
time even if their labels do not match. Under Chi-
ang’s soft matching constraint, a rule headed by a la-
bel A::Z may still plug into a substitution site labeled
B::Y by paying additional model costs substB→A

and substY→Z . This is an on-the-fly method of
coarsening the effective label set on a case-by-case
basis. Unfortunately, it also requires tuning a sep-
arate decoder feature for each pair of source-side
and each pair of target-side labels. This tuning can
become prohibitively complex when working with
standard parser label sets, which typically contain
between 30 and 70 labels on each side.
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JJ JJR JJS

Figure 1: Alignment distributions over French labels for the English adjective labels JJ, JJR, and JJS.

3 Label Collapsing Algorithm

We begin with an initial set of SCFG rules extracted
from a parallel parsed corpus, where S denotes the
set of labels used on the source side and T denotes
the set of labels used on the target side. Each rule has
a left-hand side of the form s :: t, where s ∈ S and
t ∈ T , meaning that a node labeled s was aligned to
a node labeled t in a parallel sentence. From the left-
hand sides of all extracted rule instances, we com-
pute label alignment distribution P (s | t) by simple
counting and normalizing:

P (s | t) =
#(s :: t)

#(t)
(1)

We use an analogous equation to calculate P (t | s).
For two target-language labels t1 and t2, we have
an equally simple metric of alignment distribution
difference d: the total of the absolute differences in
likelihood for each aligned source-language label.

d(t1, t2) =
∑
s∈S

|P (s | t1) − P (s | t2)| (2)

Again, the calculation for d(s1, s2) is analogous.
If t1 and t2 are plotted as points in |S|-

dimensional space such that each point’s position in
dimension s is equal to P (s | t), then this metric is
equivalent to the L1 distance between t1 and t2.

Sample alignment distributions into French for
three English adjective labels are shown in Figure
1. Bars in the chart represent alignment probabili-
ties between French and English according to Equa-
tion 1, with the various French labels as s and JJ,
JJR, or JJS as t. To compute an L1 alignment dis-
tribution difference between a pair of English ad-
jective tags, we sum the absolute differences in bar

heights for each column of two graphs, as in Equa-
tion 2. It is already visually clear from Figure 1
that all three English labels are somewhat related
in terms of distribution, but it appears that JJR and
JJS are more closely related to each other than either
is to JJ. This is reflected in the actual L1 distances:
d(JJ, JJR) = 0.9941 and d(JJ, JJS) = 0.8730, but
d(JJR, JJS) = 0.3996.

Given the above method for computing an align-
ment distribution difference for any pair of labels,
we develop an iterative greedy method for label col-
lapsing. At each step, we compute the L1 distance
between all pairs of labels, then collapse the pair
with the smallest distance into a single label. Then
L1 distances are recomputed over the new, smaller
label set, and again the label pair with the smallest
distance is collapsed. This process continues until
some stopping criterion is reached. Label pairs be-
ing considered for collapsing may be only source-
side labels, only target-side labels, or both. In gen-
eral, we choose to allow label collapsing to apply on
either side during each iteration of our algorithm.

In the limit, label collapsing can be applied it-
eratively until all syntactic categories on both the
source and target sides have been collapsed into a
single label. In Section 5, we explore several earlier
and more meaningful stopping points.

4 Experimental Setup

Experiments are conducted on Chinese-to-English
translation using approximately 300,000 sentence
pairs from the FBIS corpus. To obtain parse trees
over both sides of each parallel corpus, we used
the English and Chinese grammars of the Berkeley
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parser (Petrov and Klein, 2007).
Given a parsed and word-aligned parallel sen-

tence, we extract SCFG rules from it following the
procedure of Lavie et al. (2008). The method first
identifies node alignments between the two parse
trees according to support from the word alignments.
A node in the source parse tree will be aligned to
a node in the target parse tree if all the words in
the yield of the source node are either all aligned to
words within the yield of the target node or have no
alignments at all. Then SCFG rules can be extracted
from adjacent levels of aligned nodes, which spec-
ify points at which the tree pair can be decomposed
into minimal SCFG rules. In addition to producing
a minimal rule, each decomposition point also pro-
duces a phrase pair rule with the node pair’s yields
as the right-hand side, as long as the length of the
yield is less than a specified threshold.

Following grammar extraction, labels are option-
ally clustered and collapsed according to the algo-
rithm in Section 3. The grammar is re-written with
the modified nonterminals, then scored as usual ac-
cording to our translation model features. Feature
weights themselves are learned via minimum error
rate training as implemented in Z-MERT (Zaidan,
2009) with the BLEU metric (Papineni et al., 2002).
Decoding is carried out with Joshua (Li et al., 2009),
an open-source platform for SCFG-based MT.

Due to engineering limitations in decoding with
a large grammar, we apply three additional error-
correction and filtering steps to every system. First,
we observed that the syntactic parsers were most
likely to make labeling errors for cardinal numbers
in English and punctuation marks in all languages.
We thus post-process the parses of our training data
to tag all English cardinal numbers as CD and to
overwrite the labels of various punctuation marks
with the correct labels as defined by each language’s
label set. Second, after rule extraction, we com-
pute the distribution of left-hand-side labels for each
unique labeled right-hand side in the grammar, and
we remove the labels in the least frequent 10% of the
distribution. This puts a general-purpose limit on la-
beling ambiguity. Third, we filter and prune the final
scored grammar to each individual development and
test set before decoding: all matching phrase pairs
are retained, along with the most frequent 10,000 hi-
erarchical grammar rules.

5 Experiments and Results

In our first set of experiments, we sought to explore
the effect of increasing degrees of label collapsing
on a baseline system and to determine a reasonable
stopping point. Starting with the baseline grammar,
we ran the label collapsing algorithm of Section 3
until all the constituent labels on each side had been
collapsed into a single category. We next examined
the L1 distances between the label pairs that had
been merged in each iteration of the algorithm. This
data is shown in Figure 2 as a plot of L1 distance
versus iteration number. The distances between the
successive labels merged in the first 29 iterations of
the algorithm are nearly monotonically increasing,
followed by a much larger discontinuity at iteration
30. Similar patterns emerge for iterations 30 to 45
and for iterations 46 to 60. The next regions of the
graph, from iterations 61 to 81 and from iterations
82 to 99, show an increasing prevalence of disconti-
nuities. Finally, from iterations 100 to 123, the suc-
cessive L1 distances entirely alternate between very
high and very low values.

Discontinuities are merely the result of a label
pair in one language suddenly scoring much lower
on the distribution difference metric than previously,
thanks to some change that has occurred in the la-
bel set of the other language. Looking back to Fig-
ure 1, for example, we could bring the distributions
for JJ and JJS much closer together by merging A
and ADV on the French side. Although such sudden
drops in distribution difference value are expected,
they may provide an indication of when the label
collapsing algorithm has progressed too far, since
we have so reduced the label set that categories pre-
viously very different have become much less dis-
tinguishable. On the other hand, further reduction of
the label set may have a variety of pratical benefits.

We tested this trade-off empirically by building
five Chinese–English MT systems, each exhibiting
an increasing degree of label collapsing compared to
the original label set, which serves as our baseline.
The degree of label collapsing in each of the five
systems corresponds to one of the major discontinu-
ity features highlighted in the right-hand side Figure
2. The systems were tuned on the NIST MT 2006
data set, and we evaluated performance on the NIST
MT 2003 and 2008 sets. (All data sets have four
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Iter. L1 Dist.
29 0.3646
45 0.5607
60 0.6155
81 0.8665
99 1.1303

Figure 2: Observed L1 distance values for the labels merged in each iteration of our algorithm on a Chinese–English
SCFG. We divide the graph into six distinct regions using the cutoffs at right.

Chinese–English MT 2003 Test Set MT 2008 Test Set
System METEOR BLEU TER METEOR BLEU TER
Baseline 54.35 24.39 68.01 45.68 18.27 69.18
Collapsed, 29 iterations 55.24 27.03 63.77 46.25 19.78 65.88
Collapsed, 45 iterations 54.65 26.69 62.76 46.02 19.60 64.88
Collapsed, 60 iterations 55.11 27.23 63.06 46.30 20.19 65.18
Collapsed, 81 iterations 54.87 26.87 64.92 45.70 20.48 66.75
Collapsed, 99 iterations 54.86 26.16 64.17 45.87 19.52 65.61

Table 1: Results of applying increasing degrees of label collapsing on our Chinese–English baseline system. Bold
figures indicate the best score in each column.

references.) Table 1 reports automatic metric results
for version 1.0 of METEOR (Lavie and Denkowski,
2009) using the default settings, uncased IBM-style
BLEU (Papineni et al., 2002), and uncased TER ver-
sion 0.7 (Snover et al., 2006).

No matter the degree of label collapsing, we find
significant improvements in BLEU and TER scores
on both test sets. On the MT 2003 set, label-
collapsed systems score 1.77 to 2.84 BLEU points
and 3.09 to 5.25 TER points better than the baseline.
On MT 2008, improvements range from 1.25 to 2.21
points on BLEU and from 2.43 to 4.30 points on
TER. Improvements on both sets according to ME-
TEOR, though smaller, are still noticable (up to 0.89
points). In the case of BLEU, we verified the sig-
nificance of the improvements by conducting paired
bootstrap resampling (Koehn, 2004) on the MT 2003

output. With n = 1000 and p < 0.05, all five label-
collapsed systems were statistically significant im-
provements over the baseline, and all other collapsed
systems were significant improvements over the 99-
iteration system.

Thus, though the system that provides the highest
score changes across metrics and test sets, the over-
all pattern of scores suggests that over-collapsing la-
bels may start to weaken results. A more moderate
stopping point is thus preferable, but beyond that we
suspect the best result is determined more by the test
set, automatic metric choice, and MERT instability
than systematic changes in the label set.

6 Analysis

Table 1 showed a strong practical benefit to running
the label collapsing algorithm. In this section, we
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seek to further understand where this benefit comes
from, tracing the effects of label collapsing via its
modification of labels themselves, the differences in
the resulting grammars, and collapsing’s effect on
decoding and output.

6.1 Labels Selected for Collapsing

Our first concern is for the size of the grammar’s
overall nonterminal set. The baseline system uses a
total of 55 labels on the Chinese side and 71 on the
English side, leading to an observed joint nontermi-
nal set of 1556 unique labels. After 29 iterations
of label collapsing, this is reduced to 46 Chinese,
51 English, and 1035 joint labels — a reduction of
33%. In the grammar of our most collapsed gram-
mar variant (99 iterations), the nonterminal set is re-
duced to 14 English and 14 Chinese labels, for a to-
tal of 106 joint labels and a reduction of 93% from
the baseline grammar. This demonstrates one facet
of our introductory claim from Section 1: since we
have improved translation results by removing the
vast majority of our grammar nonterminals, most of
the initial joint Chinese–English syntactic categories
were not necessary for Chinese–English translation.

We identify three broad trends in the sets of labels
that are collapsed:

• Full Subtype Collapsing. The Chinese-side
parses include six phrase-level tags for various
types of verb compounds. As label collapsing
progresses, these labels are all combined with
each other at relatively low L1 distances.

• Partial Subtype Collapsing. In English, three
of the four noun labels (NN, NNS, and NNPS)
form a cohesive cluster early on in Chinese–
English collapsing. However, the fourth tag
(NNP, for singular proper nouns) remains sep-
arate, then later joins a cluster for more
adjective-like labels.

• Combination by Syntactic Function. In
French–English label collapsing (see below),
we find the creation of a combined label in
English for reduced relative clauses (RRC),
adjective phrases headed by a wh-adjective
(WHADJP), and interjections (INTJ). Even
though these tags are unrelated in surface form,

at some level they all represent parenthetical in-
sertions or explanatory phrases.

The formulation of the L1 distance metric in Sec-
tion 3 means that our label collapsing algorithm will
naturally produce different label clusters for differ-
ent input grammars — any change in the Viterbi
word alignments, underlying parallel corpus, initial
label set, or choice of automatic parser will neces-
sarily change the label alignment distributions on
which the collapsing algorithm is based. In par-
ticular, the label clusters formed in one language
are likely to be markedly different depending on
which other language it is paired with. We exam-
ine these differences in more detail for the case of
English when paired with either Chinese or with
French. Our 29-iteration run of label collapsing for
Chinese–English merged labels on the English side
19 times. For an exact comparison, we run iterations
of label collapsing on a large-scale French–English
grammar, extracted in the same way as the Chinese–
English grammar, until the same number of English-
side merges have been carried out, then examine the
results.

Table 2 shows the English label clusters cre-
ated from the Chinese–English and French–English
grammars, arranged by broad syntactic categories.
The differences in English label clusters hint at dif-
ferences in the source-side label sets, as well as
structural divergences relevant for translating Chi-
nese versus French into English.

For example, Table 2 shows partial subtype col-
lapsing of the English verb tags when paired with
French. The French Berkeley parser has a single tag,
V, to represent all verbs, and most English verb tags
as well as the tag for modals very consistently align
to it. The exception is VBG, for present-progressive
or gerundive verb forms, which is more easily con-
flatable in French–English translation with a noun or
an adjective. In translation from Chinese, however,
it is VBG that is combined early on with a smaller
selection of English verb labels that correspond most
strongly to a basic Chinese verb. Other English verb
tags are more likely to align to Chinese copulas, ex-
istential verbs, and nouns; they are not combined
with the group for more “typical” verbs until itera-
tion 67. The adverb series presents another example
of translational divergence between language pairs.
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Cluster Chinese–English French–English
Nouns NN NNS NNPS # NN NNS $
Verbs VB VBG VBN VB VBD VBN VBP VBZ MD
Adverbs RB RBR RBR RBS
Punctuation LRB RRB “ ” , . “ ”
Prepositions IN TO SYM
Determiners DT PRP$
Noun phrases NP NX QP UCP NAC NP WHNP NX WHADVP NAC
Adjective phrases ADJP WHADJP
Adverb phrases ADVP WHADVP
Prepositional phrases PP WHPP
Sentences S SINV SBARQ FRAG S SQ SBARQ

Table 2: English-side label clusters created after partial label collapsing of a Chinese–English and a French–English
grammar. In each case, the algorithm has been run until merges have occurred 19 times on the English side.

6.2 Effect on the Grammar

With a smaller label set, we also expect a reduc-
tion in the overall size of our various label-collapsed
grammars as labeling ambiguity is removed. In the
aggregate, however, even 99 iterations of Chinese–
English label collapsing has a minimal effect on
the total number of unique rules in the resulting
SCFG. A clearer picture emerges when we sepa-
rate rules according to their form. Figure 3 parti-
tions the grammar into three parts: one for phrase
pairs, where the rules’ right-hand sides are made up
entirely of terminals (“P-type” rules); one for hier-
archical rules whose right-hand sides are made up
entirely of nonterminals (abstract or “A-type” rules);
and one for hierarchical rules whose right-hand sides
include a mix of terminals and nonterminals (re-
maining grammar or “G-type” rules).

This separation reveals two interesting facts.
First, although the size of the label set continues
to shrink considerably between iterations 29 and 81,
the number of unique rules in the grammar remains
relatively unchanged. Second, the reduction in the
size of the grammar is largely due to a reduction in
the number of fully abstract grammar rules, rather
than phrase pairs or partially lexicalized grammar
rules. From these observations, we infer that the ma-
jor practical benefit of label collapsing is a reduction
in rule sparsity rather than a reduction in left-hand-
side labeling ambiguity. Many highly ambiguous
rules have had their possible left-hand-side labels ef-
fectively pruned down by the pre-processing steps
we described in Section 4, which in preliminary ex-

Figure 3: The effect of label collapsing on the number of
unique phrase pairs, partially lexicalized grammar rules,
and fully abstract grammar rules.

periments had a larger effect on the overall size of
the grammar than label collapsing. As a more com-
plementary technique, increasing the applicability of
the fully abstract rules via label collapsing is impor-
tant for performance. Such rules make up 49% to
59% of the hierarchical rules retained at decoding
time, and they account for 76% to 87% of the rule
application instances on the MT 2003 test set.

6.3 Effect on Decoding and Output

Interestingly, the label collapsing algorithm does
not owe its success at decoding time to a signif-
icant increase in the number of rule applications.
Among our systems, both the 45-iteration and the

104



60-iteration collapsed versions scored highly ac-
cording to automatic metrics. Nevertheless, the 45-
iteration system used 32% and 38% more rule appli-
cations than the baseline on the MT 2003 and MT
2008 test sets, respectively, while the 60-iteration
system used 15% and 11% fewer. The number of
unique rule types and the number of reordering rules
applied on a test set may also go up or down.

Instead, the practical effect of making the gram-
mar more permissive seems to be a significant
change in the search space explored during decod-
ing. This can be seen superficially via an exam-
ination of output n-best lists. On both test sets
combined (2276 sentences), the 60-iteration label-
collapsed system’s top-best output appears in the
baseline’s 100-best list in only 81 sentences. When
it does appear in the baseline, the improved system’s
translation is ranked fairly highly — always 30th
place or higher. Conversely, the baseline’s top-best
output tends to be ranked lower in the improved sys-
tem’s n-best list: among the 114 times it appears, it
is placed as low as 87th.

We ran a small follow-up analysis on the transla-
tion fragments explored during decoding. Using a
modified version of the Joshua decoder, we dumped
lists of hypergraph entries that were explored by
cube pruning during Joshua’s lazy generation of a
100-best list. These entries represent the decoder’s
approximative search through the larger space of
translations licenced by the grammar for each test
sentence. We then compared the hypergraph entries,
excluding glue rules, produced on the first 100 sen-
tences of the MT 2003 test set by both the baseline
and the 60-iteration label-collapsed system.

A full 90% of the entries produced by the label-
collapsed system had no analogue in the baseline
system. The average length of the entries that do
match is 2.3 source words, compared with an aver-
age of 6.2 words for the non-matched entries. We
believe that the increased permissiveness of the hi-
erarchical grammar rules is again the root cause of
these results. Low-level constituents are more likely
to be matched in both the baseline and the label-
collapsed system, but different applications of the
grammar rules, perhaps combined with retuned fea-
ture weights, leads the search for larger translation
fragments into new areas.

7 Conclusions and Future Work

This paper has presented a language-specific method
for automatically coarsening the label set used in
an SCFG-based MT system. Our motivation for
collapsing labels comes from the intuition that the
full cross-product of joint source–target labels, as
produced by statistical parsers, is too large and not
specifically created for bilingual MT modeling. The
greedy collapsing algorithm we developed is based
on iterative merging of the two single-language la-
bels whose alignment distributions are most similar
according to a simple L1 distance metric.

In applying varying degrees of label collapsing to
a baseline MT system, we found significantly im-
proved automatic metric results even when the size
of the joint label set had been reduced by 93%. The
best results, however, were obtained with more mod-
erate coarsening. The coarser labels that our method
produces are syntactically meaningful and represent
specific cross-language behaviors of the language
pair involved. At the grammar level, label collaps-
ing primarily caused a reduction in the number of
rules whose right-hand sides are made up entirely of
nonterminals. The coarser labels made the grammar
more permissive, cutting down on the problem of
rule sparsity. Labeling ambiguity, on the other hand,
was more effectively addressed by pre-processing
we applied to the grammar beforehand. At run time,
the more permissive collapsed grammar allowed the
decoder to search a markedly different region of the
allowable translation space than in the baseline sys-
tem, generally leading to improved output.

One shortcoming of our current algorithm is that
it is based entirely on label alignment distribution
without regard to the different contexts in which la-
bels occur. It thus cannot distinguish between two
labels that align similarly but appear in very different
rules. For example, singular common nouns (NN)
and plural proper nouns (NNPS) in English both
most frequently align to French nouns (N) and are
thus strong candidates for label collapsing under our
algorithm. However, when building noun phrases,
an N::NNPS will more likely require a rule to delete
a French-side determiner, while an N::NN will typ-
ically require a determiner in both French and En-
glish. Thus, collapsing NN and NNPS may lead to
additional ambiguity or incorrect choices when ap-
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plying larger rules.
Another dimension to be explored is the trade-off

between greedy collapsing and other methods that
cluster all labels at once. K-means clustering could
be a reasonable contrast in this respect; its down-
side would be that all labels in one language must
be assigned to clusters without knowledge of what
clusters are being formed in the other language.

Finally, label collapsing is only the first step in a
broader exploration of SCFG labeling for MT. We
also plan to investigate methods for refining exist-
ing category labels in order to find finer-grained sub-
types that are useful for translating a particular lan-
guage pair. By running label collapsing and refining
together, our end goal is to be able to adapt standard
parser labels to individual translation scenarios.
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Abstract

In this paper we present a novel approach
of utilizing Semantic Role Labeling (SRL)
information to improve Hierarchical Phrase-
based Machine Translation. We propose an
algorithm to extract SRL-aware Synchronous
Context-Free Grammar (SCFG) rules. Con-
ventional Hiero-style SCFG rules will also be
extracted in the same framework. Special con-
version rules are applied to ensure that when
SRL-aware SCFG rules are used in deriva-
tion, the decoder only generates hypotheses
with complete semantic structures. We per-
form machine translation experiments using 9
different Chinese-English test-sets. Our ap-
proach achieved an average BLEU score im-
provement of 0.49 as well as 1.21 point reduc-
tion in TER.

1 Introduction

Syntax-based Machine Translation methods have
achieved comparable performance to Phrase-based
systems. Hierarchical Phrase-based Machine Trans-
lation, proposed by Chiang (Chiang, 2007), uses a
general non-terminal label X but does not use lin-
guistic information from the source or the target lan-
guage. There have been efforts to include linguis-
tic information into machine translation. Liu et al
(2006) experimented with tree-to-string translation
models that utilize source side parse trees, and later
improved the method by using the Packed Forest
data structure to reduce the impact of parsing errors
(Liu and Huang, 2010). The string-to-tree (Galley
et al, 2006) and tree-to-tree (Chiang, 2010) meth-
ods have also been the subject of experimentation, as

well as other formalisms such as Dependency Trees
(Shen et al., 2008).

One problem that arises by using full syntactic la-
bels is that they require an exact match of the con-
stituents in extracted phrases, so it faces the risk
of losing coverage of the rules. SAMT (Zollmann
and Venugopal, 2006) and Tree Sequence Align-
ment (Zhang et al., 2008) are proposed to amend this
problem by allowing non-constituent phrases to be
extracted. The reported results show that while uti-
lizing linguistic information helps, the coverage is
more important (Chiang, 2010). When dealing with
formalisms such as semantic role labeling, the cov-
erage problem is also critical. In this paper we fol-
low Chiang’s observation and use SRL labels to aug-
ment the extraction of SCFG rules. I.e., the formal-
ism provides additional information and more rules
instead of restrictions that remove existing rules.
This preserves the coverage of rules.

Recently there has been increased attention to use
semantic information in machine translation. Liu
and Gildea (2008; 2010) proposed using Semantic
Role Labels (SRL) in their tree-to-string machine
translation system and demonstrated improvement
over conventional tree-to-string methods. Wu and
Fung (2009) developed a framework to reorder the
output using information from both the source and
the target SRL labels. In this paper, we explore an
approach of using the target side SRL information
in addition to a Hierarchical Phrase-based Machine
Translation framework. The proposed method ex-
tracts initial phrases with two different heuristics:
The first heuristic is used to extract rules that have
a general left-hand-side (LHS) non-terminal tag X ,
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Second we must build a flood prevention system , strengthen pre-flood inspections and implement flood prevention measures 

arg0 mod 
arg0 mod 

arg0 mod 

pred 

pred arg1 

arg1 
pred arg1 

Figure 1: Example of predicate-argument structure in a sentence

i.e., Hiero rules. The second will extract phrases that
contain information of SRL structures. The pred-
icate and arguments that the phrase covers will be
represented in the LHS non-terminal tags. After
that, we obtain rules from the initial phrases in the
same way as the Hiero extraction algorithm, which
replaces nesting phrases with their corresponding
non-terminals.

By applying this scheme, we will obtain rules that
contain SRL information, without sacrificing the
coverage of rules. In this paper, we call such rules
SRL-aware SCFG rules. During decoding, both the
conventional Hiero-style SCFG rules with general
tag X and SRL-aware SCFG rules are used in a syn-
chronous Chart Parsing algorithm. Special conver-
sion rules are introduced to ensure that whenever
SRL-aware SCFG rules are used in the derivation,
a complete predicate-argument structure is built.

The main contributions are:

1. an algorithm to extract SRL-aware SCFG rules
using target side SRL information.

2. an approach to use Hiero rules side-by-side
with information-rich SRL-aware SCFG rules,
which improves the quality of translation re-
sults.

In section 2 we briefly review SCFG-based ma-
chine translation and SRL. In section 3, we describe
the SRL-aware SCFG rules. Section 4 provides
the detail of the rule extraction algorithm. Section
5 presents two alternative methods how to utilize
the SRL information. The experimental results are
given in Section 6, followed by analysis and conclu-
sion in Section 7.

2 Background

2.1 Hierarchical Phrase-based Machine
Translation

Proposed by Chiang (2005), the Hierarchical
Phrase-based Machine Translation model (com-

monly known as the Hiero model) has achieved re-
sults comparable, if not superior, to conventional
Phrase-based approaches. The basic idea is to treat
the translation as a synchronous parsing problem.
Using the source side terminals as input, the decoder
tries to build a parse tree and synchronously generate
target side terminals. The rules that generates such
synchronous parse trees are in the following form:

X → (f1 X1 f2 X2 f3, e1 X2 e2 X1 e3)

where X1 and X2 are non-terminals, and the sub-
scripts represents the correspondence between the
non-terminals. In Chiang’s Hiero model all non-
terminals will have the same tag, i.e. X . The formal-
ism, known as Synchronous Context-Free Grammar
(SCFG) does not require the non-terminals to have a
unique tag name. Instead, they may have tags with
syntactic or semantic meanings, such as NP or V P .

2.2 Semantic Role Labeling and Machine
Translation

The task of semantic role labeling is to label the se-
mantic relationships between predicates and argu-
ments. This relationship can be treated as a depen-
dency structure called “Predicate-Argument Struc-
ture” (PA structure for short). Figure 1 depicts ex-
amples of multiple PA structures in a sentence. The
lines indicate the span of the predicates and argu-
ments of each PA structure, and the tags attached to
these lines show their role labels.

Despite the similarity between PA structure and
dependency trees, SRL offers a structure that posses
better granularity. Instead of trying to analyze all
links between words in the sentences, PA structure
only deals with the relationships between verbs and
constituents that are arguments of the predicates.
This information is useful in preserving the mean-
ing of the sentence during the translation process.

However, using semantic role representation in
machine translation has its own set of problems.
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First, we face the coverage problem. Some sen-
tences might not have semantic structure at all, if,
for instance they consist of single noun phrases or
contain only rare predicates that are not covered by
the semantic role labeler. Moreover, the PA struc-
tures are not guaranteed to cover the whole sentence.
This is especially true when two or more predicates
are presented in a coordinated structure. In this case,
the arguments of other predicates will not be covered
in the PA structure of the predicate.

The second problem is that the SRL labels are
only on the constituents of predicate and arguments.
There is no analysis conducted inside the augments.
That is different from syntactic parsing or depen-
dency parsing, which both provide a complete tree
from the sentence to every individual word. As
we can see in Figure 1, words such as “Second”
and “and” are not covered. Inside the NPs such
as “a flood prevention system”, SRL will not pro-
vide more information. Therefore it is hard to build
a self-contained formalization based only on SRL
labels. Most work on SRL labels is built upon
or assisted by other formalisms. For instance, Liu
and Gildea (2010) integrated SRL label into a tree-
to-string translation system. Wu and Fung (2009)
used SRL labels for reordering the n-best output of
phrase-based translation systems. Similarly, in our
work we also adopt the methodology of using SRL
information to assist existing formalism. The dif-
ference of our method from Wu and Fung is that
we embed the SRL information directly into the de-
code, instead of doing two-pass decoding. Also, our
method is different from Liu and Gildea (2010) that
we utilize target side SRL information instead of the
source side.

As we will see in section 3, we define a mapping
function from the SRL structures that a phrase cov-
ers to a non-terminal tag before extracting the SCFG
rules. The tags will restrict the derivation of the tar-
get side parse tree to accept only SRL structures we
have seen in the training corpus. The mapping from
SRL structures to non-terminal tags can be defined
according to the SRL annotation set.

In this paper we adopt the PropBank (Palmer et
al., 2005) annotation set of semantic labels, because
the annotation set is relatively simple and easy to
parse. The small set of argument tags also makes
the number of LHS non-terminal tags small, which

alleviates the problem of data scarcity. However the
methodology of this paper is not limited to Prop-
Bank tags. By defining appropriate mapping, it is
also possible to use other annotation sets, such as
FrameNet (Baker et al., 2002).

3 SRL-aware SCFG Rules

The SRL-aware SCFG rules are SCFG rules. They
contain at least one non-terminal label with infor-
mation about the PA structure that is covered by the
non-terminal. The labels are called SRL-aware la-
bels, and the non-terminal itself is called SRL-aware
non-terminal. The non-terminal can be on the left
hand side or right hand side or the rule, and we do
not require all the non-terminals in the rules be SRL-
aware, thus, the general tag X can also be used. In
this paper, we assign SRL-aware labels based on the
SRL structure they cover. The label contains the fol-
lowing components:

1. The predicate frame; that is the predicate whose
predicate argument structure belongs to the
SRL-aware non-terminal.

2. The set of complete arguments the SRL-aware
non-terminal covers.

In practice, the predicates are stemmed. For ex-
ample, if we have a target side phrase: She beats
eggs today, where She will be labeled as ARG0 of the
predicate beat, and eggs will be labeled as ARG1, to-
day will be labeled as ARG-TMP, respectively. The
SRL-aware label that covers this phrase is:

#beat/0 1 TMP

There are two notes for the definition. Firstly,
the order of arguments is not important in the la-
bel. #beat/0 1 TMP is treated identically to
#beat/0 TMP 1. Secondly, as we always require
the predicate to be represented, an SRL-aware non-
terminal should always cover the predicate. This
property will be re-emphasized when we discuss
the rule extraction algorithm in Section 3. Figure
2 shows some examples of the SRL-aware SCFG
rules.

When the RHS non-terminal is an SRL-aware
non-terminal, we define the rule as a conversion rule.
A conversion rule is only generated when the right
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Xinjiang ‘s Yili holds propaganda drive

新疆 伊犁 大规模 开展 面对面 宣讲 活动

[#Hold/1]

[#Hold/0_1]

[#Hold/0]

[#Hold][X]

[X] [X]

[X]

[X] [X]

Some SRL-aware Rules :  
[#Hold/0_1]  ( [#Hold/0] 面对面 宣讲 活动, [#Hold/0] propaganda drive)
[#Hold/0_1]  ( 新疆 伊犁 大规模 [#Hold/1], Xinjiang’s Yili [#Hold/1])
[#Hold/0_1]  ( 新疆 [X1]大规模 [#Hold/1], Xinjiang’s [X1 ] [#Hold/1])
[#Hold/0_1]  ( [X1]hold [X2], [X1] hold [X2])
[#Hold/1] ([#Hold] 面对面宣讲活动, [#Hold] propaganda drive)
[#Hold/0]  (新疆 伊犁 大规模 [#Hold], Xinjiang’s Yili [#Hold])
[#Hold]  (开展 , holds)

Special SRL-aware conversion rule:  [X]  [#Hold/0_1]

Figure 2: Example SRL structure with word alignment

hand side is a complete SRL structure. For exam-
ple, #hold/0 is not a complete SRL structure in
Figure 2, because it lacks of a required argument,
while #hold/0 1 is a complete SRL structure. In
this case, the conversion rule X → #hold/0 1
will be extracted from the example shown in Fig-
ure 2, but not the other. Together with the glue
rules that commonly used in Hiero decoder, i.e.
S → (S X1, S X1) and S → (X1, X1), the conver-
sion rules ensures that whenever SRL-aware SCFG
rules are used in parsing, the output parse tree con-
tains only complete SRL structures. This is because
only complete SRL structures that we have observed
in the training data can be converted back to the gen-
eral tag X .

After we have extracted the SRL-aware SCFG
rules, derivation can be done on the input of source
sentence. For example, the sentence 新疆 大规模
开展面对面宣讲活动 1 can generate the parse tree
and translation in Figure 3a) using the rules shown
in Figure 2. Also, we can see in Figure 3b) that in-
complete SRL structures cannot be generated due to
the absence of a proper conversion rule.

1The translation is Xinjiang’s Yili holds propaganda drive
and the Pinyin transliteration is Xinjiang daguimo kaizhan
mianduimian xuanjiang huodong

 

 

 
 

 
 
 

a) Sample of valid derivation 

b) Sample of invalid derivation 

Figure 3: Example of a derivations of sentence

We can see from the example in Figure 3a), that
the SRL-aware SCFG rules fit perfectly in the SCFG
framework. Therefore no modification need to be
made on a decoder, such as MosesChart decoder,for
instance (Hoang and Koehn, 2008). The main prob-
lem is how to extract the SRL-aware SCFG rules
from the corpus and estimate the feature values so
that it works together with the conventional Hiero
rules. In the next two sections we will present the
rule extraction algorithm and two alternative meth-
ods for comparison.

4 Rule Extraction Algorithm

The Hiero rule extraction algorithm uses the follow-
ing steps:

1. Extract the initial phrases with the commonly
used alignment template heuristics. To reduce
the number of phrases extracted, an additional
restriction is applied that the boundary words
must be aligned on both sides. Also, the maxi-
mum length of initial phrases is fixed, and usu-
ally set to 10.
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2. If an initial phrase pair contains another phrase
pair, then we can replace the embedded phrase
pairs with non-terminal X . Restrictions also
apply in this stage. Firstly the source side
phrase can only contain two or less non-
terminals. Secondly, two source side non-
terminals must not be next to each other. And
finally, after the substitution, at least one re-
maining terminal in the source side should have
alignment links to the target side terminals.

It is easy to see this scheme is not able to han-
dle the extraction of SRL-aware SCFG rules. The
length of initial phrases is limited and it may not be
able to cover a complete predicate-argument struc-
ture. In the meantime, the restrictions on unaligned
words on the boundaries will cause a large number
of SRL-aware SCFG rules to be excluded. There-
fore, a modified algorithm is proposed to handle ex-
traction of SRL-aware SCFG rules.

One sentence may have multiple verbs and, there-
fore, multiple PA structures. Different PA structures
may be nested within each other. However we do not
want to complicate the representation by attempting
to build a tree structure from multiple structures. In-
stead, we treat them independently.

For each word-aligned sentence pair, if there is no
PA structure given, we run the general Hiero extrac-
tion algorithm. Otherwise, for each PA structure, we
apply the algorithm for SRL-aware rule extraction,
which takes two steps, extracting the initial SRL-
aware phrases and extracting the SRL-aware SCFG
rules.

4.1 Extraction of Initial SRL-aware Phrases
First, a different heuristics is used to extract initial
SRL-aware phrases. These phrases have the follow-
ing properties:

1. On the target side, the phrase covers at least one
complete constituent in the PA structure, which
must include the predicate. The phrase pair can
include words that are not part of any argument;
however it cannot include partial arguments. In
Figure 4b), the phrase pair is not included in the
initial SRL-aware phrases because it includes a
word A from argument ARG2. However, in
Figure 4a), inclusion of the first target word A,
which is not part of any argument, is allowed.

A A

ARG0 PRED ARG1 ARG2 ARG0 PRED ARG1 ARG2

a) Words (A) that are not part of any b) Words (A) in other argumentsa) Words (A) that are not part of any 
argument are allowed.

b) Words (A) in other arguments 
(ARG2) are not allowed 

B C

A

ARG0 PRED ARG1 ARG2 ARG0 PRED ARG1 ARG2

) U li d d (A) th d) U li d d (B C) thc) Unaligned words (A) on the 
boundaries of arguments (ARG1)  
are allowed

d) Unaligned words (B,C) on the 
boundaries of  source side  phrases 
are not allowed

Figure 4: Demonstration of restrictions of whether or not
a rule is included in initial SRL-aware phrases. The sub-
figures a) and c) show two cases that unaligned words
or words not in any arguments are allowed in extracted
phrases and sub-figures b) and d) show two cases that the
phrases are excluded from the phrase table. The shaded
blocks indicate the range of candidate phrases.

2. At least one word pair between the source and
the target side phrase is aligned, and no words
in the source or the target side phrase align
to words outside the phrase pair. These are
the standard heuristics used in the hierarchical
phrase extraction algorithm.

3. For the target side, unaligned words on the
boundaries are allowed only if the word is
found inside one of the arguments. On the
source side, however, unaligned words are not
allowed on the boundaries. The idea is demon-
strated in Figure 4c) and 4d). In Figure 4c), the
unaligned boundary word A is included in the
target side phrase because it is part of an argu-
ment. In Figure 4d), unaligned words B and C
are not allowed to be included in the proposed
phrase.

Given a PA structure of the sentence, we applied
following algorithm:

1. Extract all possible target side phrases that con-
tain the predicate and any number of argu-
ments.

2. For each of the extracted target side phrases
T , find the minimum span of the source side
phrase S that contains all the words aligned to
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the target side phrase. This can be done by sim-
ply calculating the minimum and maximum in-
dex of the source side words aligned to the tar-
get side phrase.

3. Find the minimum span of target side phrase
T1 that are aligned to the source side phrase S.
If the minimum span is already covered by the
target side phrase extracted in the previous step,
i.e. T1 = T , we add the phrase pair (S, T ) to
the pool of initial phrases. If the newly obtained
target side phrase is larger than the original one,
then we need to decide whether the new span
contains a word in another arguments. If so,
then we do not add the phrase pair, return to
step 2 and continue with the next target side
phrase. Otherwise, we update T := T1 and go
back to step 2.

The readers may notice that although in several
steps we need to determine whether there are links
outside the phrase pairs, the information is easy
to compute. We only need to keep track of the
maximum and minimum indices of words that each
source and target word aligns to. With the indices
pre-computed, in the worst case scenario we only
need to calculate M times for the maximum and
minimum indices, where M is the total number of
words in the source and the target side, before we
can determine the validity of the largest target side
SRL-aware phrase. The worst case complexity of
the algorithm is O(N ∗M), where N is the num-
ber of arguments in the segmentation. This is only
a rough upper bound for the time complexity; the
average case will be much better.

4.2 Extracting SRL-aware SCFG Rules
Before we generate rules from the extracted initial
phrases, we first need to assign non-terminal la-
bels to the initial SRL-aware phrases. We define a
map from the SRL structures to non-terminal tags
of SCFG rules. An SRL-aware non-terminal label
is a combination of the predicate label and the ar-
gument labels. The predicate label is the stemmed
predicate. We can eliminate the morphology to al-
leviate the problem of the data scarcity. In addition,
the argument labels represent all the arguments that
the current SRL-aware rule covers. The mapping is
trivial given the initial SRL-aware phrase extraction

algorithm, and it can be determined directly in the
first step.

The initial phrases already are SCFG rules. To
extract rules with non-terminals we will replace the
sub-phrases with non-terminals if the sub-phrase is
embedded in another phrase pair. The algorithm is
similar to that described by Chiang (2005). However
we apply new restrictions because we now have two
sets of different initial phrases. If the outer rule is
SRL-aware, we allow both sets of the initial phrases
to be candidates of embedded phrases. However
if the outer rule is X , we do not allow a replace-
ment of SRL-aware SCFG rules within it. There-
fore we will have rules where LHS non-terminals
are SRL-aware, and some RHS non-terminals are X ,
but not vice versa. The reason for the restriction is
to prevent the conversion of incomplete predicate-
argument structures back to X . As we mentioned
before, one of the design goals of our algorithm is to
ensure that once SRL-aware SCFG rules are used in
the derivation, a complete PA structure must be gen-
erated before it can be converted back. The only way
of converting SRL-aware tags back to X is through
special conversion rules, whose LHS is the X and
the RHS is a complete SRL-aware tag. Extracting
such conversion rules is trivial given the SRL labels.

The extracted rules are subject to filtering by the
same restrictions as conventional Hiero rules. The
filtering criteria include:

1. Two non-terminals on the source side should
not be adjacent.

2. We allow up to two non-terminals on the RHS.

3. The source side rule contains no more than five
tokens including terminals and non-terminals.

5 Decoder Integration

The extracted SCFG rules, both SRL-aware and X ,
will go through the feature estimation process to
produce the rule table. Integrated with the con-
version rules, most chart-based decoders such as
MosesChart (Hoang and Koehn, 2008), cdec (Dyer
et al, 2010) and Joshua (Li et al, 2009) can use these
rules in decoding. We applied MosesChart for tun-
ing and decoding.

While the SRL-aware SCFG rules are used to con-
strain the search space and derivation, we do not in-
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mt02 mt03 mt04 mt05 mt08 bl-nw bl-wb dv-nw dv-wb avg

BLEU 29.56 27.02 30.28 26.80 21.16 21.96 20.10 24.26 20.13 n/a
Baseline TER 68.87 70.19 67.18 70.60 69.93 64.44 64.74 63.21 66.61 n/a

(T-B)/2 19.66 21.59 18.45 21.90 24.39 21.24 22.32 19.48 23.24 n/a
BLEU +0.33 −0.50 +0.20 +0.47 −0.16 +1.24 +1.13 +0.39 +1.35 +0.49

SRL TER −1.58 −1.77 −1.93 −1.68 −0.71 −0.29 −0.22 −1.36 −1.34 −1.21
(T-B)/2 −0.95 −0.63 −1.07 −1.08 −0.28 −0.76 −0.68 −0.88 −1.35 −0.85

Table 1: Experiment results on Chinese-English translation tasks, bl-nw and bl-wb are newswire and weblog parts for
DEV07-blind, dv-nw and dv-wb are newswire and weblog parts for DEV07-dev. We present the BLEU scores, TER
scores and (TER-BLEU)/2.

troduce new features into the system. The features
we used in the decoder are commonly used, includ-
ing source and target rule translation probabilities,
the lexical translation probabilities, and the language
model probability. The feature values are calculated
by MLE estimation.

Besides the expanded rule table and conversion
rules, the decoder does not need to be modified. We
incorporate MERT to tune the feature weights. The
minimum modifications for the decoder make the
proposed method an easy replacement for Hiero rule
extractors.

6 Experiments and discussion

We performed experiments on Chinese to English
translation tasks. The data set we used in the exper-
iments is a subset of the FBIS corpus. We filter the
corpus with maximum sentence length be 30. The
corpus has 2.5 million words in Chinese side and
3.1 million on English side.

We adopted the ASSERT semantic role labeler
(Pradhan et al., 2004) to label the English side sen-
tences. The parallel sentences are aligned using
MGIZA++ (Gao and Vogel, 2008) and then the
proposed rule extraction algorithm was used in ex-
tracting the SRL-aware SCFG rules. We used the
MosesChart decoder (Hoang and Koehn, 2008) and
the Moses toolkit (Koehn et al, 2007) for tuning and
decoding. The language model is a trigram language
model trained on English GIGAWord corpus (V1-
V3) using the SRILM toolkit.

We used the NIST MT06 test set for tuning, and
experimented with an additional 9 test sets, includ-
ing MT02, 03, 04, 05, 08, and GALE test sets
DEV07-dev and DEV07-blind. DEV07-dev and
DEV07-blind are further divided into newswire and

weblog parts.
We experimented with the proposed method and

the alternative methods presented in section 4, and
the results of nine test sets are listed in Table 1. As
we can observe from the results, the largest improve-
ment we discovered from our proposed method is
more than 1 BLEU point, and a significant drop is
only observed on one test set, MT03, where we lose
0.5 BLEU points. Averaged across all the test sets,
the improvement is 0.49 BLEU points on the small
training set. When TER is also taken into account,
all of the nine test sets showed consistent improve-
ment. The (TER-BLEU)/2 score, which we used
as the primary evaluation metric, improved by 0.85
across nine test sets.

As we expected, the coverage of SRL-aware
SCFG rules is not as good as the Hiero rules. We
analyzed the top-best derivation of the results. Only
1836 out of 7235 sentences in the test sets used SRL-
aware SCFG rules. However, the BLEU scores on
the 1836 sentences improved from 27.98 in the base-
line system to 28.80, while the remaining 5399 sen-
tences only improved from 30.13 to 30.22. The ob-
servation suggests the potential for further improve-
ment if we can increase the coverage by using more
data or by modifying the mapping from tags to the
structures to make rules more general.

We display the hypothesis of a sentence in Fig-
ure 5 to demonstrate a concrete example of improve-
ments obtained by using the method,. As this figure
demonstrate, the SRL-aware SCFG rules enable the
system to pick the correct structure and reordering
for the verbs trigger and enter.

Given the results presented in the paper, the ques-
tion arises as to whether it is prudent to integrate
multiple formalisms or labeling systems, such as
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Ukraine because of the chaos triggered by the presidential election has entered the third week 

Ukraine today because of the chaos triggered in the third week of the presidential election  

The chaos caused by Ukraine's presidential election has entered its third week.  
The turmoil in Ukraine triggered by the presidential election entered the third week 
The chaos sparked off by the presidential election in Ukraine has entered its third week.  
Ukraine heads into a third week of turmoil caused by the presidential election 

SRLTag 

Baseline 

Source 

References 

Figure 5: An example of improvement caused by better attachment of verbs and its arguments

syntactic parsing or SRL labeling. Hierarchical
phrase-based machine translation is often criticized
for not explicitly incorporating linguistic knowl-
edge. On the other hand, fully syntactic-based ma-
chine translation suffers from low coverage of rules.
The methodology in this paper, in contrast, intro-
duces linguistic information to assist a formalism
that does not incorporate linguistic information. The
merits of doing so are obvious. While most parts of
the system are not changed, a portion of the system
is considerably improved. Also, the system encodes
the information in the non-terminal tags, which is
widely used in other methods such as SAMT. How-
ever, it is not necessary an optimal solution. Huang
et al in a very recent work (Huang et al., 2010) pro-
posed using vector space to represent similarity be-
tween the syntactic structures. This is also an inter-
esting possible direction to explore in the near fu-
ture.

7 Conclusion and future work

In this paper we presented a method of utilizing the
target side predicate-argument structure to assist Hi-
erarchical Phrase-based Machine Translation. With
a hybrid rule extraction algorithm, we can extract
SRL-aware SCFG rules together with conventional
Hiero rules. Additional conversion rules ensure the
generated predicate-argument structures are com-
plete when SRL-aware SCFG rules are used in the
decoding procedure. Experimental results showed
improvement on BLEU and TER metrics with 9
test sets, and even larger improvements are observed
when only considering the sentences in which SRL-
aware SCFG rules are used for the top-best deriva-
tion.

We are currently following three directions for
the future work. The first focuses on improving the
quality of the rules and feature estimation. We are
investigating different labeling systems other than
the relatively simple PropBank labeling system, and
plan to experiment with different methods of map-
ping structure to the SRL-aware labels.

Recent advances in vector space representations
on the syntactic structures, which may be able to
work with, or replace the SRL-aware non-terminal
labels, inspire the second direction.

Finally, the third direction is to incorporate source
side semantic role labeling information into the
framework. Currently our method can only use tar-
get side SRL information, but the source side in-
formation is also valuable. Exploring how to build
models to represent SRL information from both
sides into one complete framework is a promising
research direction to follow.
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Abstract

Ontologies and taxonomies are widely used to
organize concepts providing the basis for ac-
tivities such as indexing, and as background
knowledge for NLP tasks. As such, trans-
lation of these resources would prove use-
ful to adapt these systems to new languages.
However, we show that the nature of these
resources is significantly different from the
“free-text” paradigm used to train most sta-
tistical machine translation systems. In par-
ticular, we see significant differences in the
linguistic nature of these resources and such
resources have rich additional semantics. We
demonstrate that as a result of these linguistic
differences, standard SMT methods, in partic-
ular evaluation metrics, can produce poor per-
formance. We then look to the task of leverag-
ing these semantics for translation, which we
approach in three ways: by adapting the trans-
lation system to the domain of the resource;
by examining if semantics can help to predict
the syntactic structure used in translation; and
by evaluating if we can use existing translated
taxonomies to disambiguate translations. We
present some early results from these experi-
ments, which shed light on the degree of suc-
cess we may have with each approach.

1 Introduction

Taxonomies and ontologies are data structures that
organise conceptual information by establishing re-
lations among concepts, hierarchical and partitive
relations being the most important ones. Nowadays,
ontologies have a wide range of uses in many do-
mains, for example, finance (International Account-

ing Standards Board, 2007), bio-medicine (Col-
lier et al., 2008) (Ashburner et al., 2000) and li-
braries (Mischo, 1982). These resources normally
attach labels in natural language to the concepts and
relations that define their structure, and these la-
bels can be used for a number of purposes, such
as providing user interface localization (McCrae et
al., 2010), multilingual data access (Declerck et al.,
2010), information extraction (Müller et al., 2004)
and natural language generation (Bontcheva, 2005).
It seems natural that for applications that use such
ontologies and taxonomies, translation of the natu-
ral language descriptions associated with them is re-
quired in order to adapt these methods to new lan-
guages. Currently, there has been some work on
this in the context of ontology localisation, such
as Espinoza et al. (2008) and (2009), Cimiano et
al. (2010), Fu et al. (2010) and Navigli and Pen-
zetto (2010). However, this work has focused on the
case in which exact or partial translations are found
in other similar resources such as bilingual lexica.
Instead, in this paper we look at how we may gain an
adequate translation using statistical machine trans-
lation approaches that also utilise the semantic in-
formation beyond the label or term describing the
concept, that is relations among the concepts in the
ontology, as well as the attributes or properties that
describe concepts, as will be explained in more de-
tail in section 2.

Current work in machine translation has shown
that word sense disambiguation can play an im-
portant role by using the surrounding words as
context to disambiguate terms (Carpuat and Wu,
2007) (Apidianaki, 2009). Such techniques have
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been extrapolated to the translation of taxonomies
and ontologies, in which the “context” of a taxon-
omy or ontology label corresponds to the ontology
structure that surrounds the label in question. This
structure, which is made up of the lexical informa-
tion provided by labels and the semantic informa-
tion provided by the ontology structure, defines the
sense of the concept and can be exploited in the dis-
ambiguation process (Espinoza et al., 2008).

2 Definition of Taxonomy and Ontology
Translation

2.1 Formal Definition
We define a taxonomy as a set of concepts, C, with
equivalence (synonymy) links, S, subsumption (hy-
pernymy) links, H , and a labelling function l that
maps each concept to a single label from a language
Σ∗. Formally we define a taxonomy, T , as a set of
tuples (C, S, H, l) such that S ⊆ P(C × C) and
H ⊆ P(C × C) and l is a function in C → Σ∗. We
also require that S is a transitive, symmetric and re-
flexive relation, and H is transitive. While we note
here that this abstraction does not come close to cap-
turing the full expressive power of many ontologies
(or even taxonomies), it is sufficient for this paper to
focus on the use of only equivalence and subsump-
tion relationships for translation.

2.2 Analysis of ontology labels
Another important issue to note here is that the
kind of language used within ontologies and tax-
onomies is significantly different from that found
within free text. In particular, we observe that the
terms used to designate concepts are frequently just
noun phrases and are significantly shorter than a
usual sentence. In the case of the relations between
concepts (dubbed object properties) and attributes
of concepts (data type properties), these are occa-
sionally labelled by means of verbal phrases. We
demonstrate this by looking at three widely used on-
tologies/taxonomies.

1. Friend of a friend: The Friend of a Friend
(FOAF) ontology is used to describe social
networks on the Semantic Web (Brickley and
Miller, 2010). It is a small taxonomy with very
short labels. Labels for concepts are compound
words made up of up to three words.

2. Gene Ontology: The Gene Ontology (Ash-
burner et al., 2000) is a very large database of
terminology related to genetics. We note that
while some of the terms are technical and do
not require translation, e.g., ESCRT-I, the ma-
jority do, e.g., cytokinesis by cell plate forma-
tion.

3. IFRS 2009: The IFRS taxonomy (International
Accounting Standards Board, 2007) is used for
providing electronic financial reports for audit-
ing. The terms contained within this taxon-
omy are frequently long and are entirely noun
phrases.

We applied tokenization and manual phrase anal-
ysis to the labels in these resources and the results
are summarized in table 1. As can be observed,
the variety of types of labels we may come across
when linguistically analysing and translating ontol-
ogy and taxonomy labels is quite large. We can
identify the two following properties that may influ-
ence the translation process of taxonomy and ontol-
ogy labels. Firstly, the length of terms ranges from
single words to highly complex compound phrases,
but is still generally shorter than a sentence. Sec-
ondly, terms are frequently about highly specialized
domains of knowledge.

For properties in the ontology we also identify
terms which consist of:

• Noun phrases identifying concepts.

• Verbal phrases that are only made up of the
verb with an optional preposition.

• Complex verbal phrases that include the predi-
cate.

• Noun phrases that indicate possession of a par-
ticular characteristic (e.g., interest meaning X
has an interest in Y).

3 Creation of a corpus for taxonomy and
ontology translation

For the purpose of training systems to work on the
translation of ontologies and taxonomies, it is nec-
essary to create a corpus that has similar linguistic
structure to that found in ontologies and taxonomies.
We used the titles of Wikipedia1 for the following

1http://www.wikipedia.org
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Size Mean tokens per label Noun Phrases Verb Phrases
FOAF 79 1.57 94.9% 8.9%
Gene Ontology 33795 4.45 100.0% 0.0%
IFRS 2009 2757 8.39 100.0% 0.0%

Table 1: Lexical Analysis of labels

Link Direct Fragment Broken
German 487372 484314 1735 1323
Spanish 347953 346941 330 682

Table 2: Number of translation for pages in Wikipedia

reasons:

• Links to articles in different languages can be
viewed as translations of the page titles.

• The titles of articles have similar properties to
the ontologies labels mentioned above with an
average of 2.46 tokens.

• There are a very large number of labels. In fact
we found that there were 5,941,8902 articles of
which 3,515,640 were content pages (i.e., not
special pages such as category pages)

We included non-content pages (in particular, cat-
egory pages) in the corpus as they were generally
useful for translation, especially the titles of cat-
egory pages. In table 2 we see the number of
translations, which we further grouped according to
whether they actually corresponded to pages in the
other languages, as it is also possible that the trans-
lations links pointed to subsections of an article or
to missing pages.

Wikipedia also includes redirect links that allow
for alternative titles to be mapped to a given con-
cept. These can be useful as they contain synonyms,
but also introduce a lot more noise into the corpus
as they also include misspelled and foreign terms.
To evaluate the effectiveness of including these data
for creating a machine translation corpus, we took
a random sample of 100 pages which at least one
page redirects to (there are 1,244,647 of these pages
in total). We found that these pages had a total
of 242 extra titles from the redirect page of which

2All statistics are based on the dump on 17th March 2011

204 (84.3%) where true synonyms, 19 (7.9%) were
misspellings, 8 (3.3%) were foreign names for con-
cepts (e.g., the French name for “Zeebrugge”), and
11 (4.5%) were unrelated. As such, we conclude
that these extra titles were useful for constructing the
corpus, increasing the size of the corpus by approx-
imately 50% across all languages. There are sev-
eral advantages to deriving a corpus from Wikipedia,
for example it is possible to provide some hierarchi-
cal links by the use of the category that a page be-
longs to, such as has been performed by the DBpedia
project (Auer et al., 2007).

4 Evaluation metrics for taxonomy and
ontology translation

Given the linguistic differences in taxonomy and
ontology labels, it seems necessary to investigate
the effectiveness of various metrics for the evalua-
tion of translation quality. There are a number of
metrics that are widely used for evaluating trans-
lation. Here we will focus on some of the most
widely used, namely BLEU (Papineni et al., 2002),
NIST (Doddington, 2002), METEOR (Banerjee and
Lavie, 2005) and WER (McCowan et al., 2004).
However, it is not clear which of these methods cor-
relate best with human evaluation, particularly for
the ontologies with short labels. To evaluate this
we collected a mixture of ontologies with short la-
bels on the topics of human diseases, agriculture,
geometry and project management, producing 437
labels. These were translated with web transla-
tion services from English to Spanish, in particu-
lar Google Translate3, Yahoo! BabelFish4 and SDL
FreeTranslation5. Having obtained translations for
each label in the ontology we calculated the evalua-
tion scores using the four metrics mentioned above.
We found that the source ontologies had an average

3http://translate.google.com
4http://babelfish.yahoo.com
5http://www.freetranslation.com
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BLEU NIST METEOR WER
Evaluator 1,
Fluency 0.108 0.036 0.134 0.122

Evaluator 1,
Adequacy 0.209 0.214 0.303 0.169

Evaluator 2,
Fluency 0.183 0.062 0.266 0.164

Evaluator 2,
Adequacy 0.177 0.111 0.251 0.194

Evaluator 3,
Fluency 0.151 0.067 0.210 0.204

Evaluator 3,
Adequacy 0.143 0.129 0.221 0.120

Table 3: Correlation between manual evaluation results
and automatic evaluation scores

label length of 2.45 tokens and the translations gen-
erated had an average length of 2.16 tokens. We then
created a data set by mixing the translations from the
web translation services with a number of transla-
tions from the source ontologies, to act as a control.
We then gave these translations to 3 evaluators, who
scored them for adequacy and fluency as described
in Koehn (2010). Finally, we calculated the Pearson
correlation coefficient between the automatic scores
and the manual scores obtained. These are presented
in table 3 and figure 1.

As we can see from these results, one metric,
namely METEOR, seems to perform best in evaluat-
ing the quality of the translations. In fact this is not
surprising as there is a clear mathematical deficiency
that both NIST and BLEU have for evaluating trans-
lations for very short labels like the ones we have
here. To illustrate this, we recall the formulation of
BLEU as given in (Papineni et al., 2002):

BLEU = BP · exp(
N∑

n=1

wn log pn)

Where BP is a brevity penalty, wn a weight value
and pn represents the n-gram precision, indicating
how many times a particular n-gram in the source
text is found among the target translations. We note,
however, that for very short labels it is highly likely
that pn will be zero. This creates a significant issue,
as from the equation above, if any of the values of pn

are zero, the overall score, BLEU, will also be zero.

Figure 1: Correlation between manual evaluation results
and automatic evaluation scores

For the results above we chose N = 2, and cor-
rected for single-word labels. However, the scores
were still significantly worse, similar problems af-
fect the NIST metric. As such, for the taxonomy
and ontology translation task we do not recommend
using BLEU or NIST as an evaluation metric. We
note that METEOR is a more sophisticated method
than WER and, as expected, performs better.

5 Approaches for taxonomy and ontology
translation

5.1 Domain adaptation

It is generally the case that many ontologies and tax-
onomies focus on only a very specific domain, thus
it seems likely that adaptation of translation systems
by use of an in-domain corpus may improve trans-
lation quality. This is particularly valid in the case
of ontologies which frequently contain “subject” an-
notations6 for not only the whole data structure but
often individual elements. To demonstrate this we
tried to translate the IFRS 2009 taxonomy using
the Moses Decoder (Koehn et al., 2007), which we
trained on the EuroParl corpus (Koehn, 2005), trans-
lating from Spanish to English. As the IFRS taxon-
omy is on the topic of finance and accounting, we

6For example from the Dublin Core vocabulary: see http:
//dublincore.org/
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Baseline With domain adaptation
WER∗ 0.135 0.138
METEOR 0.324 0.335
NIST 1.229 1.278
BLEU 0.090 0.116

Table 4: Results of domain-adapted translation. ∗Lower
WER scores are better

chose all terms from our Wikipedia corpus which
belonged to categories containing the words: “fi-
nance”, “financial”, “accounting”, “accountancy”,
“bank”, “banking”, “economy”, “economic”, “in-
vestment”, “insurance”and “actuarial” and as such
we had a domain corpus of approximately 5000
terms. We then proceeded to recompute the phrase
table using the methodology as described in Wu et
al, (2008), computing the probabilities as follows for
some weighting factor 0 < λ < 1:

p(e|f) = λp1(e|f) + (1− λ)pd(e|f)

Where p1 is the EuroParl trained probability and pd

the scores on our domain subset. The evaluation for
these metrics is given in table 4. As can be seen
with the exception of the WER metric, the domain
adaption does seem to help in translation, which cor-
roborates the results obtained by other authors.

5.2 Syntactic Analysis
One key question to figure out is: if we have a se-
mantic model can this be used to predict the syntac-
tic structure of the translation to a significant degree?
As an example of this we consider the taxonomic
term “statement”, which is translated by Google
Translate7 to German as “Erklärung”, whereas the
term “annual statement” is translated as “Jahresab-
schluss”. However, if the taxonomy contains a sub-
sumption (hypernymy) relationship between these
terms we can deduce that the translation “Erklärung”
is not correct and the translation “Abschluss” should
be preferred. We chose to evaluate this idea on the
IFRS taxonomy as the labels it contains are much
longer and more structured than some of the other
resources. Furthermore, in this taxonomy the origi-
nal English labels have been translated into ten lan-
guages, so that it is already a multilingual resource

7Translations results obtained 8th March 2011

P (syn|s) P (syn|p) P (syn|n)

English 0.147 0.012 0.001
Dutch 0.137 0.011 0.001
German 0.125 0.007 0.001
Spanish 0.126 0.012 0.001

Table 5: Probability of syntactic relationship given a se-
mantic relationship in IFRS labels

that can be used as gold standard. Regarding the
syntax of labels, it is often the case that one term is
derived from another by addition of a complemen-
tary phrase. For example the following terms all ex-
ist in the taxonomy:

1. Minimum finance lease payments receivable

2. Minimum finance lease payments receivable, at
present value

3. Minimum finance lease payments receivable, at
present value, end of period not later than one
year

4. Minimum finance lease payments receivable, at
present value, end of period later than one year
and not later than five years

A high-quality translation of these terms would
ideally preserve this same syntactic structure in the
target language.We attempt to answer how useful
ontological structure is by trying to deduce if there
is a semantic relationship between terms then is it
more likely that there is a syntactic relationship. We
started by simplifying the idea of syntactic depen-
dency to the following: we say that two terms are
syntactically related if one label is a sub-string of
another, so that in the example above the first label
is syntactically related to the other three and the sec-
ond is related to the last two. For English, we found
that there were 3744 syntactically related terms ac-
cording to this criteria, corresponding to 0.1% of all
label pairs within the taxonomy, for all languages.
For ontology structure we used the number of rela-
tions indicated in the taxonomy, of which there are
1070 indicating a subsumption relationship and 987
indicating a partitive relationship8. This means that

8IFRS includes links for calculating certain values, i.e., that
“Total Assets” is a sum of values such as “Total Assets in Prop-
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e → f P (synf |syne, s) P (synf |syne, p) P (synf |syne, n)

English → Spanish 0.813 ± 0.059 0.750 ± 0.205 0.835 ± 0.013
English → German 0.835 ± 0.062 0.417 ± 0.212 0.790 ± 0.013
English → Dutch 0.875 ± 0.063 0.833 ± 0.226 0.898 ± 0.013
Average 0.841 ± 0.035 0.665 ± 0.101 0.841 ± 0.008

Table 6: Probability of cross-lingual preservation of syntax given semantic relationship in IFRS. Note here s refers to
the source language and t to the target language. Error values are 95% of standard deviation.

0.08% of label pairs were semantically related. We
then examined if the semantic relation could predict
whether there was a syntactic relationship between
the terms in a single language. We define Ns as the
number of label pairs with a subsumption relation-
ship and similarly define Np, Nn and Nsyn for parti-
tive, semantically unrelated and syntactically related
pairs. We also define Ns∧syn, Np∧syn and Nn∧syn

for label pairs with both subsumption, partitive or no
semantic relation and a syntactic relationships. As
such we define the following values

P (syn|s) =
Ns∧syn

Ns

Similarly we define P (syn|p) and P (syn|n) and
present these values in table 5 for four languages.

As we can see from these results, it seems that
both subsumption and partitive relationships are
strongly indicative of syntactic relationships as we
might expect. The second question is: is it more
likely that we see a syntactic dependency in trans-
lation if we have a semantic relationship, i.e., is the
syntax more likely to be preserved if these terms are
semantically related. We define Nsyne as the value
of Nsyn for a language e, e.g., Nsynen is the num-
ber of syntactically related English label pairs in the
taxonomy. As each label has exactly one transla-
tion we can also define Nsyne∧synf∧s as the number
of concepts whose labels are syntactically related in
both language e and f and are semantically related
by a subsumption relationship; similarly we define
Nsyne∧synf∧p and Nsyne∧synf∧n. Hence we can de-
fine

P (synf |syne, s) =
Nsynf∧syne∧s

Nsyne∧s

erty, Plant and Equipment”, we view such a relationship as se-
mantically indicative that one term is part of another, i.e., as
partitive or meronymic

And similarly define P (synf |syne, p) and
P (synf |syne, n). We calculated these values on
the IFRS taxonomies, the results of which are
represented in table 6.

The partitive data was very sparse, due to the fact
that only 15 concepts in the source taxonomy had a
partitive relationship and were syntactically related,
so we cannot draw any strong conclusions from it.
For the subsumption relationship we have a clearer
result and in fact averaged across all language pairs
we found that the likelihood of the syntax being pre-
served in the translation was nearly exactly the same
for semantically related and semantically unrelated
concepts. From this result we can conclude that
the probability of syntax given either subsumptive or
partitive relationship is not very large, at least from
the reduced syntactic model we used here. While
our model reduces syntax to n-gram overlap, we
believe that if there was a stronger correlation us-
ing a more sophisticated syntactic model, we would
still see some noticable effect here as we did mono-
lingually. We also note that we applied this to only
one taxonomy and it is possible that the result may
be different in a different resource. Furthermore,
we note there is a strong relationship between se-
mantics and syntax in a mono-lingual context and
as such adaption of a language model to incorporate
this bias may improve the translation of ontologies
and taxonomies.

5.3 Comparison of ontology structure

Our third intuition in approaching ontology trans-
lation is that the comparison of ontology or taxon-
omy structures containing source and target labels
may help in the disambiguation process of transla-
tion candidates. A prerequisite in this sense is the
availability of equivalent (or similar) ontology struc-
tures to be compared.
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Figure 2: Two approaches to translate ontology labels.

From a technical point of view, we consider the
translation task as a word sense disambiguation task.
We identify two methods for comparing ontology
structures, which are illustrated in Figure 2.

The first method relies on a multilingual resource,
i.e., a multilingual ontology or taxonomy. The on-
tology represented on the left-hand side of the fig-
ure consists of several monolingual conceptualiza-
tions related to each other by means of an inter-
lingual index, as is the case in the EuroWordNet lex-
icon (Vossen, 1999). For example, if the original
label is chair for seat in English, several translations
for it are obtained in Spanish such as: silla (for seat),
cátedra (for university position), presidente (for per-
son leading a meeting). Each of these correspond
to a sense in the English WordNet, and hence each
translation selects a hierachical structure with En-
glish labels. The next step is to compare the input
structure of the original ontology containing chair
against the three different structures in English rep-
resenting the several senses of chair and obtain the
corresponding label in Spanish.

The second method relies on a monolingual re-
source, i.e., on monolingual ontologies in the tar-
get language, which means that we need to compare

structures documented with labels in different lan-
guages. As such we obtain a separate translated on-
tologies for each combination of label translations
suggested by the baseline system. Selecting the cor-
rect translations is then clearly a hard optimization
problem.

For the time being, we have only experimented
with the first approach using EuroWordNet. Sev-
eral solutions have been proposed in the context of
ontology matching in a monolingual scenario (see
(Shvaiko and Euzenat, 2005) or (Giunchiglia et al.,
2006)). The ranking method we use to compare
structures relies on an equivalence probability mea-
sure between two candidate structures, as proposed
in (Trillo et al., 2007).

We assume that we have a taxonomy or ontology
entity o1 and we wish to deduce if it is similar to
another taxonomy or ontology entity o2 from a ref-
erence taxonomy or ontology (i.e., EuroWordNet) in
the same language. We shall make a simplifying as-
sumption that each ontology entity is associated with
a unique label, e.g., lo1 . As such we wish to deduce
if o1 represents the same concept as o2 and hence if
lo2 is a translation for lo1 . Our model relies on the
Vector Space Model (Raghavan and Wong, 1986)
to calculate the similarity between different labels,
which essentially involves calculating a vector from
the bag of words contained within each labels and
then calculating the cosine similarity between these
vectors. We shall denotes this as v(o1, o2). We then
use four main features in the calculation of the sim-
ilarity

• The VSM-similarity between the labels of enti-
ties, o1, o2.

• The VSM-similarity between any glosses (de-
scriptions) that may exist in the source or refer-
ence taxonomy/ontology.

• The hypernym similarity given to a fixed depth
d, given that set of hypernyms of an entity oi is
given as a set

hO(oi) = {h|(oi, h) ∈ H}

Then we calculate the similarity for d > 1 re-
cursively as
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sh(o1, o2, d) =

∑
h1∈hO(o1),h2∈hO(o2) σ(h1, h2, d)

|hO(o1)||hO(o2)|
σ(h1, h2, d) = αv(h1, h2)+(1−α)sh(h1, h2, d−1)

And for d = 1 it is given as

sh(o1, o2, 1) =

∑
h1∈hO(o1),h2∈hO(o2) v(h1, h2)

|hO(o1)||hO(o2)|

• The hyponym similarity, calculated as the hy-
pernym similarity but using the hyponym set
given by

HO(oi) = {h|(h, oi) ∈ H}

We then incorporate these factors into a vector x
and calculate the similarity of two entities as

s(o1, o2) = wTx

Where w is a weight vector of non-negative reals
and satisfies ||w|| = 1, which we set manually.

We then applied this to the FOAF ontol-
ogy (Brickley and Miller, 2010), which was manu-
ally translated to give us a reference translation. Af-
ter that, we collected a set of candidate translations
obtained by using the web translation resources ref-
erenced in section 3, along with additional candi-
dates found in our multilingual resource. Finally,
we used EuroWordNet (Vossen, 1999) as the refer-
ence taxonomy and ranked the translations accord-
ing to the score given by the metric above. In table
7, we present the results where our system selected
the candidate translation with the highest similarity
to our source ontology entity. In the case that we
could not find a reference translation we split the la-
bel into tokens and found the translation by select-
ing the best token. We compared these results to a
baseline method that selected one of the reference
translations at random.

These results are in all cases significantly stronger
than the baseline results showing that by compar-
ing the structure of ontology elements it is possible
to significantly improve the quality of translation.
These results are encouraging and we believe that
more research is needed in this sense. In particular,
we would like to investigate the benefits of perform-
ing a cross-lingual ontology alignment in which we
measure the semantic similarity of terms in different
languages.

Baseline Best Translation
WER∗ 0.725 0.617
METEOR 0.089 0.157
NIST 0.070 0.139
BLEU 0.103 0.187

Table 7: Results of selecting translation by structural
comparison. ∗Lower WER scores are better

6 Conclusion

In this paper we presented the problem of ontology
and taxonomy translation as a special case of ma-
chine translation that has certain extra characteris-
tics. Our examination of the problem showed that
the main two differences are the presence of struc-
tured semantics and shorter, hence more ambiguous,
labels. We demonstrated that as a result of this lin-
guistic nature, some machine translation metrics do
not perform as well as they do in free-text trans-
lations. We then presented the results of early in-
vestigations into how we may use the special fea-
tures of taxonomy and ontology translation to im-
prove quality of translation. The first of these was
domain adaptation, which in line with other authors
is useful for texts in a particular domain. We also in-
vestigated the possibility of using the link between
syntactic similarity and semantic similarity to help,
however although we find that mono-lingually there
was a strong correspondence between syntax and se-
mantics, this result did not seem to extend well to a
cross-lingual setting. As such we believe there may
only be slight benefits of using techniques, however
further investigation is needed. Finally, we looked at
using word sense disambiguation by comparing the
structure of the input ontology to that of an already
translated reference ontology. We found this method
to be very effective in choosing the best translations.
However it is dependent on the existence of a mul-
tilingual resource that already has such terms. As
such, we view the topic of taxonomy and ontology
translation as an interesting sub-problem of machine
translation and believe there is still much fruitful
work to be done to obtain a system that can cor-
rectly leverage the semantics present in these data
structures in a way that improves translation quality.
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Abstract 

A semantic feature for statistical machine trans-
lation, based on Latent Semantic Indexing, is 
proposed and evaluated. The objective of the 
proposed feature is to account for the degree of 
similarity between a given input sentence and 
each individual sentence in the training dataset. 
This similarity is computed in a reduced vector-
space constructed by means of the Latent Se-
mantic Indexing decomposition. The computed 
similarity values are used as an additional fea-
ture in the log-linear model combination ap-
proach to statistical machine translation. In our 
implementation, the proposed feature is dy-
namically adjusted for each translation unit in 
the translation table according to the current in-
put sentence to be translated. This model aims 
at favoring those translation units that were ex-
tracted from training sentences that are seman-
tically related to the current input sentence 
being translated. Experimental results on a 
Spanish-to-English translation task on the Bible 
corpus demonstrate a significant improvement 
on translation quality with respect to a baseline 
system. 

1 Introduction  

In recent years, the statistical approach to machine 
translation has gained a lot of attention from both 
the scientific and the commercial perspective. This 
has basically been a consequence of the increasing 
availability of bilingual training material as well as 
the increasing storage and processing capabilities 
of current computational systems, which have al-
lowed for the construction of machine translation 
systems with general-public acceptance quality. 

For several reasons, the most prominent statisti-
cal machine translation paradigm currently used is 
the phrase-based approach (Koehn et al., 2003), 
which has been derived from the IBM’s word-
based approach originally proposed in the early 
90’s (Brown et al., 1993). This original approach 
was heavily rooted on the noisy-channel model 
framework, which, in our view, continues to play 
an important role in the fundamental conception of 
current statistical machine translation. 

While one of the major assumptions of the 
noisy-channel model approach is the independence 
between decoding and source language probabili-
ties, there exists strong evidence on the important 
role played by source language structure and con-
text within the task of human translation (Padilla & 
Bajo, 1998). In this sense, the inability of main-
stream statistical machine translation to tackle with 
source-context information in a reliable way has 
been already recognized as a major drawback of 
the statistical approach, whereas the use of source-
context information has been proven to be effec-
tive in the case of example-based machine transla-
tion (Carl & Way, 2003). In this regard, attempts 
for incorporating source-context information into 
the phrase-based machine translation framework 
have been already reported (Carpuat & Wu, 2007; 
Carpuat & Wu, 2008; Haque et al., 2009; España-
Bonet et al., 2009; Haque et al., 2010; Costa-jussà 
& Banchs, 2010). However, as far as we know, no 
transcendental improvements in performance have 
been achieved or, at least, reported yet. 

In this work, we elaborate deeper on the ideas 
we have recently presented and discussed in Costa-
jussà & Banchs (2010), where we used a similarity 
metric between the source sentence to be translated 
and all the sentences in the training set as an addi-
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tional feature in the log-linear combination (Och & 
Ney, 2002) of models of a phrase-based translation 
system. Such a feature, which is dynamic in the 
sense that depends on the input sentence to be 
translated, is intended to favor those translation 
units which were extracted from training sentences 
that are similar to the current input sentence over 
those translation units which were extracted from 
different or unrelated sentences. Different from our 
original methodology, where sentence similarities 
were assessed over a term-document matrix repre-
sentation for words and statistical classes of words, 
here we compute sentence similarities in a low-
dimensional vector space constructed by means of 
Latent Semantic Indexing (Landauer et al., 1998). 

The rest of the paper is organized as follows. 
Section 2 presents an overview of some recent ap-
proaches attempting to introduce source-context 
information into the statistical machine translation 
framework. Then, section 3 introduces the meth-
odology that is proposed and evaluated in this 
work, and section 4 focuses on some implementa-
tion issues. Section 5 describes the experimental 
settings and results. Section 6 presents a manual 
evaluation of a selected sample of system transla-
tions and discusses the most relevant findings and 
observations. Finally, section 7 presents the most 
relevant conclusions of this work and provides 
guidelines for further research in this area. 

2 Related Work  

Several attempts for incorporating source-context 
information into the statistical machine translation 
framework have been reported in the literature dur-
ing the last few years. Without attempting to be 
comprehensive, we provide a brief overlook of 
some of the most sounded recent works within this 
area which are relevant to the phrase-based statisti-
cal machine translation approach. For a more com-
prehensive review of the state-of-the-art, the reader 
can refer to Haque et al. (2010). 

On the one hand, there are some semantic ap-
proaches. In Carpuat & Wu (2007), for instance, 
word sense disambiguation techniques are intro-
duced into statistical machine translation; and in 
Carpuat & Wu (2008), dynamically-built context-
dependant phrasal translation lexicons are shown 
to be more useful for phrase-based machine trans-
lation than conventional static phrasal translation 
lexicons, which ignore all contextual information. 

On the other hand, there are approaches which 
use machine learning techniques. In Haque et al. 
(2009), different syntactic and lexical features are 
proposed for incorporating information about the 
neighbouring words; and in España-Bonet et al. 
(2009), local classifiers are trained, using linguistic 
and context information, to translate a phrase. 

Finally, our recent approach, which is inspired 
on information retrieval techniques for measuring 
the source-context similarity between the input 
sentence to be translated and the original training 
material, was presented in Costa-jussà & Banchs 
(2010). As our present methodology is closely re-
lated to this approach, more details are provided in 
the following section. 

3 Proposed Methodology  

As already mentioned, the methodology proposed 
and evaluated in this work is based on the source-
context similarity approach we presented in Costa-
jussà & Banchs (2010). Different from that work, 
here we introduce the use Latent Semantic Index-
ing (Landauer et al., 1998) to construct a vector-
space model representation of the data collection in 
a reduced-dimensionality space before computing 
source sentence similarities. First, in subsection 
3.1, we review the source-context similarity ap-
proach. Then, in subsection 3.2 we present the ba-
sics of Latent Semantic Indexing.  

3.1 The Source-Context Similarity Approach 

The method we proposed in Costa-jussà & Banchs 
(2010) introduces and extended concept of transla-
tion unit or phrase by defining a tuple of three ele-
ments: phrase-source-side, phrase-target-side, and 
source-context: 

 
TU = {PSS ||| PTS ||| SC} . (1) 

    
In the most simplistic approach, the source-

context element of a given translation unit can be 
approximated by the complete source sentence the 
translation unit was originally extracted from. To 
illustrate this point, consider the following conven-
tional translation unit {vino|||wine} which has been 
extracted from the training sentence sus ojos están 
brillantes por el vino y sus dientes blancos por la 
leche (his eyes shall be red with wine and his teeth 
white with milk). According to (1), the extended 
translation unit TU is defined as {vino|||wine|||sus 
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ojos están brillantes por el vino y sus dientes blan-
cos por la leche}. Notice that, from this definition, 
identical source-target phrase pairs that have been 
extracted from different training sentences are re-
garded as different translation units! 

According to this definition, the relatedness of 
contexts between any translation unit and an input 
sentence to be translated can be computed by 
means of some distance or similarity metric over a 
semantic space representation for sentences. This 
idea is implemented in practice by means of the 
following dynamic feature function: 

 
F(TU,IN) = SIM(TU,IN) = SIM(SC,IN) , (2) 

 
where TU refers to a given translation unit, IN re-
fers to the input sentence to be translated, SC refers 
to the source-context component of translation unit 
TU (which in our implementation is the source 
training sentence which the translation unit was 
extracted from), and SIM is a similarity metric over 
a given model space.  

As implied in (2), the source-context feature to 
be implemented consists of a similarity measure-
ment between the input sentence to be translated 
IN and the source-context component SC of the 
available translation units.  

In Costa-jussà & Banchs (2010), we used the 
cosine of the angle between vectors in a term-
sentence matrix representation (Salton et al., 1975) 
for computing the source-context similarity feature 
described in (2). In this work, we use Latent Se-
mantic Indexing (Landauer et al., 1998) for pro-
jecting the term-sentence matrix representation 
into a low-dimensional space and use the cosine of 
the angle between vectors in the resulting reduced 
space for computing the source-context similarity 
feature. With this, we expect to reduce the noise 
resulting from data sparseness problems in the 
original full-dimensional representation. 

To better illustrate the concepts discussed here, 
let us consider the Spanish word vino and the cor-
responding English translations for its two senses: 
wine and came. Both translations can be automati-
cally inferred from training data; and Table 1 illus-
trates the resulting probability values derived for 
both senses of the Spanish word vino from the ac-
tual training dataset used in this work (a detailed 
description of the dataset is given in section 5).  

Notice from the table, how in general the most 
probable sense of vino in our considered dataset is 

wine. This actually happens because the English 
word wine is always related to the Spanish word 
vino, whereas the English word came can refer to 
many different inflections of the same Spanish 
word: vine, viniste, vino, vinimos, vinieron, etc. 

 
phrase φ(f|e) lex(f|e) φ(e|f) lex(e|f) 

{vino|||wine} 0.665198 0.721612 0.273551 0.329431
{vino|||came} 0.253568 0.131398 0.418478 0.446488

 
Table 1: Actual probability values for the two pos-
sible translations of the Spanish word vino. 
 

The idea of the proposed source-context feature 
is to use the contextual similarity between the input 
sentence to be translated and the sentences in the 
training dataset as an additional source of informa-
tion that should be helpful during decoding.  

Consider for instance the following two sen-
tences corresponding to the wine sense of vino:  

 
SC1: No habéis comido pan ni tomado vino ni licor , para que se-
páis que yo soy Jehovah vuestro Dios . (Ye have not eaten bread , 
neither have ye drunk wine or strong drink : that ye might know 
that I am the Lord your God .) 
 
SC2: Cuando fue divulgada esta orden , los hijos de Israel dieron 
muchas primicias de grano , vino nuevo , aceite , miel y de todos 
los frutos de la tierra . (And as soon as the commandment came 
abroad , the children of Israel brought in abundance the firstfruits 
of corn , wine , and oil , and honey , and of all the increase of the 
field .) 
 

and the following two sentences corresponding to 
the came sense of vino: 

 
SC3: Al tercer día vino Jeroboam con todo el pueblo a Roboam , 
como el rey había hablado diciendo : Volved a mí al tercer día . 
(So Jeroboam and all the people came to Rehoboam the third day , 
as the king had appointed , saying , Come to me again the third 
day .) 
 
SC4: Ella vino y ha estado desde la mañana hasta ahora . No ha 
vuelto a casa ni por un momento . (She came , and hath continued 
even from the morning until now , that she tarried a little in the 
house .) 
 
As the context for a given word is generally de-

termined by its surrounding words, we should be 
able to infer the correct sense for the word vino in 
a new Spanish sentence by considering its similar-
ity to sentences SC1, SC2, SC3 and SC4. Now, sup-
pose we want to translate the following two input 
sentences into English: 

 
IN1: Hasta que yo venga y os lleve a una tierra como la vuestra , 
tierra de grano y de vino , tierra de pan y de viñas , tierra de aceite 
de olivo y de miel . (Until I come and take you away to a land like 
your own land , a land of corn and wine , a land of bread and 
vineyards , a land of oil olive and of honey .) 
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IN2: Cuando amanecía , la mujer vino y cayó delante de la puerta 
de la casa de aquel hombre donde estaba su señor , hasta que fue 
de día . (Then came the woman in the dawning of the day , and fell 
down at the door of the man 's house where her lord was , till it 
was light .) 

 
We can select the appropriate sense for vino in 

each case by considering the sentence similarity 
between each of these two sentences and “training” 
sentences SC1, SC2, SC3 and SC4. The actual similar-
ity values are presented in Table 2. 

 
 SC1 SC2 SC3 SC4 

sense {vino|||wine} {vino|||came} 
IN1 0.0636 0.2666 0.0351 0.0310 
IN2 0.0023 0.0513 0.0888 0.0774 

 
Table 2: Actual similarity values between input 
and training sentences containing the word vino. 

 
As seen from the table, the source-context simi-

larity feature is actually giving preference to the 
phrase pair {vino|||wine} in the case of input sen-
tence IN1 and to {vino|||came} in the case of IN2. 
Notice that more than one similarity value is gen-
erally available for each phrase pair. In our pro-
posed implementation, the largest similarity value 
is the one that is retained. More details on how we 
compute these sentence similarities are given in the 
following subsection.   

3.2 Latent Semantic Indexing 

Latent Semantic Indexing (Landauer et al., 1998) 
can be regarded as the text mining equivalent of 
Principal Component Analysis (Pearson, 1901). 
Both methods are based on the singular value de-
composition (SVD) of a matrix (Golub & Kahan, 
1965), according to which a rectangular matrix X 
of dimensions MxN can be factorized as follows: 

 
X = U Σ VT , (3) 

 
where U and V are unitary matrices of dimensions 
MxM and NxN, respectively, and Σ is a diagonal 
matrix containing the singular values associated to 
the decomposition.  

According to Landauer et al. (1998), a low-
dimensional representation of a given document 
vector x can be obtained by means of the SVD de-
composition depicted in (3) as follows: 

 
yT = xT UMxL , (4) 

where y is the L-dimensional document vector cor-
responding to the projection of an M-dimensional 
document vector x, and UMxL is a matrix contain-
ing the L first column vectors of the unitary matrix 
U obtained from (3). 

Finally, the feature F(TU,IN) described in (2) is 
implemented as the internal product between nor-
malized versions of the vector projections obtained 
in (4). In our case, a vector-space model represen-
tation is constructed for sentences, instead of 
documents, and the source-context similarity val-
ues between translation units and input sentences 
are computed accordingly: 

 
F (TU, IN) = (5)  
<scT UMxL / |scTUMxL| , inT UMxL / |inTUMxL|> 
 
While the value of M is given by the vocabulary 

size in the data collection under consideration, se-
veral implementation questions arise regarding the 
most appropriate values for N (amount of sen-
tences to be used for estimating the projection op-
erator U) and L (the dimensionality of the reduced 
space). These and other implementation issues are 
discussed in detail in the following section.  

4 Implementation Issues  

This section discusses some important implemen-
tation issues that have to be dealt with in order to 
implement and evaluate the proposed approach. 
First, in subsection 4.1, the problem of implement-
ing a dynamic feature in a standard phrase-based 
machine translation framework is discussed. Then, 
in subsections 4.2 and 4.3, the problems of deter-
mining the amount of data required for estimating 
the Latent Semantic Indexing projection operator 
and the most appropriate dimensionality size for 
the reduced space representation are discussed.  

4.1 Implementing a Dynamic Feature 

As defined in (2), the value of the proposed source-
context similarity feature depends on each individ-
ual input sentence to be translated by the system. 
This definition implies a major difference between 
this feature and other conventional phrase-based 
translation features: it is a dynamic feature in the 
sense that it cannot be computed in advance before 
the input sentences to be translated are known. 

This on-the-fly requirement, along with the ex-
tended translation unit definition presented in (1), 

129



makes it not possible to directly implement the 
proposed methodology within a standard phrase-
based machine translation framework such as 
MOSES (Koehn et al., 2007). As it is not our in-
tention to develop a customized decoding tool for 
implementing and testing our proposed feature, we 
followed or previous implementation of an off-line 
version of the proposed methodology (Costa-jussà 
& Banchs, 2010), which, although very inefficient 
in the practice, allows us to evaluate the impact of 
the source-context feature on a state-of-the-art 
phrase-based translation system.  

According to this, our practical implementation 
is a follows: 
• Two sentence similarity matrices are com-

puted: one between sentences in the devel-
opment and training sets, and the other 
between sentences in the test and training 
datasets.  

• Each matrix entry mij should contain the 
similarity score between the ith sentence in 
the training set and the jth sentence in the 
development (or test) set. 

• For each sentence s in the test and develop-
ment sets, a phrase list LS of all potential 
phrases that can be used during decoding is 
extracted from the aligned training set. 

• The corresponding source-context similarity 
values are assigned to each phrase in lists LS 
according to values in the corresponding 
similarity matrices. 

• Each phrase list LS is collapsed into a phrase 
table TS by removing repetitions (when re-
moving repeated entries in the list, the larg-
est value of the source-context similarity 
feature is retained). 

• Each phrase table is completed by adding 
standard feature values (which are computed 
in the standard manner).  

• MOSES is used on a sentence-per-sentence 
basis, using a different translation table for 
each development (or test) sentence.  

4.2 Dataset for Latent Semantic Indexing 

Another important implementation issue that re-
quires attention is the computation of the Singular 
Value Decomposition described in (3). Ideally, the 
term-sentence matrix X to be decomposed should 
include all available data, i.e. training, develop-
ment and test sentences; however, in the practice, 

this is not possible because of two reasons. First, 
the sizes of typical datasets and vocabularies used 
in statistical machine translation systems are large 
enough to make Singular Value Decomposition 
unfeasible from a computational point of view 1 . 
Second, in a practical application system, the “test 
set” is actually unknown during the system con-
struction and training phases. In this way, a realis-
tic implementation should be able to work with 
previously unseen data. 

In order to overcome the problem of applying 
the Singular Value Decomposition described in (3) 
to the full term-sentence matrix of all available 
data, we implemented an approximated procedure. 
In our approximation, we compute the similarity 
matrix between two set of sentences as the average 
of several similarity matrices that are computed 
over reduced space projections estimated with dif-
ferent random samples of the training data sen-
tences. In this way, our source-context similarity 
feature, previously defined in (5), becomes: 

 
F (TU, IN) ≈ (6)  

    1/K Σk <scTUk
MxL/|scTUk

MxL| , inTUk
MxL/|inTUk

MxL|>  
 
where Uk

MxL refers to a projection operator that has 
been computed by means of the Singular Valued 
Decomposition of a term-sentence matrix Xk con-
structed with a random sample of N sentences. 
Note that a total of K different similarity scores are 
averaged in (6). 

In order to evaluate the variability of the similar-
ity values estimated by this approximation, several 
experiments were conducted for different values of 
N and L, where the variance of the estimates over 
K=10 different realizations were computed. Figure 
1 shows the resulting standard deviations for simi-
larity values estimated for different values of L 
when varying N (upper panel), and for different 
values of N when varying L (lower panel). 

As seen from the figure, the range 500<N<1000 
seems to constitute a good compromise between 
the size of selected random sentence sets and the 
observed variability for similarity value estimates, 
as it provides a significant reduction in the com-
puted standard deviations with respect to N=100, 
and not important improvement is observed when 
                                                           
1 Even in the case of a small dataset such as the one consid-
ered here (see details in section 5) the Singular Value Decom-
position of the full term-sentence matrix can take several 
weeks to be completed in and standard Linux-based server. 
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N>1000. According to this, we selected N=1000 
for our proposed approximation described in (6). 

 

 
 
Figure 1: Standard deviations (STD) for similarity 
values between development and test datasets (de-
scribed in section 5) estimated for different values 
of L when varying N (upper panel), and for differ-
ent values of N when varying L (lower panel). In 
all cases K=10. 

4.3 Reduced Space Dimensionality 

The third and final implementation issue to be dis-
cussed is the selection of the reduced space dimen-
sionality. It have been reported in the literature that 
dimensionality reduction, by means of Latent Se-
mantic Indexing, into the range between 100 and 
1000 provides good space representations for word 
and sentence association applications (Landauer et 
al., 1998). Although it is reasonable to assume this 
condition to be valid also for the application under 
consideration, we conducted a more detailed ex-
ploratory analysis for selecting the dimensionality 
L to be used in our experiments. 

First, we studied the distributions of context-
similarity values computed according to (6) over 
the available data. Figure 2 shows the average dis-
tributions of similarities between sentences in the 
development and training datasets (see data de-
scription in section 5) at different dimensionality 
values. As can be seen from the figure, a dimen-
sionality value of L=100 exhibits a very nice dis-
tribution of similarity values; however, according 
to the results depicted in Figure 1 (lower panel), 
the variability of estimates for such a low dimen-
sionality is relatively high. On the other hand, no-
tice again from Figure 2, how a much larger 

dimensionality value such as L=5000 already starts 
to exhibit a distribution of similarities that is heav-
ily biased towards the low similarity region. Ac-
cording to this result, and taking also into account 
the results in Figure 1, we finally decided setting 
the dimensionality of the reduced space to L=500. 

 

 
 
Figure 2: Average distributions of similarity values 
between development and training sentences com-
puted at different dimensionality values. For all 
cases presented here N=500 and K=10. 

5 Experimental Work     

This section describes the experimental work con-
ducted to evaluate the incidence of the proposed 
source-context similarity feature on translation 
quality for a state-of-the-art phrase-based statistical 
machine translation. First, subsection 5.1 describes 
the dataset and experimental setting. Then, subsec-
tion 5.2 presents and discusses the results. 

5.1 Experimental Setting 

The proposed methodology is evaluated on the Bi-
ble dataset (Chew et al., 2006) Spanish-to-English 
translation task, using the MOSES framework as 
baseline phrase-based statistical machine transla-
tion system (Koehn et al., 2007). Table 3 presents 
the main statistics of the bilingual corpus used. 

 
dataset lang. sentences tokens vocab av. lenght 
Train Spa 28,887 781,113 28,178 27 
Train Eng 28,887 848,776 13,126 29 
Test Spa 500 13,312 2,879 27 
Test Eng 500 14,562 2,156 29 
Dev Spa 500 13,170 2,862 26 
Dev Eng 500 14,537 2,095 29 
 

Table 3: Main statistics of the bilingual corpus un-
der consideration (number of sentences, tokens, 
vocabulary, and average sentence length) 
 

Regarding the baseline system, we used the de-
fault parameters of MOSES, which include the 
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grow-final-diagonal alignment symmetrisation, the 
lexicalized reordering, a 5-gram language model 
using Kneser-Ney smoothing, and phrases up to 
length 10, among others. The optimization was 
done using the standard MERT procedure (Och & 
Ney, 2002). 

5.2 Experimental Results 

Table 4 presents the translation BLEU, measured 
over the development and test sets, for three differ-
ent system implementations: the baseline system, a 
second system implementing the source-context 
similarity feature over the full-dimensional vector 
space (FVS), just as we implemented it in Costa-
jussà & Banchs (2010), and a third system imple-
menting the source-context similarity feature based 
on Latent Semantic Indexing (LSI). 

 
 Development Test 

Baseline 39.92 38.92 
Source-context (FVS) 40.61 39.43 
Source-context (LSI) 40.80 39.86 
 

Table 4: BLEU scores over development and test 
datasets corresponding to three system implemen-
tations: baseline, and source-context similarity fea-
ture at full-dimensional vector space (FVS) and by 
means of Latent Semantic Indexing (LSI).   
 

As seen from the table, the system implementing 
the Latent Semantic Indexing based source-context 
similarity feature outperforms the baseline system 
by almost one absolute BLEU point, and the full-
dimensional vector space system by some less than 
a half absolute BLEU point. An analysis of signifi-
cance (Koehn, 2004) showed that the differences 
among the systems are statistically significant.  

A more comprehensive manual analysis of both 
the baseline and source-context LSI system outputs 
was required to better asses the incidence of the 
implemented source-context similarity feature on 
the generated translations. The result of this analy-
sis is presented in the following section. 

6 Manual Evaluation 

This section presents and discusses the results of a 
manual evaluation that was conducted over a sam-
ple set of translations. Previous to the manual 
evaluation, we performed a sentence-based auto-
matic evaluation using BLEU for the 500 sen-
tences in the test dataset. We obtained that our 

proposed approach is better than the baseline sys-
tem in 208 sentences, while the baseline is better 
than our system in 173 sentences and the remain-
ing 119 had the same BLEU scores. 

Some output sentences were randomly selected, 
regardless of which system performed better, for 
conducting a manual inspection. From these sen-
tences, we have extracted some segments that illus-
trate specific cases in which our proposed source-
context feature is actually helping to select a better 
translation unit according to the context of the in-
put sentence being translated. Five of these seg-
ments are presented in Table 5, where the relevant 
fragments within the segments are shown in bold.  

 
Example 1  

source No des sueño a tus ojos ni dejes dormitar tus párpa-
dos . 

reference Give not sleep to thine eyes , nor slumber to thine 
eyelids . 

baseline Not sleep in thy sight , Let neither slumber thy 
eyelids . 

LSI-context
 

Give not sleep to thine eyes neither slumber , Let 
thine eyelids . 

Example 2  
source Entonces ellos se acercaron , echaron mano a Jesús 

y le prendieron … 
reference Then came they , and laid hands on Jesus , and took 

him … 
baseline And they came near , and cast hand to Jesus , and 

took him … 
LSI-context

 
And they came near , and laid hands on Jesus , and 
took him … 

Example 3  
source Y al tercer día , he aquí que un hombre vino del 

campamento de Saúl … 
reference It came even to pass on the third day , that , behold , a 

man came out of the camp from Saul … 
baseline And the third day , behold , a man wine of the camp 

of Saul … 
LSI-context And the third day , behold , there came a man of the 

camp of Saul … 
Example 4  

source … sed confortados ; sed de un mismo sentir … 
reference … be of good comfort , be of one mind … 
baseline … thirst confortados ; thirst of one mind 's sake … 

LSI-context … be ye confortados : be ye of one mind 's sake … 
Example 5  

source … según sus familias , según sus idiomas , en sus 
territorios y en sus naciones . 

reference … after their families , after their tongues , in their 
countries , and in their nations . 

baseline … according to their families , after their tongues , in 
their coasts , and in their nations . 

LSI-context … after their families , after their tongues , in their 
lands , and in their nations . 

 
Table 5: Sample segments where the LSI-based 
source-context feature has helped to accomplish 
better translation unit selections. 
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As seen from the table, the LSI-based source-
context system is clearly accomplishing more ap-
propriate unit selections. However, in most of the 
cases this does not imply either a better overall 
translation or a closer match to the available refer-
ence translation. This can explain the relative low 
BLEU gain achieved by the method.  

Similarly, we also extracted some segments that 
illustrate specific cases in which our proposed 
source-context feature fails in helping to select a 
better translation unit. Table 6 presents four of 
these cases. 

 
Example 1  

source … yo he sido enviado con malas noticias para ti . 
reference … for I am sent to thee with heavy tidings . 
baseline … for I have sent with evil tidings unto thee . 

LSI-context … I am sent with evil tidings unto thee . 
Example 2  

source … heredad de Jehovah son los hijos ; recompensa es 
el fruto del vientre . 

reference … children are an heritage of the Lord : and the fruit 
of the womb is his reward . 

baseline … the inheritance of the Lord , are the children ; 
reward is the fruit of the belly . 

LSI-context … the inheritance of the Lord are the children , and 
reward is the fruit of the belly . 

Example 3  
source … y que había enaltecido su reino por amor a su 

pueblo Israel . 
reference … and that he had exalted his kingdom for his 

people Israel 's sake . 
baseline … and for his kingdom was lifted up his people 

Israel . 
LSI-context … and for his kingdom was lifted up unto his 

people Israel . 
Example 4  

source Y sucederá que a causa de la abundancia de leche , 
comerá leche cuajada … 

reference And it shall come to pass , for the abundance of 
milk that he shall eat butter … 

baseline And it shall come to pass , that by reason of the 
multitude of milk , shall eat with milk cuajada … 

LSI-context And it shall come to pass by reason of the multitude 
of milk , and shall eat with milk cuajada … 

 
Table 6: Sample segments where the LSI-based 
source-context feature has failed to accomplish 
better translation unit selections. 
 

In the latter examples in Table 6, the proposed 
source-context feature is clearly failing to provide 
better lexical selections. In some cases, this seems 
to be due to the lack of enough source-context in-
formation in the input sentence to be translated. 
However, in other cases, it is because the source-
context feature alone is not able to compensate the 
system’s bias towards more frequent translations.   

7 Conclusions and Future Work  

A new semantically-motivated feature for statisti-
cal machine translation based on Latent Semantic 
Indexing has been proposed and evaluated. The 
objective of the proposed feature is to account for 
the degree of similarity between a given input sen-
tence and each individual sentence in the training 
dataset. This similarity is computed in a reduced 
vector-space constructed by means of the Latent 
Semantic Indexing decomposition.  

The computed similarity values are used as an 
additional feature in the log-linear model combina-
tion approach to statistical machine translation. In 
our implementation, the proposed feature is dy-
namically adjusted for each translation unit in the 
translation table according to the current input sen-
tence to be translated. 

Experimental results on a Spanish-to-English 
translation task on the Bible corpus showed sig-
nificant improvements of almost 1 and 0.5 absolute 
BLEU points with respect to a baseline system and 
a similar system evaluating sentence similarity at 
the full-dimensional vector space, respectively. A 
manual evaluation revealed that the proposed fea-
ture is actually helping the translation system to 
perform a better selection of translation units on a 
semantic basis.  

As future work, we intend to evaluate different 
association and distance metrics, as well as to ex-
tend the current notion of source-context from the 
input sentence to be translated to any other kind of 
available information beyond the input sentence 
limits. Similarly, different paradigms of semantic 
space representations, including those statistically 
motivated, will be studied and evaluated.  

Implementation issues are also to be revisited 
for better evaluating the impact of both the amount 
of training data and the dimensionality of the re-
duced space on the method’s performance. Finally, 
an on-line version of the method must be imple-
mented in order to be able to evaluate the proposed 
methodology over larger data collections.  
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Abstract

We present a rule extractor for SCFG-based
MT that generalizes many of the contraints
present in existing SCFG extraction algo-
rithms. Our method’s increased rule coverage
comes from allowing multiple alignments, vir-
tual nodes, and multiple tree decompositions
in the extraction process. At decoding time,
we improve automatic metric scores by signif-
icantly increasing the number of phrase pairs
that match a given test set, while our experi-
ments with hierarchical grammar filtering in-
dicate that more intelligent filtering schemes
will also provide a key to future gains.

1 Introduction

Syntax-based machine translation systems, regard-
less of the underlying formalism they use, depend
on a method for acquiring bilingual rules in that for-
malism to build the system’s translation model. In
modern syntax-based MT, this formalism is often
synchronous context-free grammar (SCFG), and the
SCFG rules are obtained automatically from parallel
data through a large variety of methods.

Some SCFG rule extraction techniques require
only Viterbi word alignment links between the
source and target sides of the input corpus (Chi-
ang, 2005), while methods based on linguistic con-
stituency structure require the source and/or target
side of the input to be parsed. Among such tech-
niques, most retain the dependency on Viterbi word
alignments for each sentence (Galley et al., 2004;
Zollmann and Venugopal, 2006; Lavie et al., 2008;
Chiang, 2010) while others make use of a general,

corpus-level statistical lexicon instead of individual
alignment links (Zhechev and Way, 2008). Each
method may also place constraints on the size, for-
mat, or structure of the rules it returns.

This paper describes a new, general-purpose rule
extractor intended for cases in which two parse trees
and Viterbi word alignment links are provided for
each sentence, although compatibility with single-
parse-tree extraction methods can be achieved by
supplying a flat “dummy” parse for the missing tree.
Our framework for rule extraction is thus most sim-
ilar to the Stat-XFER system (Lavie et al., 2008;
Ambati et al., 2009) and the tree-to-tree situation
considered by Chiang (2010). However, we signif-
icantly broaden the scope of allowable rules com-
pared to the Stat-XFER heuristics, and our approach
differs from Chiang’s system in its respect of the lin-
guistic constituency constraints expressed in the in-
put tree structure. In summary, we attempt to extract
the greatest possible number of syntactically moti-
vated rules while not allowing them to violate ex-
plicit constituent boundaries on either the source or
target side. This is achieved by allowing creation of
virtual nodes, by allowing multiple decompositions
of the same tree pair, and by allowing extraction of
SCFG rules beyond the minimial set required to re-
generate the tree pair.

After describing our extraction method and com-
paring it to a number of existing SCFG extraction
techniques, we present a series of experiments ex-
amining the number of rules that may be produced
from an input corpus. We also describe experiments
on Chinese-to-English translation that suggest that
filtering a very large extracted grammar to a more

135



Figure 1: Sample input for our rule extraction algorithm. It consists of a source-side parse tree (French) and a target-
side parse tree (English) connected by a Viterbi word alignment.

moderate-sized translation model is an important
consideration for obtaining strong results. Finally,
this paper concludes with some suggestions for fu-
ture work.

2 Rule Extraction Algorithm

We begin with a parallel sentence consisting of a
source-side parse tree S, a target-side parse tree T ,
and a Viterbi word alignment between the trees’
leaves. A sample sentence of this type is shown in
Figure 1. Our goal is to extract a number of SCFG
rules that are licensed by this input.

2.1 Node Alignment

Our algorithm first computes a node alignment be-
tween the parallel trees. A node s in tree S is aligned
to a node t in tree T if the following constraints are

met. First, all words in the yield of s must either
be aligned to words within the yield of t, or they
must be unaligned. Second, the reverse must also
hold: all words in the yield of t must be aligned to
words within the yield of s or again be unaligned.
This is analogous to the word-alignment consistency
constraint of phrase-based SMT phrase extraction
(Koehn et al., 2003). In Figure 1, for example, the
NP dominating the French words les voitures bleues
is aligned to the equivalent English NP node domi-
nating blue cars.

As in phrase-based SMT, where a phrase in one
language may be consistent with multiple possible
phrases in the other language, we allow parse nodes
in both trees to have multiple node alignments. This
is in contrast to one-derivation rule extractors such
as that of Lavie et al. (2008), in which each node
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in S may only be aligned to a single node in T and
vice versa. The French NP node Ma mère, for exam-
ple, aligns to both the NNP and NP nodes in English
producing Mother.

Besides aligning existing nodes in both parse trees
to the extent possible, we also permit the introduc-
tion of “virtual” nodes into either tree. Virtual nodes
are created when two or more contiguous children of
an existing node are aligned consistently to a node or
a similar set of two or more contiguous children of
a node in the opposite parse tree. Virtual nodes may
be aligned to “original” nodes in the opposite tree or
to other virtual nodes.

In Figure 1, the existing English NP node blue
cars can be aligned to a new virtual node in French
that dominates the N node voitures and the AP node
bleues. The virtual node is inserted as the parent
of N and AP, and as the child of the NP node di-
rectly above. In conjunction with node alignments
between existing nodes, this means that the English
NP blue cars is now aligned twice: once to the orig-
inal French NP node and once to the virtual node
N+AP. We thus replicate the behavior of “growing
into the gaps” from phrase-based SMT in the pres-
ence of unaligned words. As another example, a vir-
tual node in French covering the V node avait and
the ADV node toujours could be created to align
consistently with a virtual node in English covering
the VBD node had and the ADVP node always.

Since virtual nodes are always created out of chil-
dren of the same node, they are always consis-
tent with the existing syntactic structure of the tree.
Within the constraints of the existing tree structure
and word alignments, however, all possible virtual
nodes are considered. This is in keeping with our
philosophy of allowing multiple alignments with-
out violating constituent boundaries. Near the top
of the trees in Figure 1, for example, French virtual
nodes NP+VN+NP (aligned to English NP+VP) and
VN+NP+PU (aligned to VP+PU) both exist, even
though they overlap. In our procedure, we do allow a
limit to be placed the number of child nodes that can
be combined into a virtual node. Setting this limit
to two, for instance, will constrain node alignment
to the space of possible synchronous binarizations
consistent with the Viterbi word alignments.

2.2 Grammar Extraction

Given the final set of node alignments between the
source tree and the target tree, SCFG rules are ob-
tained via a grammar extraction step. Rule extrac-
tion proceeds in a depth-first manner, such that rules
are extracted and cached for all descendents of a
source node s before rules in which s is the left-hand
side are considered. Extracting rules where source
node s is the left-hand side consists of two phases:
decomposition and combination.

The first phase is decomposition of node s into
all distinct sets D = {d1, d2, . . . , dn} of descendent
nodes such that D spans the entire yield of node s,
where di ∈ D is node-aligned or is an unaligned ter-
minal for all i, and di has no ancestor a where a is a
descendent of s and a is node-aligned. Each D thus
represents the right-hand side of a minimal SCFG
rule rooted at s. Due to the introduction of overlap-
ping virtual nodes, the decomposition step may in-
volve finding multiple sets of decomposition points
when there are multiple nodes with the same span at
the same level of the tree.

The second phase involves composition of all
rules derived from each element of D subject to cer-
tain constraints. Rules are constructed using s, the
set of nodes Ts = {t | s is aligned to t}, and each
decomposed node set D. The set of left-hand sides
is {s} × Ts, but there may be many right-hand sides
for a given t and D. Define rhs(d) as the set of
right-hand sides of rules that are derived from d, plus
all alignments of d to its aligned set Td. If d is a
terminal, word alignments are used in the place of
node alignments. To create a set of right-hand sides,
we generate the set R = rhs(d1) × . . . × rhs(dn).
For each r ∈ R, we execute a combine operation
such that combine(r) creates a new right-hand side
by combining the component right-hand sides and
recalculating co-indexes between the source- and
target-side nonterminals. Finally, we insert any un-
aligned terminals on either side.

We work through a small example of grammar ex-
traction using Figure 2, which replicates a fragment
of Figure 1 with virtual nodes included. The En-
glish node JJ is aligned to the French nodes A and
AP, the English node NNS is aligned to the French
node N and the virtual node D+N, and the English
node NP is aligned to the French node NP and the
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Figure 2: A fragment of Figure 1 with virtual nodes (sym-
bolized by dashed lines) added on the French side. Nodes
D, N, and AP are all original children of the French NP.

virtual node N+AP. To extract rules from the French
node NP, we consider two potential decompositions:
D1 = {D+N, AP} and D2 = {les, N+AP}. Since
the French NP is aligned only to the English NP, the
set of left-hand sides is {NP::NP}, where we use the
symbol “::” to separate the source and target sides
of joint nonterminal label or a rule.

In the next step, we use cached rules and
alignments to generate all potential right-hand-side
pieces from these top-level nodes:

rhs(D+N) =

{
[D+N1] :: [NNS1],
[les voitures] :: [cars]

}

rhs(AP) =


[AP1] :: [JJ1],
[A1] :: [JJ1],
[bleues] :: [blue]


rhs(les) = ∅

rhs(N+AP) =



[N+AP1] :: [NP1],
[N1 AP2] :: [JJ2 NNS1],
[N1 A2] :: [JJ2 NNS1],
[voitures AP1] :: [JJ1 cars],
[voitures A1] :: [JJ1 cars],
[N1 bleues] :: [blue NNS1],
[voitures bleues] :: [blue cars]


Next we must combine these pieces. For example,
from D1 we derive the full right-hand sides

1. combine([les voitures]::[cars], [bleues]::[blue])
= [les voitures bleues]::[blue cars]

2. combine([les voitures]::[cars], [A1]::[JJ1])
= [les voitures A1]::[JJ1 cars]

3. combine([les voitures]::[cars], [AP1]::[JJ1])
= [les voitures AP1]::[JJ1 cars]

4. combine([D+N1]::[NNS1], [bleues]::[blue])
= [D+N1 bleues]::[blue NNS1]

5. combine([D+N1]::[NNS1], [A1]::[JJ1])
= [D+N1 A2]::[JJ2 NNS1]

6. combine([D+N1]::[NNS1], [AP1]::[JJ1])
= [D+N1 AP2]::[JJ2 NNS1]

Similarly, we derive seven full right-hand sides from
D2. Since rhs(les) is empty, rules derived have
right-hand sides equivalent to rhs(N+AP) with the
unaligned les added on the source side to com-
plete the span of the French NP. For example,
combine([N+AP1]::[NP1]) = [les N+AP1]::[NP1].

In the final step, the left-hand side is added to each
full right-hand side. Thus,

NP :: NP→ [les voitures A1] :: [JJ1 cars]

is one example rule extracted from this tree.
The number of rules can grow rapidly: if the parse

tree has a branching factor of b and a depth of h,
there are potentially O(2bh

) rules extracted. To con-
trol this, we allow certain constraints on the rules ex-
tracted that can short-circuit right-hand-side forma-
tion. We allow separate restrictions on the number
of items that may appear on the right-hand side of
phrase pair rules (maxp) and hierarchical grammar
rules (maxg). We also optionally allow the exclu-
sion of parallel unary rules — that is, rules whose
right-hand sides consist solely of a pair of aligned
nonterminals.
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Tree Multiple Virtual Multiple
System Constraints Alignments Nodes Derivations
Hiero No — — Yes
Stat-XFER Yes No Some No
GHKM Yes No No Yes
SAMT No No Yes Yes
Chiang (2010) No No Yes Yes
This work Yes Yes Yes Yes

Table 1: Comparisons between the rule extractor described in this paper and other SCFG rule extraction methods.

3 Comparison to Other Methods

Table 1 compares the rule extractor described in Sec-
tion 2 to other SCFG extraction methods described
in the literature. We include comparisons of our
work against the Hiero system (Chiang, 2005), the
Stat-XFER system rule learner most recently de-
scribed by Ambati et al. (2009), the composed ver-
sion of GHKM rule extraction (Galley et al., 2006),
the so-called Syntax-Augmented MT (SAMT) sys-
tem (Zollmann and Venugopal, 2006), and a Hiero–
SAMT extension with source- and target-side syntax
described by Chiang (2010). Note that some of these
methods make use of only target-side parse trees —
or no parse trees at all, in the case of Hiero — but
our primary interest in comparison is the constraints
placed on the rule extraction process rather than the
final output form of the rules themselves. We high-
light four specific dimensions along these lines.

Tree Constraints. As we mentioned in this pa-
per’s introduction, we do not allow any part of our
extracted rules to violate constituent boundaries in
the input parse trees. This is in contrast to Hiero-
derived techniques, which focus on expanding gram-
mar coverage by extracting rules for all spans in
the input sentence pair that are consistently word-
aligned, regardless of their correspondence to lin-
guistic constituents. Practitioners of both phrase-
based and syntax-based SMT have reported severe
grammar coverage issues when rules are required to
exactly match parse constituents (Koehn et al., 2003;
Chiang, 2010). In our work, we attempt to improve
the coverage of the grammar by allowing multiple
node alignments, virtual nodes, and multiple tree
decompositions rather than ignoring structure con-
straints.

Multiple Alignments. In contrast to all other ex-
traction methods in Table 1, ours allows a node in
one parse tree to be aligned with multiple nodes
in the other tree, as long as the word-alignment
and structure constraints are satisfied. However, we
do not allow a node to have multiple simultaneous
alignments — a single node alignment must be cho-
sen for extracting an individual rule. In practice,
this prevents extraction of “triangle” rules where the
same node appears on both the left- and right-hand
side of the same rule.1

Virtual Nodes. In keeping with our philosophy
of representing multiple alignments, our use of mul-
tiple and overlapping virtual nodes is less restrictive
than the single-alignment constraint of Stat-XFER.
Another key difference is that Stat-XFER requires
all virtual nodes to be aligned to original nodes in
the other language, while we permit virtual–virtual
node alignments. In respecting existing tree struc-
ture constraints, our virtual node placement is more
restrictive than SAMT or Chiang, where extracted
nodes may cross existing constituent boundaries.

Multiple Derivations. Galley et al. (2006) ar-
gued that breaking a single tree pair into multiple
decompositions is important for correct probability
modeling. We agree, and we base our rule extrac-
tor’s acquisition of multiple derivations per tree pair
on techniques from both GHKM and Hiero. More
specifically, we borrow from Hiero the idea of cre-
ating hierarchical rules by subtracting and abstract-
ing all possible subsets of smaller phrases (aligned
nodes in our case) from larger phrases. Like GHKM,

1Figure 2 includes a potential triangle rule, D+N :: NNS→
[les N1] :: [NNS1], where the English NNS node appears on
both sides of the rule. It is simultaneously aligned to the French
D+N and N nodes.
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we do this exhaustively within some limit, although
in our case we use a rank limit on a rule’s right-hand
side rather than a limit on the depth of the subn-
ode subtractions. Our constraint achieves the goal
of controlling the size of the rule set while remaining
flexibile in terms of depth depending on the shape of
the parse trees.

4 Experiments

We conducted experiments with our rule extrac-
tor on the FBIS corpus, made up of approximately
302,000 Chinese–English sentence pairs. We parsed
the corpus with the Chinese and English grammars
of the Berkeley parser (Petrov and Klein, 2007) and
word-aligned it with GIZA++ (Och and Ney, 2003).
The parsed and word-aligned FBIS corpus served as
the input to our rule extractor, which we ran with a
number of different settings.

First, we acquired a baseline rule extraction
(“xfer-orig”) from our corpus using an implementa-
tion of the basic Stat-XFER rule learner (Lavie et al.,
2008), which decomposes each input tree pair into a
single set of minimal SCFG rules2 using only origi-
nal nodes in the parse trees. Next, we tested the ef-
fect of allowing multiple decompositions by running
our own rule learner, but restricting its rules to also
only make use of original nodes (“compatible”). Fi-
nally, we investigated the total number of extractable
rules by allowing the creation of virtual nodes from
up to four adjacent sibling nodes and placing two
different limits on the length of the right-hand side
(“full-short” and “full-long”). These configurations
are summarized in Table 2.

Rule Set maxp maxg Virtual Unary
xfer-orig 10 ∞ No Yes
compatible 10 5 No Yes
full-short 5 5 Yes No
full-long 7 7 Yes No

Table 2: Rule sets considered by a Stat-XFER baseline
(“xfer-orig”) and our own rule extractor.

2In practice, some Stat-XFER aligned nodes produce two
rules instead of one: a minimal hierarchical SCFG rule is al-
ways produced, and a phrase pair rule will also be produced for
node yields within the maxp cutoff.

4.1 Rules Extracted

As expected, we find that allowing multiple decom-
positions of each tree pair has a significant effect on
the number of extracted rules. Table 3 breaks the ex-
tracted rules for each configuration down into phrase
pairs (all terminals on the right-hand side) and hier-
archical rules (containing at least one nonterminal
on the right-hand side). We also count the num-
ber of extracted rule instances (tokens) against the
number of unique rules (types). The results show
that multiple decomposition leads to a four-fold in-
crease in the number of extracted grammar rules,
even when the length of the Stat-XFER baseline
rules is unbounded. The number of extracted phrase
pairs shows a smaller increase, but this is expected:
the number of possible phrase pairs is proportional
to the square of the sentence length, while the num-
ber of possible hierarchical rules is exponential, so
there is more room for coverage improvement in the
hierarchical grammar.

With virtual nodes included, there is again a large
jump in both the number of extracted rule tokens and
types, even at relatively short length limits. When
both maxp and maxg are set to 7, our rule ex-
tractor produces 1.5 times as many unique phrase
pairs and 20.5 times as many unique hierarchical
rules as the baseline Stat-XFER system, and nearly
twice the number of hierarchical rules as when us-
ing length limits of 5. Ambati et al. (2009) showed
the usefulness of extending rule extraction from ex-
act original–original node alignments to cases in
which original–virtual and virtual–original align-
ments were also permitted. Our experiments con-
firm this, as only 60% (full-short) and 54% (full-
long) of our extracted rule types are made up of only
original–original node alignments. Further, we find
a contribution from the new virtual–virtual case: ap-
proximately 8% of the rules extracted in the “full-
long” configuration from Table 3 are headed by a
virtual–virtual alignment, and a similar number have
a virtual–virtual alignment on their right-hand sides.

All four of the extracted rule sets show Zipfian
distributions over rule frequency counts. In the xfer-
orig, full-short, and full-long configurations, be-
tween 82% and 86% of the extracted phrase pair
rules, and between 88% and 92% of the extracted
hierarchical rules, were observed only once. These
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Extracted Instances Unique Rules
Rule Set Phrase Hierarchical Phrase Hierarchical
xfer-orig 6,646,791 1,876,384 1,929,641 767,573
compatible 8,709,589 6,657,590 2,016,227 3,590,184
full-short 10,190,487 14,190,066 2,877,650 8,313,690
full-long 10,288,731 22,479,863 2,970,403 15,750,695

Table 3: The number of extracted rule instances (tokens) and unique rules (types) produced by the Stat-XFER system
(“xfer-orig”) and three configurations of our rule extractor.

percentages are remarkably consistent despite sub-
stantial changes in grammar size, meaning that our
more exhaustive method of rule extraction does not
produce a disproportionate number of singletons.3

On the other hand, it does weaken the average count
of an extracted hierarchical rule type. From Table 3,
we can compute that the average phrase pair count
remains at 3.5 when we move from xfer-orig to the
two full configurations; however, the average hier-
archical rule count drops from 2.4 to 1.7 (full-short)
and finally 1.4 (full-long). This likely again reflects
the exponential increase in the number of extractable
hierarchical rules compared to the quadratic increase
in the phrase pairs.

4.2 Translation Results

The grammars obtained from our rule extractor can
be filtered and formatted for use with a variety of
SCFG-based decoders and rule formats. We car-
ried out end-to-end translation experiments with the
various extracted rule sets from the FBIS corpus us-
ing the open-source decoder Joshua (Li et al., 2009).
Given a source-language string, Joshua translates by
producing a synchronous parse of it according to a
scored SCFG and a target-side language model. A
significant engineering challenge in building a real
MT system of this type is selecting a more moderate-
sized subset of all extracted rules to retain in the final
translation model. This is an especially important
consideration when dealing with expanded rule sets
derived from virtual nodes and multiple decomposi-
tions in each input tree.

In our experiments, we pass all grammars through

3The compatible configuration is somewhat of an outlier. It
has proportionally fewer singleton phrase pairs (80%) than the
other variants, likely because it allows multiple alignments and
multiple decompositions without allowing virtual nodes.

two preprocessing steps before any translation
model scoring. First, we noticed that English car-
dinal numbers and punctuation marks in many lan-
guages tend to receive incorrect nonterminal labels
during parsing, despite being closed-class items with
clearly defined tags. Therefore, before rule extrac-
tion, we globally correct the nodel labels of all-
numeral terminals in English and certain punctua-
tion marks in both English and Chinese. Second,
we attempt to reduce derivational ambiguity in cases
where the same SCFG right-hand side appears in
the grammar after extraction with a large number of
possible left-hand-side labels. To this end, we sort
the possible left-hand sides by frequency for each
unique right-hand side, and we remove the least fre-
quent 10 percent of the label distribution.

Our translation model scoring is based on the fea-
ture set of Hanneman et al. (2010). This includes
the standard bidirectional conditional maximum-
likelihood scores at both the word and phrase level
on the right-hand side of rules. We also include
maximum-likelihood scores for the left-hand-side
label given all or part of the right-hand side. Using
statistics local to each rule, we set binary indicator
features for rules whose frequencies are ≤ 3, plus
five additional indicator features according to the
format of the rule’s right-hand side, such as whether
it is fully abstract. Since the system in this paper
is not constructed using any non-syntactic rules, we
do not include the Hanneman et al. (2010) “not la-
belable” maximum-likelihood features or the indica-
tor features related to non-syntactic labels.

Beyond the above preprocessing and scoring
common to all grammars, we experiment with three
different solutions to the more difficult problem of
selecting a final translation grammar. In any case,
we separate phrase pair rules from hierarchical rules
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Rule Set Filter BLEU TER MET
xfer-orig 10k 24.39 68.01 54.35
xfer-orig 5k+100k 25.95 66.27 54.77
compatible 10k 24.28 65.30 53.58
full-short 10k 25.16 66.25 54.33
full-short 100k 25.51 65.56 54.15
full-short 5k+100k 26.08 64.32 54.58
full-long 10k 25.74 65.52 54.55
full-long 100k 25.53 66.24 53.68
full-long 5k+100k 25.83 64.55 54.35

Table 4: Automatic metric results using different rule
sets, as well as different grammar filtering methods.

and include in the grammar all phrase pair rules
matching a given tuning or testing set. Any im-
provement in phrase pair coverage during the extrac-
tion stage is thus directly passed along to decoding.
For hierarchical rules, we experiment with retain-
ing the 10,000 or 100,000 most frequently extracted
unique rules. We also separate fully abstract hier-
archical rules from partially lexicalized hierarchical
rules, and in a further selection technique we retain
the 5,000 most frequent abstract and 100,000 most
frequent partially lexicalized rules.

Given these final rule sets, we tune our MT sys-
tems on the NIST MT 2006 data set using the min-
imum error-rate training package Z-MERT (Zaidan,
2009), and we test on NIST MT 2003. Both sets
have four reference translations. Table 4 presents
case-insensitive evaluation results on the test set ac-
cording to the automatic metrics BLEU (Papineni et
al., 2002), TER (Snover et al., 2006), and METEOR
(Lavie and Denkowski, 2009).4 The trend in the
results is that including a larger grammar is gener-
ally better for performance, but filtering techniques
also play a substantial role in determining how well
a given grammar will perform at run time.

We first compare the results in Table 4 for dif-
ferent rule sets all filtered the same way at decod-
ing time. With only 10,000 hierarchical rules in use
(“10k”), the improvements in scores indicate that an
important contribution is being made by the addi-
tional phrase pair coverage provided by each suc-

4For METEOR scoring we use version 1.0 of the metric,
tuned to HTER with the exact, stemming, and synonymy mod-
ules enabled.

cessive rule set. The original Stat-XFER rule ex-
traction provides 244,988 phrase pairs that match
the MT 2003 test set. This is already increased to
520,995 in the compatible system using multiple de-
compositions. With virtual nodes enabled, the full
system produces 766,379 matching phrase pairs up
to length 5 or 776,707 up to length 7. These systems
both score significantly higher than the Stat-XFER
baseline according to BLEU and TER, and the ME-
TEOR scores are likely statistically equivalent.

Across all configurations, we find that changing
the grammar filtering technique — possibly com-
bined with retuned decoder feature weights — also
has a large influence on automatic metric scores.
Larger hierarchical grammars tend to score better, in
some cases to the point of erasing the score differ-
ences between rule sets. From this we conclude that
making effective use of the extracted grammar, no
matter its size, with intelligent filtering techniques
is at least as important as the number and type of
rules extracted overall. Though the filtering results
in Table 4 are still somewhat inconclusive, the rel-
ative success of the “5k+100k” setting shows that
filtering fully abstract and partially lexicalized rules
separately is a reasonable starting approach. While
fully abstract rules do tend to be more frequently ob-
served in grammar extraction, and thus more reliably
scored in the translation model, they also have the
ability to overapply at decoding time because their
use is not restricted to any particular lexical context.

5 Conclusions and Future Work

We demonstrated in Section 4.1 that the general
SCFG extraction algorithm described in this paper
is capable of producing very large linguistically mo-
tivated rule sets. These rule sets can improve auto-
matic metric scores at decoding time. At the same
time, we see the results in Section 4.2 as a spring-
board to more advanced and more intelligent meth-
ods of grammar filtering. Our major research ques-
tion for future work is to determine how to make the
best runtime use of the grammars we can extract.

As we saw in Section 2, multiple decompositions
of a single parse tree allow the same constituent to
be built in a variety of ways. This is generally good
for coverage, but its downside at run time is that the
decoder must manage a larger number of competing
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derivations that, in the end, produce the same output
string. Grammar filtering that explicitly attempts to
limit the derivational ambiguity of the retained rules
may prevent the translation model probabilities of
correct outputs from getting fragmented into redun-
dant derivations. So far we have only approximated
this by using fully abstract rules as a proxy for the
most derivationally ambiguous rules.

Filtering based on the content of virtual nodes
may also be a reasonable strategy for selecting use-
ful grammar rules and discarding those whose con-
tributions are less necessary. For example, we find
in our current output many applications of rules
involving virtual nodes that consist of an open-
class category and a mark of punctuation, such as
VBD+COMMA and NN+PU. While there is noth-
ing technically wrong with these rules, they may not
be as helpful in translation as rules for nouns and
adjectives such as JJ+NNP+NN or NNP+NNP in flat
noun phrase structures such as former U.S. president
Bill Clinton.

A final concern in making use of our large ex-
tracted grammars is the effect virtual nodes have
on the size of the nonterminal set. The Stat-XFER
baseline grammar from our “xfer-orig” configura-
tion uses a nonterminal set of 1,577 unique labels.
In our rule extractor so far, we have adopted the con-
vention of naming virtual nodes with a concatena-
tion of their component sibling labels, separated by
“+”s. With the large number of virtual node labels
that may be created, this gives our “full-short” and
“full-long” extracted grammars nonterminal sets of
around 73,000 unique labels. An undesirable conse-
quence of such a large label set is that a particular
SCFG right-hand side may acquire a large variety
of left-hand-side labels, further contributing to the
derivational ambiguity problems discussed above.
In future work, the problem could be addressed by
reconsidering our naming scheme for virtual nodes,
by allowing fuzzy matching of labels at translation
time (Chiang, 2010), or by other techniques aimed
at reducing the size of the overall nonterminal set.
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