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Abstract

In this paper, we investigate a supervised ma-
chine learning framework for automatically
learning of EnglishLight VerbConstructions
(LVCs). Our system achieves an 86.3% accu-
racy with a baseline (chance) performance of
52.2% when trained with groups of either con-
textual or statistical features. In addition, we
present an in-depth analysis of these contex-
tual and statistical features and show that the
system trained by these two types of cosmet-
ically different features reaches similar per-
formance empirically. However, in the situa-
tion where the surface structures of candidate
LVCs are identical, the system trained with
contextual features which contain information
on surrounding words performs 16.7% better.

In this study, we also construct a balanced
benchmark dataset with 2,162 sentences from
BNC for English LVCs. And this data set is
publicly available and is also a useful com-
putational resource for research on MWEs in
general.

1 Introduction

Multi-Word Expressions (MWEs) refer to various
types of linguistic units or expressions, including
idioms, noun compounds, named entities, complex
verb phrases and any other habitual collocations.
MWEs pose a particular challenge in empirical Nat-
ural Language Processing (NLP) because they al-
ways have idiosyncratic interpretations which can-
not be formulated by directly aggregating the se-
mantics of their constituents (Sag et al., 2002).

The study in this paper focuses on one special
type of MWEs, i.e., theLight Verb Constructions

(LVCs), formed from a commonly used verb and
usually a noun phrase (NP) in its direct object po-
sition, such ashave a lookand make an offerin
English. These complex verb predicates do not fall
clearly into the discrete binary distinction of com-
positional or non-compositional expressions. In-
stead, they stand somewhat in between and are typ-
ically semi-compositional. For example, consider
the following three candidate LVCs:take a wallet,
take a walkandtake a while. These three complex
verb predicates are cosmetically very similar. But
a closer look at their semantics reveals significant
differences and each of them represents a different
class of MWEs. The first expression,take a wallet
is a literal combination of a verb and its object noun.
The last expressiontake a whileis an idiom and its
meaningcost a long time to do something, cannot
be derived by direct integration of the literal mean-
ing of its components. Only the second expression,
take a walkis an LVC whose meaning mainly de-
rives from one of its components, namely its noun
object (walk) while the meaning of its main verb is
somewhat bleached (Butt, 2003; Kearns, 2002) and
thereforelight (Jespersen, 1965).

LVCs have already been identified as one of the
major sources of problems in various NLP applica-
tions, such as automatic word alignment (Samardžić
and Merlo, 2010) and semantic annotation transfer-
ence (Burchardt et al., 2009), and machine transla-
tion. These problems provide empirical grounds for
distinguishing between the bleached and full mean-
ing of a verb within a given sentence, a task that is
often difficult on the basis of surface structures since
they always exhibit identical surface properties. For
example, consider the following sentences:
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1. Hehad a lookof childish bewilderment on his
face.

2. I’ve arranged for you tohave a lookat his file
in our library.

In sentence 1, the verbhave in the phrasehave a
lookhas its full fledged meaning “possess, own” and
therefore it isliteral instead oflight. However, in
sentence 2,have a lookonly meanslook and the
meaning of the verbhaveis impoverished and is thus
light.

In this paper, we propose an in-depth case study
on LVC recognition, in which we investigate ma-
chine learning techniques for automatically identi-
fying the impoverished meaning of a verb given a
sentence. Unlike the earlier work that has viewed all
verbs as possible light verbs (Tan et al., 2006), We
focus on a half dozen of broadly documented and
most frequently used English light verbs among the
small set of them in English.

We construct a token-based data set with a total
of 2, 162 sentences extracted from British National
Corpus (BNC)1 and build a learner with L2-loss
SVM. Our system achieves a 86.3% accuracy with
a baseline (chance) performance of 52.2%. We also
extract automatically two groups of features, statis-
tical and contextual features and present a detailed
ablation analysis of the interaction of these features.
Interestingly, the results show that the system per-
forms similarly when trained independently with ei-
ther groups of these features. And the integration
of these two types of features does not improve the
performance. However, when tested with all sen-
tences with the candidate LVCs whose surface struc-
tures are identical in both negative and positive ex-
amples, for example, the aforementioned sentence 1
(negative) and 2 (positive) with the candidate LVC
“have a look”, the system trained with contextual
features which include information on surrounding
words performs more robust and significantly better.
This analysis contributes significantly to the under-
standing of the functionality of both contextual and
statistical features and provides empirical evidence
to guide the usage of them in NLP applications.

In the rest of the paper, we first present some re-
lated work on LVCs in Sec. 2. Then we describe our

1http://www.natcorp.ox.ac.uk/XMLedition/

model including the learning algorithm and statisti-
cal and contextual features in Sec. 3. We present our
experiments and analysis in Sec. 4 and conclude our
paper in Sec. 5.

2 Related Work

LVCs have been well-studied in linguistics since
early days (Jespersen, 1965; Butt, 2003; Kearns,
2002). Recent computational research on LVCs
mainly focuses on type-based classification, i.e., sta-
tistically aggregated properties of LVCs. For exam-
ple, many works are about direct measuring of the
compositionality (Venkatapathy and Joshi, 2005),
compatibility (Barrett and Davis, 2003), acceptabil-
ity (North, 2005) and productivity (Stevenson et al.,
2004) of LVCs. Other works, if related to token-
based identification, i.e., identifying idiomatic ex-
pressions within context, only consider LVCs as one
small subtype of other idiomatic expressions (Cook
et al., 2007; Fazly and Stevenson, 2006).

Previous computational works on token-based
identification differs from our work in one key as-
pect. Our work builds a learning system which sys-
tematically incorporates both informative statistical
measures and specific local contexts and does in-
depth analysis on both of them while many previ-
ous works, either totally rely on or only emphasize
on one of them. For example, the method used
in (Katz and Giesbrecht, 2006) relies primarily on
local co-occurrence lexicon to construct feature vec-
tors for each target token. On the other hand, some
other works (Fazly and Stevenson, 2007; Fazly and
Stevenson, 2006; Stevenson et al., 2004), argue that
linguistic properties, such as canonical syntactic pat-
terns of specific types of idioms, are more informa-
tive than local context.

Tan et.al. (Tan et al., 2006) propose a learning ap-
proach to identify token-based LVCs. The method is
only similar to ours in that it is a supervised frame-
work. Our model uses a different data set annotated
from BNC and the data set is larger and more bal-
anced compared to the previous data set from WSJ.
In addition, previous work assumes all verbs as po-
tential LVCs while we intentionally exclude those
verbs which linguistically never tested as light verbs,
such asbuy and sell in English and only focus on
a half dozen of broadly documented English light
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verbs, such ashave, take, give, do, getandmake.

The lack of common benchmark data sets for
evaluation in MWE research unfortunately makes
many works incomparable with the earlier ones. The
data set we construct in this study hopefully can
serve as a common test bed for research in LVCs
or MWEs in general.

3 Learning English LVCs

In this study, we formulate the context sensitive En-
glish LVC identification task as a supervised binary
classification problem. For each target LVC candi-
date within a sentence, the classifier decides if it is
a true LVC. Formally, given a set ofn labeled ex-
amples{xi, yi}

n
i=1, we learn a functionf : X → Y

whereY ∈ {−1, 1}. The learning algorithm we use
is the classic soft-margin SVM with L2-loss which
is among the best “off-the-shelf” supervised learn-
ing algorithms and in our experiments the algorithm
indeed gives us the best performance with the short-
est training time. The algorithm is implemented us-
ing a modeling language called Learning Based Java
(LBJ) (Rizzolo and Roth, 2010) via the LIBSVM
Java API (Chang and Lin, 2001).

Previous research has suggested that both local
contextual and statistical measures are informative
in determining the class of an MWE token. How-
ever, it is not clear to what degree these two types
of information overlap or interact. Do they contain
similar knowledge or the knowledge they provide
for LVC learning is different? Formulating a clas-
sification framework for identification enables us to
integrate all contextual and statistical measures eas-
ily through features and test their effectiveness and
interaction systematically.

We focus on two types of features: contextual and
statistical features, and analyze in-depth their inter-
action and effectiveness within the learning frame-
work. Statistical features in this study are numerical
features which are computed globally via other big
corpora rather than the training and testing data used
in the system. For example, theCpmiandDeverbal
v/n Ratio(details in sec. 3.1) are generated from the
statistics of Google n-gram and BNC corpus respec-
tively. Since thephrase sizefeature is numerical and
the selection of the candidate LVCs in the data set

uses the canonical length information2, we include
it into the statistical category. Contextual features
are defined in a broader sense and consist of all local
features which are generated directly from the input
sentences, such as word features within or around
the candidate phrases. We describe the details of the
used contextual features in sec. 3.2.

Our experiments show that arbitrarily combining
statistic features within our current learning system
does not improve the performance. Instead, we pro-
vide systematic analysis for these features and ex-
plore some interesting empirical observations about
them within our learning framework.

3.1 Statistical Features

Cpmi: Collocationalpoint-wisemutual information
is calculated from Google n-gram dataset whose n-
gram counts are generated from approximately one
trillion words of text from publicly accessible Web
pages. We use this big data set to overcome the data
sparseness problem.

Previous works (Stevenson et al., 2004; Cook et
al., 2007) show that one canonical surface syntac-
tic structure for LVCs isV + a/an Noun. For ex-
ample, in the LVCtake a walk, “take” is the verb
(V) and “walk” is the deverbal noun. The typical
determiner in between is the indefinite article “a”.
It is also observed that when the indefinite article
changes to definite, such as “the”, “this” or “that”,
a phrase is less acceptable to be a true LVC. There-
fore, the direct collocational pmi between the verb
and the noun is derived to incorporate this intuition
as shown in the following3:

Cpmi = 2I(v, aN)− I(v, theN)

Within this formula,I(v, aN) is the point-wise mu-
tual information between “v”, the verb, and “aN”,
the phrase such as “a walk” in the aforementioned
example. Similar definition applies toI(v, theN).
PMI of a pair of elements is calculated as (Church et
al., 1991):

I(x, y) = log
Nx+yf(x, y)

f(x, ∗)f(∗, y)

2We set an empirical length constraint to the maximal length
of the noun phrase object when generating the candidates from
BNC corpus.

3The formula is directly from (Stevenson et al., 2004).
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Nx+y is the total number of verb and a/the noun
pairs in the corpus. In our case, all trigram counts
with this pattern in N-gram data set.f(x, y) is the
frequency of x and y co-occurring as a v-a/theN pair
wheref(x, ∗) andf(∗, y) are the frequency when
either of x and y occurs independent of each other
in the corpus. Notice these counts are not easily
available directly from search engines since many
search engines treat articles such as “a” or “the” as
stop words and remove them from the search query4.

Deverbal v/n Ratio: the second statistical feature
we use is related to the verb and noun usage ratio of
the noun object within a candidate LVC. The intu-
ition here is that the noun object of a candidate LVC
has a strong tendency to be used as a verb or related
to a verb via derivational morphology. For exam-
ple, in the candidate phrase “have a look”, “look”
can directly be used as a verb while in the phrase
“make a transmission”, “transmission” is derivation-
ally related to the verb “transmit”. We use fre-
quency counts gathered from British National Cor-
pus (BNC) and then calculate the ratio since BNC
encodes the lexeme for each word and is also tagged
with parts of speech. In addition, it is a large corpus
with 100 million words, thus, an ideal corpus to cal-
culate the verb-noun usage for each candidate word
in the object position.

Two other lexical resources, WordNet (Fellbaum,
1998) and NomLex (Meyers et al., 1998), are used
to identify words which can directly be used as a
noun and a verb and those that are derivational re-
lated. Specifically, WordNet is used to identify the
words which can be used as both a noun and a verb
and NomLex is used to recognize those derivation-
ally related words. And the verb usage counts of
these nouns are the frequencies of their correspond-
ing derivational verbs. For example, for the word
“transmission”, its verb usage frequency is the count
in BNC with its derivationally related verb “trans-
mit”.

Phrase Size: the third statistical feature is the ac-
tual size of the candidate LVC phrase. Many modi-
fiers can be inserted inside the candidate phrases to
generate new candidates. For example, “take a look”
can be expanded to “take acloselook”, “take anex-

4Some search engines accept “quotation strategy” to retain
stop words in the query.

tremelyclose look” and the expansion is in theory
infinite. The hypothesis behind this feature is that
regular usage of LVCs tends to be short. For exam-
ple, it is observed that the canonical length in En-
glish is from 2 to 6.

3.2 Contextual Features

All features generated directly from the input sen-
tences are categorized into this group. They con-
sists of features derived directly from the candidate
phrases themselves as well as their surrounding con-
texts.

Noun Object: this is the noun head of the object
noun phrase within the candidate LVC phrase. For
example, for a verb phrase “take a quick look”, its
noun head “look” is the activeNoun Objectfeature.
In our data set, there are777 distinctive such nouns.

LV-NounObj: this is the bigram of the light verb
and the head of the noun phrase. This feature en-
codes the collocation information between the can-
didate light verb and the head noun of its object.

Levin’s Class: it is observed that members within
certain groups of verb classes are legitimate candi-
dates to form acceptable LVCs (Fazly et al., 2005).
For example, many sound emission verbs accord-
ing to Levin (Levin, 1993), such asclap, whis-
tle, and plop, can be used to generate legitimate
LVCs. Phrases such asmake a clap/plop/whistleare
all highly acceptable LVCs by humans even though
some of them, such asmake a ploprarely occur
within corpora. We formulate a vector for all the
256 Levin’s verb classes and turn the correspond-
ing class-bits on when the verb usage of the head
noun in a candidate LVC belongs to these classes.
We add one extra class,other, to be mapped to those
verbs which are not included in any one of these 256
Levin’s verb classes.

Other Features: we construct other local con-
textual features, for example, the part of speech of
the word immediately before the light verb (titled
posBefore) and after the whole phrase (posAfter).
We also encode the determiner within all candidate
LVCs as another lexical feature (Determiner). We
examine many other combinations of these contex-
tual features. However, only those features that con-
tribute positively to achieve the highest performance
of the classifier are listed for detailed analysis in the
next section.
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4 Experiments and Analysis

In this section, we report in detail our experimental
settings and provide in-depth analysis on the inter-
actions among features. First, we present our mo-
tivation and methodology to generate the new data
set. Then we describe our experimental results and
analysis.

4.1 Data Preparation and Annotation

The data set is generated from BNC, a balanced syn-
chronic corpus containing 100 million words col-
lected from various sources of British English. We
begin our sentence selection process with the ex-
amination of a handful of previously investigated
verbs (Fazly and Stevenson, 2007; Butt, 2003).
Among them, we pick the6 most frequently used
English light verbs:do, get, give, have, makeand
take.

To identify potential LVCs within sentences, we
first extract all sentences where one or more of the
six verbs occur from BNC (XML Edition) and then
parse these sentences with Charniak’s parser (Char-
niak and Johnson, 2005). We focus on the “verb
+ noun object” pattern and choose all the sentences
which have a direct NP object for the target verbs.
We then collect a total of207, 789 sentences.

We observe that within all these chosen sentences,
the distribution of true LVCs is still low. We there-
fore use three resources to filter out trivial nega-
tive examples. Firstly, We use WordNet (Fellbaum,
1998) to identify the head noun in the object position
which can be used as both a noun and a verb. Then,
we use frequency counts gathered from BNC to fil-
ter out candidates whose verb usage is smaller than
their noun usage. Finally, we use NomLex (Meyers
et al., 1998) to recognize those head words in the
object position whose noun forms and verb forms
are derivationally related, such astransmissionand
transmit. We keep all candidates whose object head
nouns are derivationlly related to a verb according
to a gold-standard word list we extract from Nom-
Lex5. With this pipeline method, we filter out ap-
proximately55% potential negative examples. This
leaves us with92, 415 sentences which we sample
about4% randomly to present to annotators. This
filtering method successfully improves the recall of

5We do not count those nouns ending wither andist

the positive examples and ensures us a corpus with
balanced examples.

A website6 is set up for annotators to annotate the
data. Each potential LVC is presented to the anno-
tator in a sentence. The annotator is asked to decide
whether this phrase within the given sentence is an
LVC and to choose an answer from one of these four
options:Yes, No, Not Sure, andIdiom.

Detailed annotation instructions and LVC exam-
ples are given on the annotation website. When fac-
ing difficult examples, the annotators are instructed
to follow a general “replacing” principle, i.e, if the
candidate light verb within the sentence can be re-
placed by the verb usage of its direct object noun
and the meaning of the sentence does not change,
that verb is regarded as a light verb and the candidate
is an LVC. Each example is annotated by two anno-
tators and We only accept examples where both an-
notators agree on positive or negative. We generate a
total of1, 039 positive examples and1, 123 negative
examples. Among all these positive examples, there
are760 distinctive LVC phrases and911 distinctive
verb phrases with the pattern“verb + noun object”
among negative examples. The generated data set
therefore gives the classifier the 52.2% chance base-
line if the classifier always votes the majority class
in the data set.

4.2 Evaluation Metrics

For each experiment, we evaluate the performance
with three sets of metrics. We first report the stan-
dard accuracy on the test data set. Since accuracy
is argued not to be a sufficient measure of the eval-
uation of a binary classifier (Fazly et al., 2009) and
some previous works also report F1 values for the
positive classes, we therefore choose to report the
precision, recall and F1 value for both positive and
negative classes.

True Class
+ -

Predicted Class
+ tp fp
- fn tn

Table 1: Confusion matrix to definetrue positive (tp),
true negative (tn), false positive (fp)and false negative
(fn).

6http://cogcomp.cs.illinois.edu/∼ytu/test/LVCmain.html
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Based on the classic confusion matrix as shown in
Table 1, we calculate the precision and recall for the
positive class in equation 1:

P+ =
tp

tp + fp
R+ =

tp

tp + fn
(1)

And similarly, we use equation 2 for negative class.
And the F1 value is the harmonic mean of the preci-
sion and recall of each class.

P− =
tn

tn + fn
R− =

tn

tn + fp
(2)

4.3 Experiments with Contextual Features

In our experiments, We aim to build a high perfor-
mance LVC classifier as well as to analyze the in-
teraction between contextual and statistical features.
We randomly sample 90% sentences for training and
the rest for testing. Our chance baseline is 52.2%,
which is the percentage of our majority class in the
data set. As shown in Table 2, the classifier reaches
an 86.3% accuracy using all contextual features de-
scribed in previous section 3.2. Interestingly, we ob-
serve that adding other statistical features actually
hurts the performance. The classifier can effectively
learn when trained with discrete contextual features.

Label Precision Recall F1

+ 86.486 84.211 85.333
- 86.154 88.189 87.160

Accuracy 86.307
Chance Baseline 52.2

Table 2: By using all our contextual features, our classi-
fier achieves overall 86.307% accuracy.

In order to examine the effectiveness of each indi-
vidual feature, we conduct an ablation analysis and
experiment to use only one of them each time. It is
shown in Table 3 thatLV-NounObjis found to be the
most effective contextural feature since it boosts the
baseline system up the most, an significant increase
of 31.6%.

We then start from this most effective feature,LV-
NounObjand add one feature each step to observe
the change of the system accuracy. The results are
listed in Table 4. Other significant features are fea-
tures within the candidate LVCs themselves such as
Determiner, Noun ObjectandLevin’s Classrelated

Features Accuracy
Diff(%)

Baseline (chance) 52.2

LV-NounObj 83.817 +31.6
Noun Object 79.253 +27.1
Determiner 72.614 +20.4
Levin’s Class 69.295 +17.1
posBefore 53.112 +0.9
posAfter 51.037 -1.1

Table 3: Using only one feature each time.LV-NounObj
is the most effective feature. Performance gain is associ-
ated with a plus sign and otherwise a negative sign.

to the object noun. This observation agrees with pre-
vious research that the acceptance of LVCs is closely
correlated to the linguistic properties of their compo-
nents. The part of speech of the word after the phrase
seems to have negative effect on the performance.
However, experiments show that without this fea-
ture, the overall performance decreases.

Features Accuracy
Diff(%)

Baseline (chance) 52.2

+ LV-NounObj 83.817 +31.6
+ Noun Object 84.232 +0.4
+ Levin’s Class 84.647 +0.4
+ posBefore 84.647 0.0
+ posAfter 83.817 -0.8
+ Determiner 86.307 +2.5

Table 4: Ablation analysis for contextual features. Each
feature is added incrementally at each step. Performance
gain is associated with a plus sign otherwise a negative
sign.

4.4 Experiments with Statistical Features

When using statistical features, instead of directly
using the value, we discretize each value to a binary
feature. On the one hand, our experiments show that
this way of transformation achieves the best perfor-
mance. On the other hand, the transformation plays
an analogical role as a kernel function which maps
one dimensional non-linear separable examples into
an infinite or high dimensional space to render the
data linearly separable.

In these experiments, we use only numerical fea-
tures described in section 3.1. And it is interesting
to observe that those features achieve very similar
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Label Precision Recall F1

+ 86.481 85.088 86.463
- 86.719 87.402 87.059

Accuracy 86.307

Table 5: Best performance achieved with statistical fea-
tures. Comparing to Table 2, the performance is similar
to that trained with all contextual features.

performance as the contextual features as shown in
Table 5.

To validate that the similar performance is not
incidental. We then separate our data into 10-fold
training and testing sets and learn independently
from each fold of these ten split. Figure 1, which
shows the comparison of accuracies for each data
fold, indicates the comparable results for each fold
of the data. Therefore, we conclude that the similar
effect achieved by training with these two groups of
features is not accidental.
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Ten folds in the Data Set

Accuracy of each fold using statistic or contextual features

Contextual Features
Statistic Features

Figure 1: Classifier Accuracy of each fold of all 10 fold
testing data, trained with groups of statistical features and
contextual features separately. The similar height of each
histogram indicates the similar performance over each
data separation and the similarity is not incidental.

We also conduct an ablation analysis with statis-
tical features. Similar to the ablation analyses for
contextual features, we first find that the most ef-
fective statistical feature isCpmi, the collocational
based point-wise mutual information. Then we add
one feature at each step and show the increasing
performance in Table 6.Cpmi is shown to be a
good indicator for LVCs and this observation agrees
with many previous works on the effectiveness of

Features Accuracy
Diff(%)

BaseLine (chance) 52.2

+ Cpmi 83.402 +31.2
+ Deverbal v/n Ratio 85.892 +2.5
+ Phrase Size 86.307 +0.4

Table 6: Ablation analysis for statistical features. Each
feature is added incrementally at each step. Performance
gain is associated with a plus sign.

point-wise mutual information in MWE identifica-
tion tasks.

4.5 Interaction between Contextual and
Statistical Features

Experiments from our previous sections show that
two types of features which are cosmetically differ-
ent actually achieve similar performance. In the ex-
periments described in this section, we intend to do
further analysis to identify further the relations be-
tween them.

4.5.1 Situation when they are similar

Our ablation analysis shows thatCpmi and LV-
NounObjfeatures are the most two effective features
since they boost the baseline performance up more
than 30%. We then train the classifier with them to-
gether and observe that the classifier exhibits sim-
ilar performance as the one trained with them in-
dependently as shown in Table 7. This result indi-
cates that these two types of features actually pro-
vide similar knowledge to the system and therefore
combining them together does not provide any addi-
tional new information. This observation also agrees
with the intuition that point-wise mutual informa-
tion basically provides information on word collo-
cations (Church and Hanks, 1990).

Feature Accuracy F1+ F1-

LV-NounObj 83.817 82.028 85.283
Cpmi 83.402 81.481 84.962
Cpmi+LV-NounObj 83.817 82.028 85.283

Table 7: The classifier achieves similar performance
trained jointly withCpmiandLV-NounObjfeatures, com-
paring with the performance trained independently.
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4.5.2 Situation when they are different

Token-based LVC identification is a difficult task
on the basis of surface structures since they always
exhibit identical surface properties. However, can-
didate LVCs with identical surface structures in both
positive and negative examples provide an ideal test
bed for the functionality of local contextual features.
For example, consider again these two aforemen-
tioned sentences which are repeated here for refer-
ence:

1. Hehad a lookof childish bewilderment on his
face.

2. I’ve arranged for you tohave a lookat his file
in our library.

The system trained only with statistic features can-
not distinguish these two examples since their type-
based statistical features are exactly the same. How-
ever, the classifier trained with local contextual fea-
tures is expected to perform better since it contains
feature information from surrounding words. To
verify our hypothesis, we extract all examples in
our data set which have this property and then se-
lect same number of positive and negative examples
from them to formulate our test set. We then train
out classifier with the rest of the data, independently
with contextual features and statistical features. As
shown in Table 8, the experiment results validate
our hypothesis and show that the classifier trained
with contextual features performs significantly bet-
ter than the one trained with statistical features. The
overall lower system results also indicate that indeed
the test set with all ambiguous examples is a much
harder test set.

One final observation is the extremely low F1
value for negative class and relatively good perfor-
mance for positive class when trained with only sta-
tistical features. This may be explained by the fact
that statistical features have stronger bias toward
predicting examples as positive and can be used as
an unsupervised metric to acquire real LVCs in cor-
pora.

5 Conclusion and Further Research

In this paper, we propose an in-depth case study on
LVC recognition, in which we build a supervised
learning system for automatically identifying LVCs

Classifier Accuracy F1+ F1-

Contextual 68.519 75.362 56.410
Statistical 51.852 88.976 27.778

Diff (%) +16.7 -13.6 +28.3

Table 8: Classifier trained with local contextual features
is more robust and significantly better than the one trained
with statistical features when the test data set consists of
all ambiguous examples.

in context. Our learning system achieves an 86.3%
accuracy with a baseline (chance) performance of
52.2% when trained with groups of either contex-
tual or statistical features. In addition, we exploit in
detail the interaction of these two groups of contex-
tual and statistical features and show that the system
trained with these two types of cosmetically differ-
ent features actually reaches similar performance in
our learning framework. However, when it comes to
the situation where the surface structures of candi-
date LVCs are identical, the system trained with con-
textual features which include information on sur-
rounding words provides better and more robust per-
formance.

In this study, we also construct a balanced bench-
mark dataset with 2,162 sentences from BNC for
token-based classification of English LVCs. And
this data set is publicly available and is also a use-
ful computational resource for research on MWEs in
general.

There are many aspects for further research of the
current study. One direction for further improve-
ment would be to include more long-distance fea-
tures, such as parse tree path, to test the sensitivity of
the LVC classifier to those features and to examine
more extensively the combination of the contextual
and statistical features. Another direction would be
to adapt our system to other MWE types and to test
if the analysis on contextual and statistical features
in this study also applies to other MWEs.
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