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Abstract

Multi-Word Expressions (MWEs) are preva-
lent in text and are also, on average, less poly-
semous than mono-words. This suggests that
accurate MWE detection should lead to a non-
trivial improvement in Word Sense Disam-
biguation (WSD). We show that a straight-
forward MWE detection strategy, due to Ar-
ranz et al. (2005), can increase a WSD al-
gorithm’s baseline f-measure by 5 percentage
points. Our measurements are consistent with
Arranz’s, and our study goes further by us-
ing a portion of the Semcor corpus containing
12,449 MWEs - over 30 times more than the
approximately 400 used by Arranz. We also
show that perfect MWE detection over Sem-
cor only nets a total 6 percentage point in-
crease in WSD f-measure; therefore there is
little room for improvement over the results
presented here. We provide our MWE detec-
tion algorithms, along with a general detection
framework, in a free, open-source Java library
called JMWE.

Multi-word expressions (MWESs) are prevalent
in text. This is important for the classic task of
Word Sense Disambiguation (WSD) (Agirre and Ed-
monds, 2007), in which an algorithm attempts to as-
sign to each word in a text the appropriate entry from
a sense inventory. A WSD algorithm that cannot cor-
rectly detect the MWE:s that are listed in its sense in-
ventory will not only miss those sense assignments,
it will also spuriously assign senses to MWE con-
stituents that themselves have sense entries, dealing
a double-blow to WSD performance.

Beyond this penalty, MWEs listed in a sense in-
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ventory also present an opportunity to WSD algo-
rithms - they are, on average, less polysemous than
mono-words. In Wordnet 1.6, multi-words have an
average polysemy of 1.07, versus 1.53 for mono-
words. As a concrete example, consider sentence
She broke the world record. In Wordnet 1.6 the
lemma world has nine different senses and record
has fourteen, while the MWE world record has only
one. If a WSD algorithm correctly detects MWEs,
it can dramatically reduce the number of possible
senses for such sentences.

Measure Us Arranz
Number of MWEs 12,449 382
Fraction of MWEs 7.4% 9.4%
WSD impr. (Best v. Baseline) 0.01 6F1 0.01 2F1
WSD impr. (Baseline v. None) | 0.033 I -

WSD impr. (Best v. None) 0.050 n -

WSD impr. (Perfect v. None) 0.061 1o -

Table 1: Improvement of WSD f-measures over an
MWE-unaware WSD strategy for various MWE detec-
tion strategies. Baseline, Best, and Perfect refer to the
MWE detection strategy used in the WSD preprocess.

With this in mind, we expected that accurate
MWE detection will lead to a small yet non-trivial
improvement in WSD performance, and this is in-
deed the case. Table 1 summarizes our results. In
particular, a relatively straightforward MWE detec-
tion strategy, here called the ‘best’ strategy and due
to Arranz et al. (2005), yielded a 5 percentage point
improvement! in WSD f-measure. We also mea-
sured an improvement similar to that of Arranz when

"For example, if the WSD algorithm has an f-measure of
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moving from a Baseline MWE detection strategy to
the Best strategy, namely, 1.6 percentage points to
their 1.2.

We performed our measurements over the brown 1
and brown2 concordances’ of the Semcor cor-
pus (Fellbaum, 1998), which together contain
12,449 MWEs, over 30 times as many as the approx-
imately 400 contained in the portion of the XWN
corpus used by Arranz. We also measured the im-
provement for WSD f-measure for Baseline and Per-
fect MWE detection strategies. These strategies
improved WSD f-measure by 3.3 and 6.1 percent-
age points, respectively, showing that the relatively
straightforward Best MWE detection strategy, at 5.0
percentage points, leaves little room for improve-
ment.

1 MWE Detection Algorithms by Arranz

Arranz et al. describe their TALP Word Sense Dis-
ambiguation system in (Castillo et al., 2004) and
(Arranz et al., 2005). The details of the WSD pro-
cedure are not critical here; what is important is
that their preprocessing system attempted to detect
MWEs that could later be disambiguated by the
WSD algorithm. This preprocessing occurred as a
pipeline that tokenized the text, assigned a part-of-
speech tag, and finally determined a lemma for each
stemmable word. This information was then passed
to a MWE candidate identifier’ whose output was
then filtered by an MWE selector. The resulting list
of MWEs, along with all remaining tokens, were
then passed into the WSD algorithm for disambigua-
tion.

The MWE identifier-selector pair determined
what combinations of tokens were marked as
MWEs. It considered only continuous (i.e., unbro-
ken) sequences of tokens whose order matched the
order of the constituents of the associated MWE en-
try in Wordnet. Because of morphological variation,
not all sequences of tokens are in base form; the
main function of the candidate identifier, therefore,

0.6, then a 5 percentage point increase yields an f-measure of
0.65.

The third concordance, browny, only has verbs marked, so
we did not test on it.

3 Arranz calls the candidate identification stage the MWE de-
tector; we have renamed it because we take ‘detection’ to be the
end-to-end process of marking MWE:s.
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was to determine what morphological variation was
allowed for a particular MWE entry. They identified
and tested four different strategies:

1. None - no morphological variation allowed, all
MWESs must be in base form

2. Pattern - allows morphological variation ac-
cording to a set of pre-defined patterns

3. Form - a morphological variant is allowed if it
is observed in Semcor

4. All - all morphological variants allowed

The identification procedure produced a list of
candidate MWEs. These MWEs were then filtered
by the MWE selection process, which used one of
two strategies:

1. Longest Match, Left-to-Right - starting from
the left to right, selects the longest multi-word
expression found

2. Semcor - selects the multi-word expression
whose tokens have the maximum probability
of participating in an MWE, according to mea-
surements over Semcor

Arranz identified the None/Longest-Match-Left-
to-Right strategy as the Baseline, noting that this was
the most common strategy for MWE-aware WSD
algorithms. For this strategy the only MWE can-
didates allowed were those already in base form
(None), followed by resolution of conflicts by select-
ing the MWEs that started farthest to the left, choos-
ing the longest in case of ties (Longest-Match-Left-
to-Right);

Arranz’s Best strategy was Pattern/Semcor,
namely, allowing candidate MWEs to vary mor-
phologically according to a pre-defined set of syn-
tactic patterns (Pattern), followed by selecting the
most likely MWE based on examination of to-
ken frequencies in the Semcor corpus (Semcor).
They ran their detection strategies over a subset of
the sense-disambiguated glosses of the eXtended
WordNet (XWN) corpus (Moldovan and Novischi,
2004). They selected all glosses whose sense-
disambiguated words were all marked as ‘gold’
quality, namely, reviewed by a human annota-
tor. Over this set of words, their WSD sys-
tem achieved 0.617, (0.622,/0.612,) when using
the Baseline MWE detection strategy, and 0.629f,
(0.638,/0.620,.) when using the Best strategy.



2 Extension of Results

We implemented both the Baseline and Best MWE-
detection strategies, and used them as preprocessors
for a simple WSD algorithm, namely, the Most-
Frequent Sense algorithm. This algorithm simply
chooses, for each identified base form, the most fre-
quent sense in the sense inventory. We chose this
strategy, instead of re-implementing Arranz’s strat-
egy, for two reasons. First, our purpose was to study
the improvement MWE-detection provides to WSD
in general, not to a specific WSD algorithm. We
wished to show that, to the first order, MWE detec-
tion improves WSD irrespective of the WSD algo-
rithm chosen. Using a different algorithm than Ar-
ranz’s supports this claim. Second, for those wish-
ing to further this work, or build upon it, the Most-
Frequent-Sense strategy is easily implemented.

We used JSemcor (Finlayson, 2008a) to inter-
face with the Semcor data files. We used Word-
net version 1.6 with the original version of Sem-
cor*. Each token in each sentence in the brownl
and brown2 concordances of Semcor was assigned a
part of speech tag calculated using the Stanford Java
NLP library (Toutanova et al., 2003), as well as a
set of lemmas calculated using the MIT Java Word-
net Interface (Finlayson, 2008b). This data was the
input to each MWE detection strategy.

There was one major difference between our de-
tector implementations and Arranz, stemming from
a major difference between XWN and Semcor:
Semcor contains a large number of proper nouns,
whereas XWN glosses contain almost none. There-
fore our detector implementations included a simple
proper noun MWE detector, which marked all un-
broken runs of tokens tagged as proper nouns as a
proper noun MWE. This proper noun detector was
run first, before the Baseline and Best detectors, and
the proper noun MWEs detected took precedence
over the MWEs detected in later stages.

Baseline MWE Detection This MWE detec-
tion strategy was called None/Longest-Match-Left-

“The latest version of Wordnet is 3.0, but Semcor has not
been manually updated for Wordnet versions later than 1.6. Au-
tomatically updated versions of Semcor are available, but they
contain numerous errors resulting from deleted sense entries,
and the sense assignments and multi-word identifications have
not been adjusted to take into account new entries. Therefore
we decided to use versions 1.6 for both Wordnet and Semcor.
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to-Right by Arranz; we implemented it in four
stages. First, we detected proper nouns, as de-
scribed. Second, for each sentence, the strategy
used the part of speech tags and lemmas to iden-
tify all possible consecutive MWEs, using a list ex-
tracted from WordNet 1.6 and Semcor 1.6. The
only restriction was that at least one token identi-
fied as part of the MWE must share the basic part of
speech (e.g., noun, verb, adjective, or adverb) with
the part of speech of the MWE. As noted, tokens that
were identified as being part of a proper noun MWE
were not included in this stage. In the third stage,
we removed all non-proper-noun MWEs that were
inflected—this corresponds to Arranz’s None stage.
In our final stage, any conflicts were resolved by
choosing the MWE with the leftmost token. For two
conflicting MWE:s that started at the same token, the
longest MWE was chosen. This corresponds to Ar-
ranz’s Longest-Match-Left-to-Right selection.

Best MWE Detection This MWE detection strat-
egy was called Pattern/Semcor by Arranz, and we
also implemented this strategy in four stages. The
first and second stages were the same as the Baseline
strategy, namely, detection of proper nouns followed
by identification of continuous MWEs. The third
stage kept only MWEs whose morphological inflec-
tion matched one of the inflection rules described
by Arranz (Pattern). The final stage resolved any
conflicts by choosing the MWE whose constituent
tokens occur most frequently in Semcor as an MWE
rather than a sequence of monowords (Arranz’s Sem-
cor selection).

Word Sense Disambiguation No special tech-
nique was required to chain the Most-Frequent
Sense WSD algorithm with the MWE detection
strategies. We measured the performance of the
WSD algorithm using no MWE detection, the Base-
line detection, the Best detection, and Perfect detec-
tion>. These results are shown in Table 2.

Our improvement from Baseline to Best was ap-
proximately the same as Arranz’s: 1.7 percentage
points to their 1.2. We attribute the difference to the
much worse performance of our Baseline detection
algorithm: our Baseline MWE detection f-measure
was 0.552, compared their 0.740. The reason for this

SPerfect detection merely returned the MWEs identified in
Semcor



Measure Arranz et al. (2005) Finlayson & Kulkarni
Corpus eXtended WordNet (XWN) 2.0 Semcor 1.6 (brownl & brown?2)
Number of Tokens (non-punctuation) 8,493 376,670

Number of Open-Class Tokens 5,133 196,852

Number of Open-Class Monowords 4,332 168,808

Number of Open-Class MWEs 382 12,449

Number of Tokens in Open-Class MWEs 801 28,044

Number of Open-Class Words (mono & multi) | 4,714 181,257

Fraction MWEs 9.4% 7.4%

MWE Detection, Baseline

0.740x, (0.765,/0.715,)

0.552p, (0.452,/0.708,.)

MWE Detection, Best

0.811F, (0.806,/0.816;)

0.856, (0.874,/0.838;)

WSD, MWE-unaware

0.579F, (0.572,/0.585;)

WSD, Baseline MWE Detection

0.617F, (0.622,/0.612;.)

0.612F, (0.614,/0.611,.)

WSD, Best MWE Detection

0.629F, (0.638,/0.620,.)

0.629F, (0.630,/0.628,.)

WSD, Perfect MWE Detection

0.640F, (0.642,/0.638,.)

WSD Improvement, Baseline vs. Best

0.012f, (0.016,/0.008,.)

0.016f, (0.016,/0.017,)

WSD Improvement, Baseline vs. None -

0.033, (0.042,/0.025,)

WSD Improvement, Best vs. None -

0.050£, (0.058,/0.043,.)

WSD Improvement, Perfect vs. None -

0.061 £, (0.070,/0.053,.)

Table 2: All the relevant numbers for the study. For purposes of comparison we recalculated the token counts for the
gold-annotated portion of the XWN corpus, and found discrepancies with Arranz’s reported values. They reported
1300 fully-gold-annotated glosses containing 397 MWEs; we found 1307 glosses containing 382 MWESs. The table
contains our token counts, but Arranz’s actual MWE detection and WSD f-measures, precisions, and recalls.

striking difference in Baseline performance seems to
be that, in the XWN glosses, a much higher fraction
of the MWEs are already in base form (e.g., nouns
in glosses are preferentially expressed as singular).

To encourage other researchers to build upon our
results, we provide our implementation of these
two MWE detection strategies, along with a gen-
eral MWE detection framework and numerous other
MWE detectors, in the form of a free, open-source
Java library called jMWE (Finlayson and Kulkarni,
2011a). Furthermore, to allow independent verifi-
cation of our results, we have placed all the source
code and data required to run these experiments
in an online repository (Finlayson and Kulkarni,
2011b).

3 Contributions

We have shown that accurately detecting multi-
word expressions allows a non-trivial improvement
in word sense disambiguation. Our Baseline, Best,
and Perfect MWE detection strategies show a 3.3,
5.1, and 6.1 percentage point improvement in WSD
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f-measure. Our Baseline-to-Best improvement is
comparable with that measured by Arranz, the dif-
ference being due to more prevalent base-form
MWEs between XWN glosses and Semcor. The
very small improvement of the Perfect strategy over
the Best shows that, at least for Wordnet over texts
with an MWE distribution similar to Semcor, there
is little to be gained even from a highly-sophisticated
MWE detector. We have provided these two MWE
detection algorithms in a free, open-source Java li-
brary called J]MWE.
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