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Abstract

Atypical or idiosyncratic language is a char-
acteristic of autism spectrum disorder (ASD).
In this paper, we discuss previous work iden-
tifying language errors associated with atyp-
ical language in ASD and describe a proce-
dure for reproducing those results. We de-
scribe our data set, which consists of tran-
scribed data from a widely used clinical di-
agnostic instrument (the ADOS) for children
with autism, children with developmental lan-
guage disorder, and typically developing chil-
dren. We then present methods for automati-
cally extracting lexical and syntactic features
from transcripts of children’s speech to 1)
identify certain syntactic and semantic errors
that have previously been found to distinguish
ASD language from that of children with typ-
ical development; and 2) perform diagnostic
classification. Our classifiers achieve results
well above chance, demonstrating the poten-
tial for using NLP techniques to enhance neu-
rodevelopmental diagnosis and atypical lan-
guage analysis. We expect further improve-
ment with additional data, features, and clas-
sification techniques.

1 Introduction

Atypical language and communication have been as-
sociated with autism spectrum disorder (ASD) since
Kanner (1943) first gave the name autism to the dis-
order. The Autism Diagnostic Observation Sched-
ule (ADOS) (Lord et al., 2002) and other widely
used diagnostic instruments include unusual word
use as a diagnostic criterion. The broad and con-
flicting definitions used in diagnostic instruments for
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ASD, however, can lead to difficulty distinguishing
the language peculiarities associated with autism.

The most recent and the most systematic study of
unusual word use in ASD (Volden and Lord, 1991)
found that certain types of atypical word use were
significantly more prevalent in ASD speech than
in the speech of children with typical development
(TD). Although the results provided interesting in-
formation about unusual language in ASD, the pro-
cess of coding these types of errors was laborious
and required substantial linguistic and clinical ex-
pertise.

In this paper, we first use our own data to repro-
duce a subset of the results reported in Volden and
Lord (1991). We then present a method of automat-
ically identifying the types of errors associated with
ASD using spoken language features and machine
learning techniques. These same features are then
used to differentiate subjects with ASD or a devel-
opmental language disorder (DLD) from those with
TD. Although these linguistic features yield strong
classification results, they also reveal a number of
obstacles to distinguishing language characteristics
associated with autism from those associated with
language impairment.

2 Previous Work

Since it was first recognized as a neurodevelop-
mental disorder, autism has been associated with
language described variously as: “seemingly non-
sensical and irrelevant”, “peculiar and out of place
in ordinary conversation” (Kanner, 1946); “stereo-
typed”, “metaphorical”, “inappropriate” (Bartak et

al., 1975); and characterized by “a lack of ease in
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the use of words” (Rutter, 1965) and ‘“the use of
standard, familiar words or phrases in idiosyncratic
but meaningful way” (Volden and Lord, 1991). The
three most common instruments used in ASD diag-
nosis — the Autism Diagnostic Observation Sched-
ule (ADOS) (Lord et al., 2002), the Autism Di-
agnostic Interview-Revised (ADI-R) (Lord et al.,
1994), and the Social Communication Questionnaire
(SCQ) (Rutter et al., 2003) — make reference to
these language particularities in their scoring algo-
rithms. Unfortunately, the guidelines for identify-
ing this unusual language are often vague (SCQ:
“odd”, ADI-R: “idiosyncratic”’, ADOS: “unusual”)
and sometimes contradictory (ADOS: “appropriate”
vs. ADI-R: “inappropriate”; ADOS: “phrases...they
could not have heard” vs. SCQ: “phrases that he/she
has heard other people use”).

In what is one of the only studies focused specif-
ically on unusual word use in ASD, Volden and
Lord (1991) transcribed two 10-minute speech sam-
ples from the ADOS for 20 school-aged, high-
functioning children with autism and 20 with typi-
cal development. Utterances containing non-English
words or the unusual use of a word or phrase were
flagged by student workers and then categorized by
the authors into one of three classes according to the
type of error:

e Developmental syntax error: a violation of a
syntactic rule normally acquired in early child-
hood, such as the use of object pronoun in sub-
ject position or an overextension of a regular
morphological rule, e.g., What does cows do?

e Non-developmental syntax error: a syntactic
error not commonly observed in the speech of
children acquiring language, e.g., But in the car
it’s some.

e Semantic error: a syntactically intact sentence
with an odd or unexpected word given the con-
text and intended meaning, e.g., They re siding
the table.

The authors found that high-functioning chil-
dren with ASD produced significantly more non-
developmental and semantic errors than children
with typical development. The number of develop-
mental syntax errors was not significantly different
between these two groups.
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Although there has been virtually no previous
work on automated analysis of unannotated tran-
scripts of the speech of children with ASD, auto-
matically extracted language features have shown
promise in the identification of other neurological
disorders such as language impairment and cogni-
tive impairment. Gabani et al. (2009) used part-of-
speech language models to derive perplexity scores
for transcripts of the speech of children with and
without language impairment. These scores offered
significant diagnostic power, achieving an F1 mea-
sure of roughly 70% when used within an support
vector machine (SVM) for classification. Roark et
al. (in press) extracted a much larger set of lan-
guage complexity features derived from syntactic
parse trees from transcripts of narratives produced
by elderly subjects for the diagnosis of mild cogni-
tive impairment. Selecting a subset of these features
for classification with an SVM yielded accuracy, as
measured by the area under the receiver operating
characteristic curve, of 0.73.

Language models have also been applied to the
task of error identification, but primarily in writ-
ing samples of ESL learners. Gamon et al. (2008)
used word-based language models to detect and
correct common ESL errors, while Leacock and
Chodorow (2003) used part-of-speech bigram lan-
guage models to identify potentially ungrammatical
two-word sequences in ESL essays. Although these
tasks differ in a number of ways from our tasks, they
demonstrate the utility of using both word and part-
of-speech language models for error detection.

3 Data Collection

3.1 Subjects

Our first objective was to gather data in order repro-
duce the results reported in Volden and Lord (1991).
As shown in Table 1, the participants in our study
were 50 children ages 4 to 8 with a performance
1Q greater than 80 and a diagnosis of either typical

’ Diagnosis \ Count \ Age (s.d.) \ 1Q (s.d.) ‘

TD 17 6.24 (1.38) | 125.7 (11.63)
ASD 20 6.38 (1.25) | 108.9 (16.41)
DLD 13 7.01 (1.10) | 100.6 (10.95)

Table 1: Count, mean age and IQ by subject group.



development (TD, n=17), autism spectrum disorder
(ASD, n=20), or developmental language disorder
(DLD, n=13).

Developmental language disorder (DLD), also
sometimes known as specific language impairment
(SLI), is generally defined as the delayed or im-
paired acquisition of language without accompany-
ing comparable delays or deficits in hearing, cogni-
tion, and socio-emotional development (McCauley,
2001). The language impairments that characterize
DLD are not related to articulation or “speech im-
pediments” but rather are associated with more pro-
found problems producing and often comprehend-
ing language in terms of its pragmatics, syntax, se-
mantics, and phonology. The DSM-IV-TR (Ameri-
can Psychiatric Association, 2000) includes neither
DLD nor SLI as a disorder, but for the purposes
of this work, DLD corresponds to the DSM’s des-
ignations Expressive Language Disorder and Mixed
Expressive-Receptive Language Disorder.

For this study, a subject received a diagnosis of
DLD if he or she met one of two commonly used
criteria: 1) The Tomblin Epi-SLI criteria (Tomblin,
et al., 1996), in which diagnosis of language im-
pairment is indicated when scores in two out of five
domains (vocabulary, grammar, narrative, receptive,
and expressive) are greater than 1.25 standard devia-
tions below the mean; and 2) The CELF-Preschool-
2/CELF-4 criteria, in which diagnosis of language
impairment is indicated when one out of three index
scores and one out of three spontaneous language
scores are more than one standard deviation below
the mean.

A diagnosis of ASD required a previous medi-
cal, educational, or clinical diagnosis of ASD, which
was then confirmed by our team of clinicians ac-
cording to the criteria of the DSM-IV-TR (Ameri-
can Psychiatric Association, 2000), the revised al-
gorithm of the ADOS (Lord et al., 2002), and the
SCQ parental interview (Rutter et al., 2003). Fifteen
of the 20 ASD subjects participating in this study
also met at least one of the above described criteria
for DLD.

3.2 Data Preparation

The ADOS (Lord et al., 2002), a semi-structured se-
ries of activities designed to reveal behaviors asso-
ciated with autism, was administered to all 50 sub-
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jects. Five of the ADOS activities that require sig-
nificant amounts spontaneous speech (Make-Believe
Play, Joint Interactive Play, Description of a Pic-
ture, Telling a Story From a Book, and Conversa-
tion and Reporting) were then transcribed at the ut-
terance level for all 50 speakers. All utterances from
the transcripts longer than four words (11,244) were
presented to individuals blind to the purposes of the
study, who were asked to flag any sentence with
atypical or unusual word use. Those sentences were
then classified by the authors as having no errors or
one of the three error types described in Volden and
Lord. Examples from our data are given in Table 2.

3.3 Reproducing Previous Results

In order to compare our results to those reported in
Volden and Lord, we calculated the rates of the three
types of errors for each subject, as shown in Ta-
ble 2. With a two-sample (TD v. ASD) t-test, the
rates of nondevelopmental and semantic errors were
significantly higher in the ASD group than in the
TD group, while there was no significant difference
in developmental errors between the two groups.
These results reflect the same trends observed in
Volden and Lord, in which the raw counts of both
developmental and semantic errors were higher in
the ASD group.

Using ANOVA for significance testing over all
three diagnostic groups, we found that the rate of
developmental errors was significantly higher in the
DLD group than in the other groups. The difference
in semantic error rate between TD and ASD using
the t-test was preserved, but the difference in nonde-
velopmental error rate was lost when comparing all
three diagnostic groups with ANOVA, as shown in
Figure 1.

Error Example

I have a games.

The baby drinked it.

The frogs was watching TV.

He locked him all of out.

Would you like to be fall down?

He got so the ball went each way.
Something makes my eyes poke.

It smells like it’s falling on your head.
All the fish are leaving in the air.

Dev.

Nondev.

Sem.

Table 2: Examples of error types.
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Sem.
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Dev.

Figure 1: Error rates by diagnostic group (*p <0.05).

The process of manually identifying sentences
with atypical or unusual language was relatively
painless, but determining the specific error types is
subjective and time-consuming, and requires a great
deal of expertise. In addition, although we do ob-
serve significant differences between groups, it is
not clear whether the differences are sufficient for
diagnostic classification or discrimination.

We now propose automatically extracting from
the transcripts various measures of linguistic likeli-
hood, complexity, and surprisal that have the poten-
tial to objectively capture qualities that differentiate
1) the three types of errors described above, and 2)
the three diagnostic groups discussed above. In the
next three sections, we will discuss the various lin-
guistic features we extract; methods for using these
features to classify each sentence according to its er-
ror type for the purpose of automatic error-detection;
and methods for using these features, calculated for
each subject, for diagnostic classification.

4 Features

N-gram cross entropy. Following previous work
in both error detection (Gamon et al., 2008; Leacock
and Chodorow, 2003) and neurodevelopmental di-
agnostic classification (Gabani et al., 2009), we be-
gin with simple bigram language model features. A
bigram language model provides information about
the likelihood of a given item (e.g., a word or part
of speech) in a sentence given the previous item in
that sentence. We suspect that some of the types
of unusual language investigated here, in particular
those seen in the syntactic errors shown in Table 2,
are characterized by unlikely words (drinked) and
word or part-of-speech sequences (a games, all of
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out) and hence might be distinguished by language
model-based scores.

We build a word-level bigram language model and
a part-of-speech level bigram language model from
the Switchboard (Godfrey et al., 1992) corpus. We
then automatically generate part-of-speech tags for
each sentence (where the tags were derived from
the best scoring output of the full syntactic parser
mentioned below), and then apply the two models
to each sentence. For each sentence, we calculate
its cross entropy and perplexity. For a word string
wy . .. wy of length n, the cross entropy H is

n

H(wy...w,) =
where P(wy ... wy) is calculated as the product of
the n-gram probabilities of each word in the string.
The corresponding measure can be calculated for the
POS-tag sequence, based on an n-gram model of
tags. Perplexity is simply 2.

While we would prefer to use a corpus that is
closer to the child language that we are attempting
to model, we found the conversational style of the
Switchboard corpus to be the most effective large
corpus that we had at our disposal for this study.
As the size of our small corpus grows, we intend to
make use of the text to assist with model building,
but for this study, we used all out-of-domain data
for n-gram language models and parsing models.
Using Switchboard also allowed us to use the same
corpus to train both n-gram and parsing models.

Surprisal-based features. Surprisal, or the unex-
pectedness of a word or syntactic category in a given
context, is often used as a psycholinguistic mea-
sure of sentence-processing difficulty (Hale, 2001;
Boston et al., 2008). Although surprisal is usually
discussed in the context of cognitive load for lan-
guage processing, we hoped that it might also cap-
ture some of the language characteristics of the se-
mantic errors like those in Table 2, which often con-
tain common words used in surprising ways, and
the nondevelopmental syntax errors, which often in-
clude strings of function words presented in an order
that would be difficult to anticipate.

To derive surprisal-based features, each sentence
is parsed using the Roark (2001) incremental
top-down parser relying on a model built again on



the Switchboard corpus. The incremental output of
the parser shows the surprisal for each word, as well
as other scores, as presented in Roark et al. (2009).
For each sentence, we collected the mean surprisal
(equivalent to the cross entropy given the model);
the mean syntactic surprisal; and the mean lexical
surprisal. The lexical and syntactic surprisal are a
decomposition of the total surprisal into that portion
due to probability mass associated with building
non-terminal structure (syntactic surprisal) and that
portion due to probability mass associated with
building terminal lexical items in the tree (lexical
surprisal). We refer the reader to that paper for
further details.

Other linguistic complexity measures The non-
developmental syntax errors in Table 2 are charac-
terized by their ill-formed syntactic structure. Fol-
lowing Roark et al. (in press), in which the authors
explored the relationship between linguistic struc-
tural complexity and cognitive decline, and Sagae
(2005), in which the authors used automatic syntac-
tic annotation to assess syntactic development, we
also investigated the following measures of linguis-
tic complexity: words per clause, tree nodes per
word, dependency length per word, and Ygnve and
Frazier scores per word. Each of these scores can
be calculated from a provided syntactic parse tree,
and to generate these we made use of the Charniak
parser (Charniak, 2000), also trained on the Switch-
board treebank.

Briefly, words per clause is the total number of
words divided by the total number of clauses; and
tree nodes per word is the total number of nodes
in the parse tree divided by the number of words.
The dependency length for a word is the distance (in
word tokens) between that word and its governor,
as determined through standard head-percolation
methods from the output of the Charniak parser. We
calculate the mean of this length over all words in
the utterance. The Yngve score of a word is the
size of the stack of a shift-reduce parser after that
word; and the Frazier score essentially counts how
many intermediate nodes exist in the tree between
the word and its lowest ancestor that is either the
root or has a left sibling in the tree. We calculate
the mean of both of these scores over the utterance.
We refer the reader to the above cited paper for more
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details on these measures.

As noted in Roark et al. (in press), some of these
measures are influenced by particular characteristics
of the Penn Treebank style trees — e.g., flat noun
phrases, etc. — and measures vary in the degree to
which they capture divergence from typical struc-
tures. Some (including Yngve) are sensitive to the
breadth of trees (e.g., flat productions with many
children); others (including Frazier) are sensitive to
depth of trees. This variability is a key reason for
including multiple, complementary features, such as
both Frazier and Yngve scores, to capture more sub-
tle syntactic characteristics than would be available
from any of these measures alone.

Although we were not able to measure parsing ac-
curacy on our data set and how it might affect the re-
liability of these features, Roark et al. (in press) did
investigate this very issue. They found that all of the
above described syntactic measures, when they were
derived from automatically generated parse trees,
correlated very highly (greater than 0.9) with those
measures when they were derived from manually
generated parse trees. For the moment, we assume
that the same principle holds true for our data set,
though we do intend both to verify this assump-
tion and to supplement our parsing models with data
from child speech. Based on manual inspection of
parser output, the current parsing model does seem
to be recovering largely valid structures.

5 Error Classification

The values for 8 of the 12 features were significantly
different over the three error classes, as measured
by one-way ANOVA: words per clause, Yngve, de-
pendency, word cross-entropy all significant at p <
0.001; Frazier, nodes per word at p < 0.01; overall
surprisal and lexical surprisal at p < 0.05. We built
classification and regression trees (CART) using the
Weka data mining software (Hall et al., 2009) us-
ing all of the 12 features described above to predict
which error each sentence contained, and we report
the accuracy, weighted F measure, and area under
the receiver operating characteristic curve (AUC).
Including all 12 features in the CART using 10-
fold cross validation resulted in an AUC of 0.68,
while using only those features with significant
between-group differences yielded an AUC of 0.65.



Classifier [ Acc. [ F1 | AUC |

Baseline 1 41% | 0.24 | 0.5
Baseline 2 33% | 032 | 0.5
All features 53% | 0.53 | 0.68
Feature subset | 49% | 0.49 | 0.65

Table 3: Error-type classification results.

These are both substantial improvements over a
baseline with an unbalanced corpus in which the
most frequent class is chosen for all input items
(Baseline 1) or a baseline with a balanced corpus in
which class is chosen at random (Baseline 2), which
both have an AUC of 0.5. The results for each of
these classifiers, provided in Table 3, show potential
for automating the identification of error type.

6 Diagnostic Classification

In Section 3, we found a number of significant dif-
ferences in error type production rates across our
three diagnostic groups. Individual rates of error
production, however, provide almost no classifica-
tion power within a CART (AUC = 0.51). Perhaps
the phenomena being observed in ASD and DLD
language are related to subtle language features that
are less easily identified than simply the membership
of a sentence in one of these three error categories.

Given the ability of our language features to dis-
criminate error types moderately well, as shown in
Section 5, we decided to extract these same 12 fea-
tures from every sentence longer than 4 words from
the entire transcript for each of the subjects. We
then took the mean of each feature over all of the
sentences for each speaker. These per-speaker fea-
ture vectors were used for diagnostic classification
within a CART.

We first performed classification over the three di-
agnostic groups using the full set of 12 features de-
scribed in Section 4. This results in only modest
gains in performance over the baseline that uses er-
ror rates as the only features. We then used ANOVA
to determine which of the 12 features differed sig-
nificantly across the three groups. Only four fea-
tures were found to be significantly different across
the three groups (words per clause, Yngve, depen-
dency, word cross entropy), and none of them dif-
ferent significantly between the ASD group and the
DLD group. As expected, classification did not im-
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Features | Acc. | F1 | AUC |
Error rates 33% | 0.32 | 0.51
All features 42% | 0.38 | 0.59
Feature subset | 40% | 0.37 | 0.6

Table 4: All subjects: Diagnostic classification results.

prove with this feature subset, as reported in Table 4.

Recall that 15 of the 20 ASD subjects also met at
least one criterion for a developmental language dis-
order. Perhaps the language peculiarities we observe
in our subjects with ASD are related in part to lan-
guage characteristics of DLD rather than ASD. We
now attempt to tease apart these two sources of un-
usual language by investigating three separate clas-
sification tasks: TD vs. ASD, TD vs. DLD, and
ASD vs. DLD.

6.1 TD vs. ASD

We perform classification of the TD and ASD sub-
jects with three feature sets: 1) per-subject error
rates; 2) all 12 features described in Section 4; and
3) the subset of significantly different features. We
found that 7 of the 12 features explored in Section 4
differed significantly between the TD group and the
ASD group: words per clause, Yngve, dependency,
word cross-entropy, overall surprisal, syntactic sur-
prisal, and lexical surprisal. Classification results are
shown in Table 5. We see that using the automati-
cally derived linguistic features improves classifica-
tion substantially over the baseline using per-subject
error rates, particularly when we use the feature sub-
set. Note that the best classification accuracy results
are comparable to those reported in related work on
language impairment and mild cognitive impairment
described in Section 2.

6.2 TDvs. DLD

We perform classification of TD and DLD subjects
with the same three feature sets used for the TD
vs. ASD classification. We found that 6 of the 12

’ Features \ Acc. \ F1 \ AUC ‘
Error rates 62% | 0.62 | 0.56
All features 62% | 0.62 | 0.65
Feature subset | 68% | 0.67 | 0.72

Table 5: TD vs. ASD: Diagnostic classification results.



Features | Acc. | F1 | AUC |
Error rates 67% | 0.67 | 0.72
All features 80% | 0.79 | 0.75
Feature subset | 77% | 0.75 | 0.66

Table 6: TD vs. DLD: Diagnostic classification results.

features explored in Section 4 different significantly
between the TD group and the ASD group: words
per clause, Yngve, dependency, word cross-entropy,
overall surprisal, and lexical surprisal. Note that this
is a subset of the features that differed between the
TD group and ASD group. Classification results are
shown in Table 6. Interestingly, using per-subject er-
ror rates for classification of TD and DLD subjects
was quite robust. Using all of the features improved
classification somewhat, while using only a subset
resulted in degraded performance. We see that the
discriminative power of these features is superior to
that reported in earlier work using LM-based fea-
tures for classification of specific language impair-
ment (Gabani et al., 2009).

6.3 ASD vs. DLD

Finally, we perform classification of the ASD and
DLD subjects using only the first two features
sets, since there were no features found to be even
marginally significantly different between these two
groups. Classification results, which are dismal for
both feature sets, are shown in Table 7.

6.4 Discussion

It seems quite clear that the error rates, feature val-
ues, and classification performance are all being in-
fluenced by the fact that a majority of the ASD sub-
jects also meet at least one criterion for a develop-
mental language disorder. Neither error rates nor
feature values could discriminate between the ASD
and DLD group. Nevertheless we see that our ASD
group and DLD group do not follow the same pat-
terns in their error production or language feature
scores. Clearly there are differences in the language

| Features [ Acc. [ F1 | AUC |
Error rates | 55% | 0.52 | 0.48
All features | 58% | 0.44 | 0.40

Table 7: ASD vs. DLD: Diagnostic classification results.
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patterns of the two groups that are not being cap-
tured with any of the methods discussed here.

We also observe that the error rates them-
selves, while sometimes significantly different
across groups as originally observed in Volden and
Lord, do not perform well as diagnostic features
for ASD in our framework. Volden and Lord did
not attempt classification in their study, so it is not
known whether the authors would have encountered
the same problem. There are, however, a number
of possible explanations for a discrepancy between
our results and theirs. First, our data was gath-
ered from pre-school and young school-aged chil-
dren, while the Volden and Lord subjects were gen-
erally teenagers and young adults. The way in which
their spoken language samples were elicited allowed
Volden and Lord to use raw error counts rather than
error rates. There may also have been important dif-
ferences in the way we carried out the manual er-
ror identification process, despite our best efforts to
replicate their procedure. Further development of
our classification methods and additional data col-
lection are needed to determine the utility of error
type identification for diagnostic purposes.

7 Future Work

Although our classifiers using automatically ex-
tracted features were generally robust, we expect
that including additional classification techniques,
subjects (especially ASD subjects without DLD),
and features will further improve our results. In
particular, we would like to explore semantic and
lexical features that are less dependent on linear or-
der and syntactic structure, such as Resnik similarity
and features derived using latent semantic analysis.
We also plan to expand the training input for
the language model and parser to include children’s
speech. The Switchboard corpus is conversational
speech, but it may fail to adequately model many lin-
guistic features characteristic of small children. The
CHILDES database of children’s speech, although
it is not large enough to be used on its own for our
analysis and would require significant manual syn-
tactic annotation, might provide enough data for us
to adapt our models to the child language domain.
Finally, we would like to investigate how infor-
mative the error types are and whether they can be



reliably coded by multiple judges. When we exam-
ined the output of our error-type classifier, we no-
ticed that many of the misclassified examples could
be construed, upon closer inspection, as belonging
to multiple error classes. The sentence He'’s flying
in a lily-pond, for instance, could contain a devel-
opmental error (i.e., the child has not yet acquired
the correct meaning of in) or a semantic error (i.e.,
the child is using the word flying instead of swim-
ming). Without knowing the context in which the
sentence was uttered, it is not possible to determine
the type of error through any manual or automatic
means. The seemingly large number of misclassifi-
cations of sentences like this indicates the need for
further investigation of the existing coding proce-
dure and in-depth classification error analysis.

8 Conclusions

Our method of automatically identifying error type
shows promise as a supplement to, or substitute for,
the time-consuming and subjective manual coding
process described in Volden and Lord (Volden and
Lord, 1991). However, the superior performance of
our automatically extracted language features sug-
gests that perhaps it may not be the errors them-
selves that characterize the speech of children with
ASD and DLD but rather a preference for certain
structures and word sequences that sometimes mani-
fest themselves as clear language errors. Such varia-
tions in complexity and likelihood might be too sub-
tle for humans to reliably observe.

In summary, the methods explored in this paper
show potential for improving diagnostic discrimina-
tion between typically developing children and those
with these neurodevelopmental disorders. Further
research is required, however, in finding the most re-
liable markers that can be derived from such spoken
language samples.
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