
Proceedings of the Fifth Law Workshop (LAW V), pages 134–142,
Portland, Oregon, 23-24 June 2011. c©2011 Association for Computational Linguistics

Empty Categories in Hindi Dependency Treebank: Analysis and Recovery

Chaitanya GSK
Intl Institute of Info. Technology

Hyderabad, India
chaitanya.gsk

@research.iiit.ac.in

Samar Husain
Intl Institute of Info. Technology

Hyderabad, India
samar

@research.iiit.ac.in

Prashanth Mannem
Intl Institute of Info. Technology

Hyderabad, India
prashanth

@research.iiit.ac.in

Abstract

In this paper, we first analyze and classify the
empty categories in a Hindi dependency tree-
bank and then identify various discovery pro-
cedures to automatically detect the existence
of these categories in a sentence. For this we
make use of lexical knowledge along with the
parsed output from a constraint based parser.
Through this work we show that it is possi-
ble to successfully discover certain types of
empty categories while some other types are
more difficult to identify. This work leads to
the state-of-the-art system for automatic inser-
tion of empty categories in the Hindi sentence.

1 Introduction

Empty categories play a crucial role in the annota-
tion framework of the Hindi dependency treebank1

(Begum et al., 2008; Bharati et al., 2009b). They
are inserted in a sentence in case the dependency
analysis does not lead to a fully connected tree. In
the Hindi treebank, an empty category (denoted by
a NULL node) always has at least one child. These
elements have essentially the same properties (e.g.
case-marking, agreement, etc.) as an overtly real-
ized element and they provide valuable information
(such as predicate-argument structure, etc.). A dif-
ferent kind of motivation for postulating empty cate-
gories comes from the demands of natural lan- guage
processing, in particular parsing. There are several
types of empty categories in the Hindi dependency

1The dependency treebank is part of a Multi Representa-
tional and Multi-Layered Treebank for Hindi/Urdu (Palmer et
al., 2009).

treebank serving different purposes. The presence
of these elements can be crucial for correct auto-
matic parsing. Traditional parsing algorithms do
not insert empty categories and require them to be
part of the input. The performance of such parser
will be severely affected if one removes these ele-
ments from the input data. Statistical parsers like
MaltParser (Nivre, 2003), MSTParser (McDonald,
2005), as well as Constraint Based Hybrid Parser
(CBHP) (Bharati et al., 2009a) produce incorrect
parse trees once the empty categories are removed
from the input data. Hence there is a need for auto-
matic detection and insertion of empty categories in
the Hindi data. Additionally, it is evident that suc-
cessful detection of such nodes will help the annota-
tion process as well.

There have been many approaches for the recov-
ery of empty categories in the treebanks like Penn
treebank, both ML based (Collins, 1997; Johnson,
2002; Dienes and Dubey, 2003a,b; Higgins, 2003)
and rule based (R Campbell, 2004). Some ap-
proaches such as Yang and Xue (2010) follow a post
processing step of recovering empty categories after
parsing the text.

In this paper we make use of lexical knowledge
along with the parsed output from a constraint based
parser to successfully insert empty category in the
input sentence, which may further be given for pars-
ing or other applications. Throughout this paper, we
use the term recovery (of empty categories) for the
insertion of different types of empty categories into
the input sentence.

The paper is arranged as follows, Section 2 dis-
cusses the empty nodes in the treebank and classifies

134

NULL NP tokens 69
NULL VG tokens 68
NULL CCP tokens 32
Sentences with more than
one empty category in them 159

Table 1: Empty categories in Hindi Tree bank

them based on their syntactic type. In section 3 we
provide an algorithm to automatically recover these
elements. Section 4 shows the performance of our
system and discusses the results. We conclude the
paper in section 5.

2 An overview of Empty Categories in
Hindi dependency Treebank

Begum et al., (2008) proposed a dependency frame-
work in which an empty node is introduced dur-
ing the annotation process only if its presence is
required to build the dependency tree for the sen-
tence (Figures 1, 2, 3) 2. Empty categories such as
those discussed in Bhatia et al. (2010) which would
be leaf nodes in the dependency tree are not part
of the dependency structure and are added during
Propbanking3. Consequently, the empty categories
in Hindi treebank do not mark displacement as in
Penn treebank (Marcus et al., 1993) rather, they rep-
resent undisplaced syntactic elements which happen
to lack phonological realization. In the Hindi depen-
dency treebank, an empty category is represented by
a ‘NULL’ word. Sentences can have a missing VG
or NP or CCP 4. These are represented by ‘NULL’
token and are marked with the appropriate Part-of-
speech tag along with marking the chunk tag such
as NULL NP, NULL VGF, NULL CCP, etc. in Ta-
ble 2

2Due to space constraints, sentences in all the figures only
show chunk heads. Please refer to examples 1 to 6 for entire
sentences with glosses

3These empty categories are either required to correctly cap-
ture the argument structure during propbanking or are required
to successfully convert the dependency structure to phrase struc-
ture (Xia et al., 2009)

4VG is Verb Group, NP is Noun Phrase and CCP is Conjunct
Phrase.

Type of empty Inst- Chunk tag
categories ances (CPOS)
Empty subject 69 NULL NP
Backward gapping 29 NULL VG
Forward gapping 21 NULL VG
Finite verb ellipses 18 NULL VG
Conjunction ellipses
(verbs) 20 NULL CCP
Conjunction ellipses
(nouns) 12 NULL CCP
Total 169

Table 2: Empty category types.

2.1 Empty category types
From the empty categories recovery point of view,
we have divided the empty categories in the treebank
into six types (Table 2).

The first type of empty category is Empty Subject
(Figure 1), example.1 where a clause ‘rava ke
kaaran hi manmohan singh rajaneeti me aaye’ is
dependent on the missing subject of the verb ‘hai’
(is).

(1) NULL gaurtalab hai ki raao
NULL ‘noticeable’ ‘is’ ‘that’ ‘Rao’
ke kaaran hi manmohan sing

‘because’ ‘only’ ‘Manmohan‘ ‘singh‘
raajaniiti me aaye

‘politics’ ‘in’ ‘came.

‘it is noticeable that because of Rao, Manmohan
Singh came in politics’

The second type of empty category is due to
Backward Gapping (Figure 2), example.2 where
the verb is absent in the clause that occurs before a
co-ordinating conjunct.

(2) doosare nambara para misa roosa
‘second’ ‘position’ ‘on’ ‘miss’ ‘Russia’
natasha NULL aur tiisare nambara

‘Natasha’ NULL ‘and’ ‘third’ ‘position’
para misa lebanan sendra rahiim .

‘on’ ‘miss’ ‘Lebanan’ ‘Sandra’ were’ .

135

Figure 1: Empty Subject.

Figure 2: Backward Gapping.

Figure 3: Forward Gapping.

Figure 4: Finite verb ellipses.

Figure 5: Conjunction ellipses (verbs).

136

Figure 6: Conjunctuon ellipses (nouns).

‘Miss Russia stood second and Miss Lebanan
was third’

The third type of empty category is Forward
Gapping (Figure 3), example 3, which is similar to
the second type but with the clause with the missing
verb occurring after the conjunct rather than before.
The reason for a separate class for forward gapping
is explained in the next section.

(3) divaalii ke dina jua Kele magara
‘Diwali’ ‘GEN’ ‘day’ ‘gamble’ ‘play’ ‘but’
NULL gar me yaa hotala me
‘NULL’ ‘home’ ‘in’ ‘or’ ‘hotel’ ‘in’

‘Played gamble on Diwali day but was it at home
or hotel’

The fourth type of empty category is due to Finite
verb ellipses (Figure4), example 4, where the main
verb for a sentence is missing.

(4) saath me vahii phevareta khadaa pyaaja
’along’ ’in’ ’that’ ’favorite’ ’raw’ ’onion’
NULL.
NULL

‘Along with this, the same favorite semi-cooked
onion’

The fifth type of empty category is Conjunction
ellipses (Verbs), example 5 (Figure 5).

(5) bacce bare ho-ga-ye-hai NULL
‘children’ ‘big’ ‘become’ ‘NULL’
kisii ki baat nahiin maante
‘anyone’ ‘gen’ ‘advice’ ‘not’ ‘accept’

‘The children have grown big (and) do not listen
to anyone’

The sixth type of empty category is the Conjunc-
tion ellipses (for nouns), example 6 (Figure 6).

(6) yamunaa nadii me uphaana se
‘Yamuna’ ‘river’ ‘in’ ‘storm’ ‘INST’
sekado ekara gannaa, caaraa,

‘thousands’ ‘acre’ ‘sugarcane’ ‘straw’
dhana, NULL sabjii kii phasale
‘money’ ‘NULL’ ‘vegetable’ ‘GEN’ ‘crops’
jala-magna ho-gai-hai .
‘drowned’ ‘happened’

‘Because of the storm in the Yamuna river, thou-
sand acres of sugarcane, straw, money, vegetable
crops got submerged’

3 Empty categories recovery Algorithm

Given the limited amount of data available (only 159
sentences with at least one empty category in them
out of 2973 sentences in the Hindi treebank, Table
12), we follow a rule based approach rather than us-
ing ML to recover the empty catogories discussed in
the previous section. Interestingly, a rule-based ap-
proach was followed by R Campbell, (2004) that re-
covered empty categories in English resulting in bet-
ter performance than previous empirical approaches.
This work can be extended for ML once more data
becomes available.

The techniques that are used for recovering empty
categories in the Penn treebank (Collins, 1997;
Johnson, 2002;) might not be suitable since the Penn
treebank has all the empty categories as leaf nodes in
the tree unlike the Hindi dependency treebank where

137

for each sentence in the input data
try in Empty Subject
try in Forward Gapping
try in Finite Verb ellipses

for each tree in CBHP parse output
try in Backward Gapping
try in Forward Gapping
try in Finite Verb ellipses
try in Conjunction ellipses (for Verbs)

Table 3: Empty categories Recovery Algorithm.

the empty categories are always internal nodes in the
dependency trees (Figure 2).

In this section we describe an algorithm which
recovers empty categories given an input sentence.
Our method makes use of both the lexical cues as
well as the output of the Constraint Based Hybrid
Parser (CBHP). Table 3 presents the recovery algo-
rithm which first runs on the input sentence and then
on the output of the CBHP.

3.1 Empty Subject
Framing rule 1 requires the formation of a set (Cue-
Set) based on our analysis discussed in the previ-
ous section. It contains all the linguistic cues (lex-
ical items such as gaurtalab ‘noticeable’, maloom
‘known’, etc). We then scan the input sentence
searching for the cue and insert an empty category
(NULL NP)5 if the cue is found. Table 4 illustates
the process where we search for ‘CueSet he ki’ or
‘CueSet ho ki’ phrases. In Table 4, W+1 represents
word next to W, W+2 represents word next to W+1.

3.2 Backward Gapping
To handle backward gapping cases, we take the in-
termediate parse output from CBHP 6 for the whole
data. The reason behind choosing CBHP lies in its
rule based approach. CBHP fails (or rather gives
a visibly different parse) for sentences with miss-
ing verbs. And when it fails to find a verb, CBHP

5We insert a token ‘NULL’ with NULL NP as CPOS
6CBHP is a two-stage parser. In the 1st stage it parses intra-

clausal relations and inter-clausal relations in the 2nd stage. The
1st stage parse is an intermediate parse.

for each word W in the Sentence
if W ε CueSet

if W+1 & W+2 = he or ho & ki
Insert NULL with PRP as POS,

NULL NP as CPOS

Table 4: Rule for identifying Empty Subject.

for each node N in tree T
if head of N = φ

insert N in unattached subtrees[]
for each node X in unattached subtrees[]

while POS(X) is not VG
traverse in the array of unattached subtrees
if ∃ a conjunct, then recovery=1

if recovery = 1
insert NULL, with VM as POS,

NULL VG as CPOS
Head of NULL = φ

Table 5: Rule for identifying Backward Gapping using
CBHP.

gives unattached subtrees7 (Figure 7, 8, 9 illustrates
the unattached subtrees where the parser is unable to
find a relation between the heads of each unattached
subtree). Similarly whenever the parser expects a
conjunction and the conjunction is absent in the sen-
tence, CBHP again gives the unattached subtrees.

We analyze these unattached sub-trees to see
whether there is a possibility for empty category.
The array, in Table 5 represents all the nodes hav-
ing no heads. POS represents part of speech and
CPOS represents chunk part of speech and φ repre-
sents empty set.

3.3 Forward gapping
The main reason for handling the forward gapping as
a separate case rather than considering it along with
backward gapping is the prototypical SOV word-
order of Hindi, i.e. the verb occurs after subject and
object in a clause or sentence. We take the interme-
diate parse output from the CBHP for the whole data
and when ever a verb is absent in a clause occurring
immediately after a conjunct, we search for a VG af-

7CBHP gives fully connected trees in both the stages. We
have modified the parser so that it gives unattached subtrees
when it fails.

138

for each node N in tree T
if head of N = φ

insert N in unattached subtrees[]
for each node X in unattached subtrees[]

if !∃ a verb between two conjuncts
if those conjuncts belongs to conjunct set

insert insert NULL with VM as POS,
NULL VG as CPOS

Table 6: Rule for identifying Forward Gapping using
CBHP.

for each word W in the sentence S
if W ε CueSet FG

insert NULL with NULL VG as POS
and CPOS

if W = Conjunct
if POS(W-1) = VG

if !∃ a VG in S-W
insert NULL with VM as POS,

NULL VG as CPOS

Table 7: Rule for identifying Forward Gapping .

ter the conjunct and insert an empty category if the
VG is absent (an example of such cases can be seen
in Figure 7). This procedure is given in Table 6. In
addition, we use the lexical cues (such as ya nahii ‘or
not’, ya ‘or’) for recovering certain types of empty
categories. CueSet FG is the set that contains the
lexical cues and conjunct set contains lexical cues
like (ki and ya). This procedure is shown in Table 7.

Figure 7: Unattached sub trees in CBHP parse output of
an input sentence (forward gapping).

3.4 Finite Verb ellipses
In the cases where there is no VG at all in the sen-
tence, we insert a NULL VG before the EOS (End-
Of-Sentence) in the input sentence. For this case,
finite verb ellipses can be recovered directly from

if !∃ a VG in S-W
insert NULL with VM as POS,

NULL VG as CPOS

Table 8: Rule for identifying Finite Verb ellipses in sen-
tence.

for each node N in tree T
if head of N = φ

insert N in unattached subtrees[]
if !∃ a verb in unattached subtrees[]

if those conjuncts belongs to conjunct set
insert insert NULL with VM as POS,

NULL VG as CPOS

Table 9: Rule for identifying Finite Verb ellipses using
CBHP.

the input sentence using the rule in Table 8 .Also,
in a sentence with a VG, we use CBHP to ascertain
if this VG is the root of the sentence. If its not, we
insert an additional NULL VG. This algorithm will
correctly recover VG in the sentence but the position
can be different from the gold input at times not be-
cause the recovery algorithm is wrong, but there is
no strict rule that says the exact position of empty
category in this case of finite verb ellipse and anno-
tators might choose to insert an empty category at
any position. For example, in Figure 8, we can in-
sert an empty category either after first NP sub tree
or second or the third etc, all these possibilities are
accepted syntactically. For simplicity purposes, we
insert the empty category just before the EOS. This
procedure is shown in Table 9.

3.5 Conjunction ellipses (for verbs)
We again use the intermediate parsed output of
CBHP for this type. Whenever there is a miss-
ing conjunction between the two finite clauses, the
clausal sub trees are disconnected from each other
as shown in Figure 9. Hence the rule that should
be applied is to insert a NULL CCP between two
sub trees with VG heads and insert NULL CCP im-
mediately after the first verb in the input sentence.
Table 10 shows this procedure.

139

Figure 8: Unattached Subtrees (Finite verb ellipses).

Figure 9: Unattached Subtrees in the case of conjunction ellipses.

for each node N in tree T
if head of N = φ

insert N in unattached subtrees[]
for each node X in unattached subtrees[]

if X and X+1 are VG’s
insert insert NULL with CC as POS,

NULL CCP as CPOS

Table 10: Rule for identifying Finite Verb ellipses using
CBHP.

4 Results and Discussion

We have presented two sets of results, the overall
empty categories detection along with the accuracies
of individual types of empty categories in Table 11
and Table 12.

The results in Table 12 show that the precision in
recovering many empty categories is close to 90%.
A high precision value of 89.8 for recovery of Empty
subject type is due to the strong lexical cues that
were found during our analysis. CBHP parse out-
put proved helpful in most of the remaining types.
Few cases such as backward gapping and conjunc-

Type of empty Inst- Prec- Recall
categories ances ision
Empty subject 69 89.8 89.8
Backward gapping 29 77.7 48.3
Forward gapping 21 88.8 72.7
Finite verb ellipses 18 78.5 61.1
Conjunction ellipses 20 88.2 75
(verbs)
Conjunction ellipses 12 0 0
(nouns)
Total 169 91.4 69.8

Table 11: Recovery of empty categories in Hindi tree-
bank.

tion ellipses (for nouns) are very difficult to handle.
We see that although CBHP helps in the recovery
process by providing unattached subtrees in many
instances, there are cases such as those of backward
gapping and nominal conjunction ellipses where it
does not help. It is not difficult to see why this is
so. The presence of the 2nd verb in the case of back-
ward gapping fools CBHP into treating it as the main
verb of a normal finite clause. In such a case, the

140

Type of empty Inst- Prec- Recall
categories ances ision
NULL NP tokens 69 89.8 89.8
NULL VG tokens 68 82 60.2
NULL CCP tokens 32 88.2 46.8
Total 159 91.4 69.8

Table 12: Empty categories in Hindi Tree bank

parser ends up producing a fully formed tree (which
of course is a wrong analysis) that is of no use for
us.

Similar problem is faced while handling conjunc-
tion ellipses (for nouns). Here as in the previous
case, CBHP is fooled into treating two coordinat-
ing nominals as independent nouns. We note here
that both the cases are in fact notoriously difficult
to automatically detect because of the presence (or
absence) of any robust linguistic pattern.

These results show that our system can be used to
supplement the annotators effort during treebanking.
We plan to use our system during the ongoing Hindi
treebanking to ascertain it effect. As mentioned ear-
lier, automatic detection of empty categories/nodes
will prove to be indis pensable for parsing a sen-
tence. We also intend to see the effect of our system
during the task of parsing.

5 Conclusion

In this paper we presented an empty category recov-
ery algorithm by analyzing the empty categories in
the Hindi treebank. This, we noticed, uses lexical
cues and parsed output of a constraint based parser.
The results show that our system performs consid-
erably high (90%) for many types of empty cate-
gories. Few types, on the other hand, such as back-
ward gapping and nominal coordinating conjunc-
tions were very difficult to handle. Our approach
and analysis will be useful in automatic insertion of
empty nodes during dependency annotation. It will
also benefit data-driven/statistical approaches either
as a post-processing tool or in recovering empty cat-
egories by helping in feature selection for various
machine learning techniques.

Acknowledgments

We would like to thank Prof. Rajeev Sangal for pro-
viding valuable inputs throughout the work.

References
R. Begum, S. Husain, A. Dhwaj, D. Sharma, L. Bai,

and R. Sangal. Dependency annotation scheme for
Indian languages. 2008. In proceedings of Third
International Joint Conference on Natural Language
Processing (IJCNLP), Hyderabad, India

A. Bharati, S. Husain, D. Misra, and R. Sangal. Two
stage constraint based hybrid approach to free word
order language dependency parsing. 2009a. In
Proceedings of the 11th International Conference on
Parsing Technologies (IWPT). Paris.

A. Bharati, D. Sharma, S. Husain, L. Bai, R. Begam, and
R. Sangal. Anncorra: Treebanks for indian languages,
guidelines for annotating hindi treebank. 2009b.
http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-
guidelines/DS-guidelines-ver2-28-05-09.pdf

A. Bhatia, R. Bhatt, B. Narasimhan, M. Palmer, O. Ram-
bow, D. Sharma, M. Tepper, A. Vaidya, and F. Xia.
Empty Categories in a Hindi Treebank. 2010. In the
Proceedings of the 7th International Conference on
Language Resources and Evaluation (LREC).

R. Campbell. Using linguistic principles to recover
empty categories. 2004. In Proceedings of the 42nd
Annual Meeting of the Association for Computational
Linguistics

A. Chanev. Portability of dependency parsing
algorithms–an application for Italian. 2005. In
Proc. of the fourth workshop on Treebanks and
Linguistic Theories (TLT). Citeseer.

M. Collins. Three generative, lexicalised models for
statistical parsing. 1997. In Proceedings of the 35th
Annual Meeting of the Association for Computational
Linguistics and Eighth Conference of the European
Chapter of the Association for Computational Lin-
guistics.

P. Dienes and A. Dubey. Antecedent recovery: Experi-
ments with a trace tagger. 2003a. In Proceedings of
the 2003 conference on Empirical methods in natural
language processing.

141

P. Dienes and A. Dubey. Deep syntactic processing by
combining shallow methods. 2003b. In Proceedings
of the 41st Annual Meeting on Association for Com-
putational Linguistics-Volume 1.

D. Higgins. A machine-learning approach to the identifi-
cation of WH gaps. 2003. In Proceedings of the tenth
conference on European chapter of the Association
for Computational Linguistics-Volume 2.

X. Fei, O. Rambow, R. Bhatt, M. Palmer, and D. Sharma.
Towards a multi-representational treebank. 2008.
Proc. of the 7th Int’lWorkshop on Treebanks and
Linguistic Theories (TLT-7)

M. Johnson. A simple pattern-matching algorithm
for recovering empty nodes and their antecedents.
2002. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics.

M. Marcus, M. Marcinkiewicz, and B. Santorini. Build-
ing a large annotated corpus of English: The Penn
Treebank. 1993. Computational linguistics.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič.
Non-projective dependency parsing using spanning
tree algorithms. 2005. In Proceedings of the confer-
ence on Human Language Technology and Empirical
Methods in Natural Language Processing.

J. Nivre. An efficient algorithm for projective depen-
dency parsing. 2003. In Proceedings of the 8th
International Workshop on Parsing Technologies
(IWPT).

M. Palmer, R. Bhatt, B. Narasimhan, O. Rambow,
D. Sharma, and F. Xia. Hindi Syntax: Annotating
Dependency, Lexical Predicate-Argument Structure,
and Phrase Structure. 2009. In The 7th International
Conference on Natural Language Processing.

Y. Yang and N. Xue. Chasing the ghost: recovering
empty categories in the Chinese Treebank. 2010. In
Proceedings of the 23rd International Conference on
Computational Linguistics: Posters.

142

