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Abstract

During language acquisition, children learn
to segment speech into phonemes, syllables,
morphemes, and words. We examine word
segmentation specifically, and explore the
possibility that children might have general-
purpose chunking mechanisms to perform
word segmentation. The Voting Experts (VE)
and Bootstrapped Voting Experts (BVE) algo-
rithms serve as computational models of this
chunking ability. VE finds chunks by search-
ing for a particular information-theoretic sig-
nature: low internal entropy and high bound-
ary entropy. BVE adds to VE the abil-
ity to incorporate information about word
boundaries previously found by the algorithm
into future segmentations. We evaluate the
general chunking model on phonemically-
encoded corpora of child-directed speech, and
show that it is consistent with empirical results
in the developmental literature. We argue that
it offers a parsimonious alternative to special-
purpose linguistic models.

1 Introduction

The ability to extract words from fluent speech ap-
pears as early as the seventh month in human de-
velopment (Jusczyk et al., 1999). Models of this
ability have emerged from such diverse fields as lin-
guistics, psychology and computer science. Many
of these models make unrealistic assumptions about
child language learning, or rely on supervision, or
are specific to speech or language. Here we present
an alternative: a general unsupervised model of
chunking that performs very well on word segmen-
tation tasks. We will examine the Voting Experts,

Bootstrapped Voting Experts, and Phoneme to Mor-
pheme algorithms in Section 2. Each searches for a
general, information-theoretic signature of chunks.
Each can operate in either a fully unsupervised set-
ting, where the input is a single continuous se-
quence of phonemes, or a semi-supervised setting,
where the input is a sequence of sentences. In Sec-
tion 4, we evaluate these general chunking methods
on phonetically-encoded corpora of child-directed
speech, and compare them to a representative set of
computational models of early word segmentation.
Section 4.4 presents evidence that words optimize
the information-theoretic signature of chunks. Sec-
tion 5 discusses segmentation methods in light of
what is known about the segmentation abilities of
children.

2 General Chunking

The Voting Experts algorithm (Cohen and Adams,
2001) defines the chunk operationally as a sequence
with the property that elements within the sequence
predict one another but do not predict elements out-
side the sequence. In information-theoretic terms,
chunks have low entropy internally and high entropy
at their boundaries. Voting Experts (VE) is a lo-
cal, greedy algorithm that works by sliding a rel-
atively small window along a relatively long input
sequence, calculating the internal and boundary en-
tropies of sequences within the window.

The name Voting Experts refers to the two “ex-
perts” that vote on possible boundary locations:
One expert votes to place boundaries after se-
quences that have low internal entropy (also called
surprisal), given by HI(seq) = − log P (seq).
The other places votes after sequences that have
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high branching entropy, given by HB(seq) =
−

∑
c∈S P (c|seq) log P (c|seq), where S is the set

of successors to seq. In a modified version of VE,
a third expert “looks backward” and computes the
branching entropy at locations before, rather than af-
ter, seq.

The statistics required to calculate HI and HB are
stored efficiently using an n-gram trie, which is typ-
ically constructed in a single pass over the corpus.
The trie depth is 1 greater than the size of the slid-
ing window. Importantly, all statistics in the trie are
normalized so as to be expressed in standard devia-
tion units. This allows statistics from sequences of
different lengths to be compared.

The sliding window is then passed over the cor-
pus, and each expert votes once per window for the
boundary location that best matches that expert’s cri-
teria. After voting is complete, the algorithm yields
an array of vote counts, each element of which is
the number of times some expert voted to segment
at that location. The result of voting on the string
thisisacat could be represented in the follow-
ing way, where the number between each letter is
the number of votes that location received, as in
t0h0i1s3i1s4a4c1a0t.

With the final vote totals in place, the boundaries
are placed at locations where the number of votes
exceeds a chosen threshold. For further details of the
Voting Experts algorithm see Cohen et al. (2007),
and also Miller and Stoytchev (2008).

2.1 Generality of the Chunk Signature
The information-theoretic properties of chunks upon
which VE depends are present in every non-random
sequence, of which sequences of speech sounds are
only one example. Cohen et al. (2007) explored
word segmentation in a variety of languages, as well
as segmenting sequences of robot actions. Hewlett
and Cohen (2010) demonstrated high performance
for a version of VE that segmented sequences of ut-
terances between a human teacher and an AI stu-
dent. Miller and Stoytchev (2008) applied VE in a
kind of bootstrapping procedure to perform a vision
task similar to OCR: first to chunk columns of pix-
els into letters, then to chunk sequences of these dis-
covered letters into words. Of particular relevance to
the present discussion are the results of Miller et al.
(2009), who showed that VE was able to segment a

continuous audio speech stream into phonemes. The
input in that experiment was generated to mimic the
input presented to infants by Saffran et al. (1996),
and was discretized for VE with a Self-Organizing
Map (Kohonen, 1988).

2.2 Similar Chunk Signatures
Harris (1955) noticed that if one proceeds incremen-
tally through a sequence of letters and asks speakers
of the language to list all the letters that could ap-
pear next in the sequence (today called the succes-
sor count), the points where the number increases
often correspond to morpheme boundaries. Tanaka-
Ishii and Jin (2006) correctly recognized that this
idea was an early version of branching entropy, one
of the experts in VE, and they developed an algo-
rithm called Phoneme to Morpheme (PtM) around it.
PtM calculates branching entropy in both directions,
but it does not use internal entropy, as VE does. It
detects change-points in the absolute branching en-
tropy rather than local maxima in the standardized
entropy. PtM achieved scores similar to those of VE
on word segmentation in phonetically-encoded En-
glish and Chinese.

Within the morphology domain, Johnson and
Martin’s HubMorph algorithm (2003) constructs a
trie from a set of words, and then converts it into
a DFA by the process of minimization. HubMorph
searches for stretched hubs in this DFA, which are
sequences of states in the DFA that have a low
branching factor internally, and high branching fac-
tor at the edges (shown in Figure 1). This is a nearly
identical chunk signature to that of VE, only with
successor/predecessor count approximating branch-
ing entropy. The generality of this idea was not lost
on Johnson and Martin, either: Speaking with re-
spect to the morphology problem, Johnson and Mar-
tin close by saying “We believe that hub-automata
will be the basis of a general solution for Indo-
European languages as well as for Inuktitut.” 1

2.3 Chunking and Bootstrapping
Bootstrapped Voting Experts (BVE) is an exten-
sion to VE that incorporates knowledge gained from
prior segmentation attempts when segmenting new
input, a process known as bootstrapping. This

1Inuktitut is a polysynthetic Inuit language known for its
highly complex morphology.
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Figure 1: The DFA signature of a hub (top) and stretched
hub in the HubMorph algorithm. Figure from Johnson
and Martin (2003).

knowledge does not consist in the memorization of
whole words (chunks), but rather in statistics de-
scribing the beginnings and endings of chunks. In
the word segmentation domain, these statistics ef-
fectively correspond to phonotactic constraints that
are inferred from hypothesized segmentations. In-
ferred boundaries are stored in a data structure called
a knowledge trie (shown in Figure 2), which is es-
sentially a generalized prefix or suffix trie.
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Figure 2: A portion of the knowledge trie built from
#the#cat#sat#on#the#mat#. Numbers within
each node are frequency counts.

BVE was tested on a phonemically-encoded cor-
pus of child-directed speech and achieved a higher
level of performance than any other unsupervised al-
gorithm (Hewlett and Cohen, 2009). We reproduce
these results in Section 4.

3 Computational Models of Word
Segmentation

While many algorithms exist for solving the word
segmentation problem, few have been proposed
specifically as computational models of word seg-
mentation in language acquisition. One of the most
widely cited is MBDP-1 (Model-Based Dynamic
Programming) by Brent (1999). Brent describes
three features that an algorithm should have to qual-

ify as an algorithm that “children could use for seg-
mentation and word discovery during language ac-
quisition.” Algorithms should learn in a completely
unsupervised fashion, should segment incrementally
(i.e., segment each utterance before considering the
next one), and should not have any built-in knowl-
edge about specific natural languages (Brent, 1999).

However, the word segmentation paradigm Brent
describes as “completely unsupervised” is actually
semi-supervised, because the boundaries at the be-
ginning and end of each utterance are known to
be true boundaries. A fully unsupervised paradigm
would include no boundary information at all, mean-
ing that the input is, or is treated as, a continuous se-
quences of phonemes. The MBDP-1 algorithm was
not designed for operation in this continuous condi-
tion, as it relies on having at least some true bound-
ary information to generalize.

MBDP-1 achieves a robust form of bootstrapping
through the use of Bayesian maximum-likelihood
estimation of the parameters of a language model.
More recent algorithms in the same tradition, includ-
ing the refined MBDP-1 of Venkataraman (2001),
the WordEnds algorithm of Fleck (2008), and the
Hierarchical Dirichlet Process (HDP) algorithm of
Goldwater (2007), share this limitation. However,
infants are able to discover words in a single stream
of continuous speech, as shown by the seminal series
of studies by Saffran et al. (1996; 1998; 2003). In
these studies, Saffran et al. show that both adults and
8-month-old infants quickly learn to extract words
of a simple artificial language from a continuous
speech stream containing no pauses.

The general chunking algorithms VE, BVE, and
PtM work in either condition. The unsupervised,
continuous condition is the norm (Cohen et al.,
2007; Hewlett and Cohen, 2009; Tanaka-Ishii and
Jin, 2006) but these algorithms are easily adapted
to the semi-supervised, incremental condition. Re-
call that these methods make one pass over the entire
corpus to gather statistics, and then make a second
pass to segment the corpus, thus violating Brent’s re-
quirement of incremental segmentation. To adhere
to the incremental requirement, the algorithms sim-
ply must segment each sentence as it is seen, and
then update their trie(s) with statistics from that sen-
tence. While VE and PtM have no natural way to
store true boundary information, and so cannot ben-
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efit from the supervision inherent in the incremental
paradigm, BVE has the knowledge trie which serves
exactly this purpose. In the incremental paradigm,
BVE simply adds each segmented sentence to the
knowledge trie, which will inform the segmentation
of future sentences. This way it learns from its own
decisions as well as the ground truth boundaries sur-
rounding each utterance, much like MBDP-1 does.
BVE and VE were first tested in the incremental
paradigm by Hewlett and Cohen (2009), though only
on sentences from a literary corpus, George Orwell’s
1984.

4 Evaluation of Computational Models

In this section, we evaluate the general chunking al-
gorithms VE, BVE, and PtM in both the continu-
ous, unsupervised paradigm of Saffran et al. (1996)
and the incremental, semi-supervised paradigm as-
sumed by bootstrapping algorithms like MBDP-1.
We briefly describe the artificial input used by Saf-
fran et al., and then turn to the broader problem
of word segmentation in natural languages by eval-
uating against corpora drawn from the CHILDES
database (MacWhinney and Snow, 1985).

We evaluate segmentation quality at two levels:
boundaries and words. At the boundary level, we
compute the Boundary Precision (BP), which is sim-
ply the percentage of induced boundaries that were
correct, and Boundary Recall (BR), which is the
percentage of true boundaries that were recovered
by the algorithm. These measures are commonly
combined into a single metric, the Boundary F-
score (BF), which is the harmonic mean of BP and
BR: BF = (2 × BP × BR)/(BP + BR). Gener-
ally, higher BF scores correlate with finding cor-
rect chunks more frequently, but for completeness
we also compute the Word Precision (WP), which is
the percentage of induced words that were correct,
and the Word Recall (WR), which is the percent-
age of true words that were recovered exactly by the
algorithm. These measures can naturally be com-
bined into a single F-score, the Word F-score (WF):
WF = (2×WP×WR)/(WP + WR).

4.1 Artificial Language Results

To simulate the input children heard during Saf-
fran et al.’s 1996 experiment, we generated a corpus

of 400 words, each chosen from the four artificial
words from that experiment (dapiku, tilado,
burobi, and pagotu). As in the original study,
the only condition imposed on the random sequence
was that no word would appear twice in succession.
VE, BVE, and PtM all achieve a boundary F-score
of 1.0 whether the input is syllabified or considered
simply as a stream of phonemes, suggesting that a
child equipped with a chunking ability similar to VE
could succeed even without syllabification.

4.2 CHILDES: Phonemes

To evaluate these algorithms on data that is closer
to the language children hear, we used corpora
of child-directed speech taken from the CHILDES
database (MacWhinney and Snow, 1985). Two cor-
pora have been examined repeatedly in prior stud-
ies: the Bernstein Ratner corpus (Bernstein Rat-
ner, 1987), abbreviated BR87, used by Brent (1999),
Venkataraman (2001), Fleck (2008), and Goldwater
et al. (2009), and the Brown corpus (Brown, 1973),
used by Gambell and Yang (2006).

Before segmentation, all corpora were encoded
into a phonemic representation, to better simulate
the segmentation problem facing children. The
BR87 corpus has a traditional phonemic encoding
created by Brent (1999), which facilitates compar-
ison with other published results. Otherwise, the
corpora are translated into a phonemic representa-
tion using the CMU Pronouncing Dictionary, with
unknown words discarded.

The BR87 corpus consists of speech from nine
different mothers to their children, who had an av-
erage age of 18 months (Brent, 1999). BR87 con-
sists of 9790 utterances, with a total of 36441 words,
yielding an average of 3.72 words per utterance. We
evaluate word segmentation models against BR87 in
two different paradigms, the incremental paradigm
discussed above and an unconstrained paradigm.
Many of the results in the literature do not constrain
the number of times algorithms can process the cor-
pus, meaning that algorithms generally process the
entire corpus once to gather statistics, and then at
least one more time to actually segment it. Results
of VE and other algorithms in this unconstrained set-
ting are presented below in Table 1. In this test, the
general chunking algorithms were given one contin-
uous corpus with no boundaries, while the results for
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bootstrapping algorithms were reported in a semi-
supervised condition.

Algorithm BP BR BF WP WR WF
PtM 0.861 0.897 0.879 0.676 0.704 0.690
VE 0.875 0.803 0.838 0.614 0.563 0.587
BVE 0.949 0.879 0.913 0.793 0.734 0.762
MBDP-1 0.803 0.843 0.823 0.670 0.694 0.682
HDP 0.903 0.808 0.852 0.752 0.696 0.723
WordEnds 0.946 0.737 0.829 NR NR 0.707

Table 1: Results for the BR87 corpus with unconstrained
processing of the corpus. Algorithms in italics are semi-
supervised.

In the incremental setting, the corpus is treated as
a series of utterances and the algorithm must seg-
ment each one before moving on to the next. This is
designed to better simulate the learning process, as a
child would normally listen to a series of utterances
produced by adults, analyzing each one in turn. To
perform this test, we used the incremental versions
of PtM, VE, and BVE described in Section 3, and
compared them with MBDP-1 on the BR87 corpus.
Each point in Figure 3 shows the boundary F-score
of each algorithm on the last 500 utterances. Note
that VE and PtM do not benefit from the informa-
tion about boundaries at the beginnings and endings
of utterances, yet they achieve levels of performance
not very inferior to MBDP-1 and BVE, which do
leverage true boundary information.
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Figure 3: Results for three chunking algorithms and
MBDP-1 on BR87 in the incremental paradigm.

We also produced a phonemic encoding of the
BR87 and Bloom73 (Bloom, 1973) corpora from
CHILDES with the CMU pronouncing dictionary,
which encodes stress information (primary, sec-
ondary, or unstressed) on phonemes that serve as
syllable nuclei. Stress information is known to be

a useful factor in word segmentation, and infants
appear to be sensitive to stress patterns by as early
as 8 months of age (Jusczyk et al., 1999). Results
with these corpora are shown below in Figures 4 and
5. For each of the general chunking algorithms, a
window size of 4 was used, meaning decisions were
made in a highly local manner. Even so, BVE out-
performs MBDP-1 in this arguably more realistic
setting, while VE and PtM rival it or even surpass
it. Note that the quite different results shown in Fig-
ure 3 and Figure 4 are for the same corpus, under
two different phonemic encodings, illustrating the
importance of accurately representing the input chil-
dren receive.
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Figure 4: Results for chunking algorithms and MBDP-1
on BR87 (CMU) in the incremental paradigm.
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Figure 5: Results for chunking algorithms and MBDP-1
on Bloom73 (CMU) in the incremental paradigm.

4.3 CHILDES: Syllables

In many empirical studies of word segmentation in
children, especially after Saffran et al. (1996), the
problem is treated as though syllables were the ba-
sic units of the stream to be segmented, rather than
phonemes. If we assume children can syllabify their

43



phonemic representation, and that word boundaries
only occur at syllable boundaries, then word seg-
mentation becomes a very different, and potentially
much easier, problem. This must be the case, as the
process of syllabification removes a high percent-
age of the potential boundary locations, and all of
the locations it removes would be incorrect choices.
Table 2 supports this argument. In the CHILDES
corpora examined here, over 85% of the words di-
rected to the child are monosyllabic. This means that
the trivial All-Locations baseline, which segments
at every possible location, achieves an F-measure of
0.913 when working with syllabic input, compared
to only 0.524 for phonemic input.

Gambell and Yang (2006) present an algorithm
for word segmentation that achieves a boundary F-
score of 0.946 on correctly syllabified input. In or-
der to achieve this level of performance, Gambell
and Yang use a form of bootstrapping combined
with a rule called the “Unique Stress Constraint,”
or USC, which simply requires that each word con-
tain exactly one stressed syllable. Gambell and Yang
developed this algorithm partially as a response to
a hypothesis put forward by Saffran et al. (1996)
to explain their own experimental results. Saffran
et al. concluded that young infants can attend to
the transitional probabilities between syllables, and
posit word boundaries where transitional probability
(TP) is low. The TP from syllable X to syllable Y is
simply given by:

P (Y |X) = frequency of XY/frequency of X (1)

While TP is sufficient to explain the results of Saf-
fran et al.’s 1996 study, it performs very poorly on
actual child-directed speech, regardless of whether
the probabilities are calculated between phonemes
(Brent, 1999) or syllables. Because of the dramatic
performance gains shown by the addition of USC
in testing, as well as the poor performance of TP,
Gambell and Yang conclude that the USC is required
for word segmentation and thus is a likely candidate
for inclusion in Universal Grammar (Gambell and
Yang, 2006).

However, as the results in Table 2 show, VE is
capable of slightly superior performance on syllable
input, without assuming any prior constraints on syl-
lable stress distribution. Moreover, the performance
of both algorithms is also only a few points above

Algorithm BP BR BF
TP 0.416 0.233 0.298
TP + USC 0.735 0.712 0.723
Bootstrapping + USC 0.959 0.934 0.946
Voting Experts 0.918 0.992 0.953
All Points 0.839 1.000 0.913

Table 2: Performance of various algorithms on the Brown
corpus from CHILDES. Other than VE and All Points,
values are taken from (Gambell and Yang, 2006).

the baseline of segmenting at every possible bound-
ary location (i.e., at every syllable). These results
show the limitations of simple statistics like TP, but
also show that segmenting a sequence of syllables is
a simple problem for more powerful statistical algo-
rithms like VE. The fact that a very high percentage
of the words found by VE have one stressed syllable
suggest that a rule like the USC could be emergent
rather than innate.

4.4 Optimality of the VE Chunk Signature

It is one thing to find chunks in sequences, another
to have a theory or model of chunks. The question
addressed in this section is whether the chunk sig-
nature – low internal entropy and high boundary en-
tropy – is merely a good detector of chunk bound-
aries, or whether it characterizes chunks, them-
selves. Is the chunk signature merely a good detec-
tor of word boundaries, or are words those objects
that maximize the signal from the signature? One
way to answer the question is to define a “chunki-
ness score” and show that words maximize the score
while other objects do not.

The chunkiness score is:

Ch(s) =
Hf (s) + Hb(s)

2
− log Pr(s) (2)

It is just the average of the forward and backward
boundary entropies, which our theory says should
be high at true boundaries, minus the internal en-
tropy between the boundaries, which should be low.
Ch(s) can be calculated for any segment of any se-
quence for which we can build a trie.

Our prediction is that words have higher chunk-
iness scores than other objects. Given a sequence,
such as the letters in this sentence, we can generate
other objects by segmenting the sequence in every
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possible way (there are 2n−1 of these for a sequence
of length n). Every segmentation will produce some
chunks, each of which will have a chunkiness score.

For each 5-word sequence (usually between 18
and 27 characters long) in the Bloom73 corpus from
CHILDES, we generated all possible chunks and
ranked them by their chunkiness. The average rank
of true words was the 98.7th percentile of the distri-
bution of chunkiness. It appears that syntax is the
primary reason that true chunks do not rank higher:
When the word-order in the training corpus is scram-
bled, the rank of true words is the 99.6th percentile
of the chunkiness distribution. These early results,
based on a corpus of child-directed speech, strongly
suggest that words are objects that maximize chunk-
iness. Keep in mind that the chunkiness score knows
nothing of words: The probabilities and entropies on
which it is based are estimated from continuous se-
quences that contain no boundaries. It is therefore
not obvious or necessary that the objects that maxi-
mize chunkiness scores should be words. It might be
that letters, or phones, or morphemes, or syllables,
or something altogether novel maximize chunkiness
scores. However, empirically, the chunkiest objects
in the corpus are words.

5 Discussion

Whether segmentation is performed on phonemic or
syllabic sequences, and whether it is unsupervised or
provided information such as utterance boundaries
and pauses, information-theoretic algorithms such
as VE, PtM and especially BVE perform segmen-
tation very well. The performance of VE on BR87
is on par with other state-of-the-art semi-supervised
segmentation algorithms such as WordEnds (Fleck,
2008) and HDP (Goldwater et al., 2009). The
performance of BVE on corpora of child-directed
speech is unmatched in the unconstrained case, to
the best of our knowledge.

These results suggest that BVE provides a sin-
gle, general chunking ability that that accounts for
word segmentation in both scenarios, and potentially
a wide variety of other cognitive tasks as well. We
now consider other properties of BVE that are es-
pecially relevant to natural language learning. Over
time, BVE’s knowledge trie comes to represent the
distribution of phoneme sequences that begin and

end words it has found. We now discuss how this
knowledge trie models phonotactic constraints, and
ultimately becomes an emergent lexicon.

5.1 Phonotactic Constraints
Every language has a set of constraints on how
phonemes can combine together into syllables,
called phonotactic constraints. These constraints af-
fect the distribution of phonemes found at the be-
ginnings and ends of words. For example, words
in English never begin with /ts/, because it is not a
valid syllable onset in English. Knowledge of these
constraints allows a language learner to simplify the
segmentation problem by eliminating many possi-
ble segmentations, as demonstrated in Section 4.3.
This approach has inspired algorithms in the litera-
ture, such as WordEnds (Fleck, 2008), which builds
a statistical model of phoneme distributions at the
beginnings and ends of words. BVE also learns a
model of phonotactics at word boundaries by keep-
ing similar statistics in its knowledge trie, but can
do so in a fully unsupervised setting by inferring its
own set of high-precision word boundaries with the
chunk signature.

5.2 An Emergent Lexicon
VE does not represent explicitly a “lexicon” of
chunks that it has discovered. VE produces chunks
when applied to a sequence, but its internal data
structures do not represent the chunks it has dis-
covered explicitly. By contrast, BVE stores bound-
ary information in the knowledge trie and refines it
over time. Simply by storing the beginnings and
endings of segments, the knowledge trie comes to
store sequences like #cat#, where # represents a
word boundary. The set of such bounded sequences
constitutes an emergent lexicon. After segmenting
a corpus of child-directed speech, the ten most fre-
quent words of this lexicon are you, the, that, what,
is, it, this, what’s, to, and look. Of the 100 most
frequent words, 93 are correct. The 7 errors include
splitting off morphemes such as ing, and merging
frequently co-occurring word pairs such as do you.

6 Implications for Cognitive Science

Recently, researchers have begun to empirically as-
sess the degree to which segmentation algorithms
accurately model human performance. In particular,
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Frank et al. (2010) compared the segmentation pre-
dictions made by TP and a Bayesian Lexical model
against the segmentation performance of adults, and
found that the predictions of the Bayesian model
were a better match for the human data. As men-
tioned in Section 4.3, computational evaluation has
demonstrated repeatedly that TP provides a poor
model of segmentation ability in natural language.
Any of the entropic chunking methods investigated
here can explain the artificial language results moti-
vating TP, as well as the segmentation of natural lan-
guage, which argues for their inclusion in future em-
pirical investigations of human segmentation ability.

6.1 Innate Knowledge

The word segmentation problem provides a reveal-
ing case study of the relationship between nativism
and statistical learning. The initial statistical pro-
posals, such as TP, were too simple to explain the
phenomenon. However, robust statistical methods
were eventually developed that perform the linguis-
tic task successfully. With statistical learning mod-
els in place that perform as well as (or better than)
models based on innate knowledge, the argument for
an impoverished stimulus becomes difficult to main-
tain, and thus the need for a nativist explanation is
removed.

Importantly, it should be noted that the success
of a statistical learning method is not an argument
that nothing is innate in the domain of word segmen-
tation, but simply that it is the learning procedure,
rather than any specific linguistic knowledge, that is
innate. The position that a statistical segmentation
ability is innate is bolstered by speech segmentation
experiments with cotton-top tamarins (Hauser et al.,
2001) that have yielded similar results to Saffran’s
experiments with human infants, suggesting that the
ability may be present in the common ancestor of
humans and cotton-top tamarins.

Further evidence for a domain-general chunking
ability can be found in experiments where human
subjects proved capable of discovering chunks in
a single continuous sequence of non-linguistic in-
puts. Saffran et al. (1999) found that adults and 8-
month-old infants were able to segment sequences
of tones at the level of performance previously estab-
lished for syllable sequences (Saffran et al., 1996).
Hunt and Aslin (1998) measured the reaction time

of adults when responding to a single continuous
sequence of light patterns, and found that subjects
quickly learned to exploit predictive subsequences
with quicker reactions, while delaying reaction at
subsequence boundaries where prediction was un-
certain. In both of these results, as well as the word
segmentation experiments of Saffran et al., humans
learned to segment the sequences quickly, usually
within minutes, just as general chunking algorithms
quickly reach high levels of performance.

7 Conclusion

We have shown that a domain-independent theory of
chunking can be applied effectively to the problem
of word segmentation, and can explain the ability of
children to segment a continuous sequence, which
other computational models examined here do not
attempt to explain. The human ability to segment
continuous sequences extends to non-linguistic do-
mains as well, which further strengthens the gen-
eral chunking account, as these chunking algorithms
have been successfully applied to a diverse array of
non-linguistic sequences. In particular, BVE com-
bines the power of the information-theoretic chunk
signature with a bootstrapping capability to achieve
high levels of performance in both the continuous
and incremental paradigms.

8 Future Work

Within the CHILDES corpus, our results have only
been demonstrated for English, which leaves open
the possibility that other languages may present
a more serious segmentation problem. In En-
glish, where many words in child-directed speech
are mono-morphemic, the difference between find-
ing words and finding morphs is small. In some
languages, ignoring the word/morph distinction is
likely to be a more costly assumption, especially
for highly agglutinative or even polysynthetic lan-
guages. One possibility that merits further explo-
ration is that, in such languages, morphs rather than
words are the units that optimize chunkiness.
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