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Abstract

In comparative genomics, functional annota-
tions are transferred from one organism to an-
other relying on sequence similarity. With
more than 20 million citations in PubMed, text
mining provides the ideal tool for generating
additional large-scale homology-based predic-
tions. To this end, we have refined a recent
dataset of biomolecular events extracted from
text, and integrated these predictions with
records from public gene databases. Account-
ing for lexical variation of gene symbols, we
have implemented a disambiguation algorithm
that uniquely links the arguments of 11.2 mil-
lion biomolecular events to well-defined gene
families, providing interesting opportunities
for query expansion and hypothesis genera-
tion. The resulting MySQL database, includ-
ing all 19.2 million original events as well
as their homology-based variants, is publicly
available at http://bionlp.utu.fi/.

1 Introduction

Owing to recent advances in high-throughput se-
quencing technologies, whole genomes are being se-
quenced at an ever increasing rate (Metzker, 2010).
However, for the DNA sequence to truly unravel its
secrets, structural annotation is necessary to identify
important elements on the genome, such as coding
regions and regulatory motifs. Subsequently, func-
tional annotation is crucial to link these structural
elements to their biological function.

Functional annotation of genomes often requires
extensive in vivo experiments. This time-consuming

procedure can be expedited by integrating knowl-
edge from closely related species (Fulton et al.,
2002; Proost et al., 2009). Over the past few
years, homology-based functional annotation has
become a widely used technique in the bioinformat-
ics field (Loewenstein et al., 2009).

Unfortunately, many known genotype-phenotype
links are still buried in research articles: The largest
biomolecular literature database, PubMed, consists
of more than 20 million citations1. Due to its expo-
nential growth, automated tools have become a ne-
cessity to uncover all relevant information.

There exist several text mining efforts focusing
on pairwise interactions and co-occurrence links of
genes and proteins (Hoffmann and Valencia, 2004;
Ohta et al., 2006; Szklarczyk et al., 2011). In
this paper, we present the first large-scale text min-
ing resource which both utilizes a detailed event-
based representation of biological statements and
provides homology-based generalization of the text
mining predictions. This resource results from the
integration of text mining predictions from nearly
18M PubMed citations with records from public
gene databases (Section 2). To enable such inte-
gration, it is crucial to first produce canonical forms
of the automatically tagged biological entities (Sec-
tion 3.1). A gene symbol disambiguation algorithm
then links these canonical forms to gene families and
gene identifiers (Section 3.2). Finally, a MySQL-
driven framework aggregates the text-bound event
occurrences into generalized events, creating a rich
resource of homology-based predictions extracted
from text (Section 3.3).

1http://www.ncbi.nlm.nih.gov/pubmed/
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Figure 1: Event representation of the statement IL-2 acts
by enhancing binding activity of NF-kappa B to p55, il-
lustrating recursive nesting of events where the (th)eme
of the Positive regulation event is the Binding event. The
(ca)use argument is the gene symbol IL-2.

2 Data

Our integrative approach is based on two types
of data: text mining predictions generated for the
whole of PubMed (Section 2.1) and publicly avail-
able gene database records (Section 2.2).

2.1 Text mining predictions

Björne et al. (2010) have applied to all PubMed ab-
stracts an event extraction pipeline comprising of
the BANNER named entity recognizer (Leaman and
Gonzalez, 2008) and the Turku Event Extraction
System (Björne et al., 2009). The resulting dataset
contains 36.5M occurrences of gene / gene product
(GGP) entities and 19.2M occurrences of events per-
taining to these entities.

The file format and information scheme of
the resource correspond to the definition of the
BioNLP’09 Shared Task on Event Extraction (Kim
et al., 2009). Events are defined as typed relations
between arguments that are either entity occurrences
or, recursively, other events. There are nine possi-
ble event types: Localization, Binding, Gene expres-
sion, Transcription, Protein catabolism, Phosphory-
lation, Regulation, Positive regulation, and Negative
regulation. Further, arguments are assigned a role:
Theme or Cause for the core arguments and AtLoc,
ToLoc, Site, and CSite for auxiliary arguments that
define additional information such as cellular loca-
tion of the event. In addition, each event occurrence
may be marked as negative and/or speculative. Fig-
ure 1 depicts an example event.

2.2 Database records

During the last few decades, several large-scale
databases have been designed to deal with the abun-
dance of data in the field of life sciences. In this

study, we are particularly interested in databases of
gene symbols and homologous gene groups or gene
families. These families are composed by clustering
pairwise orthologs, which are genes sharing com-
mon ancestry evolved through speciation, often hav-
ing a similar biological function.

Entrez Gene2 is the default cross-species gene
nomenclature authority, hosted by NCBI (Sayers et
al., 2009). It bundles information from species-
specific resources as well as from RefSeq records3.
More than 8M Entrez Gene identifiers were col-
lected from over 8,000 different taxa, all together
referring to more than 10M distinct gene symbols,
descriptions, abbreviations and synonyms. While
Entrez Gene IDs are unique across taxa, gene sym-
bols are highly ambiguous. Section 3 describes how
we tackle gene symbol ambiguity across and within
species.

The HomoloGene4 database is also hosted at
NCBI and provides the results of automated de-
tection of orthologs in 20 completely sequenced
eukaryotic genomes. From this resource, around
43,700 HomoloGene families were extracted, con-
taining about 242,000 distinct genes. A second set
of gene families was retrieved from Ensembl (Flicek
et al., 2011). More than 13,000 Ensembl clusters
were assembled comprising about 220,000 genes.

As a general rule, the functional similarity scores
per homologous pair in a gene family are higher
when more stringent criteria are used to define the
families (Hulsen et al., 2006). While HomoloGene
consists of many strict clusters containing true or-
thologs, bigger Ensembl clusters were obtained by
assembling all pairwise orthologous mappings be-
tween genes. Ultimately, such clusters may also in-
clude paralogs, genes originated by duplication. As
an example, consider the nhr-35 gene from C. el-
egans, which has both Esr-1 and Esr-2 as known
orthologs, resulting in the two paralogs being as-
signed to the same final Ensembl cluster. The En-
sembl clustering algorithm can thus be seen as a
more coarse-grained method while the HomoloGene
mapping results in more strictly defined gene fami-
lies. The implications are discussed on a specific
use-case in Section 4.3.1.

2http://www.ncbi.nlm.nih.gov/gene
3http://www.ncbi.nlm.nih.gov/refseq
4http://www.ncbi.nlm.nih.gov/homologene
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3 Methods

Widely known biomolecular events occur in many
different articles, often mentioning a different gene
synonym or lexical variant. Canonicalization of the
entity occurrences deals with these lexical variants
(Section 3.1), while the disambiguation algorithm
then uniquely links canonical forms to a gene fam-
ilies (Section 3.2). In a final step, these links can
be used to generalize the text mining events to their
homology-based variants (Section 3.3).

3.1 Canonicalization of the entity occurrences

The entity occurrences predicted by BANNER (Sec-
tion 2.1) follow the guidelines of GENETAG (Tan-
abe et al., 2005), the corpus it was trained on. These
guidelines allow not only gene and gene products,
but also related entities such as protein complexes
and gene promoters. Furthermore, BANNER fre-
quently tags noun phrases such as human Esr-1 gene
rather than only the minimal symbol Esr-1.

To enable integration of text mining predictions
with external databases, it is necessary to refine the
entity occurrences to canonical forms that can be
linked to gene records such as those in Entrez Gene.
To this end, common prefixes and suffixes such as
gene and wild-type should be removed.

In a first step towards canonicalization of the en-
tities, a mapping table was assembled containing
common contexts in which a gene symbol appears
and where the full noun phrase can be reduced to
that embedded symbol for the sake of information
retrieval (Table 1). This mapping table was created
by matching5 a list of candidate minimal gene sym-
bols to the extracted BANNER entities.

To define the list of candidate minimal gene sym-
bols, two approaches have been combined. First,
a set of around 15,000 likely gene symbols is ex-
tracted by looking for single token strings that were
tagged by BANNER at least 50% of the times they
occur in a PubMed abstract. Secondly, all official
gene names are extracted from Entrez Gene. As this
latter list also contains common English words such
as was and protein, we have only selected those that
were likely to be standalone gene symbols. We cal-
culate this likelihood by Cs/(Cs + Cn) where Cs

5All string matching steps have been implemented using the
SimString string retrieval library (Okazaki and Tsujii, 2010).

GGP contexts
-ORG- -GGP- gene
-GGP- sequences

mutant -GGP- proteins
-GGP- homologs

cytoplasmic wild-type -GGP-

Table 1: This table lists a few examples of entity occur-
rences extracted with BANNER that are resolved to the
embedded minimal gene symbol (marked as -GGP-).

is the number of times a string is tagged standalone
and Cn is the number of times the string occurs in
PubMed but is not tagged (neither as standalone,
nor as part of a larger entity). This likelihood rep-
resents the proportion of standalone occurrences of
the string that are tagged. We experimentally set a
threshold on this value to be higher than 0.01, ex-
cluding a list of 2,865 common English words.

Subsequently, all BANNER entity occurrences
are screened and likely minimal gene symbols sub-
stituted with -GGP-, resulting in generalized con-
texts. Then, we have matched these contexts with an
extensive list of organism names from the Linneaus
distribution (Gerner et al., 2010) and a small col-
lection of miscellaneous non-formal organism terms
(e.g. monkey), replacing all known organisms with
an -ORG- placeholder. Finally, we have excluded
all contexts where the embedded GGP is likely to
be functionally too far removed from the embed-
ding noun phrase (e.g. “-GGP- inhibitor”), rely-
ing on a corpus defining and categorizing such re-
lationships (Ohta et al., 2009). Some of the contexts
that were retained after this step, such as “-GGP-
mutant” or “-GGP- promoter” still refer to entities
that are distinctly different from the embedded GGP.
These results are considered valid, as the goal of the
affix stripping algorithm is to increase recall and of-
fer explorative results involving various types of in-
formation on gene symbols.

The final list of contexts, generalized with -GGP-
and -ORG- placeholders, is split into two separate
lists of prefixes and suffixes, ranked by frequency.
Also, numerical affixes as well as those shorter than
3 characters are discarded from these lists.
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Each text-bound entity occurrence can then be
canonicalized by applying the following algorithm:

1. Replace all organism names with the place-
holder -ORG-

2. If the string can be matched6 to a known sym-
bol in Entrez Gene, stop the algorithm

3. Find all occurring affixes and strip the one as-
sociated with the highest count

4. Repeat (2-3) until no more affixes match
5. Strip remaining -ORG- placeholders and all

whitespace and non-alphanumeric characters

For example, the canonicalization of human anti-
inflammatory il-10 gene proceeds as -ORG- anti-
inflamatory il-10 gene → anti-inflammatory il-10
gene → anti-inflammatory il-10 → il-10, at which
point the string il10 is matched in Entrez Gene, be-
coming the final canonical form. In the following
section, we describe how these canonical forms are
assigned to unique gene families.

3.2 Disambiguation of gene symbols

Gene name ambiguity is caused by the lack of
community-wide approved standards for assigning
gene symbols (Chen et al., 2005). Furthermore, au-
thors often introduce their own lexical variants or ab-
breviations for specific genes.

From Entrez Gene, we have retrieved 8,034,512
gene identifiers that link to 10,177,542 unique sym-
bols. Some of these symbols are highly ambiguous
and uninformative, such as NEWENTRY. Others are
ambiguous because they are abbreviations. Finally,
many symbols can not be linked to one unique gene,
but do represent a homologous group of genes shar-
ing a similar function. Often, orthologs with similar
functions are assigned similar official gene names.

The first step towards gene symbol disambigua-
tion involves collecting all possible synonyms for
each gene family from either Ensembl or Homolo-
Gene. We strip these symbols of all whitespace and
non-alphanumeric characters to match the final step
in the canonicalization algorithm.

The disambiguation pipeline then synthesizes the
ambiguity for all gene symbols by counting their oc-
currences in the gene families. Each such relation

6The comparison is done ignoring whitespace and non-
alphanumeric characters.

Family Type of symbol Count
HG:47906 Default symbol 7
HG:99739 Synonym 1
HG:3740 Synonym 1
ECL:10415 Default symbol 12
ECL:8731 Synonym 1
ECL:8226 Synonym 1

Table 2: Intrinsic ambiguity of esr1, analysed in both Ho-
moloGene (HG) and Ensembl clusters (ECL).

records whether the symbol is registered as an offi-
cial or default gene symbol, as the gene description,
an abbreviation, or a synonym. As an example, Ta-
ble 2 depicts the intrinsic ambiguity of esr1.

In a subsequent step, the ambiguity is reduced by
applying the following set of rules, relying on a pri-
ority list imposed on the type of the symbol, ensur-
ing we choose an official or default symbol over a
description or synonym.

1. If one family has the most (or all) hits for a
certain symbol and these hits refer to a sym-
bol type having priority over other possibilities,
this family is uniquely assigned to that symbol.

2. If a conflict exists between one family having
the highest linkage count for a certain sym-
bol, and another family linking that symbol to
a higher priority type, the latter is chosen.

3. If two families have equal counts and type pri-
orities for a certain symbol, this symbol can
not be unambiguously resolved and is removed
from further processing.

4. If the ambiguity is still not resolved, all fami-
lies with only one hit for a certain symbol are
removed, and steps 1-3 repeated.

The above disambiguation rules were applied to
the 458,505 gene symbols in HomoloGene. In the
third step, 6,891 symbols were deleted, and when
the algorithm ends, 555 symbols remained ambigu-
ous. In total, 451,059 gene symbols could thus be
uniquely linked to a HomoloGene family (98%). In
the esr1 example depicted in Table 2, only the link to
HG:47906 will be retained. The results for Ensembl
were very similar, with 342,252 out of 345,906 sym-
bols uniquely resolved (99%).
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All Ensembl HomoloGene
No stripping 39.9 / 67.5 / 50.2 62.8 / 70.0 / 66.2 64.2 / 69.2 / 66.6
Affix stripping 48.7 / 82.3 / 61.1 61.7 / 88.0 / 72.5 62.8 / 87.9 / 73.3

Table 3: Influence on precision, recall and F-measure (given as P/R/F) of the affix stripping algorithm on the entity
recognition module, as measured across all BioNLP’09 ST entity occurrences and also separately on the subsets which
can be uniquely mapped to Ensembl and HomoloGene (77.3% and 75.5% of all occurrences, respectively).

3.3 Homology-based generalization of the text
mining events

In order to gain a broader insight into the 19.2M
event occurrences obtained by Björne et al. (2010),
it is necessary to identify and aggregate multiple oc-
currences of the same underlying event. This gen-
eralization also notably simplifies working with the
data, as the number of generalized events is an or-
der of magnitude smaller than the number of event
occurrences.

To aggregate event occurrences into generalized
events, it is necessary to first define equivalence
of two event occurrences: Two event occurrences
are equivalent, if they have the same event type,
and their core arguments are equivalent and have
the same roles. For arguments that are themselves
events, the equivalence is applied recursively. The
equivalence of arguments that are entities can be es-
tablished in a number of different ways, affecting
the granularity of the event generalization. One ap-
proach is to use the string canonicalization described
in Section 3.1; two entities are then equivalent if
their canonical forms are equal. This, however, does
not take symbol synonymy into account. A differ-
ent approach which we believe to be more power-
ful, is to disambiguate gene symbols to gene fam-
ilies, as described in Section 3.2. In this latter ap-
proach, two entity occurrences are deemed equiv-
alent if their canonical forms can be uniquely re-
solved to the same gene family. Consequently, two
event occurrences are considered equivalent if they
pertain to the same gene families.

As both approaches have their merits, three dis-
tinct generalization procedures have been imple-
mented: one on top of the canonical gene symbols,
and one on top of the gene families defined by Ho-
moloGene and Ensembl, respectively.

4 Results and discussion

4.1 Evaluation of entity canonicalization
The affix stripping step of the canonicalization al-
gorithm described in Section 3.1 often substantially
shortens the entity strings and an evaluation of its
impact is thus necessary. One of the primary objec-
tives of the canonicalization is to increase the pro-
portion of entity occurrences that can be matched
to Entrez Gene identifiers. We evaluate its im-
pact using manually tagged entities from the pub-
licly available BioNLP’09 Shared Task (ST) train-
ing set, which specifically aims at identifying enti-
ties that are likely to match gene and protein sym-
bol databases (Kim et al., 2009). Further, the ST set
comprises of PubMed abstracts and its underlying
text is thus covered in our data. Consequently, the
ST training set forms a very suitable gold standard
for the evaluation.

First, we compare7 the precision and recall of
the BANNER output before and after affix stripping
(Table 3, first column). The affix stripping results in
a notable gain in both precision and recall. In partic-
ular, the nearly 15pp gain on recall clearly demon-
strates that the affix stripping results in entity strings
more likely to match existing resources.

Second, the effect of affix stripping is evaluated
on the subset of entity strings that can be uniquely
mapped into Ensembl and HomoloGene (77.3% and
75.5% of the ST entity strings, respectively). This
subset is of particular interest, since the generalized
events are built on top of the entities that can be
found in these resources and any gain on this par-
ticular subset is thus likely to be beneficial for the
overall quality of the generalized events. Here, af-
fix stripping leads to a substantial increase in re-
call when compared to no stripping being applied

7The comparison is performed on the level of bags of strings
from each PubMed abstract, avoiding the complexity of align-
ing character offsets across different resources.
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Entities Ent. occ.
Canonical 1.6M (100%) 36.4M (100%)
HomoloGene 64.0K (3.9%) 18.8M (51.7%)
Ensembl 54.6K (3.3%) 18.7M (51.2%)

Table 4: Entity coverage comparison. The entities col-
umn gives the number of canonical entities, also shown
as a percentage of all unique, canonical BANNER entities
(1.6M). The entity occurrences column shows the num-
ber of occurrences for which the generalization could be
established, out of the total number of 36.4M extracted
BANNER entities.

(around 18pp), which is offset by a comparatively
smaller drop in precision (less than 2pp). Global
performance increases with about 6.5pp in F-score
for both the Ensembl and HomoloGene subsets.

Björne et al. (2010) used a simpler, domain-
restricted affix stripping algorithm whereby candi-
date affixes were extracted only from NP-internal
relations in the GENIA corpus (Ohta et al., 2009).
This original algorithm affects 11.5% unique en-
tity strings and results in 3.5M unique canonical
forms and 4.5M unique events. In comparison,
our current affix stripping algorithm results in 1.6M
unique canonical forms and 3.2M unique events,
thus demonstrating the improved generalization ca-
pability of the current affix stripping algorithm.

4.2 Evaluation of homology-based
disambiguation

The symbol to gene family disambiguation algo-
rithm succesfully resolves almost all gene symbols
in HomoloGene or Ensembl (Section 3.2). However,
not all genes are a member of a known gene family,
and the event generalization on top of the gene fam-
ilies will thus inevitably discard a significant portion
of the text mining predictions.

Table 4 shows that only a small fraction of all
unique canonical entities matches the gene families
from HomoloGene or Ensembl (3.9% and 3.3%, re-
spectively). However, this small fraction of symbols
accounts for approximately half of all entity occur-
rences in the text mining data (51.7% and 51.2%).
The algorithm thus discards a long tail of very in-
frequent entities. Table 5 shows a similar result for
the events and event occurrences. We find that map-
ping to HomoloGene and Ensembl results in a con-
siderably smaller number of generalized events, yet

Events Ev. occ.
Canonical 3223K 19.2M (100%)
HomoloGene 614K 10.2M (53%)
Ensembl 505K 10.2M (52.9%)

Table 5: Comparison of the three event generalization
methods. The events column gives the number of gen-
eralized events and the event occurrences column shows
the number of occurrences for which the generalization
could be established, out of the total number of 19.2M
text-bound event occurrences.

accounts for more than half of all event occurrences
(53% and 52.9%, respectively).

Finally, merging the canonical entities and the
corresponding generalized events for both Homolo-
Gene and Ensembl, we can assess the percentage of
all text mining predictions that can be linked to at
least one homology-based variant: 21.8M (59.8%)
of all entity occurrences and 11.2M (58.4%) of all
event occurrences can be resolved. Nearly 60% of
entity and event occurrences in the original text min-
ing data could thus be uniquely linked to well de-
fined gene families. Also, as shown in Section 4.1,
the 60% entities retained are expected to contain
proportionally more true positives, compared to the
40% entities that could not be mapped. One might
speculate that a similar effect will be seen also
among events.

4.3 MySQL database and Use-cases

As the PubMed events extracted by Björne et
al. (2010) are purely text-bound and distributed as
text files, they can not easily be searched. One im-
portant contribution of this paper is the release of all
text mining predictions as a MySQL database. Dur-
ing the conversion, all original information is kept,
including links to the PubMed IDs and the offsets
in text for all entities and triggers, referring to the
original strings as they were obtained by BANNER
and the event extraction system. This allows for fast
retrieval of text mining data on a PubMed-scale.

As described in Section 3.3, three distinct gener-
alization methods have been applied to the original
events. On the database level, each generalization is
represented by a separate set of tables for the gen-
eralized events and their arguments, aggregating im-
portant event statistics such as occurrence count and
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Figure 2: Database scheme of the generalized events. Three instantiations of the general scheme (i.e. the three leftmost
tables) exist in the database. Following the dotted lines, each instance links to a different table in which the canonical
forms and the gene identifiers can be looked up.

negation/speculation information (Figure 2). Table 5
states general statistics for the three different sets.
Finally, a mapping table is provided that links the
generalized events to the event occurrences from
which they were abstracted. More technical details
on the MySQL scheme and example queries can be
found at http://bionlp.utu.fi/.

4.3.1 Use case: Query expansion
The MySQL database is the ideal resource to re-

trieve information on a PubMed-scale for a certain
gene or set of genes. Suppose there would be an in-
terest in Esr-1, then all abstract events on top of the
canonical form esr1 can be retrieved. However, re-
sults will display events for both the Estrogen recep-
tor as well as for the much less common Enhancer of
shoot regeneration. Furthermore, it makes no sense
to add known synonyms of both genes to the query,
as this will generate an incoherent list of synonyms
and even more false positive hits.

In such a case, it is to be recommended to use
the homology-based generalization of the events.
For example, esr1 hits the HomoloGene family
HG:47906, which contains all Estrogen receptor-
alpha genes across eukaryotic species. Canonical
symbols linked to this family include era, estra,
nr3a1 and estrogenreceptor1alpha.

A similar analysis can be done for the Ensembl
clustering, where esr1 links to ECL:10415. How-
ever, this more coarse-grained Ensembl family con-
tains all genes from the two closely related sub-
groups Estrogen receptor and Estrogen related re-
ceptor, both belonging to the Estrogen Receptor-

like group of the superfamily of nuclear recep-
tors (Zhang et al., 2004). On top of the synonyms
mentioned previously, this family thus also includes
erb, esr2b, errbetagamma and similartoesrrbpro-
tein. By using this list for query expansion, more
general text mining predictions can be retrieved.

It is to be noted that both homology-based ap-
proaches will also include events mentioning Esr-1
as the abbreviation for Enhancer of shoot regener-
ation. While this usage is much less common, it
will result in a few false positive hits. These false
positives may be prevented by taking into account
local context such as organism mentions, as the En-
hancer of shoot regeneration gene is only present
in A. thaliana. We believe our current homology-
based approach could be integrated with existing
or future normalization algorithms (Krallinger and
Hirschman, 2007; Wermter et al., 2009) to provide
such fine-grained resolution. This is regarded as in-
teresting future work.

4.3.2 Use case: Homology-based hypotheses
Consider a newly annotated, protein-coding gene

for which no database information currently ex-
ists. To generate homology-based text mining hy-
potheses, the orthologs of this gene first have to
be defined by assessing sequence similarity through
BLAST (Altschul et al., 1997).

Imagine for example a newly sequenced genome
X for which a gene similar to the mouse gene Esr-
1 is identified. This gene will soon be known as
“genome X Esr-1” and thus related to the Esr-1 gene
family. As described in Section 4.3.1, homology-
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based query expansion can then be used to retrieve
all events involving lexical variants and synonyms
of the canonical string esr1.

5 Conclusions

We present a large-scale resource for research and
application of text mining from biomedical litera-
ture. The resource is obtained by integrating text
mining predictions in the dataset of Björne et al.
(2010) with public databases of gene symbols and
gene families: Entrez Gene, Ensembl, and Homolo-
Gene. The integration is performed on the level of
gene families, allowing for a number of novel use
cases for both text mining and exploratory analysis
of the biological statements in PubMed literature. To
achieve the linking between text-based event predic-
tions and gene databases, several algorithms are in-
troduced to solve the problems involved.

First, we propose an algorithm for stripping af-
fixes in entity occurrences tagged by the BAN-
NER named entity recognizer, addressing the prob-
lem of such entities often including wider context
which prevents direct matching against gene symbol
databases. Using the BioNLP’09 Shared Task data
as gold standard, we show that the algorithm sub-
stantially increases both precision and recall of the
resulting canonical entities, the gain in recall being
particularly pronounced.

Second, we propose an algorithm which assigns
to the vast majority of gene symbols found in Ho-
moloGene and Ensembl a single unique gene fam-
ily, resolving the present intra-organism ambiguity
based on symbol occurrence statistics and symbol
type information. Matching these disambiguated
symbols with the affix-stripped canonical forms of
entity occurrences, we were able to assign a unique
gene family from either HomoloGene or Ensembl to
nearly 60% of all entities in the text, thus linking the
text-bound predictions with gene databases.

Finally, we use the resolution of entity occur-
rences to unique gene families to generalize the
events in the text mining data, aggregating together
event occurrences whose arguments are equivalent
with respect to their gene family. Depending on
whether HomoloGene or Ensembl is used for the
gene family definition, this generalization process
results in 500K-600K generalized events, which to-

gether aggregate over 11.2M (58.4%) of all event
occurrences in the text mining data. Being able
to link the literature-based events with well-defined
gene families opens a number of interesting new
use-cases for biomedical text mining, such as the
ability to use the homology information to search for
events relevant to newly discovered sequences. The
remaining 41.6% of event occurrences not general-
izable to gene families can still be retrieved through
an additional generalization on the level of entity
canonical forms.

All relevant data, namely all original events and
entities together with their canonical forms, the
generalizations of events based on canonical entity
forms and gene families, as well as the gene symbol
to unique family mapping are made publicly avail-
able as records in a MySQL database. We also pro-
vide detailed online documentation of the database
scheme and example queries. Finally, we release the
affix lists used in the canonicalization algorithm.

We believe this resource to be very valuable
for explorative analysis of text mining results and
homology-based hypothesis generation, as well as
for supporting future research on data integration
and biomedical text mining.

One important future work direction is a further
disambiguation of canonical gene symbols to unique
gene identifiers rather than entire gene families,
which would allow for more fine-grained event gen-
eralization. There is an ongoing active, community-
wide research focusing on this challenge and the cur-
rent resource could be integrated as an additional
source of information. Another future work direc-
tion is to create a visualization method and a web
interface which would allow simple, user-friendly
access to the data for researchers outside of the
BioNLP research community itself.
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Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller,
and David J. Lipman. 1997. Gapped BLAST and PSI-
BLAST: a new generation of protein database search
programs. Nucleic acids research, 25(17):3389–3402,
September.

Jari Björne, Juho Heimonen, Filip Ginter, Antti Airola,
Tapio Pahikkala, and Tapio Salakoski. 2009. Extract-
ing complex biological events with rich graph-based
feature sets. In BioNLP ’09: Proceedings of the Work-
shop on BioNLP, pages 10–18, Morristown, NJ, USA.
Association for Computational Linguistics.

Jari Björne, Filip Ginter, Sampo Pyysalo, Jun’ichi Tsu-
jii, and Tapio Salakoski. 2010. Scaling up biomed-
ical event extraction to the entire PubMed. In Pro-
ceedings of the 2010 Workshop on Biomedical Natu-
ral Language Processing, BioNLP ’10, pages 28–36,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Lifeng Chen, Hongfang Liu, and Carol Friedman. 2005.
Gene name ambiguity of eukaryotic nomenclatures.
Bioinformatics, 21:248–256, January.

Paul Flicek, M. Ridwan Amode, Daniel Barrell, Kathryn
Beal, Simon Brent, Yuan Chen, Peter Clapham, Guy
Coates, Susan Fairley, Stephen Fitzgerald, Leo Gor-
don, Maurice Hendrix, Thibaut Hourlier, Nathan John-
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