
Cosubstitution, derivational locality, and quantifier scope∗

Chris Barker
New York University

chris.barker@nyu.edu

Abstract

Quantifier scope challenges the mantra of Tree
Adjoining Grammar (TAG) that all syntac-
tic dependencies are local once syntactic re-
cursion has been factored out. The reason
is that on current TAG analyses, a quantifier
and the furthest reaches of its scope domain
are in general not part of any (unicomponent)
elementary tree. In this paper, I consider a
novel basic TAG operation called COSUBSTI-
TUTION. In normal substitution, the root of
one tree (the argument) replaces a matching
non-terminal on the frontier of another tree
(the functor). In cosubstitution, the syntactic
result is the same, leaving weak and strong
generative capacity unchanged, but the deriva-
tional and semantic roles are reversed: the em-
bedded subtree is viewed as the functor, and
the embedding matrix is viewed as its seman-
tic argument, i.e., as its nuclear scope. On this
view, a quantifier taking scope amounts to en-
tering a derivation at the exact moment that
its nuclear scope has been constructed. Thus
the relationship of a quantifier and its scope
is constrained by DERIVATIONAL LOCALITY

rather than by elementary-tree locality.

1 Introduction

The main claim of the present paper is that among
the major grammatical frameworks, Tree Adjoining
Grammar (TAG) offers a uniquely simple and direct
way to understand the relationship between a quan-
tifier and its scope.

∗Thanks to Robert Frank and Chung-chieh Shan.

There are at least two well-developed approaches
to scope in TAG. One is due to Kallmeyer
and Romero and their collaborators (e.g., Joshi,
Kallmeyer and Romero 2008). They use Multi-
Component TAG (MC-TAG), and emphasize se-
mantic underspecification, so that a single derivation
corresponds to multiple quantifier scope construals.
Another approach due to Nesson and Shieber (e.g.,
2006) uses a Synchronous TAG to relegate the multi-
component part to the semantic side of the deriva-
tion.

The view here is not intended as a competing
approach, so much as a competing perspective on
what other accounts are already doing—an alterna-
tive conceptualization. However, there are some dif-
ferences between the analyses that I will mention be-
low.

The basic idea here relies on flexibility in the or-
der in which the components of a TAG derivation
combine. That is, substitutions and adjunctions can
be interleaved and reordered with considerable free-
dom. This flexibility makes it possible to build a
partial derivation that exactly corresponds to the ma-
terial over which a quantifier takes scope:
(1) a. John left with no one.

b. S

DP

John

VP

VP

left

PP

P

with

DP↓

Normally, we might choose to substitute no one into

Cosubstitution, Derivational Locality and Quantifier Scope

135



the auxiliary tree projected by with, and then ad-
join the derived tree with no one at the VP node
dominating left. But we might just as well adjoin
the incomplete auxiliary tree first, resulting in the
(still incomplete) tree in (1b). The point of interest
is that this derivational constituent corresponds in a
natural way to the nuclear scope of no one: just ab-
stract over the substitution location to get the prop-
erty λx.John-left-with x.

Thus the reason that managing scope in TAG is a
challenge is that quantifiers and their scope domain
are not local in the usual TAG sense. That is, it is
not possible to factor out recursion in such a way
that the quantifier and its scope are safely included
within a single elementary tree. For instance, in (1),
the quantifier never shares an elementary tree with
the S node it take scope over.

Yet although quantifiers and their scope are not
elementary-tree local, quantifiers and their scope are
never discontinuous. At the end of a derivation, if
we shade in the portion of the tree that corresponds
to the material a quantifier takes scope over, it will
always be a contiguous portion of the tree, and in ad-
dition, it will also immediately dominate (in general,
surround) the quantifier.

Making sense out of the derivational approach
considered here requires rethinking the tree-merging
operation that combines the quantificational DP no

one with its nuclear scope. Instead of regarding the
quantifier DP as plugging a hole in the argument
structure of with, we would like to reverse the roles,
and think of the incomplete tree in (1b) as the se-
mantic argument of the quantifier. Call this desired
operation COSUBSTITUTION (details below).

If we allow cosubstitution as a basic TAG op-
eration, we recognize quantificational scope as
an example of a different kind of local depen-
dency, namely, the dependence of a functor on its
(co)substitution argument. The result is that we
need to recognize two kinds of locality: struc-
tural locality, i.e., sharing the same elementary tree,
and derivational locality, participating in the same
derivational step.

The late substitution contemplated in (1) would
not be innocent in a Multi-Component TAG. Allow-
ing one component of a tree set to substitute into the
lower DP position in (1) at the same time that an-
other element (think: the scope-taking part) adjoins

into the original initial tree is non-local, and allow-
ing such non-local operations in MC-TAG increases
its generative capacity. Therefore it’s important that
I’m considering ordinary TAG here, not MC-TAG.
In some sense, of course, all analyses of quantifier
scope are an attempt to simulate just this kind of
non-local operation, as discussed further below.

Treating scope-taking as cosubstitution is a ver-
sion of the continuation-based approaches to scope-
taking of Barker 2002, de Groote 2001, and Bernardi
and Moortgat 2010, among others. A continuation is
(a portion of) the computational future of an expres-
sion. In (1), the computational future of the quan-
tifier no one is that it will serve as the argument of
the preposition with, and the result of that computa-
tion will serve to modify the verb phrase left, and so
on. The central insight I’m aiming for in this paper
is that in TAG, the computational future of a DP can
be viewed as the same thing as its derivational past.

2 Preliminaries

2.1 Syntax

A Tree Adjoining Grammar is a finite set of elemen-
tary trees closed under two derivational operations:
substitution and adjunction.

Elementary trees are finite ordered labeled trees.
Nonterminals on the frontier of an elementary tree
are substitution targets, and are decorated with a
downarrow. Some elementary trees have a dis-
tinguished node on their frontiers called the FOOT

(marked with a star) that match the root node in syn-
tactic category. Such trees are auxiliary trees, and
participate in adjunction.
Substitution: Nodes with downarrows on their la-
bels can be replaced via substitution with any non-
auxiliary tree whose root node has a matching label.
The substitution operation amounts to replacing the
target node with the root of the substitution tree.

(2) DP

John

+ S

DP↓ VP

left

= S

DP

John

VP

left
Adjunction: Interior nodes whose labels match the
root label of an auxiliary tree can be adjunction tar-
gets. Adjunction is accomplished by replacing the
adjunction target node with the root of the auxiliary

Chris Barker

136



tree, at the same time that the foot of the adjunction
tree is replaced by the subtree rooted in the adjunc-
tion target node. In effect, the auxiliary tree is in-
serted into the tree at the adjunction target node.
(3)

S

DP

John

VP

left

+ VP

quietly VP*

= S

DP

John

VP

quietly VP

left
This is the familiar TAG story, simple and elegant.
Technical details are available in may places, e.g.,
Joshi and Schabes 1997.

2.2 Semantics

I will use a Synchronous TAG (Shieber and Schabes
1990) to specify semantic representations. Instead
of elementary trees, STAG uses pairs of elementary
trees connected by a linking relation. Any operation
targeting a node in the left element of a pair must be
matched by a parallel operation targeting the linked
node in the right element of the pair.

In general, then, STAG is a tree transduction sys-
tem. Here, as in Nesson and Shieber 2006, each pair
will be interpreted as the syntax and the correspond-
ing semantics for an expression. The syntactic com-
ponent will use syntactic categories for labels, and
the semantic component will use semantic types for
labels.

So for [syntax, semantics] pairs we might have:

(4)




DP

John
,
e

j






VP

quietly VP*
,

〈e,t〉

quietly 〈e,t〉







S

DP↓ VP

left

,

t

〈e,t〉

left

e







S

DP

John

VP

quietly VP

left

,

t

〈e,t〉

quietly 〈e,t〉

left

e

j




Not much happens in this transduction, except that
the compositional order of the VP and the sub-

ject are reversed to conform to the conventions
for function/argument order in the lambda calcu-
lus. Throughout the paper, I’ve left the linking re-
lation between syntactic nodes and semantic nodes
implicit, since the intended relation is particularly
simple and, I hope, obvious.

3 Cosubstitution

The basic idea of using cosubstitution to handle
scope is that we can build the nuclear scope of a
quantifier before the quantifier enters the derivation.

In the normal substitution case, we have a tree
t1 containing a substitution target, that is, a node x
whose label B is decorated with a downarrow. We
also have a separate tree t2 whose root r has a match-
ing label, B. We replace x with r, and the tree rooted
in r becomes a subtree of t1 (first column of (5)).

In cosubstitution, we reverse the roles: now t2
contains the (co)substitution target, (which can only
be) the root node r. In recognition that the root is
now a cosubstitution target, we annotate its label
with an uparrow. As long as t1 contains a frontier
node x with a matching label (matching except that
it is still decorated with a downarrow rather than an
uparrow), cosubstitution may occur. Conceptually,
we replace (only!) the target node r with x, and
the tree footed in x becomes a supertree of t2. (So
the operation probably should be called “superstitu-
tion”.)
(5)
Substitution: Cosubstitution:


A

B↓
,

A

B







A

B↓
,

A

B





 B

,
B







B↑
,

B↑






A

B ,

A

B







A

B ,

A

B↑ 〈B,A〉

λ B

x

A

B

x




Cosubstitution, Derivational Locality and Quantifier Scope

137



In the diagrams, bolded symbols (e.g., A) represent
the semantic type of the corresponding syntactic cat-
egory (A). In general, A↑ will be 〈〈A,t〉,t〉; in par-
ticular, DP↑ = 〈〈e,t〉,t〉, the type of a generalized
quantifier. I’ll use Q as shorthand for 〈〈e,t〉,t〉.

Note that the syntactic trees after substitution and
after cosubstitution are identical. There is a differ-
ence in the semantics, however, since we must ab-
stract over the substitution argument expression.

As usual (e.g., Nesson and Shieber 2006:5) the
abstraction variable (in the diagram, x) should be
chosen fresh with respect to all previous choices of
abstraction variables in the derivation, though it may
be identical with the translation of pronouns in order
to accomplish quantificational binding.

In the simplest case, the cosubstitution argument
is the lexical projection of a predicate.

(6)




S

DP↓ VP

left

,

t

〈e,t〉

left

e







DP↑

everyone
,

Q

everyone







S

DP

every1

VP

left

,

t

Q

every1

〈e,t〉

λ e

x

t

〈e,t〉

left

e

x




If everyone = λP∀x.(Px), then the semantics for
everyone left beta-reduces to ∀x.(left x).

In general, however, nuclear scopes can be com-
plex, as in (1):

(7)


S

DP

John

VP

VP

left

PP

P

with

DP↓

,

t

〈e,t〉

PP

P

with

e

〈e,t〉

left

e

j




If we cosubstitute (7) onto the quantifier no one, we
get no one(λx.(with x left) j).

Thus the dependence of no one on its nuclear

scope is not local in the usual sense of forming part
of the same elementary tree. However, it is deriva-
tionally local: the quantifier and its nuclear scope
are the two participants in a single derivational step,
a cosubstitution step.

4 Inverse scope

As in previous TAG work, inverse scope makes a
good test case for illustrating how the system works.

(8) Some person from every city left.
Near the beginning of the derivation, some person

undergoes cosubstitution with left, essentially as in
(6). After adjunction with from at the NP node, we
have:
(9) a. Some person from every city left.

b. S

DP

some NP

NP

person

PP

P

from

DP↓

VP

left

DP↑

every NP

city

At this point, we have a cosubstitution opportunity
for every city in which its scope corresponds to Some

person from left.
In other words, the nuclear scope of a quantifier

is quite simply and quite literally its syntactic and
semantic argument.

The fact that the embedded quantifier has the en-
tire verb phrase in its scope explains how it can bind
a pronoun in the verb phrase, as in Someone from

everyi city loves iti.
Getting the opposite scoping requires supposing

that prepositions project structure at which a quanti-
fier can take scope internal to the enclosing DP. This
strategy is used by May 1985, Heim and Kratzer
1998, Barker and Shan 2006, among others, and, in
the TAG literature, by Nesson and Shieber 2006. For

Chris Barker

138



the sake of concreteness, we can approximate this
analysis (more work is needed to make it fully gen-
eral) by allowing from to take a quantificational DP
as its argument:
(10)


NP

NP* PP

P

from

DP

(DP↑)↓

, λx.Px ∧Q(λy.from y x)




After substitution (not cosubstitution!), the general-
ized quantifier denoted by every city substitutes for
the semantic non-terminal Q.

One advantage of this strategy is that when some

takes scope over every, every has only the preposi-
tional phrase in its scope, so it can’t bind a pronoun
in the verb phrase (this agrees with the facts).

A second advantage of this strategy is that when-
ever the scope of the embedded quantifier is trapped
inside of the larger DP, there is no way for quanti-
fiers external to the DP to intervene in scope between
some and every.
(11) Two politicians spied on some person

from every city.
The truth conditions of such a reading for (11) would
require that there be some specific person from ev-
ery city, a single pair of politicians, and at least one
spying event for each city. As discussed in detail in
Joshi, Kallmeyer and Romero 2008 and in Nesson
and Shieber, there is a general consensus that this
scoping should be ruled out by the grammar.

However, the system here does allow external
quantifiers to intervene in scope between some and
every on the inverse linking reading. That is, it is
possible to cosubstitute the spied on tree onto some

person, then cosubstitute the result onto two politi-

cians, then cosubstitute the result of that operation
onto every city, giving as a scoping every > two >
some. As Nesson and Shieber note, there is less of a
consensus on whether this reading should be consid-
ered ungrammatical. My position is that it is gram-
matical, but unusually hard to process.

5 Scope ambiguity and derivation trees

Thus on the cosubstitution approach, quantifier
scope ambiguity is a matter of timing: quantifiers

that enter later in the derivation take wider scope.

(12) Someone saw everyone.
αso : DP↑

someone

αeo : DP↑

everyone
αsaw : S

DP↓ VP

saw DP↓

Derivation tree:
αsaw

1 2.2
αso αeo

As Nesson and Shieber point out, if we use the usual
kind of derivation tree, we end up with a derivation
tree that does not disambiguate scope. In the deriva-
tion tree in (12), I have even added arrowheads to
distinguish substitution (downward-pointing arrow-
head) from cosubstitution (upward), but the deriva-
tion tree still does not reveal which quantifier takes
wide scope.
(13) Linear scope:

S

DP↓ VP

saw DP

everyone

DP↑

someone

αso
αsaw1

αeo
αsaw2.2

αsaw

(14) Inverse scope:
S

DP

someone

VP

saw DP↓
DP↓

everyone

αeo
αsaw2.2

αso
αsaw1

αsaw

But if we take the conceptualization of cosubstitu-
tion seriously, we have to treat the derived scope as
the argument of the quantifier. That means that the
quantifier conceptually is the target for the cosubsti-
tution. The correct derivation trees, then, have the
quantifier dominating their nuclear scope.

These derivation trees contain full information
about the order in which the quantifiers were added
to the derivation, and which takes wider scope.

Usually, derivation links are labelled with the
Gorn address of the substitution location. This is un-
informative here, since the only possible cosubstitu-
tion location is the root of the cosubstitution target,

Cosubstitution, Derivational Locality and Quantifier Scope

139



whose Gorn address is always 0. Therefore I have
labeled the cosubstitution links with the address of
the node that cosubstitutes onto the cosubstitution
target.

6 Comparison with other approaches

6.1 TAG approaches

In the MC-TAG approaches, quantifiers contribute
a pair of trees to the derivation. One part corre-
sponds to the visible DP, and the other corresponds
to the scope-taking part. The scope-taking compo-
nent floats upwards in the derivation until it finds the
top of the scope domain. In the version of Kallmeyer
and Romero and collaborators, the multiple compo-
nents are part of the syntax: the scope part is a de-
generate, single-node S tree that eventually attaches
to the top of the scope domain. In the STAG version
of Nesson and Shieber, the syntax contains a sim-
ple DP, and the multiple components are part of the
semantics.

In both accounts, the scope-taking part of a quan-
tifier must potentially remain unattached (i.e., part
of one component in a tree set) over an unbounded
number of TAG operations until the full scope do-
main is in view. To see this, note that in A raindrop

fell on the tire near the right corner of the hood of

every car there is a reading that entails that there
is at least one raindrop-falling event per car. That
means that it is possible for every car to take scope
over the entire clause. Similar examples show that
adjunctions (on, near) and substitutions (of ) can be
added between the quantifier and its scope without
any grammatical limit.

The claim of the MC-TAG approach is that quan-
tifiers and their scope domains are at most only tree-
set local. Another way to interpret the MC-TAG
analyses is to say that the relationship between a
quantifier and its scope is local, but they are (at least
temporarily) discontinuous, a kind of long-distance
scrambling.

On the cosubstitution view here, the entire scope
(a raindrop fell on the tire near to the right corner

of the hood of ) is composed before the quantifier
enters the derivation. There is no need to resort to
multicomponent tree sets. The relationship between
the quantifier and its scope is entirely local, since
it is nothing more than the relationship between a

predicate and its cosubstitution coargument.

6.2 Delimited continuations

In systems with delimited continuations (Felleisen
1988, Shan 2005, etc.), there are typically two ele-
ments: shift and reset (prompt). Shift is analogous
to the uparrow used here to mark cosubstitution tar-
gets; it corresponds to the bottom of a scope domain.
The reset marks the top of the scope domain. One
common challenge in shift/reset systems is index-
ing occurrences of shift with matching occurrences
of reset. In the TAG system here, there is no need
for a separate reset element. Instead, the state of the
derivation implicitly delimits the continuation that
is captured by the uparrow (shift). The continuation
will always contain the derivation up to the point at
which the cosubstitution occurs, and we achieve de-
limitation without needing an explicit reset operator.

In other systems with delimited continuations
such as Barker and Shan 2008, delimitation is ac-
complished by a system of optional typeshifting op-
erators. Once again, the interleaving of the cosubsti-
tution with the derivation makes typeshifting unnec-
essary here.

7 Generalized scope-taking

Most work in TAG semantics, including this paper
so far, assumes that scope-taking elements all take
scope over a sentence (S) and produce as a result a
(quantified) sentence. More general scoping mecha-
nisms allow these parameters to vary independently.
Thus in Moortgat 1997, q(A,B,C) is a type that func-
tions syntactically as an expression of type A, takes
scope over a constituent of type B, and returns a re-
sult of type C, so the quantifiers discussed above
would all be type q(DP, S, S). Barker and Shan 2008,
Morrill et al. 2007, and others provide directly anal-
ogous general scope-taking categories.

This more general approach allows new kinds of
linguistic analyses. For instance, I argue in Barker
2008 that in two men with the same name, the word
same is a scope-taking quantifier that functions lo-
cally as an adjective and takes scope over a nominal,
in this case, men with the name. Thus same has
category q(Adj, NP, NP).

For a second instance due to Moortgat (in teach-
ing materials circa 2000), in order to handle the

Chris Barker

140



bracketed phrase in a book [the author of which]

I know, we can analyze which as having category
q(DP, DP, RelPn): it behaves syntactically as a DP,
it takes scope over a DP (the bracketed phrase), and
the result functions as a relative pronoun.

It would probably be straightforward to allow ex-
isting TAG accounts to accommodate non-S scope
targets, though perhaps at the cost of increased gen-
erative power. It is far from clear, however, how
these accounts would allow scope-takers to return
arbitrary result categories. This would require al-
lowing a deeply embedded constituent to change the
syntactic category of the constituent in which it is
embedded.

The cosubstitution account here, however, was
created with the general case in mind. We simply
refine the definition of cosubstitution to require that
if a cosubstitution target has category q(A,B,C), the
surrounding cosubstitution argument must have cat-
egory A on its foot, B on its root, and the result of the
cosubstitution operation is treated as a tree of cate-
gory C. Perhaps in the TAG tradition of split cate-
gories, the root of the resulting tree would have B as
its lower category and C as its upper category.

8 Conclusions

A fully general system for scope-taking requires
providing a scope-taking element with its delimited
continuation. Derivational flexibility in TAG allows
construction of delimited continuations on the fly.
Adding the operation of cosubstitution as dual to
substitution makes for a strikingly simple but fully
general scope-taking system.

Still, after all is said and done, there is some-
thing multicomponent-ish about the cosubstitution
approach. The semantics of cosubstitution expands
the DP node on the frontier of the tree at the same
time that it also adds semantic material at the top of
the tree. As I mentioned, I don’t view cosubstitu-
tion as a competitor to the MC-TAG approaches, but
rather as a reconceptualization. Given that scope-
taking requires associating distant locations in a tree,
just what is the nature of the required dependency?
Exactly what sort of multicomponent-ness is re-
quired? What expressive power is needed, and what
extra generative capacity?

In the system as described above, the answer to

the generative capacity question is simple. For every
co-TAG grammar, there is an ordinary TAG gram-
mar in which each root labeled X↑ is replaced with
the label X. For every derivation in the co-TAG
grammar, there is a derivation in the ordinary TAG
grammar that generates the same tree with the same
string. Furthermore, cosubstitution is defined in ev-
ery situation in which ordinary substitution would
be defined. As a result, syntactically, co-TAG is both
weakly and strongly equivalent to TAG.

Of course, even though cosubstitution is defined
when the root of the cosubstitution argument is not
of type t (e.g., an S node), the lambda term con-
structed by the semantics may be ill-typed. In ef-
fect, we’ve only been interested so far in a subclass
of derivations, the ones in which uparrowed con-
stituents are combined with arguments rooted in S.

Building ill-typed lambda terms is clearly not sat-
isfactory. However, it is easily fixed. We restrict
the version of cosubstitution defined above to cases
in which the cosubstitution argument is rooted in
S, and we add two new cosubstitution definitions to
cover cases in which the argument is rooted in some
category A where A is distinct from S.

For the first new version, the syntax will be the
same, except that now the category of the resulting
derived tree will be A↑ instead of A. The seman-
tics will be λκλγ.Q(λx.γ(κx)), where κ is a func-
tion of type 〈B,A〉, γ is a function of type 〈A,t〉,
Q is the semantics of the B↑ tree (and so has type
〈〈B,t〉,t〉), and x is a variable of type B. This rule
says that if a scope-taking element does not find its
scope, it turns the constituent it combines with into a
new scope-taking element. When this new, complex
scope-taker finally finds its scope, meanings com-
pose in such a way that the original scope-taker takes
scope over the entire domain.

This rule in effect allows a scope-taking expres-
sion to combine bottom-up if desired, much in the
way that the MC-TAG scope analyses work. In the
full system, then, we can either accumulate a scope
domain piecemeal, layer by layer, in the style of
the MC-TAG analysis, or we can jump directly to
the top layer in one swoop. See Barker 2007 for a
discussion of a type-logical system in which these
two conceptions of scope-taking coexist in a single
grammar.

The second new version of the cosubstitution

Cosubstitution, Derivational Locality and Quantifier Scope

141



rule covers cases in which the cosubstitution argu-
ment is rooted in a scope-taking category A↑ to
begin with. This will happen if there are already
scope-taking elements incorporated into the cosub-
stitution argument. In this case, the syntactic re-
sult is unchanged (A↑ again), and the semantics is
λκλγ.Q(λx.(κx) γ), where κ now has type 〈B,A↑〉.
This rule gives the newest scope-taker scope over all
of the other scope-taking elements already present
in the (partial) domain.

As long as there aren’t any initial trees rooted in
S↑, or internal nodes with arrows, it is easy to see
that the final co-TAG tree will have no arrows in
it. Clearly, for every co-TAG derivation, there is a
derivation in the corresponding de-arrowed TAG in
which the final tree is identical, and vice-versa. Fur-
thermore, with the new cosubstitution rules in place,
every derviation in the co-TAG has a well-typed (and
sensible) semantic interpretation. Finally, note that
all TAG grammars are also co-TAG grammars.

In other words, co-TAG has exactly the same
weak and strong generative capacity as TAG.

References
Barker, Chris. 2002. Continuations and the nature

of quantification. Natural Language Semantics

10.3: 211–242.
Barker, Chris. 2007. Direct Compositionality on

Demand. In Chris Barker and Pauline Jacobson
(eds). Direct Compositionality. Oxford Univer-
sity Press. 102–131.

Barker, Chris. 2008. Parasitic Scope. Linguistics

and Philosophy. 30.4: 407–444.
Barker, Chris, and Chung-chieh Shan. 2006. Types

as graphs: continuations in Type Logical Gram-
mar. Journal of Logic, Language and Informa-

tion 15.4: 331–370.
Barker, Chris, and Chung-chieh Shan. 2008. Don-

key anaphora is in-scope binding. Semantics and

Pragmatics 1.1: 1–42.
Bernardi, Raffaella and Michael Moortgat. 2010.

Continuation semantics for the Lambek-Grishin
calculus. Information and Computation 208.5:
397–416.

Felleisen, Mattias. 1988. The theory and practice of
first-class prompts. In Popl 88: Proceedings of

the 15th acm sigplan-sigact symposium on prin-

ciples of programming languages. 180–190.

de Groote, P.: 2001, Continuations, type raising, and
classical logic, in R. van Rooy and M. Stokhof
(eds.), Thirteenth Amsterdam Colloquium, pp.
97–101. Institute for Logic, Language and Com-
putation, Universiteit van Amsterdam.

Heim, Irene and Angelika Kratzer. 1998. Semantics

in Generative Grammar. Blackwell.
Joshi, Aravind, Laura Kallmeyer, and Maribel

Romero. 2008. Flexible composition in LTAG:
quantifier scope and inverse linking. In H. Bunt
and R. Muskens (eds). Computing Meaning,
vol. 3, Springer. 233–256.

Joshi, Aravind and Yves Schabes. 1997. Tree-
Adjoining Grammars. In Handbook of Formal

Languages, Beyond Words, vol. 3. 69–123.
May, R.: 1985, Logical Form: Its Structure and

Derivation, MIT Press, Cambridge, MA.
Morrill, Glyn, Mario Fadda and Oriol Valentn.

2007. Nondeterministic Discontinuous Lambek
Calculus. In Proceedings of the Seventh Inter-

national Workshop on Computational Semantics,

IWCS7. Tilburg.
Nesson, Rebecca and Stuart Shieber. 2006. Sim-

pler TAG semantics through synchronization. In
Proceedings of the 11th Conference on Formal

Grammar. CSLI.
Shan, Chung-chieh. 2005. Linguistic side effects.

Harvard PhD.
Shieber, Stuart and Yves Schabes. 1990. Syn-

chronous tree-adjoining grammars. In Proceed-

ings of the 13th International Conference on

Computational Linguistics, vol. 3, 253–258.

Chris Barker

142


