
Towards a Programmable Instrumented Generator

Chris Mellish

Computing Science

University of Aberdeen

AB24 3UE, UK
c.mellish@abdn.ac.uk

Abstract

In this paper, we propose a general way of con-

structing an NLG system that permits the system-

atic exploration of the effects of particular system

choices on output quality. We call a system devel-

oped according to this model a Programmable In-

strumented Generator (PIG). Although a PIG could

be designed and implemented from scratch, it is

likely that researchers would also want to create

PIGs based on existing systems. We therefore pro-

pose an approach to “instrumenting” an NLG sys-

tem so as to make it PIG-like. To experiment with

the idea, we have produced code to support the

“instrumenting” of any NLG system written in

Java. We report on initial experiments with “in-

strumenting” two existing systems and attempting

to “tune” them to produce text satisfying complex

stylistic constraints.

1 Introduction

Existing NLG systems are often fairly impenetra-

ble pieces of code. It is hard to see what an NLG

system is doing and usually impossible to drive it

in any way other than what was originally envis-

aged. This is particularly unfortunate if the system

is supposed to produce text satisfying complex sty-

listic requirements. Even when an NLG system

actually performs very well, it is hard to see why

this is or how particular generator decisions pro-

duce the overall effects. We propose a way of

building systems that will permit more systematic

exploration of decisions and their consequences, as

well as better exploitation of machine learning to

make these decisions better. We call a system built

in this way a Programmable Instrumented Genera-

tor (PIG). As an initial exploration of the PIG idea,

we have developed a general way of partially in-

strumenting any NLG system written in Java and

have carried out two short experiments with exist-

ing NLG systems.

2 Controlling an NLG System: Examples

NLG systems are frequently required to produce

output that conforms to particular stylistic guide-

lines. Often conformance can only be tested at the

end of the NLG pipeline, when a whole number of

complex strategic and tactical decisions have been

made, resulting in a complete text. A number of

recent pieces of work have begun to address the

question of how to tune systems in order to make

the decisions that lead to the most stylistically pre-

ferred outputs.

Paiva and Evans (2005) (henceforth PE) investi-

gate controlling generator decisions for achieving

stylistic goals, e.g. choices between:

The patient takes the two gram dose of the pa-

tient’s medicine twice a day.

and

The dose of the patient’s medicine is taken

twice a day. It is two grams.

In this case, a stylistic goal of the system is ex-

pressed as goal values for features SSi, where each

SSi expresses something that can be measured in

the output text, e.g. counting the number of pro-

nouns or passives. The system learns to control the

number of times specific binary generator deci-

Figure 1: Example PERSONAGE rule

sions are made (GDj), where these decisions in-

volve things like whether to split the input into 2

sentences or whether to generate an N PP clause. A

process of offline training is first used to establish

correspondences between counts of generator deci-

sions and the values of the stylistic features. This

works by running the system with multiple outputs

(making decisions in many possible ways) and

keeping track of both the counts of the decisions

and also the values of the stylistic features

achieved. From this data the system then learns

correlations between these:

To actually generate a text given stylistic goals SSi,

the system then uses an online control regime. At

each choice point, it considers making GDj versus

not GDj. For each of these two, it estimates all the

SSi that will be obtained for the complete text, us-

ing the learned equations. It prefers the choice that

minimises the sum of absolute differences between

these and the goal SSi, but is prepared to backtrack

if necessary (best-first search).

Mairesse and Walker (2008) (henceforth MW) use

a different method for tuning their NLG system

(“PERSONAGE”), whose objective is to produce

texts in the styles of writers with different person-

ality types. In this case, the system performance

depends on 67 parameters, e.g. REPETITIONS

(whether to repeat existing propositions), PERIOD

(leave two sentences connected just with “.”, rather

than any other connective) and NEGATION (ne-

gate a verb and replace it by its antonym). For

MW, offline training involves having the program

generate a set of outputs with random values for all

the parameters. Human judges estimate values for

the “big five” personality traits (e.g. extroversion,

neuroticism) for each output. Machine learning is

then used to generate rules to predict how the pa-

rameter values depend on the big five numbers.

For instance, Figure 1 shows the rule predicting the

STUTTERING parameter.

Once these rules are learned, online control to pro-

duce text according to a given personality (speci-

fied by numerical values for the big five traits)

uses the learned models to set the parameters,

which then determine NLG system behaviour.

Human judges indeed recognise these personalities

in the texts.

3 Towards a PIG

Looking at the previous two examples, one can

detect some common features which could be used

in other situations:

• An NLG system able to generate random (or

all possible) outputs

• Outputs which can be evaluated (by human or

machine)

• The logging of key NLG parameters/choices

• Learning of connections between parameters

and output quality

j

j

j

est

ii GDxxSSSS .0 ∑+=≅

This then being used to drive the system to achieve

specific goals more efficiently than before.

PE and MW both constructed special NLG systems

for their work. One reason for this was that both

wanted to ensure that the underlying NLG system

allowed the kinds of stylistic variation that would

be relevant for their applications. But also, in order

to be able to track the choices made by a generator,

Paiva and Evans had to implement a new system

that kept an explicit record of choices made. This

new system also had to be able to organise the

search through choices according to a best-first

search (it was possibly the first NLG system to be

driven in this way). The only possibility for them

was to implement a new special purpose generator

for their domain with the desired control character-

istics.

NLG systems are not usually immediately suitable

for tuning of this kind because they make choices

that are not exposed for external inspection. Also

the way in which choices are made and the overall

search strategy is usually hardwired in a way that

prevents easy changing. It seems plausible that the

approaches of PE and MW would work to some

extent for any NLG system that can tell you about

its choices/ parameter settings, and for any stylistic

goal whose success can be measured in the text.

Morever, these two are not the only ways one

might train/guide an NLG system from such in-

formation (for instance, Hovy’s (1990) notion of

“monitoring” would be an alternative way of using

learned rules to drive the choices of an NLG sys-

tem). It would be revealing if one could easily

compare different control regimes in a single ap-

plication (e.g. monitoring for PE’s task or best-first

search for MW’s), but this is currently difficult

because the different systems already have particu-

lar control built in.

This discussion motivates the idea of developing a

general methodology for the development of NLG

systems that permits the systematic exploration of

learning and control possibilities. We call a system

built in such a way a Programmable Instrumented

Generator (PIG).
1
 A PIG would be an NLG sys-

1 If one had a sufficiently expressive PIG then perhaps one

could train it for any testable stylistic goals – a kind of “uni-

versal” NLG system?

tem that implements standard NLG algorithms and

competences but which is organised in a way that

permits inspection and reuse. It would be instru-

mented, in that one would be able to track the

choices made in generating a text or texts, in order

to tune the performance. It would also be pro-

grammable in that it would be possible to drive the

system in different ways according to a learned (or

otherwise determined) “policy”, e.g. to:

• Generate all solutions (overgeneration)

• Generate solutions with some choices

fixed/constrained

• Generate solutions with user control of some

decisions

• Generate solutions using an in-built choice

mechanism

• Generate solutions according to some global

search strategy (e.g. monitoring, best-first

search)

4 Using a PIG

A general way of using a PIG is shown in Figure 2.

A PIG interacts with a (conceptually) separate

processing component, which we call the “oracle”.

This applies a policy to make choices for the gen-

erator and receives evaluations of generated texts.

It logs the choices made and (using machine learn-

ing) can use this information to influence the pol-

icy.

There are two main modes in which the PIG can be

run, though mixtures are also possible. In (offline)

training mode, the system is run on multiple inputs

and uses random or exhaustive search to sample

the space of generatable texts. The choices made

Figure 2: Using a PIG

are logged, as is the quality of the outputs gener-

ated. In (online) execution mode, the PIG is run as

a normal generator, running on a single input and

making choices according to a learned policy.

To support this, the PIG itself needs minimally to

support provide external access to the following

function:

generate(input:InputSpec) returns text:String

which produces a text, from a given input specifi-

cation. On the other hand, the Oracle needs to pro-

vide external access to at least the following (used

by the PIG):

choice(question:String, suggestion:int,
 possibilities:ListOfString, state:String)
returns decision:int or RESTART

outcome(state:String, value:Float) (no return value)

where question represents a choice to be made

(with possible answers possibilities), suggestion

is the index of a suggested choice and decision is

the index of the choice made. state is a representa-

tion of generator state, in some standard format

(e.g. ARFF (Hall et al 2009)) and outcome (giving

the final state and the text quality) is called as the

last action of generating a text. RESTART is a

special value that by convention causes the system

to return to a state where it can be asked to gener-

ate another text.

To support the above, the PIG needs to maintain

some representation of program state. Also the ora-

cle needs to implement a training/testing algorithm

that involves providing the PIG with example in-

puts, restarting the PIG on the current or a new

example, implementing a policy, logging results

and possibly interacting with a user.

The above model of how to use a PIG is partly mo-

tivated by existing approaches to monitoring and

testing complex electronic equipment. Testing is

often carried out by attaching “automatic test

equipment” to the unit under test. This automatic

test equipment is akin to our “oracle” in that it

drives the unit through special test sequences and

automatically records what is going on.

5 The PIG panel

There is a practical question of how best to build

PIGs and what resources there might be to support

this. Given their concern with explicit representa-

tion of choices, NLG models based on Systemic

Grammar (Bateman 1997) might well be promising

as a general framework here. But in reality, NLG

systems are built using many different theoretical

approaches, and most decisions are hard-coded in a

conventional programming language. In order to

investigate the PIG concept further, therefore, we

have developed a general way of “instrumenting”

in a limited way any NLG system written in Java

(giving rise to a PIGlet). We have also imple-

mented a general enough oracle for some initial

experiments to be made with a couple of PIGlets.

This experimental work is in line with the API

given above but implemented in a way specific to

the Java language.

In order to instrument the client generator, one has

to identify places where interesting choices are

made. This is obviously best done by someone

with knowledge of the system. There are a number

of ways to do this, but the simplest basically re-

places a construct of the form:

if (<condition>) <action>

by

if (Oracle.condRec(<name>,<condition>)) <action>

where <name> is a string naming this particular

choice. This allows the oracle to intervene when

the choice is made, but possibly taking into ac-

count the suggested answer (<condition>).

The implemented oracle (the “PIG panel”) sup-

ports a kind of “single stepping” of the generator

(between successive choices), manual control of

choices and restarting. It has built in policies which

include random generation, following the choices

suggested by the PIGlet, systematic generation of

all possibilities (depth-first) and SARSA, a kind of

reinforcement learning (Sutton and Barto 1998). It

provides simple statistics about the evaluations of

the texts generated using the current policy and a

user interface (Figure 3).

For the oracle to be able to control the PIGlet, it

needs to be provided with a “connector” which

represents it through a standard API (specifying

how to generate a text, how to evaluate a text, what

examples can be used, etc.). This also includes a

specification of how to derive the “state” informa-

tion about the generator which is logged for ma-

chine learning process. State information can

include the number of times particular choices are

made (as in PE), the most recent choices made and

other generator-specific parameters which are

communicated to the oracle (as in MW).

Finally the PIGlet and oracle are linked via a “har-

ness” which specifies the basic mode of operation

(essentially training vs execution).

In the following sections, we describe two tentative

experiments which produced PIGlets from existing

NLG systems and investigated the use of the PIG

panel to support training of the system. It is impor-

tant to note that for these systems the instrument-

ing was done by someone (the author) with limited

knowledge of the underlying NLG system and with

a notion of text quality different from that used by

the original system. Also, in both cases the limited

availability of example data meant that testing had

to be performed on the training data (and so any

positive results may be partly due to overfitting).

6 Experiment 1: Matching human texts

For this experiment, we took an NLG system that

produces pollen forecasts and was written by Ross

Turner (Turner et al 2006). Turner collected 68

examples of pollen prediction data for Scotland

(each consisting of 6 small integers and a charac-

terisation of the previous trend) with human-

written forecasts, which we took as both our train-

ing and test data. We evaluated text quality by

similarity to the human text, as measured by the

Meteor metric (Lavie and Denkowski 2009). Note

that the human forecasters had access to more

background knowledge than the system, and so this

is not a task that the system would be expected to

do particularly well on.

The notion of program “state” that the oracle

logged took the form of the 6 input values, together

with the values of 7 choices made by the system

(relating to the inclusion of trend information,

thresholds for the words “high” and “low”,

whether to segment the data and whether to include

hay fever information).

The system was trained by generating about 10000

random texts (making random decisions for ran-

domly selected examples). For each, the numerical

outcome (Meteor score) and state information was

recorded. The half of the resulting data with high-

est outcomes was extracted and used to predict

rules for the 7 choices, given the 6 input parame-

ters (we used Weka (Hall et al 2009) with the JRip

algorithm). The resulting rules were transcribed

into a specific “policy” (Java class) for the oracle.

Applied to the 68 examples, trying random genera-

tion for 3 times on each, the system obtained an

average Meteor score of 0.265. Following the

original system’s suggestions produced an average

score of 0.279. Following the learned policy, the

system also obtained an average of 0.279. The dif-

ference between the learned behaviour and random

generation is significant (p =0.002) according to a t

test.

7 Experiment 2: Text length control

A challenging stylistic requirement for NLG is that

of producing a text satisfying precise length re-

quirements (Reiter 2000). For this experiment, we

took the EleonPlus NLG system developed by

Hien Nguyen. This combines the existing Eleon

user interface for domain authoring (Bilidas et al

2007) with a new NLG system that incorporates

the SimpleNLG realiser (Gatt and Reiter 2009).

Figure 3: PIG Panel interface

The system was used for a simple domain of texts

about university buildings. The data used was the

authored information about 7 university buildings

and associated objects. We evaluated texts using a

simple (character) length criterion, where the ideal

text was 250 characters, with a steeply increasing

penalty for texts longer than this and a slowly in-

creasing penalty for texts that are shorter.

The notion of “state” that was logged took account

of the depth of the traversal of the domain data, the

maximum number of facts per sentence and an ag-

gregation decision.

Following the previous successful demonstration

of reinforcement learning for NLG decisions (Rie-

ser and Lemon 2006), we decided to use the

SARSA approach (though without function ap-

proximation) for the training. This involves re-

warding individual states for their (direct or

indirect) influence on outcome quality as the sys-

tem actually performs. The policy is a mixture of

random exploration and the choosing of the cur-

rently most promising states, according to the

value of a numerical parameter ε.

Running the system on the 7 examples with 3 ran-

dom generations for each produced an average text

quality of -2514. We tried a SARSA training re-

gime with 3000 random examples at ε=0.1, fol-

lowed by 2000 random examples at ε=0.001.

Following this, we looked at performance on the 7

examples with ε=0. The average text quality was -

149. This was exactly the same quality as that

achieved by following the original NLG system’s

policy. Even though there is a large difference in

average quality between random generation and

the learned policy, this is, however, not statistically

significant (p = 0.12) because of the small number

of examples and large variation between text quali-

ties.

8 Conclusions and Further Work

Each of our initial experiments was carried out by

a single person in less than a week of work, (which

included some concurrent development of the PIG

panel software and some initial exploration of the

underlying NLG system). This shows that it is rela-

tively quick (even with limited knowledge of the

original NLG system) for someone to instrument

an existing NLG system and to begin to investigate

ways of optimizing its performance (perhaps with

different goals than it was originally built for).

This result is probably more important than the

particular results achieved (though it is promising

that some are statistically significant).

Further work on the general software could focus

on the issue of the visualization of choices. Here it

might be interesting to impose a Systemic network

description on the interdependencies between

choices, even when the underlying system is built

with quite a different methodology.

More important, however, is to develop a better

understanding of what sorts of behaviour in an

NLG system can be exposed to machine learning

to optimize the satisfaction of what kinds of stylis-

tic goals. Also we need to develop methodologies

for systematically exploring the possibilities, in

terms of the characterization of NLG system state

and the types of learning that are attempted. It is to

be hoped that software of the kind we have devel-

oped here will help to make these tasks easier.

Finally, this paper has described the development

and use of PIGs mainly from the point of view of

making the best of NLG systems rather like what

we already have. The separation of logic and con-

trol supported by the PIG architecture could

change the way we think about NLG systems in

the first place. For instance, a PIG could easily be

made to overgenerate (in the manner, for instance,

of HALOGEN (Langkilde-Geary 2003)), in the

confidence that an oracle could later be devised

that appropriately weeded out non-productive

paths.

Acknowledgments

This work was supported by EPSRC grant

EP/E011764/1. The ideas here have benefited par-

ticularly from discussions with Graeme Ritchie and

Roger Evans. We also acknowledge the helpful

comments of two anonymous reviewers.

References

John Bateman. 1997. Enabling technology for multilin-

gual natural language generation: the KPML devel-

opment environment. Natural Language Engineering

3(1):15-55.

Dimitris Bilidas, MariaTheologou and Vangelis

Karkaletsis. 2007. Enriching OWL Ontologies with

Linguistic and User-Related Annotations: The

ELEON System. Proceedings of the IEEE Interna-

tional Conference on Tools with Artificial Intelli-

gence (ICTAI), Patra, Greece.

Albert Gatt and Ehud Reiter. 2009. SimpleNLG: A re-

alisation engine for practical applications. Proceed-

ings of ENLG-2009.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard

Pfahringer, Peter Reutemann and Ian H. Witten.

2009. The WEKA Data Mining Software: An Up-

date; SIGKDD Explorations, Volume 11, Issue 1.

Eduard H. Hovy. 1990. Pragmatics and Natural Lan-

guage Generation. Artificial Intelligence 43(2), pp.

153–198.

Alon Lavie and Michael Denkowski. 2009. The

METEOR Metric for Automatic Evaluation of Ma-

chine Translation. Machine Translation, published

online 1st November 2009.

Irene Langkilde-Geary. 2003. A foundation for general-

purpose natural language generation: sentence reali-

zation using probabilistic models of language. PhD

thesis, University of Southern California, Los Ange-

les, USA.

François Mairesse and Marilyn Walker. 2008. Trainable

Generation of Big-Five Personality Styles through

Data-driven Parameter Estimation. In Proceedings of

the 46th Annual Meeting of the Association for Com-

putational Linguistics (ACL), Columbus.

Daniel Paiva and Roger Evans. 2005. Empirically-based

 control of natural language generation. Proceedings

 of the 43rd Annual Meeting of the ACL, pages 58-65.

Ehud Reiter. 2000. Pipelines and Size Constraints. Com-

putational Linguistics. 26:251-259.

Verena Rieser and Oliver Lemon. 2006. Using Machine

Learning to Explore Human Multimodal Clarification

Strategies. Procs of ACL 2006.

Richard S. Sutton and Andrew G. Barto. 1998. Rein-

forcement Learning: An Introduction. MIT Press,

Cambridge, MA.

Ross Turner, Yaji Sripada, Ehud Reiter and Ian Davy.

2006. Generating Spatio-Temporal Descriptions in

Pollen Forecasts. Proceedings of EACL06 Compan-

ion Volume.

