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Abstract 

In this paper, we propose a general way of con-

structing an NLG system that permits the system-

atic exploration of the effects of particular system 

choices on output quality. We call a system devel-

oped according to this model a Programmable In-

strumented Generator (PIG). Although a PIG could 

be designed and implemented from scratch, it is 

likely that researchers would also want to create 

PIGs based on existing systems. We therefore pro-

pose an approach to “instrumenting” an NLG sys-

tem so as to make it PIG-like. To experiment with 

the idea, we have produced code to support the 

“instrumenting” of any NLG system written in 

Java. We report on initial experiments with “in-

strumenting” two existing systems and attempting 

to “tune” them to produce text satisfying complex 

stylistic constraints. 

1 Introduction 

Existing NLG systems are often fairly impenetra-

ble pieces of code. It is hard to see what an NLG 

system is doing and usually impossible to drive it 

in any way other than what was originally envis-

aged. This is particularly unfortunate if the system 

is supposed to produce text satisfying complex sty-

listic requirements. Even when an NLG system 

actually performs very well, it is hard to see why 

this is or how particular generator decisions pro-

duce the overall effects. We propose a way of 

building systems that will permit more systematic 

exploration of decisions and their consequences, as 

well as better exploitation of machine learning to 

make these decisions better. We call a system built 

in this way a Programmable Instrumented Genera-

tor (PIG). As an initial exploration of the PIG idea, 

we have developed a general way of partially in-

strumenting any NLG system written in Java and 

have carried out two short experiments with exist-

ing NLG systems. 

2 Controlling an NLG System: Examples 

NLG systems are frequently required to produce 

output that conforms to particular stylistic guide-

lines. Often conformance can only be tested at the 

end of the NLG pipeline, when a whole number of 

complex strategic and tactical decisions have been 

made, resulting in a complete text. A number of 

recent pieces of work have begun to address the 

question of how to tune systems in order to make 

the decisions that lead to the most stylistically pre-

ferred outputs. 
 

Paiva and Evans (2005) (henceforth PE) investi-

gate controlling generator decisions for achieving 

stylistic goals, e.g. choices between: 

 

The patient takes the two gram dose of the pa-

tient’s medicine twice a day. 

 

and 

 

The dose of the patient’s medicine is taken 

twice a day. It is two grams. 

 

In this case, a stylistic goal of the system is ex-

pressed as goal values for features SSi,  where each 

SSi  expresses something that can be measured in 

the output text, e.g. counting the number of pro-

nouns or passives. The system learns to control the 

number of times specific binary generator deci-



Figure 1: Example PERSONAGE rule 

sions are made (GDj), where these decisions in-

volve things like whether to split the input into 2 

sentences or whether to generate an N PP clause. A 

process of offline training is first used to establish 

correspondences between counts of generator deci-

sions and the values of the stylistic features. This 

works by running the system with multiple outputs 

(making decisions in many possible ways) and 

keeping track of both the counts of the decisions 

and also the values of the stylistic features 

achieved. From this data the system then learns 

correlations between these: 

 

 

 

 

To actually generate a text given stylistic goals SSi, 

the system then uses an online control regime. At 

each choice point, it considers making GDj versus 

not GDj. For each of these two, it estimates all the 

SSi that will be obtained for the complete text, us-

ing the learned equations. It prefers the choice that 

minimises the sum of absolute differences between 

these and the goal SSi, but is prepared to backtrack 

if necessary (best-first search). 

 

Mairesse and Walker (2008) (henceforth MW) use 

a different method for tuning their NLG system 

(“PERSONAGE”), whose objective is to produce 

texts in the styles of writers with different person-

ality types. In this case, the system performance 

depends on 67 parameters, e.g. REPETITIONS 

(whether to repeat existing propositions), PERIOD 

(leave two sentences connected just with “.”, rather 

than any other connective) and NEGATION (ne-

gate a verb and replace it by its antonym). For 

MW, offline training involves having the program 

generate a set of outputs with random values for all 

the parameters. Human judges estimate values for 

the “big five” personality traits (e.g. extroversion, 

neuroticism) for each output. Machine learning is 

then used to generate rules to predict how the pa-

rameter values depend on the big five numbers. 

For instance, Figure 1 shows the rule predicting the 

STUTTERING parameter. 

 

Once these rules are learned, online control to pro-

duce text according to a given personality (speci-

fied by numerical values for the big five traits) 

uses the learned models to set the parameters, 

which then determine NLG system behaviour. 

Human judges indeed recognise these personalities 

in the texts. 

3 Towards a PIG 

Looking at the previous two examples, one can 

detect some common features which could be used 

in other situations: 

• An NLG system able to generate random (or 

all possible) outputs 

• Outputs which can be evaluated (by human or 

machine) 

• The logging of key NLG parameters/choices 

• Learning of connections between parameters 

and output quality 
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This then being used to drive the system to achieve 

specific goals more efficiently than before. 

 

PE and MW both constructed special NLG systems 

for their work. One reason for this was that both 

wanted to ensure that the underlying NLG system 

allowed the kinds of stylistic variation that would 

be relevant for their applications. But also, in order 

to be able to track the choices made by a generator, 

Paiva and Evans had to implement a new system 

that kept an explicit record of choices made. This 

new system also had to be able to organise the 

search through choices according to a best-first 

search (it was possibly the first NLG system to be 

driven in this way). The only possibility for them 

was to implement a new special purpose generator 

for their domain with the desired control character-

istics.  

 

NLG systems are not usually immediately suitable 

for tuning of this kind because they make choices 

that are not exposed for external inspection. Also 

the way in which choices are made and the overall 

search strategy is usually hardwired in a way that 

prevents easy changing. It seems plausible that the 

approaches of PE and MW would work to some 

extent for any NLG system that can tell you about 

its choices/ parameter settings, and for any stylistic 

goal whose success can be measured in the text. 

Morever, these two are not the only ways one 

might train/guide an NLG system from such in-

formation (for instance, Hovy’s (1990) notion of 

“monitoring” would be an alternative way of using 

learned rules to drive the choices of an NLG sys-

tem). It would be revealing if one could easily 

compare different control regimes in a single ap-

plication (e.g. monitoring for PE’s task or best-first 

search for MW’s), but this is currently difficult 

because the different systems already have particu-

lar control built in. 

 

This discussion motivates the idea of developing a 

general methodology for the development of NLG 

systems that permits the systematic exploration of 

learning and control possibilities. We call a system 

built in such a way a Programmable Instrumented 

Generator (PIG).
1
  A PIG would be an NLG sys-

                                                           
1 If one had a sufficiently expressive PIG then perhaps one 

could train it for any testable stylistic goals – a kind of “uni-

versal” NLG system? 

tem that implements standard NLG algorithms and 

competences but which is organised in a way that 

permits inspection and reuse. It would be instru-

mented, in that one would be able to track the 

choices made in generating a text or texts, in order 

to tune the performance. It would also be pro-

grammable in that it would be possible to drive the 

system in different ways according to a learned (or 

otherwise determined) “policy”, e.g. to: 

 

• Generate all solutions (overgeneration) 

• Generate solutions with some choices 

fixed/constrained 

• Generate solutions with user control of some 

decisions 

• Generate solutions using an in-built choice 

mechanism 

• Generate solutions according to some global 

search strategy (e.g. monitoring, best-first 

search) 

4 Using a PIG 

A general way of using a PIG is shown in Figure 2. 

A PIG interacts with a (conceptually) separate 

processing component, which we call the “oracle”. 

This applies a policy to make choices for the gen-

erator and receives evaluations of generated texts. 

It logs the choices made and (using machine learn-

ing) can use this information to influence the pol-

icy.  

 
There are two main modes in which the PIG can be 

run, though mixtures are also possible. In (offline) 

training mode, the system is run on multiple inputs 

and uses random or exhaustive search to sample 

the space of generatable texts. The choices made 

Figure 2: Using a PIG 



are logged, as is the quality of the outputs gener-

ated. In (online) execution mode, the PIG is run as 

a normal generator, running on a single input and 

making choices according to a learned policy. 

 

To support this, the PIG itself needs minimally to 

support provide external access to the following 

function: 
 

generate(input:InputSpec) returns text:String 

 

which produces a text, from a given input specifi-

cation. On the other hand, the Oracle needs to pro-

vide external access to at least the following (used 

by the PIG): 

 
choice(question:String, suggestion:int,  
       possibilities:ListOfString, state:String) 
returns decision:int  or RESTART 

 
outcome(state:String, value:Float) (no return value)  
 

where question represents a choice to be made 

(with possible answers possibilities), suggestion 

is the index of a suggested choice and decision is 

the index of the choice made. state is a representa-

tion of generator state, in some standard format 

(e.g. ARFF (Hall et al 2009)) and outcome (giving 

the final state and the text quality) is called as the 

last action of generating a text. RESTART is a 

special value that by convention causes the system 

to return to a state where it can be asked to gener-

ate another text. 

 

To support the above, the PIG needs to maintain 

some representation of program state. Also the ora-

cle needs to implement a training/testing algorithm 

that involves providing the PIG with example in-

puts, restarting the PIG on the current or a new 

example, implementing a policy, logging results 

and possibly interacting with a user. 

 

The above model of how to use a PIG is partly mo-

tivated by existing approaches to monitoring and 

testing complex electronic equipment. Testing is 

often carried out by attaching “automatic test 

equipment” to the unit under test. This automatic 

test equipment is akin to our “oracle” in that it 

drives the unit through special test sequences and 

automatically records what is going on. 

 
 

5 The PIG panel 

There is a practical question of how best to build 

PIGs and what resources there might be to support 

this. Given their concern with explicit representa-

tion of choices, NLG models based on Systemic 

Grammar (Bateman 1997) might well be promising 

as a general framework here. But in reality, NLG 

systems are built using many different theoretical 

approaches, and most decisions are hard-coded in a 

conventional programming language. In order to 

investigate the PIG concept further, therefore, we 

have developed a general way of “instrumenting” 

in a limited way any NLG system written in Java 

(giving rise to a PIGlet). We have also imple-

mented a general enough oracle for some initial 

experiments to be made with a couple of PIGlets. 

This experimental work is in line with the API 

given above but implemented in a way specific to 

the Java language.  

 

In order to instrument the client generator, one has 

to identify places where interesting choices are 

made. This is obviously best done by someone 

with knowledge of the system. There are a number 

of ways to do this, but the simplest basically re-

places a construct of the form: 

 
if (<condition>) <action> 

 

by 

 
if (Oracle.condRec(<name>,<condition>)) <action> 

 

where <name> is a string naming this particular 

choice. This allows the oracle to intervene when 

the choice is made, but possibly taking into ac-

count the suggested answer (<condition>). 

 

The implemented oracle (the “PIG panel”) sup-

ports a kind of “single stepping” of the generator 

(between successive choices), manual control of 

choices and restarting. It has built in policies which 

include random generation, following the choices 

suggested by the PIGlet, systematic generation of 

all possibilities (depth-first) and SARSA, a kind of 

reinforcement learning (Sutton and Barto 1998). It 

provides simple statistics about the evaluations of 

the texts generated using the current policy and a 

user interface (Figure 3). 



 
For the oracle to be able to control the PIGlet, it 

needs to be provided with a “connector” which 

represents it through a standard API (specifying 

how to generate a text, how to evaluate a text, what 

examples can be used, etc.). This also includes a 

specification of how to derive the “state” informa-

tion about the generator which is logged for ma-

chine learning process. State information can 

include the number of times particular choices are 

made (as in PE), the most recent choices made and 

other generator-specific parameters which are 

communicated to the oracle (as in MW). 
 

Finally the PIGlet and oracle are linked via a “har-

ness” which specifies the basic mode of operation 

(essentially training vs execution). 
 

In the following sections, we describe two tentative 

experiments which produced PIGlets from existing 

NLG systems and investigated the use of the PIG 

panel to support training of the system. It is impor-

tant to note that for these systems the instrument-

ing was done by someone (the author) with limited 

knowledge of the underlying NLG system and with 

a notion of text quality different from that used by 

the original system. Also, in both cases the limited 

availability of example data meant that testing had 

to be performed on the training data (and so any 

positive results may be partly due to overfitting). 
 

6 Experiment 1: Matching human texts 

For this experiment, we took an NLG system that 

produces pollen forecasts and was written by Ross 

Turner (Turner et al 2006). Turner collected 68 

examples of pollen prediction data for Scotland 

(each consisting of 6 small integers and a charac-

terisation of the previous trend) with human-

written forecasts, which we took as both our train-

ing and test data. We evaluated text quality by 

similarity to the human text, as measured by the 

Meteor metric (Lavie and Denkowski 2009). Note 

that the human forecasters had access to more 

background knowledge than the system, and so this 

is not a task that the system would be expected to 

do particularly well on. 

 

The notion of program “state” that the oracle 

logged took the form of the 6 input values, together 

with the values of 7 choices made by the system 

(relating to the inclusion of trend information, 

thresholds for the words “high” and “low”, 

whether to segment the data and whether to include 

hay fever information).  

 

The system was trained by generating about 10000 

random texts (making random decisions for ran-

domly selected examples). For each, the numerical 

outcome (Meteor score) and state information was 

recorded. The half of the resulting data with high-

est outcomes was extracted and used to predict 

rules for the 7 choices, given the 6 input parame-

ters (we used Weka (Hall et al 2009) with the JRip 

algorithm). The resulting rules were transcribed 

into a specific “policy” (Java class) for the oracle. 

 

Applied to the 68 examples, trying random genera-

tion for 3 times on each, the system obtained an 

average Meteor score of 0.265. Following the 

original system’s suggestions produced an average 

score of 0.279. Following the learned policy, the 

system also obtained an average of 0.279. The dif-

ference between the learned behaviour and random 

generation is significant (p =0.002) according to a t 

test. 

7 Experiment 2: Text length control 

A challenging stylistic requirement for NLG is that 

of producing a text satisfying precise length re-

quirements (Reiter 2000). For this experiment, we 

took the EleonPlus NLG system developed by 

Hien Nguyen. This combines the existing Eleon 

user interface for domain authoring (Bilidas et al 

2007) with a new NLG system that incorporates 

the SimpleNLG realiser (Gatt and Reiter 2009). 

Figure 3: PIG Panel interface 



The system was used for a simple domain of texts 

about university buildings. The data used was the 

authored information about 7 university buildings 

and associated objects. We evaluated texts using a 

simple (character) length criterion, where the ideal 

text was 250 characters, with a steeply increasing 

penalty for texts longer than this and a slowly in-

creasing penalty for texts that are shorter. 

 

The notion of “state” that was logged took account 

of the depth of the traversal of the domain data, the 

maximum number of facts per sentence and an ag-

gregation decision. 

 

Following the previous successful demonstration 

of reinforcement learning for NLG decisions (Rie-

ser and Lemon 2006), we decided to use the 

SARSA approach (though without function ap-

proximation) for the training. This involves re-

warding individual states for their (direct or 

indirect) influence on outcome quality as the sys-

tem actually performs. The policy is a mixture of 

random exploration and the choosing of the cur-

rently most promising states, according to the 

value of a numerical parameter ε. 

 

Running the system on the 7 examples with 3 ran-

dom generations for each produced an average text 

quality of -2514. We tried a SARSA training re-

gime with 3000 random examples at ε=0.1, fol-

lowed by 2000 random examples at ε=0.001. 

Following this, we looked at performance on the 7 

examples with ε=0. The average text quality was -

149. This was exactly the same quality as that 

achieved by following the original NLG system’s 

policy. Even though there is a large difference in 

average quality between random generation and 

the learned policy, this is, however, not statistically 

significant (p = 0.12) because of the small number 

of examples and large variation between text quali-

ties. 

8 Conclusions and Further Work 

Each of our initial experiments was carried out by 

a single person in less than a week of work, (which 

included some concurrent development of the PIG 

panel software and some initial exploration of the 

underlying NLG system). This shows that it is rela-

tively quick (even with limited knowledge of the 

original NLG system) for someone to instrument 

an existing NLG system and to begin to investigate 

ways of optimizing its performance (perhaps with 

different goals than it was originally built for). 

This result is probably more important than the 

particular results achieved (though it is promising 

that some are statistically significant).  

 

Further work on the general software could focus 

on the issue of the visualization of choices. Here it 

might be interesting to impose a Systemic network 

description on the interdependencies between 

choices, even when the underlying system is built 

with quite a different methodology. 
 

More important, however, is to develop a better 

understanding of what sorts of behaviour in an 

NLG system can be exposed to machine learning 

to optimize the satisfaction of what kinds of stylis-

tic goals. Also we need to develop methodologies 

for systematically exploring the possibilities, in 

terms of the characterization of NLG system state 

and the types of learning that are attempted. It is to 

be hoped that software of the kind we have devel-

oped here will help to make these tasks easier. 

 

Finally, this paper has described the development 

and use of PIGs mainly from the point of view of 

making the best of NLG systems rather like what 

we already have. The separation of logic and con-

trol supported by the PIG architecture could 

change the way we think about NLG systems in 

the first place. For instance, a PIG could easily be 

made to overgenerate (in the manner, for instance, 

of HALOGEN (Langkilde-Geary 2003)), in the 

confidence that an oracle could later be devised 

that appropriately weeded out non-productive 

paths. 
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