
Proceedings of the 8th Workshop on Asian Language Resources, pages 153–160,
Beijing, China, 21-22 August 2010. c©2010 Asian Federation for Natural Language Processing

1 http://www.grammaticalframework.org
2
 In given example code ’fun’ and ’cat’ belongs to abstract syntax, ’lin’ and ’lincat’ belongs to concrete syntax

An Open Source Urdu Resource Grammar

Shafqat M Virk

Department of Applied IT

University of Gothenburg
virk@chalmers.se

Muhammad Humayoun

Laboratory of Mathmatics

University of Savoie
mhuma@univ-savoie.fr

Aarne Ranta

Department of CS & Eng

 University of Gothenburg
aarne@chalmers.se

Abstract

We develop a grammar for Urdu in

Grammatical Framework (GF). GF is a

programming language for defining

multilingual grammar applications. GF

resource grammar library currently

supports 16 languages. These grammars

follow an Interlingua approach and

consist of morphology and syntax

modules that cover a wide range of

features of a language. In this paper we

explore different syntactic features of the

Urdu language, and show how to fit them

in the multilingual framework of GF. We

also discuss how we cover some of the

distinguishing features of Urdu such as,

ergativity in verb agreement (see Sec

4.2). The main purpose of GF resource

grammar library is to provide an easy

way to write natural language

applications without knowing the details

of syntax, morphology and lexicon. To

demonstrate it, we use Urdu resource

grammar to add support for Urdu in the

work reported in (Angelov and Ranta,

2010) which is an implementation of

Attempto (Attempto 2008) in GF.

1. Introduction

Urdu is an Indo-European language of the Indo-

Aryan family, widely spoken in south Asia. It is

a national language of Pakistan and one of the

official languages of India. It is written in a

modified Perso-Arabic script from right to left.

As regards vocabulary, it has a strong influence

of Arabic and Persian along with some

borrowing from Turkish and English. Urdu is an

SOV language having fairly free word order. It

is closely related to Hindi as both originated

from the dialect of Delhi region called khari boli

(Masica, 1991).

We develop a grammar for Urdu that addresses

problems related to automated text translation

using an Interlingua approach and provide a way

to precisely translate text. This is described in

Section 2. Then we describe different levels of

grammar development including morphology

(Section 3) and syntax (Section 4). In Section 6,

we discuss an application in which a semantics-

driven translation system is built upon these

components.

2. GF (Grammatical Framework)

GF (Grammatical Framework, Ranta 2004) is a

tool for working with grammars, implementing a

programming language for writing grammars

which in term is based on a mathematical theory

about languages and grammars
1
. Many

multilingual dialog and text generation

applications have been built using GF. GF

grammars have two levels the abstract and the

concrete syntax
2
. The abstract syntax is

language independent and is common to all

languages in GF grammar library. It is based on

common syntactic or semantic constructions,

which work for all the involved languages on an

appropriate level of abstraction. The concrete

syntax is language dependent and defines a

mapping from abstract to actual textual

representation in a specific language
2
. GF uses

the term ‘category’ to model different parts of

speech (e.g verbs, nouns adjectives etc.). An

abstract syntax defines a set of categories, as

well as a set of tree building functions. Concrete

syntax contains rules telling how these trees are

linearized. Separating the tree building rules

(abstract syntax) from linearization rules

(concrete syntax) makes it possible to have

multiple concrete syntaxes for one abstract. This

153

makes it possible to parse text in one language

and translate it to multiple languages.

Grammars in GF can be roughly classified into

two kinds: resource grammars and application

grammars. Resource grammars are general

purpose grammars (Ranta, 2009a) that try to

cover the general aspects of a language

linguistically and whose abstract syntax encodes

syntactic structures. Application grammars, on

the other hand, encode semantic structures, but

in order to be accurate they are typically limited

to specific domains. However, they are not

written from scratch for each domain, but they

use resource grammars as libraries (Ranta

2009b).

Previously GF had resource grammars for 16

languages: English, Italian, Spanish, French,

Catalan, Swedish, Norwegian, Danish, Finish,

Russian, Bulgarian, German, Interlingua (an

artificial language), Polish, Romanian and

Dutch. Most of these languages are European

languages. We developed resource grammar for

Urdu making it the 17
th
 in total and the first

south Asian language. Resource grammars for

several other languages (e.g. Arabic, Turkish,

Persian, Maltese and Swahili) are under

construction.

3. Morphology

In GF resource grammars a test lexicon of 350

words is provided for each language. These

words are built through lexical functions. The

rules for defining Urdu morphology are

borrowed from (Humayoun et el., 2006), in

which Urdu morphology was developed in the

Functional Morphology toolkit (Forsberg and

Ranta, 2004). Although it is possible to

automatically generate equivalent GF code from

it, we wrote the rules of morphology from

scratch in GF, to receive better abstractions than

are possible in generated code. Furthermore, we

extend this work by including compound words.

However, the details of morphology are beyond

the scope of this paper, and its focus is on

syntax.

4. Syntax

While morphological analysis deals with the

formation and inflection of individual words,

syntax shows how these words (parts of speech)

are grouped together to build well formed

phrases. In this section we show how this works

and is implemented for Urdu.

4.1 Noun Phrases (NP)

When nouns are to be used in sentences as part

of speech, then there are several linguistic

details which need to be considered. For

example other words can modify a noun, and

nouns have characteristics such as gender,

number etc. When all such required details are

grouped together with the noun, the resulting

structure is known as noun phrase (NP). The

basic structure of Urdu noun phrase is, “(M) H

(M)” according to (Butt M., 1995), where (M) is

a modifier and (H) is the head of a NP. Head is

the word which is compulsory and modifiers can

or cannot be there. In Urdu modifiers are of two

types pre-modifiers i.e modifiers that come

before the head for instance (��� ���� kali: bli:

“black cat”), and post-modifiers which come

after the head for instance (�	
� tm sb “you

all”). In GF resource library we represent NP as

a record

lincat NP : Type = {s : NPCase => Str ; a :

Agr} ;

where

NPCase = NPC Case | NPErg | NPAbl

 |NPIns|NPLoc1NPLoc2

 |NPDat;|NPAcc

Case = Dir | Obl | Voc ;

Agr = Ag Gender Number UPerson ;

Gender = Masc | Fem ;

UPerson = Pers1| Pers2_Casual

 | Pers2_Familiar | Pers2_Respect

 | Pers3_Near | Pers3_Distant;

Number = Sg | Pl ;

Thus NP is a record with two fields, ’s’ and ’a’.

‘s’ is an inflection table and stores different

forms of a noun.

The Urdu NP has a system of syntactic cases

which is partly different from the morphological

cases of the category noun (N). The case

markers that follow nouns in the form of post-

positions cannot be handled at lexical level

154

through morphological suffixes and are thus

handled at syntactic level (Butt et el., 2002).

Here we create different forms of a noun phrase

to handle case markers for Urdu nouns. Here is a

short description of the different cases of NP :

• NPC Case: this is used to retain the

original case of Noun

• NPErg: Ergative case with case marker

‘ne: ے’
• NPAbl: Ablative with case marker ‘se:

 ’	ے

• NPIns: Instrumental case with case

marker ‘se: ے	’

• NPLoc1: Locative case with case

marker ‘mi: ɳ ں��’

• NPLoc2: Locative case with case

marker ‘pr ��’
• NPDat: Dative case with case marker

‘kʋ ��’

• NPAcc: Accusative case with case

marker ‘kʋ ��’

And ‘a’ (Agr in the code sample given in

previous column) is the agreement feature of the

the noun that is used for selecting the

appropriate form of other categories that agree

with nouns.

A noun is converted to an intermediate category

common noun (CN; also known as N-Bar)

which is then converted to NP category. CN

deals with nouns and their modifiers. As an

example consider adjectival modification:

fun AdjCN : AP -> CN -> CN ;

lin AdjCN ap cn = {

 s = \\n,c =>

 ap.s ! n ! cn.g ! c ! Posit ++ cn.s ! n ! c ;

 g = cn.g

 } ;

The linearization of AdjCN gives us common

nouns such as (� ʈȹn ɖa pani: “cold ٹ��ڈا ��

water”) where a CN (��� pani: “water”) is

modified by an AP (.(”ʈȹn ɖa “cold , ٹ��ڈا

Since Urdu adjectives also inflect in number,

gender, case and degree, we need to concatenate

the appropriate form of adjective that agrees

with common noun. This is ensured by selecting

the corresponding forms of adjective and

common noun from their inflection tables using

selection operator (‘!’). Since CN does not

inflect in degree but the adjective does, we fix

the degree to be positive (Posit) in this

construction. Other modifiers include possibly

adverbs, relative clauses, and appositional

attributes.

A CN can be converted to a NP using different

functions: common nouns with determiners;

proper names; pronouns; and bare nouns as mass

terms:

 fun DetCN : Det -> CN -> NP (e.g the boy)

fun UsePN : PN -> NP (e.g John)

fun UsePron : Pron -> NP (e.g he)

fun MassNP : CN -> NP (e.g milk)

These different ways of building NP’s, which

are common in different languages, are defined

in the abstract syntax of the resource grammar,

but the linearization of these functions is

language dependent and is therefore defined in

the concrete syntaxes.

4.2 Verb Phrases (VP)

A verb phrase is a single or a group of words

that act as a predicate. In our construction Urdu

verb phrase has following structure

lincat VP = {

 s : VPHForm => {fin, inf: Str} ;

 obj : {s : Str ; a : Agr} ;

 vType : VType ;

 comp : Agr => Str;

 embComp : Str ;

 ad : Str } ;

where

VPHForm =

 VPTense VPPTense Agr

 | VPReq HLevel | VPStem

and

 VPPTense = VPPres |VPPast |VPFutr;

 HLevel = Tu |Tum |Ap |Neutr

155

In GF representation a VP is a record with

different fields. The most important field is ‘s’

which is an inflectional table and stores different

forms of Verb.

At VP level we define Urdu tenses by using a

simplified tense system, which has only three

tenses, named VPPres, VPPast, VPFutr. In case

of VPTense for every possible combination of

VPPTense and agreement (gender, number,

person) a tuple of two string values {fin, inf :

Str} is created. ‘fin’ stores the coupla (auxiliary

verb) , and ‘inf’ stores corresponding form of

verb. VPStem is a special tense which stores the

root form of verb. This form is used to create the

full set of Urdu tenses at clause level (tenses in

which the root form of verb is used, i.e.

perfective and progressive tenses). Handling

tenses at clause level rather than at verb phrase

level simplifies the VP and results in a more

efficient grammar.

The resource grammar has a common API

which has a much simplified tense system,

which is close to Germanic languages. It is

divided into tense and anteriority. There are only

four tenses named as present, past, future and

conditional, and two possibilities of anteriority

(Simul , Anter). This means it creates 8

combinations. This abstract tense system does

not cover all the tenses in Urdu. We have

covered the rest of tenses at clause level, even

though these tenses are not accessible by the

common API, but still can be used in language

specific modules.

Other forms for verb phrases include request

form (VPReq), imperative form (VPImp). There

are four levels of requests in Urdu. Three of

them correspond to (tʋ ��, tm
� , a:p پ�) honor

levels and the fourth is neutral with respect to

honorific levels. .

The Urdu VP is a complex structure that has

different parts: the main part is a verb and then

there are other auxiliaries attached to verb. For

example an adverb can be attached to a verb as a

modifier. We have a special field ‘ad’ in our VP

representation. It is a simple string that can be

attached with the verb to build a modified verb.

In Urdu the complement of a verb precedes the

actual verb e.g (ہے ����ہ � :ʋo dʋɽna tʃahti وہ دوڑ

he: “she want to run”), here (ہ���� tʃahna “want”)

is complement of verb (� ,(”dʋɽna “run دوڑ

except in the case where, a sentence or a

question is the complement of the verb. In that

case complement of the verb comes at the very

end of clause e.g (ʋo khta he: kh ʋo dʋɽti: he: وہ
 .(”he says that she runs“ �ہ�� ہے �ہ وہ دوڑ�� ہے

We have two different fields named ‘compl’ and

‘embCompl’ in the VP to deal with these

different situations.

 ‘vType’ field is used to store information about

type of a verb. In Urdu a verb can be transitive,

intransitive or double-transitive (Schmidt R. L.,

1999). This information is important when

dealing with ergativity in verb agreement. The

information about the object of the verb is stored

in ‘obj’ field. All this information that a VP

carries is used when a VP is used in the

construction of a clause.

A distinguishing feature of Urdu verb agreement

is ‘ergativity’. Urdu is one of those languages

that shows split ergativity at verb level. Final

verb agreement is with direct subjective except

in the transitive perfective tense. In transitive

perfective tense verb agreement is with direct

object. In this case the subject takes the ergative

construction (subject with addition of ergative

case marker (ne: ے).
However, in the case of the simple past tense,

verb shows ergative behavior, but in case of

other perfective tenses (e.g immediate past,

remote past etc) there are two different

approaches, in first one auxiliary verb (tʃka �$�)

is used to make clauses. If (tʃka �$�) is used,

verb does not show ergative behavior and final

verb agreement is with direct subjective.

Consider the following example

 �ڑ�� ���ب '�&% �$� ہے
lɽka Direct ktab Direct xri:d Root tʃka aux_verb he:

 The boy has bought a book

The second way to make the same clause is

 �ڑ�ے ے ���ب '�&%* ہے
lɽke: ne: Erg ktab Direct_Fem xri:di: Direct_Fem he:

 The boy has bought a book

In the first case the subject (lɽka, ڑ��� “boy”) is

in direct case and auxiliary verb agrees to

subject, but in second case verb is in agreement

with object and ergative case of subject is used.

However, in the current implementation we

follow the first approach.

156

In the concrete syntax we ensure this ergative

behavior through the following code segment in

GF. However the code given here is just a

segment of the code that is relevant.

case vt of {

 VPPast => case vp.vType of {

 (Vtrans| VTransPost) => <NPErg, vp.obj.a>

 _ => <NPC Dir, np.a>

 } ;

 _ => <NPC Dir, np.a>

 } ;

e.g in case of simple past tense if verb is

transitive then ergative case of noun is used and

agreement is with object of verb. In all other

cases direct case of noun is used and agreement

is with subject of verb.

A VP is constructed in different ways; the

simplest is

fun UseV : V -> VP ;

where V is the morphological category and VP

is the syntactic category. There are other ways to

make a VP from other categories, or

combinations of categories. For example

fun AdvVP : VP -> Adv -> VP ;

An adverb can be attached to a VP to make an

adverbial modified VP. For example (i:haɳ ہ�ں&
 ��)

4.3 Adjective Phrases (AP)

Adjectives (A) are converted into the much

richer category adjectival phrases (AP) at syntax

level. The simplest function to convert is

 fun PositA : A -> AP ;

Its linearization is very simple, since in our case

AP is similar to A e.g.

fun PositA a = a ;

There are other ways of making AP for example

fun ComparA : A -> NP -> AP ;

When a comparative AP is created from an

adjective and a NP, constant “se: ے	” is used

between oblique form of noun and adjective. For

example linearization of above function is

lin ComparA a np = {

 s = \\n,g,c,d => np.s ! NPC Obl ++ "se:"

 ++ a.s ! n ! g ! c ! d ;

 } ;

4.4 Clauses

A clause is a syntactic category that has variable

tense, polarity and order. Predication of a NP

and VP gives simplest clause

fun PredVP : NP -> VP -> Cl ;

The subject-verb agreement is insured through

agreement feature of NP which is passed to verb

as inherent feature. A clause is of following type

lincat Clause : Type = {s : VPHTense =>

Polarity => Order => Str} ;

Here VPHTense represents different tenses in

Urdu. Even though current abstract level of

common API does not cover all tenses of Urdu,

we cover them at clause level and can be

accessed through language specific module. So,

VPHTense is of following type

 VPHTense = VPGenPres | VPPastSimple

 | VPFut | VPContPres

 | VPContPast | VPContFut

 | VPPerfPres | VPPerfPast

 | VPPerfFut | VPPerfPresCont

 | VPPerfPastCont

 | VPPerfFutCont | VPSubj

Polarity is used to make positive and negative

sentences; Order is used to make simple and

interrogative sentences. These parameters are of

following forms

Polarity = Pos | Neg

Order = ODir | OQuest

PredVP function will create clauses with

variable tense, polarity and order which are

157

fixed at sentence level by different functions,

one is.

fun UseCl : Temp -> Pol -> Cl -> S

Here Temp is syntactic category which is in the

form of a record having field for Tense and

Anteriority. Tense in the Temp category refers

to abstract level Tense and we just map it to

Urdu tenses by selecting the appropriate clause.

This will create simple declarative sentence,

other forms of sentences (e.g Question

sentences) are handled in Questions categories

of GF which follows next.

4.5 Question Clauses and Question

Sentences

Common API provides different ways to create

question clauses. The simplest way is to create

from simple clause

fun QuestCl : Cl -> QCl ;

In Urdu simple interrogative sentences are

created by just adding “ki:a ���” at the start of a

direct clause that already have been created at

clause level. Hence, the linearization of above

function simply selects appropriate form of

clause and adds “ki:a ���” at the start. However

this clause still has variable tense and polarity

which is fixed at sentence level e.g

fun UseQCl : Temp -> Pol -> QCl -> QS

Other forms of question clauses include clauses

made with interrogative pronouns (IP),

interrogative adverbs (IAdv), and interrogative

determiners (IDet), categories. Some of the

functions for creating question clauses are

fun QuestVP : IP -> VP -> QCl (e.g who

walks)

fun QuestIAdv : IAdv -> Cl -> QCl (e.g why

does he walk)

IP, IAdv, IDet etc are built at morphological

level and can also be created with following

functions.

fun AdvIP : IP -> Adv -> IP

fun IdetQuant : IQuant -> Num -> IDet ;

fun PrepIP : Prep -> IP -> IAdv ;

5. Example

As an example consider the translation of

following sentence from English to Urdu, to see

how our proposed system works at different

levels.

He drinks hot milk.

Figure 1 shows the parse tree for this sentence.

As a resource grammar developer our goal is to

provide correct concrete level linearization of

this tree for Urdu.

Figure 1. Parse tree of an example sentence

The nodes in this tree represent different

categories and its branching shows how a

particular category is built from other categories

and/or leaves (words from lexicon). In GF

notation these are the syntactic rules which are

declared at abstract level. For example category

CN can be built from an AP (adjectival phrase)

and a CN. So in GF representation it has

following type signature.

fun AdjCN : AP -> CN -> CN ;

A correct implementation of this rule in Urdu

concrete syntax ensures correct formation of a

common noun (م دوده�. grm dʋdȺ “hot milk”)

from a CN (دوده dʋdȺ “milk”) modified by an

Adjective (.(”grm “hot , .�م

158

3 http://www.grammaticalframework.org/lib/doc/synopsis.html

A NP is constructed from this CN by one of the

NP construction rules (see section 4.1 for

details). A VPSlash (object missing VP) is build

from a two place verb (���� pi:ta “drinks”). This

VPSlash is then converted to VP through

function

fun ComplSlash : VPSlash -> NP -> VP ;

Resulting VP and NP are grouped together to

make a VP (ہے �� :ʈgrm dʋdȺ pi:ta he .�م دوده ��

“drinks hot milk”). Finally clause (ہے �� .�م دوده ��

 ʋh grm dʋdȺ pi:ta he: “he drinks hot milk”) is وہ

build from NP (وہ ʋh “he”) which is build from

pronoun (وہ ʋh “he”) and VP (ہے �� .�م دوده ��

grm dʋdȺ pi:ta he: “drinks hot milk”). Language

dependent concrete syntax assures that correct

forms of words are selected from lexicon and

word order is according to rules of that specific

language. While, morphology makes sure that

correct forms of words are built during lexicon

development.

6. An application: Attempto

An experiment of implementing Controlled

languages in GF is reported in (Angelov and

Ranta, 2010). In this experiment, a grammar for

Attempto Controlled English (Attempto, 2008)

is implemented and then ported to six languages

(English, Finnish, French, German, Italian, and

Swedish) using the GF resource library. To

demonstrate the usefulness of our grammar and

to check its correctness, we have added Urdu to

this set. Now, we can translate Attempto

documents between all of these seven languages.

The implementation followed the general recipe

for how new languages can be added (Angelov

and Ranta, 2009) and created no surprises.

However the details of this implementation are

beyond the scope of this paper.

7. Related Work

A suite of Urdu resources were reported in

(Humayoun et el., 2006) including a fairly

complete open-source Urdu morphology and a

small fragment of syntax in GF. In this sense, it

is a predecessor of Urdu resource grammar,

implemented in a different but related

formalism.

Like the GF resource library, Pargram project

(Butt et el., 2007) aims at building a set of

parallel grammars including Urdu. The

grammars in Pargram are connected with each

other by transfer functions, rather than a

common representation. Further, the Urdu

grammar is still one of the least implemented

grammars in Pargram at the moment. This

project is based on the theoretical framework of

lexical functional grammar (LFG).

Other than Pargram, most work is based on LFG

and translation is unidirectional i.e. from

English to Urdu only. For instance, English to

Urdu MT System is developed under the Urdu

Localization Project (Hussain, 2004), (Sarfraz

and Naseem, 2007) and (Khalid et el., 2009).

Similarly, (Zafer and Masood, 2009) reports

another English-Urdu MT system developed

with example based approach. On the other

hand, (Sinha and Mahesh, 2009) presents a

strategy for deriving Urdu sentences from

English-Hindi MT system. However, it seems to

be a partial solution to the problem.

8. Future Work

The common resource grammar API does not

cover all the aspects of Urdu language, and non-

generalizable language-specific features are

supposed to be handled in language-specific

modules. In our current implementation of Urdu

resource grammar we have not covered those

features. For example in Urdu it is possible to

build a VP from only VPSlash (VPSlash

category represents object missing VP) e.g (ہے

����� kȹata he:) without adding the object. This

rule is not present in the common API. One

direction for future work is to cover such

language specific features.

Another direction for future work could be to

include the causative forms of verb which are

not included in the current implementation due

to efficiency issues.

9. Conclusion

The resource grammar we develop consists of

44 categories and 190 functions
3
 which cover a

fair enough part of language and is enough for

159

building domain specific application grammars

including multilingual dialogue systems,

controlled language translation, software

localization etc. Since a common API for

multiple languages is provided, this grammar is

useful in applications where we need to parse

and translate the text from one to many other

languages.

However our approach of common abstract

syntax has its limitations and does not cover all

aspects of Urdu language. This is why it is not

possible to use our grammar for arbitrary text

parsing and generation.

10. References

Angelov K. and Ranta A. 2010. Implementing

controlled Languages in GF. Controlled Natural

Language (CNL) 2009, LNCS/LNAI Vol. 5972

(To appear)

Attempto 2008. Project Homepage.

attempto.ifi.uzh.ch/site/

Butt M., 1995. The Structures of Complex Predicate

in Hindi Stanford: CSLI Publications

Butt M., Dyvik H., King T. H., Masuichi H., and

Rohrer C. 2002. The Parallel Grammar Project.

In Proceedings of COLING-2002 Workshop on

Grammar Engineering and Evaluation. pp. 1-7.

Butt, M. and King, T. H. 2007. Urdu in a Parallel

Grammar Development Environment'. In T.

Takenobu and C.-R. Huang (eds.) Language

Resources and Evaluation: Special Issue on Asian

Language Processing: State of the Art Resources

and Processing 41:191-207.

Forsberg M., and Ranta A., 2004. Functional

Morphology. Proceedings of the Ninth ACM

SIGPLAN International Conference of Functional

Programming, Snowbird, Utah.

Humayoun M., Hammarström H., and Ranta A.

Urdu Morphology, Orthography and Lexicon

Extraction. CAASL-2: The Second Workshop on

Computational Approaches to Arabic Script-based

Languages, July 21-22, 2007, LSA 2007

Linguistic Institute, Stanford University. 2007

Hussain, S. 2004. Urdu Localization Project.

COLING:WORKSHOP ON Computational

Approaches to Arabic Script-based Languages,

Geneva. pp. 80-81

Khalid, U., Karamat, N., Iqbal, S. and Hussain, S.

2009. Semi-Automatic Lexical Functional

Grammar Development. Proceedings of the

Conference on Language & Technology 2009.

Masica C., 1991. The Indo-Aryan Languages,

Cambridge, Cambridge University Press, ISBN

9780521299442.

Ranta A., Grammatical Framework: A Type-

Theoretical Grammar Formalism. The Journal of

Functional Programming 14(2) (2004) 145–189.

Ranta A. The GF Resource Grammar Library

A systematic presentation of the library from the

linguistic point of view. to appear in the on-line

journal Linguistics in Language Technology,

2009a.

 Ranta A. Grammars as Software Libraries. From

Semantics to Computer Science, Cambridge

University Press, Cambridge, pp. 281-308, 2009b.

Rizvi, S. M. J. 2007. Development of Algorithms and

Computational Grammar of Urdu. Department of

Computer & Information Sciences/ Pakistan

Institute of Engineering and Applied Sciences

Nilore Islamabad. Pakistan.

Sarfraz H. and Naseem T., 2007. Sentence

Segmentation and Segment Re-Ordering for

English to Urdu Machine Translation. In

Proceedings of the Conference on Language and

Technology, August 07-11, 2007, University of

Peshawar, Pakistan.

Schmidt R. L., 1999. Urdu an Essential

Grammar,Routledge Grammars.

Sinha R., and Mahesh K., 2009. Developing English-

Urdu Machine Translation Via Hind., Third

Workshop on Computational Approaches to

Arabic Script-based Languages (CAASL3) in

conjunction with The twelfth Machine Translation

Summit. Ottawa, Ontario, Canada.

Zafar M. and Masood A., 2009. Interactive English

to Urdu Machine Translation using Example-

Based Approach. International Journal on

Computer Science and Engineering Vol.1(3),

2009, pp 275-282.

160

