
Proceedings of the Fourteenth Conference on Computational Natural Language Learning: Shared Task, pages 48–55,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Resolving Speculation: MaxEnt Cue Classification and
Dependency-Based Scope Rules∗

Erik Velldal♣ and Lilja Øvrelid♠♣ and Stephan Oepen♣
♣ University of Oslo, Department of Informatics (Norway)
♠Universität Potsdam, Institut für Linguistik (Germany)

erikve@ifi.uio.no and ovrelid@uni-potsdam.de and oe@ifi.uio.no

Abstract

This paper describes a hybrid, two-level
approach for resolving hedge cues, the
problem of the CoNLL-2010 shared task.
First, a maximum entropy classifier is ap-
plied to identify cue words, using both
syntactic- and surface-oriented features.
Second, a set of manually crafted rules,
operating on dependency representations
and the output of the classifier, is applied
to resolve the scope of the hedge cues
within the sentence.

1 Introduction

The CoNLL-2010 shared task1 comprises two
sub-tasks. Task 1 is described as learning to detect
sentences containing uncertainty, while the object
of Task 2 is learning to resolve the in-sentence
scope of hedge cues (Farkas et al., 2010). Parallel-
ing this two-fold task definition, the architecture
of our system naturally decomposes into two main
steps. First, a maximum entropy (MaxEnt) classi-
fier is applied to automatically detect cue words.
For Task 1, a given sentence is labeled as uncer-
tain if it contains a word classified as a cue. For
Task 2, we then go on to determine the scope of
the identified cues using a set of manually crafted
rules operating on dependency representations.

For both Task 1 and Task 2, our system partic-
ipates in the stricter category of ‘closed’ or ‘in-
domain’ systems. This means that we do not
use any additional uncertainty-annotated material
beyond the supplied training data, consisting of
14541 sentences from biomedical abstracts and ar-
ticles (see Table 2). In the official ranking of re-

∗We are grateful to our colleagues at the University of
Oslo and the University of Potsdam, for many useful discus-
sions, constructive critique, and encouragment. We specifi-
cally thank Woodley Packard for careful proof-reading.

1The CoNLL-2010 shared task website: http://www.
inf.u-szeged.hu/rgai/conll2010st/.

sults, and considering systems in all categories to-
gether (closed/open/cross-domain), our system is
ranked 4 out of 24 for Task 1 and 3 out of 15 for
Task 2, resulting in highest average rank (and F1)
overall. We detail the implementation of the cue
classifier and the syntactic rules in Sections 3 and
4, respectively. Results for the held-out testing are
provided in Section 5. First, however, the next sec-
tion describes the various resources that we used
for pre-processing the CoNLL data sets, to prepare
the input to our hedge analysis systems.

2 Architecture and Set-Up

2.1 Preprocessing
To ease integration of annotations across system
components, we converted the XML training data
to plain-text files, with stand-off annotation linked
to the raw data by virtue of character start and end
positions (dubbed characterization in the follow-
ing). Thus, hedge cues, scope boundaries, tok-
enization, Part-of-Speech (PoS) assignments, etc.
are all represented in a uniform fashion: as po-
tentially overlapping annotations on sub-strings of
the raw input.

The GENIA tagger (Tsuruoka et al., 2005) takes
an important role in our pre-processing set-up.
However, maybe somewhat surprisingly, we found
that its tokenization rules are not always opti-
mally adapted for the BioScope corpus. GENIA

unconditionally introduces token boundaries for
some punctuation marks that can also occur token-
internally. For example, it wrongly splits tokens
like ‘3,926.50’, ‘methlycobamide:CoM’,
or ‘Ca(2+)’. Conversely, GENIA fails to isolate
some kinds of opening single quotes, because the
quoting conventions assumed in BioScope differ
from those used in the GENIA Corpus; furthermore,
it mis-tokenizes LATEX-style n- and m-dashes.

On average, one in five sentences in the CoNLL
training data exhibited GENIA tokenization prob-

48

ID FORM LEMMA POS FEATS HEAD DEPREL XHEAD XDEP
1 The the DT _ 4 NMOD 4 SPECDET
2 unknown unknown JJ degree:attributive 4 NMOD 4 ADJUNCT
3 amino amino JJ degree:attributive 4 NMOD 4 ADJUNCT
4 acid acid NN pers:3|case:nom|num:sg|ntype:common 5 SBJ 3 SUBJ
5 may may MD mood:ind|subcat:MODAL|tense:pres|clauseType:decl|passive:- 0 ROOT 0 ROOT
6 be be VB _ 5 VC 7 PHI
7 used use VBN subcat:V-SUBJ-OBJ|vtype:main|passive:+ 6 VC 5 XCOMP
8 by by IN _ 7 LGS 9 PHI
9 these these DT deixis:proximal 10 NMOD 10 SPECDET
10 species specie NNS num:pl|pers:3|case:obl|common:count|ntype:common 8 PMOD 7 OBL-AG
11 . . . _ 5 P 0 PUNC

Table 1: Enhanced dependency representation of the example sentence The unknown amino acid may
be used by these species with GENIAPoS-tags (POS), Malt parses (HEAD, DEPREL) and XLE parses
(XHEAD, XDEP).

lems. Our pre-processing approach therefore de-
ploys a home-grown, cascaded finite-state tok-
enizer (borrowed and adapted from the open-
source English Resource Grammar; Flickinger
(2000)), which aims to implement the tokeniza-
tion decisions made in the Penn Treebank (Mar-
cus et al., 1993) – much like GENIA, in principle
– but properly treating corner cases like the ones
above. Synchronized via characterization, this to-
kenization is then enriched with the output of no
less than two PoS taggers, as detailed in the next
section.

2.2 PoS Tagging and Lemmatization
For PoS tagging and lemmatization, we combine
GENIA (with its built-in, occasionally deviant to-
kenizer) and TnT (Brants, 2000), which operates
on pre-tokenized inputs but in its default model
is trained on financial news from the Penn Tree-
bank. Our general goal here is to take advantage
of the higher PoS accuracy provided by GENIA in
the biomedical domain, while using our improved
tokenization and producing inputs to the parsing
stage (see Section 2.3 below) that as much as pos-
sible resemble the conventions used in the original
training data for the parser – the Penn Treebank,
once again.

To this effect, for the vast majority of tokens we
can align the GENIA tokenization with our own,
and in these cases we typically use GENIA PoS

tags and lemmas (i.e. base forms). For better nor-
malization, we downcase base forms for all parts
of speech except proper nouns. However, GENIA

does not make a PoS distinction between proper
and common nouns, as in the Penn Treebank, and
hence we give precedence to TnT outputs for to-
kens tagged as nominal by both taggers. Finally,
for the small number of cases where we cannot es-
tablish a one-to-one alignment from an element in

our own tokenization to a GENIA token, we rely on
TnT annotation only. In the merging of annotations
across components, and also in downstream pro-
cessing we have found it most convenient to op-
erate predominantly in terms of characterization,
i.e. sub-strings of the raw input that need not align
perfectly with token boundaries.

2.3 Dependency Parsing with LFG Features
For syntactic parsing we employ a data-driven de-
pendency parser which incorporates the predic-
tions from a large-scale LFG grammar. A tech-
nique of parser stacking is employed, which en-
ables a data-driven parser to learn from the out-
put of another parser, in addition to gold stan-
dard treebank annotations (Nivre and McDonald,
2008). This technique has been shown to pro-
vide significant improvements in accuracy for both
English and German (Øvrelid et al., 2009), and
a similar approach employing an HPSG grammar
has been shown to increase domain independence
in data-driven dependency parsing (Zhang and
Wang, 2009). For our purposes, we decide to use a
parser which incorporates analyses from two quite
different parsing approaches – data-driven depen-
dency parsing and “deep” parsing with a hand-
crafted grammar – providing us with a range of
different types of linguistic features which may be
used in hedge detection.

We employ the freely available MaltParser
(Nivre et al., 2006), which is a language-
independent system for data-driven dependency
parsing.2 It is based on a deterministic pars-
ing strategy in combination with treebank-induced
classifiers for predicting parse transitions. It sup-
ports a rich feature representation of the parse his-
tory in order to guide parsing and may easily be
extended to take into account new features of the

2See http://maltparser.org.

49

Sentences Hedged Cues Multi-Word Tokens Cue Tokens
Sentences Cues

Abstracts 11871 2101 2659 364 309634 3056
Articles 2670 519 668 84 68579 782
Total 14541 2620 3327 448 378213 3838

Table 2: Some descriptive figures for the shared task training data. Token-level counts are based on the
tokenization described in Section 2.1.

parse history.

Parser stacking The procedure to enable the
data-driven parser to learn from the grammar-
driven parser is quite simple. We parse a treebank
with the XLE platform (Crouch et al., 2008) and the
English grammar developed within the ParGram
project (Butt et al., 2002). We then convert the
LFG output to dependency structures, so that we
have two parallel versions of the treebank – one
gold standard and one with LFG-annotation. We
extend the gold standard treebank with additional
information from the corresponding LFG analysis
and train the data-driven dependency parser on the
enhanced data set. See Øvrelid et al. (2010) for
details of the conversion and training of the parser.

Table 1 shows the enhanced dependency rep-
resentation of the English sentence The unknown
amino acid may be used by these species, taken
from the training data. For each token, the parsed
data contains information on the surface form,
lemma, and PoS tag, as well as on the head and de-
pendency relation in columns 6 and 7. The depen-
dency analysis suggested by XLE is contained in
columns 8 and 9, whereas additional XLE informa-
tion, such as morphosyntactic properties like num-
ber and voice, as well as more semantic properties
detailing, e.g., subcategorization frames, seman-
tic conceptual categories such as human, time and
location, etc., resides in the FEATS column. The
parser outputs, which in turn form the basis for our
scope resolution rules discussed in Section 4, also
take this same form.

The parser employed in this work is trained
on the Wall Street Journal sections 2 – 24 of the
Penn Treebank, converted to dependency format
(Johansson and Nugues, 2007) and extended with
XLE features, as described above. Parsing is per-
formed using the arc-eager mode of MaltParser
(Nivre, 2003) and an SVM with a polynomial ker-
nel. When tested using 10-fold cross-validation on
this data set, the parser achieves a labeled accuracy

score of 89.8 (Øvrelid et al., 2010).

3 Identifying Hedge Cues

For the task of identifying hedge cues, we devel-
oped a binary maximum entropy (MaxEnt) classi-
fier. The identification of cue words is used for (i)
classifying sentences as certain/uncertain (Task 1),
and (ii) providing input to the syntactic rules that
we later apply for resolving the in-sentence scope
of the cues (Task 2). We also report evaluation
scores for the sub-task of cue detection in isola-
tion.

As annotated in the training data, it is possible
for a hedge cue to span multiple tokens, e.g. as in
whether or not. The majority of the multi-word
cues in the training data are very infrequent, how-
ever, most occurring only once, and the classifier
itself is not sensitive to the notion of multi-word
cues. A given word token in the training data is
simply considered to be either a cue or a non-cue,
depending on whether it falls within the span of a
cue annotation. The task of determining whether
a cue word forms part of a larger multi-word cue,
is performed by a separate post-processing step,
further described in Section 3.2.

3.1 Maximum Entropy Classification
In the MaxEnt framework, each training exam-
ple – in our case a paired word and label 〈wi, yi〉
– is represented as a feature vector f(wi, yi) =
fi ∈ <d. Each dimension or feature function fij

can encode arbitrary properties of the data. The
particular feature functions we are using for the
cue identification are described under Section 3.4
below. For model estimation we use the TADM3

software (Malouf, 2002). For feature extraction
and model tuning, we build on the experimen-
tation environment developed by Velldal (2008)
(in turn extending earlier work by Oepen et al.

3Toolkit for Advanced Discriminative Modeling; avail-
able from http://tadm.sourceforge.net/.

50

(2004)). Among other things, its highly optimized
feature handling – where the potentially expen-
sive feature extraction step is performed only once
and then combined with several levels of feature
caching – make it computationally feasible to per-
form large-scale ‘grid searches’ over different con-
figurations of features and model parameters when
using many millions of features.

3.2 Multi-Word Cues
After applying the classifier, a separate post-
processing step aims to determine whether tokens
identified as cue words belong to a larger multi-
word cue. For example, when the classifier has
already identified one or more of the tokens in a
phrase such as raises the possibility to be part of a
hedge cue, a heuristic rule (viz. basically lemma-
level pattern-matching, targeted at only the most
frequently occurring multi-word cues in the train-
ing data) makes sure that the tokens are treated as
part of one and the same cue.

3.3 Model Development, Data Sets and
Evaluation Measures

While the training data made available for the
shared task consisted of both abstracts and full
articles from the BioScope corpus (Vincze et al.,
2008), the test data were pre-announced to consist
of biomedical articles only. In order to make the
testing situation during development as similar as
possible to what could be expected for the held-out
testing, we only tested on sentences taken from the
articles part of the training data. When developing
the classifiers we performed 10-fold training and
testing over the articles, while always including all
sentences from the abstracts in the training set as
well. Table 2 provides some basic descriptive fig-
ures summarizing the training data.

As can be seen in Table 3, we will be report-
ing precision, recall and F-scores for three dif-
ferent levels of evaluation for the cue classifiers:
the sentence-level, token-level and cue-level. The
sentence-level scores correspond to Task 1 of the
shared task, i.e. correctly identifying sentences as
being certain or uncertain. A sentence is labeled
uncertain if it contains at least one token classi-
fied as a hedge cue. The token-level scores indi-
cate how well the classifiers succeed in identify-
ing individual cue words (this score does not take
into account the heuristic post-processing rules for
finding multi-word cues). Finally, the cue-level
scores are based on the exact-match counts for full

 70

 75

 80

 85

 90

 10 20 30 40 50 60 70 80 90 100

Token level F1

Sentence level F1

Figure 1: Learning curves showing, for both
token- and sentence-level F-scores, the effect of
incrementally including a larger percentage of
training data into the 10-fold cycles. (As described
also for the other development results, while we
are training on both the articles and the abstracts,
we are testing only on the articles.)

hedge cues (possibly spanning multiple tokens).
These latter scores are computed using the official
shared task scorer script.

3.4 Feature Types
We trained cue classifiers using a wide vari-
ety of feature types, both syntactic and surface-
oriented. However, to better assess the contri-
bution of the different features, we first trained
two baseline models using only features defined
for non-normalized surface forms as they occur in
the training data. The most basic baseline model
(Baseline 1) included only unigram features. The
behavior of this classifier is similar to what we
would expect from simply compiling a list of cue
words from the training data, based on the major-
ity usage of each word as cue or non-cue. Base-
line 2 additionally included 2 words to the left and
3 to the right of the focus word (after first perform-
ing a search for the optimal spans of n-grams up
to 5). As shown in Table 3, this model achieved
a sentence-level F1 of 87.14 and a token-level F1
of 81.97. The corresponding scores for Baseline 1
are 79.20 and 69.59.

A general goal in our approach to hedge analy-
sis is to evaluate the contribution of syntactic in-
formation, both in cue detection and scope resolu-
tion. After applying the parser described in Sec-
tion 2.3, we extracted a range of classifier features
on the basis of the dependency structures (both as

51

proposed by the stacked MaltParser and converted
from XLE) as well as the deep grammar (XLE). Ad-
ditionally we defined various features on the basis
of base forms and PoS information provided by the
GENIA pre-processing (see Section 2.2).

For a quick overview, the feature types we ex-
perimented with include the following:

GENIA features n-gram features over the base
forms and PoS tags from the GENIA information
described in Section 2.2.

Dependency features A range of features ex-
tracted from dependency structures produced by
MaltParser and XLE (see Section 2.3), designed
to capture the syntactic properties and environ-
ment of a token: deprel – dependency rela-
tion (Malt and XLE), deppath – dependency
path to root, deppattern – ordered set of co-
dependents/siblings, including focus token (Malt),
lextriple/postriple – lexicalized and unlexicalized
dependency triplet for token (Malt), coord – bi-
nary feature expressing coordination (XLE), co-
ordLevel – phrase-structural level of coordination
(XLE).

Lexical parser features Other features con-
structed on the basis of the parser output: subcat
– subcategorization frame for verbs (XLE), adv-
Type – type of adverbial, e.g. sentence, VP (XLE),
adjType – adjectival function, e.g. attributive vs.
predicative (XLE)

When added to Baseline 2 in isolation, most of
these features resulted in a boost in classifier per-
formance. For the dependency-based features, the
contribution was more pronounced for lexicalized
versions of the features. This also points to the
fact that lexical information seems to be the key
for the task of cue identification, where the model
using only n-grams over surface forms proved a
strong baseline. As more feature types were added
to the classifier together, we also saw a clear trend
of diminishing returns, in that many of the fea-
tures seemed to contribute overlapping informa-
tion. After several rounds of grid-search over dif-
ferent feature configurations, the best-performing
classifier (as used for the shared task) used only
the following feature types: n-grams over surface
forms (including up to 2 tokens to the right), n-
grams over base forms (up to 3 tokens left and
right), PoS of the target word, ‘subcat’, ‘coord’,
and ‘coordLevel’. The ‘subcat’ feature contains

information taken from XLE regarding the subcat-
egorization requirements of a verb in a specific
context, e.g., whether a verb is modal, takes an
expletive subject etc., whereas the coordination
features signal coordination (‘coord’) and detail
the phrase-structural level of coordination (‘co-
ordLevel’), e.g., NP, VP, etc. This defines the fea-
ture set used for the model referred to as final in
Table 3.

Recall that for Baseline 2, the F-score is 87.14
for the sentence-level evaluation and 81.97 for the
token-level. For our best and final feature config-
uration, the corresponding F-scores are 89.00 and
83.42, respectively. At both the sentence-level and
the token-level, the differences in classifier per-
formance were found to be statistically significant
at p < 0.005, using a two-tailed sign-test. Af-
ter also applying the heuristic rules for detecting
multi-word cues, the cue-level F-score for our final
model is 84.60, compared to 82.83 for Baseline 2.

3.5 The Effect of Data Size
In order to asses the effect of the size of the train-
ing set, we computed learning curves showing
how classifier performance changes as more train-
ing data is added. Starting with only 10% of the
training data included in the 10-fold cycle, Fig-
ure 1 shows the effect on both token level and
sentence-level F-scores as we incrementally in-
clude larger portions of the available training data.

Unsurprisingly, we see that the performance of
the classifier is steadily improving up to the point
where 100% of the data is included, and by extrap-
olating from the curves shown in Figure 1 it seems
reasonable to assume that this improvement would
continue if more data were available. We there-
fore tried to further increase the size of the training
set by also using the hedge-annotated clinical re-
ports that form part of the BioScope corpus. This
provided us with an additional 855 hedged sen-
tences. However, the classifiers did not seem able
to benefit from the additional training examples,
and across several feature configurations perfor-
mance was found to be consistently lower (though
not significantly so). The reason is probably that
the type of text is quite different – the clinical re-
ports have a high ratio of fragments and also shows
other patterns of cue usage, being somewhat more
jargon-based. This seems to underpin the findings
of previous studies that hedge cue learners appear
quite sensitive to text type (Morante and Daele-

52

Sentence Level Token Level Cue Level
Model Prec Rec F1 Prec Rec F1 Prec Rec F1

Baseline 1 79.25 79.45 79.20 77.71 63.41 69.59 77.37 71.70 74.43
Baseline 2 86.83 87.54 87.14 86.86 77.69 81.97 85.34 80.21 82.69
Final 91.39 86.78 89.00 91.20 76.95 83.42 90.18 79.47 84.49

Table 3: Averaged 10-fold cross-validation results on the articles in the official shared task training data,
always including the abstracts in the training portion. The model listed as final includes features such
as n-grams over surface forms and base forms (both left and right), PoS, subcategorization frames, and
phrase-structural coordination level. The feature types are further described in Section 3.4.

PoS Description Source

CC Coordinations scope over their conjuncts M
IN Prepositions scope over their arguments with its descendants M
JJattr Attributive adjectives scope over their nominal head and its descendants M
JJpred Predicative adjectives scope over referential subjects and clausal arguments, if any M, X
MD Modals inherit subj-scope from their lexical verb and scope over their descendants M, X
RB Adverbs scope over their heads with its descendants M
VBpass Passive verbs scope over referential subjects and the verbal descendants M, X
VBrais Raising verbs scope over referential subjects and the verbal descendants M, X
* For multi-word cues, the head determines scope for all elements
* Back off from final punctuation and parentheses

Table 4: Overview of dependency-based scope rules with information source (MaltParser or XLE), orga-
nized by PoS of the cue.

mans, 2009).

4 Resolving Cue Scope

In our approach to scope resolution we rely heav-
ily on syntactic information, taken from the depen-
dency structures proposed by both MaltParser and
XLE, as well as various additional features from
the XLE parses relating to specific syntactic con-
structions.

4.1 Scope Rules
We construct a small set of heuristic rules which
define the scope for each cue detected in Stage
1. In the construction of these rules, we made use
of the information provided by the guidelines for
scope annotation in the BioScope corpus (Vincze
et al., 2008) as well as manual inspection of the
training data in order to arrive at reasonable scope
hypotheses for various types of cues.

The rules take as input a parsed sentence which
has been tagged with hedge cues and operate over
the dependency structures and additional features
provided by the parser. Default scope is set to

start at the cue word and span to the end of the
sentence (not including final puctuation), and this
scope also provides the baseline for the evaluation
of our rules. Table 4 provides an overview of the
rules employed for scope resolution.

In the case of multi-word cues, such as indicate
that, and either ... or, which share scope, we need
to determine the head of the multi-word unit. We
then set the scope of the whole unit to the scope of
the head token.

As an example, the application of the rules in
Table 4 to the sentence with the parsed output
in Table 1 correctly determine the scope of the
cue may as shown in example (1), using a variety
of syntactic cues regarding part-of-speech, argu-
menthood, voice, etc. First, the scope of the sen-
tence is set to default scope. Then the MD rule is
applied, which checks the properties of the lexical
verb used, located through a chain of verbal de-
pendents from the modal verb. Since it is passive
(passive:+), initial scope is set to include the
cue’s subject (SBJ) argument with all its descen-
dants (The unknown amino acid).

53

Task 1 Task 2 Cue Detection

Prec Rec F1 Prec Rec F1 Prec Rec F1

85.48 84.94 85.21 56.71 54.02 55.33 81.20 76.31 78.68

Table 6: Evaluation results for the official held-out testing.

Scope Prec Rec F1

Default w/gold cues 45.21 45.21 45.21
Rules w/gold cues 72.31 72.31 72.31
Rules w/classified cues 68.56 61.38 64.77

Table 5: Evaluation of the scope resolution rules
on the training articles, using both gold standard
cues and predicted cues. For the row labeled De-
fault, the scope for each cue is always taken to
span rightward to the end of the sentence. In the
rows labeled Rules, the scopes have been resolved
using the dependency-based rules.

(1) (The unknown amino acid <may> be used
by these species).

4.2 Rule Evaluation
Table 5 shows the evaluation of the set of scope
rules on the articles section of the data set, using
gold standard cues.4 This gives us an indication of
the performance of the rules, isolated from errors
in cue detection.

First of all, we may note that the baseline is
a strong one: choosing to extend the scope of a
cue to the end of the sentence provides an F-score
of 45.21. Given gold standard cue information,
the set of scope rules improves on the baseline by
27 percentage points on the articles section of the
data set, giving us an F-score of 72.31. Comparing
to the evaluation using classified cues (the bottom
row of Table 5), we find that the use of automati-
cally assigned cues causes a drop in performance
of 7.5 percentage points, to a result of 64.77.

5 Held-Out Testing

Table 6 presents the final results as obtained on
the held-out test data, which constitute the official

4This evaluation was carried out using the official scorer
script of the CoNLL shared task. When cue information is
kept constant, as in our case, the values for false positives
and false negatives will be identical, hence the precision and
recall values will always be identical as well.

results for our system in the CoNLL-2010 shared
task. The held-out test set comprises biomedical
articles with a total of 5003 sentences (790 of them
hedged).

For Task 1 we obtain an F-score of 85.21. The
corresponding result for the training data, which is
reported as ‘Sentence Level’ in Table 3, is 89.00.
Although we experience a slight drop in perfor-
mance (3.8 percentage points), the system seems
to generalize quite well to unseen data when it
comes to the detection of sentence-level uncer-
tainty.

For Task 2, the result on the held-out data set is
an F-score of 55.33, with quite balanced values for
precision and recall, 56.7 and 54.0, respectively. If
we compare this to the end-to-end evaluation on
the training data, provided in the bottom row of
Table 5, we find a somewhat larger drop in perfor-
mance (9.5 percentage points), from an F-score of
64.77 to the held-out 55.3. There are several pos-
sible reasons for this drop. First of all, there might
be a certain degree of overfitting of our system to
the training data. The held-out data may contain
hedging constructions that are not covered by our
set of scope rules. Moreover, the performance of
the scope rules is also influenced by the cue de-
tection, which is reported in the final columns of
Table 6. The cue-level performance of our system
on the held-out data set is 78.68, whereas the same
evaluation on the training data is 84.49. We find
that it is the precision, in particular, which suffers
in the application to the held-out data set. A pos-
sible strategy for future work is to optimize both
components of the Task 2 system, the cue detec-
tion and the scope rules, on the entire training set,
instead of just on the articles.

6 Conclusions – Outlook

We have described a hybrid, two-level approach
for resolving hedging in biomedical text, as sub-
mitted for the stricter track of ‘closed’ or ‘in-
domain’ systems in the CoNLL-2010 shared task.
For the task of identifying hedge cues, we train
a MaxEnt classifier, which, for the held-out test

54

data, achieves an F-score of 78.68 on the cue-level
and 85.21 on the sentence-level (Task 1). For the
task of resolving the in-sentence scope of the iden-
tified cues (Task 2), we apply a set of manually
crafted rules operating on dependency representa-
tions, resulting in an end-to-end F-score of 55.33
(based on exact match of both cues and scopes). In
the official shared task ranking of results, and con-
sidering systems in all tracks together, our system
is ranked 4 out of 24 for Task 1 and 3 out of 15 for
Task 2, resulting in the highest average rank over-
all. For future work we aim to further improve the
cue detection, in particular with respect to multi-
word cues, and also continue to refine the scope
rules. Instead of defining the scopal rules only at
the level of dependency structure, one could also
have rules operating on constituent structure – per-
haps even combining alternative resolution candi-
dates using a statistical ranker.

References
Thorsten Brants. 2000. TnT. A statistical Part-of-

Speech tagger. In Proceedings of the Sixth Con-
ference on Applied Natural Language Processing,
pages 224–231.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hi-
roshi Masuichi, and Christian Rohrer. 2002. The
Parallel Grammar Project. In Proceedings of COL-
ING Workshop on Grammar Engineering and Eval-
uation, pages 1–7.

Dick Crouch, Mary Dalrymple, Ron Kaplan, Tracy
King, John Maxwell, and Paula Newman. 2008.
XLE documentation. Palo Alto Research Center.

Richárd Farkas, Veronika Vincze, György Móra, János
Csirik, and György Szarvas. 2010. The CoNLL-
2010 Shared Task: Learning to Detect Hedges and
their Scope in Natural Language Text. In Proceed-
ings of the Fourteenth Conference on Computational
Natural Language Learning (CoNLL-2010): Shared
Task, pages 1–12.

Dan Flickinger. 2000. On building a more efficient
grammar by exploiting types. Natural Language
Engineering, 6 (1):15–28.

Richard Johansson and Pierre Nugues. 2007. Ex-
tended constituent-to-dependency conversion for
English. In Joakim Nivre, Heiki-Jaan Kaalep,
and Mare Koit, editors, Proceedings of NODALIDA
2007, pages 105–112.

Robert Malouf. 2002. A comparison of algorithms
for maximum entropy parameter estimation. In Pro-
ceedings of the 6th Conference on Natural Language
Learning, pages 49–55.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English. The Penn Treebank. Computa-
tional Linguistics, 19:313–330.

Roser Morante and Walter Daelemans. 2009. Learn-
ing the scope of hedge cues in biomedical texts. In
Proceedings of the BioNLP 2009 Workshop, pages
28–36.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. In Proceedings of the 46th Meeting of the
Association for Computational Linguistics, pages
950–958.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
MaltParser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of the Fifth In-
ternational Conference on Language Resources and
Evaluation, pages 2216–2219.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
Eighth International Workshop on Parsing Tech-
nologies, pages 149–160.

Stephan Oepen, Daniel Flickinger, Kristina Toutanova,
and Christopher D. Manning. 2004. LinGO Red-
woods. A rich and dynamic treebank for HPSG.
Journal of Research on Language and Computation,
2(4):575–596.

Lilja Øvrelid, Jonas Kuhn, and Kathrin Spreyer. 2009.
Improving data-driven dependency parsing using
large-scale LFG grammars. In Proceedings of the
47th Meeting of the Association for Computational
Linguistics, pages 37–40.

Lilja Øvrelid, Jonas Kuhn, and Kathrin Spreyer. 2010.
Cross-framework parser stacking for data-driven de-
pendency parsing. TAL 2010 special issue on Ma-
chine Learning for NLP, 50(3).

Yoshimasa Tsuruoka, Yuka Tateishi, Jin-Dong Kim,
Tomoko Ohta, John McNaught, Sophia Ananiadou,
and Jun’ichi Tsujii. 2005. Developing a robust Part-
of-Speech tagger for biomedical text. In Advances
in Informatics, pages 382–392. Springer, Berlin,
Germany.

Erik Velldal. 2008. Empirical Realization Ranking.
Ph.D. thesis, University of Oslo, Institute of Infor-
matics, Oslo.

Veronika Vincze, György Szarvas, Richárd Farkas,
György Móra, and János Csirik. 2008. The Bio-
Scope corpus: Annotation for negation, uncertainty
and their scope in biomedical texts. In Proceedings
of the BioNLP 2008 Workshop.

Yi Zhang and Rui Wang. 2009. Cross-domain depen-
dency parsing using a deep linguistic grammar. In
Proceedings of the 47th Meeting of the Association
for Computational Linguistics, Singapore.

55

