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Abstract
Recent work in computer vision has aimed
to associate image regions with keywords
describing the depicted entities, but ac-
tual image ‘understanding’ would also re-
quire identifying their attributes, relations
and activities. Since this information can-
not be conveyed by simple keywords, we
have collected a corpus of “action” photos
each associated with five descriptive cap-
tions. In order to obtain a consistent se-
mantic representation for each image, we
need to first identify which NPs refer to
the same entities. We present three hierar-
chical Bayesian models for cross-caption
coreference resolution. We have also cre-
ated a simple ontology of entity classes
that appear in images and evaluate how
well these can be recovered.

1 Introduction

Many photos capture a moment in time, telling a
brief story of people, animals and objects, their at-
tributes, and their relationship to each other. Al-
though different people may give different inter-
pretations to the same picture, people can read-
ily interpret photos and describe the entities and
events they perceive in complex sentences. This
level of image understanding still remains an elu-
sive goal for computer vision: although current
methods may be able to identify the overall scene
(Quattoni and Torralba, 2009) or some specific
classes of entities (Felzenszwalb et al., 2008), they
are only starting to be able to identify attributes
of entities (Farhadi et al., 2009), and are far from
recovering a complete semantic interpretation of
the depicted situation. Like natural language pro-
cessing, computer vision requires suitable training
data, and there are currently no publicly available
data sets that would enable the development of
such systems.

Photo sharing sites such as Flickr allow users
to annotate images with keywords and other de-
scriptions, and vision researchers have access to
large collections of images annotated with key-
words (e.g. the Corel collection). A lot of recent
work in computer vision has been aimed at pre-
dicting these keywords (Blei et al., 2003; Barnard
et al., 2003; Feng and Lapata, 2008; Deschacht
and Moens, 2007; Jeon et al., 2003). But key-
words alone are not expressive enough to capture
relations between entities. Some research has used
the text that surrounds an image in a news arti-
cle as a proxy (Feng and Lapata, 2008; Deschacht
and Moens, 2007). However, in many cases, the
surrounding text or a user-provided caption does
not simply describe what is depicted in the image
(since this is usually obvious to the human reader
for which this text is intended), but provides ad-
ditional information. We have collected a corpus
of 8108 images associated with several simple de-
scriptive captions. In contrast to the text near an
image on the web, the captions in our corpus pro-
vide direct, if partial and slightly noisy, descrip-
tions of the image content. Our data set differs
from paraphrase corpora (Barzilay and McKeown,
2001; Dolan et al., 2004) in that the different cap-
tions of an image are produced independently by
different writers. There are many ways of describ-
ing the same image, because it is often possible
to focus on different aspects of the depicted situ-
ation, and because certain aspects of the situation
may be unclear to the human viewer.

One of our goals is to use these captions to
obtain a semantic representation of each image
that is consistent with all of its captions. In or-
der to obtain such a representation, it is neces-
sary to identify the entities that appear in the im-
age, and to perform cross-caption coreference res-
olution, i.e. to identify all mentions of the same
entity in the five captions associated with an im-
age. In this paper, we compare different meth-
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A golden retriever (ANIMAL) is playing with a smaller black and brown dog(ANIMAL) in a pink collar (CLOTHING).
A smaller black dog (ANIMAL) is fighting with a larger brown dog (ANIMAL) in a forest (NAT_BACKGROUND).
A smaller black and brown dog (ANIMAL) is jumping on a large orange dog (ANIMAL).
Brown dog (ANIMAL) with mouth (BODY_PART) open near head(BODY_PART) of black and tan dog (ANIMAL).
Two dogs (ANIMAL) playing near the woods (NAT_BACKGROUND).

Figure 1: An image with five captions from our corpus. Coreference chains and ontological classes are
indicated in color.

ods of cross-caption coreference resolution on our
corpus. In order to facilitate further computer vi-
sion research, we have also defined a set of coarse-
grained ontological classes that we use to automat-
ically categorize the entities in our data set.

2 A corpus of action images and captions

Image collection and sentence annotation We
have constructed a corpus consisting of 8108 pho-
tographs from Flickr.com, each paired with five
one-sentence descriptive captions written by Ama-
zon’s Mechanical Turk1 workers. We downloaded
a few thousand images from each of six selected
Flickr groups2. To facilitate future computer vi-
sion research on our data, we filtered out images in
black-and-white or sepia, as well as images with
watermarks, signatures, borders or other obvious
editing. Since our collection focuses on images
depicting actions, we then filtered out images of
scenery, portraits, and mood photography. This
was done independently by two members of our
group and adjudicated by a third.

We paid Turk workers $0.10 to write one de-
scriptive sentence for each of five distinct and ran-
domly chosen images that were displayed one at
a time. We required a small qualification test
that examined the workers’ English grammar and
spelling and we restricted the task to U.S. work-
ers (see Rashtchian et al. (2010) for more details).
Our final corpus contains five sentences for each
of our 8108 images, totaling 478,317 word tokens,
and an average sentence length of 11.8 words.
We first spell-checked3 these sentences, and used
OpenNLP4 to POS-tag them. We identified NPs
using OpenNLP’s chunker, followed by a semi-

1https://www.mturk.com
2The groups:“strangers!”, “Wild-Child (Kids in Action)”,

“Dogs in Action (Read the Rules)”, “Outdoor Activities”,
“Action Photography”, “Flickr-Social (two or more people in
the photo)”.

3We used Unix’s aspell to generate possible correc-
tions and chose between them based on corpus frequencies.

4http://opennlp.sourceforge.net

automatic procedure to correct for a number of
systematic chunking errors that could easily be
corrected. We randomly selected 200 images for
further manual annotation, to be used as test and
development data in our experiments.

Gold standard coreference annotation We
manually annotated NP chunks, ontological
classes, and cross-caption coreference chains for
each of the 200 images in our test and development
data. Each image was annotated independently by
two annotators and adjudicated by a third.5 The
development set contains 1604 mentions. On av-
erage, each caption has 3.2 mentions, and each im-
age has 5.9 coreference chains (distinct entities).

Ontological annotation of entities In order to
understand the role entities mentioned in the sen-
tences play in the image, we have defined a simple
ontology of entity classes (Table 1). We distin-
guish entities that constitute the background of an
image from those that appear in the foreground.
These entities can be animate (people or animals)
or inanimate. For inanimate objects, we distin-
guish static objects from “movable” objects. We
also distinguish man-made from natural objects
and backgrounds, since this matters for computer
vision algorithms. We have labeled the entity
mentions in our test and development data with
classes from this ontology. Again, two of us an-
notated each image’s mentions, and adjudication
was performed by a single person. Our ontology
is similar to, but smaller than the one proposed
by Hollink and Worring (2005) for video retrieval,
which in turn is based on Hoogs et al. (2003) and
Hunter (2001).

3 Predicting image entities from captions

Figure 1 shows an image from our corpus. Dif-
ferent captions use different words to refer to the

5We used MMAX2 (Müller and Strube, 2006) both for
annotation and adjudication.
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Ontological Class Examples
animal dog, horse, cow
background man-made street, pool, carpet
background natural ocean, field, air
body part hair, mouth, arms
clothing shirt, hat, sunglasses
event trick, sunset, game
fixed object man-made furniture, statue, ramp
fixed object natural rock, puddle, bush
image attribute camera, picture, closeup
material man-made paint, frosting
material natural water, snow, dirt
movable man-made ball, toy, bowl
movable natural leaves, snowball
nondepictable something, Batman
orientation front, top, [the] distance
part of edge, side, top, tires
person family, skateboarder
property of shadow, shade, theme
vehicle surfboard, bike, boat
writing graffiti, map

Table 1: Our ontology for entities in images.

same entity, or even seemingly contradictory mod-
ifiers (“orange” vs. “brown” dog). In order to
predict what entities appear in an image from its
captions, we need to identify how many entities
each sentence describes, and what role these enti-
ties play in the image (e.g. person, animal, back-
ground). Because we have five sentences asso-
ciated with each image, we also need to identify
which noun phrases in the different captions of
the same image refer to the same entity. Because
the captions were generated independently, there
are no discourse cues such as anaphora to identify
coreference. This creates problems for standard
coreference resolution systems trained on regular
text. Our data also differs from standard corefer-
ence data sets in that entities are rarely referred to
by proper nouns.

Our first task is to identify which noun phrases
may refer to the same entity. We do this by identi-
fying the set of entity types that each NP may refer
to. We use WordNet (Fellbaum, 1998) to iden-
tify the possible entity types (WordNet synsets) of
each head noun. Since the salient entities in each
image are likely to be mentioned by more than one
caption writer, we then aim to restrict those types
to those that may be shared by some head nouns in
the other captions of the same image. This gives
us an inventory of entity types for each mention,
which we use to identify coreferences, restricted
by the constraint that all coreferent mentions refer
to an entity of the same type.

4 Using WordNet to identify entity types

WordNet (Fellbaum, 1998) provides a rich ontol-
ogy of entity types that facilitates our coreference
task.6 We use WordNet to obtain a lexicon of pos-
sible entity types for each mention (based on their
lexical heads, assumed to be the last word with a
nominal POS tag7). We first generate a set of can-
didate synsets based solely on the lexical heads,
and then generate lexicon entries based on rela-
tions between the candidates.

WordNet synsets provide us with synonyms,
and hypernym/hyponym relations. For each men-
tion, we generate a list of candidate synsets.
We require that the candidates are one of the
first four synsets reported and that their fre-
quency is to be at least one-tenth of the most
frequent synset. We limit candidates to ones
with “physical entity#n#1”, “event#n#1”, or “vi-
sual property#n#1” as a hypernym, in order to en-
sure that the synset describes something that is de-
pictable. To avoid word senses that refer to a per-
son in a metaphorical fashion, (e.g. pig meaning
slovenly person or red meaning communist), we
ignore synsets that refer to people if the word has
a synset that is an animal or color.8

In general, we would like for mentions to be
able to take on more specific word senses. For ex-
ample, we would like to be able to identify that
“woman” and “person” may refer to the same
entity, whereas “man” and “woman” typically
would not. However, we also do not want a type
inventory that is too large or too fine-grained.

Once the candidate synsets are generated, we
consider all pairs of nouns (n1, n2) that occur in
different captions of the same image and exam-
ine all corresponding pairs of candidate synsets
(s1, s2). If s2 is a synonym or hypernym of s1, it
is possible that two captions have different words
describing the same entity, so we add s1 and s29

to the lexicon of n1. Adding s2 to n1’s lexicon al-
lows it to act as an umbrella sense covering other
nouns describing the same entity.10 We add s2 to

6For the prediction of ontological classes, we use our own
ontology because WordNet is too fine-grained for this pur-
pose.

7If there are two NP chunks that form a “[NP ... group] of
[NP... ]” construction, we only use the second NP chunk.

8An exception list handles cases (diver, blonde), where the
human sense is more likely than the animal or color sense.

9We don’t add s2 if it is “object#n#1” or “clothing#n#1”.
10This is needed when captions use different aspects of

the entity to describe it (for example, “skier” and “a skiing
man”).
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the lexicon of n2 (since if n1 is using the sense s1,
then n2 must be using the sense s2) and if n1 oc-
curs at least five times in the corpus, we add s1 to
the lexicon of n2.

5 A heuristic coreference algorithm

Based on WordNet candidate synsets, we define
a heuristic algorithm that finds the optimal entity
assignment for the mentions associated with each
image. This algorithm is based on the principles
driving our generative model described below, and
on the observation that salient entities will be men-
tioned in many captions and that captions tend to
use similar words to describe the same entity.

Simple heuristic algorithm:

1. For each noun, choose the synset that appears
in the most number of captions of an image,
and break ties by choosing the synset that
covers the fewest distinct lemmatized nouns.

2. Group all of the noun phrase chunks that
share a synset into a single coreference chain.

6 Bayesian coreference models

Since we cannot afford to manually annotate our
entire data set with coreference information, we
follow Haghighi and Klein (2007)’s work on un-
supervised coreference resolution, and develop a
series of generative Bayesian models for our task.

6.1 Model 0: Simple Mixture Model

In our first model, based on Haghighi and Klein’s
baseline Dirichlet Process model, each image i
corresponds to the set of observed mentions wi

from across its captions. Image i has a hidden
global topic Ti, drawn from a distribution with a
GEM prior with hyperparameter γ as explained by
Teh et al. (2006). In a Dirichlet process, the GEM
distribution is an infinite analog of the Dirich-
let distribution, allowing for a potentially infinite
number of mixture components. P (Ti = t) is pro-
portional to γ if t is a new component, or to the
number of times t has been drawn before other-
wise. Given a topic choice Ti = t, entity type
assignments Zj for all mentions wj in image i
are in turn drawn from a topic-specific multino-
mial θt over all possible entity types E that was
drawn from a Dirichlet prior with hyperparameter
β. Similarly, given an entity type Zi = z, each
corresponding (observed) head word wj is drawn

from an entity type-specific multinomial φz over
all possible words V, drawn from a finite Dirich-
let prior with hyperparameter α. The set of all im-
ages belonging to the same topic is analogous to
an individual document in Haghighi and Klein’s
baseline model.11 All headwords of the same en-
tity type are assumed to be coreferent, similar to
Haghighi and Klein’s model. As described in sec-
tion 4, we use WordNet to identify the subset of
types that can actually produce the given words.
Therefore, similar to the way Andrzejewski and
Zhu (2009) handled a priori knowledge of topics,
we will define an indicator variable δij that is 1
iff the WordNet information allows word i to be
produced from entity set j and 0 otherwise.

6.1.1 Sampling Model 0
We find argmaxZ,TP (Z,T|X) with Gibbs sam-
pling. Here, Z and T are the collection of type
and topic assignments, with Z−j = Z− {Zj} and
T−i = T − {Ti}. This style of notation will be
extended analogously to other variables. Let ne,x

represent the number of times word x is produced
from entity e across all topics and let pj be the
number of images assigned to topic j. Let mt,e

represent the number of times entity type e is
generated by topic t. Each iteration consists of
two steps: first, each Zi is resampled, fixing T;
and then each Ti is resampled based on Z12.

1. Sampling Zj:

P (Zj =e|wj ∈ wi,Z−j ,T) ∝ P (wj |Zj=e)P (Zj =e|Ti)

P (wj = x|Zj = e) ∝
„

n−j
e,x + αP

x′ n
−j
e,x′ + α

«
δxe

P (Zj = e|Ti = t) =
m−j

t,e + βP
e′ m

−j
t,e′ + β

2. Sampling Ti:

P (Ti =j|w,Z,T−i) ∝ P (Ti =j|T−i)P (Z|Ti =j,T−i)

∝ P (Ti = j|T−i)
Y

k∈wi

P (Zk|Ti = j)

= P (Ti = j|T−i)
Y

k∈wi

m−i
j,Zk

+ βP
e′ m

−i
j,e′ + β

P (Ti = j|T−i) ∝

(
γ, If its a new topic
pj Otherwise

11Since we do not have multiple images of the same well-
known people or places, referred to by their names, we do not
perform any cross-image coreference

12Sampling on the exponentiated posterior to find the mode
as Haghighi and Klein (2007) did was found to not signifi-
cantly affect results on our tasks
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Caption 1: {x21,1:a golden retriever; x21,2 :a smaller black and brown dog; x21,3:a pink collar}
Caption 2: {x21,4:a smaller black dog; x21,5:a larger brown dog; x21,6:a forest}
Caption 3: {x21,7:small black and brown dog; x21,8:a large orange dog}
Caption 4: {x21,9:brown dog; x21,10:mouth; x21,11:head; x21,12:black and tan dog}
Caption 5: {x21,13:two dogs; x21,14:the woods}

DOG
attr:5

DOG
attr:3

CLOTHING
attr:2

FOREST
attr:8

Image 21:

x21,1
x21,5

x21,8
x21,9

MOUTH
attr:0 ...

x21,2 
x21,4 

x21,7 

x21,12 

x21,3 x21,6

x21,14

x21,10 Restaurant 211

Figure 2: Models 1 and 2 as Chinese restaurant franchises: each image topic is a franchise, each image
is a restaurant, each entity is a table, each mention is a customer. Model 2 adds attributes (in italics).

6.2 Model 1: Explicit Entities

Model 0 does not have an explicit representation
of entities beyond their type and thus cannot dis-
tinguish multiple entities of the same type in an
image. Although Model 1 also represents men-
tions only by their head words (and thus cannot
distinguish black dog from brown dog), it creates
explicit entities based on the Chinese restaurant
franchise interpretation of the hierarchical Dirich-
let Process model (Teh et al., 2006). Figure 2 (ig-
noring the modifiers / attributes for now) illustrates
the Chinese restaurant franchise interpretation of
our model. Using this metaphor, there are a se-
ries of restaurants (= images), each consisting of
a potentially infinite number of tables (= entities),
that are frequented by customers (= entity men-
tions) who will be seated at the tables. Restau-
rants belong to franchises (= image topics). Each
table is served one dish (= entity type, e.g. DOG,
CLOTHING) shared by all the customers. The head
word of a mention xi,j is generated in the follow-
ing manner: customer j enters restaurant i (be-
longing to franchise Ti) and sits down at one of
the existing tables with probability proportional to
the number of other customers there, or sits at a
new table with probability proportional to a con-
stant. A dish eia (DOG) from a potentially infinite
menu is served to each new table a, with probabil-
ity proportional to the total number of tables it is
served at in the franchise Ti (or to a constant if it
is a new dish). The (observed) head word of the
mention xj,i (dog, retriever) is then drawn from
the multinomial distribution over words defined by
the entity type (DOG) at the table. The menu (set
of dishes) available to each restaurant and table is
restricted by our lexicon of WordNet synsets for
each mention. More formally, each image topic
t defines a distribution over entities drawn from a
global GEM prior with hyperparameter κ. There-

fore, the probability of an entity a is proportional
to the number of its existing mentions in images of
the same topic, or to κ, if it is previoulsy unmen-
tioned. The type of each entity, ea, is drawn from
a topic-dependent multinomial with global Dirich-
let prior. The head words of mentions are gener-
ated by their entity type as in Model 0. Mentions
assigned to the same entity are considered to be
coreferent. Based on the nature of our corpus, we
again assume that two words cannot be coreferent
within a sentence, restrict the distribution to not
allow inter-sentence coreference and renormalize
the values accordingly.

6.2.1 Sampling Model 1
There are three parts to our resampling procedure:
resampling the entity assignment for each word,
resampling the entity type for each entity, and re-
sampling the topic of each image. The kth word
of image i, sentence j, will now be wi

j,k; eia is the
entity type of entity a in image i; ai

j,k is the en-
tity that word k of sentence j is produced from in
image i, and Zi

j,k represents that entity’s type. a
is the set of all current entity assignments and e
are the type assignments for entities. m is now de-
fined as the number of entities of a certain type be-
ing drawn for an image, n is defined as before and
ci,a is the number of times entity a is expressed in
image i. Topics are resampled as in Model 0.

Entity Assignment Resampling Entity assign-
ments for words are resampled one sentence at a
time in the order the headwords appear in the sen-
tence. For each word in the sentence, entity as-
signments are defined by the distribution of Fig-
ure 3. The headword is assigned to an existing
entity with probability proportional to the number
of entities already assigned to that entity and the
probability that the entity emits that word. The
word is assigned to a new entity with a newly
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Model 1:

P (ei
a =e|a,w, Ti = t, e−i,a) ∝ (m−ei,a

t,e + β)
Q
{wi

j,k
=x|ai

j,k
=a}

n−ei,a

e,x + αP
y(n−ei,a

e,y + α)
δx,e

P (ai
j,k =a|a−(i,j,k′|k′≥k), e,T) ∝

(
c−j,k′

i,a P (wi
j,k|Zi

j,k = ei
a,a
−(i,j,k′|k′≥k))ρi

j,a, if a is not new
κP (ei

a|e−i,a, Ti)P (wi
j,k|Zi

j,k = ei
a,a
−(i,j,k′|k′≥k)), o/w

With:

P (wi
j,k =x|Zi

j,k =e,a−(i,j,k′|k′≥k)) ∝ n
−(i,j,k′|k′≥k)
e,x + αP

y(n
−(i,j,k′|k′≥k)
e,y + α)

δx,e

P (ei
a =e|e−i,a, Ti = t) ∝

m−ei,a

t,e + βP
e′(m

−ei,a

t,e′ + β)
Model 2:

P (ai
j,k =a|a−(i,j,k′|k′≥k), e,T,b) ∝

(
c−j,k′

i,a P (wi
j,k|Zi

j,k = ei
a,a
−(i,j,k′|k′≥k))ρi

j,aP (di
j,k|bia), if a is not new

κP (ei
a|e−i,a, Ti)P (wi

j,k|Zi
j,k = ei

a,a
−(i,j,k′|k′≥k))P (bia)P (di

a|bia), o/w

P (bia =b|Di
a,b
−i,a)∝P (bia =b|b−i,a)

Q
d∈Di

a

(s−i,a
b,d + ζ)P

d′(s
−i,a
b,d′ + ζ)

Figure 3: Sampling equations for Models 1 and 2

drawn entity type with probability proportional κ,
the probability that the entity type is for an im-
age of the given topic (normalized over WordNet’s
possible entities for the word), and the probability
the drawn type produces the word. ρi

j,a = 1 iff
entity a of image i does not appear in sentence j
and ρi

j,a = 0 otherwise. a−(i,j,k′|k′≥k) represents
removing the kth or later words in sentence j of
image i

Entity Type Resampling Fixing the assign-
ments, the type of each entity is redrawn based
on the distribution in Figure 3. It is proportional
to the probability that a certain entity type is in an
image of a given topic and, independently for each
of the words, the probability that the given word
expresses the type. n−ei,a

e,x is the number of times
entity type e is expressed as word x not counting
the words attached to the currently entity being re-
sampled and m−ei,a

t,e is the number of times an en-
tity of type e appears in an image of topic t not
counting the current entity being resampled. The
probability of a given image belonging to a topic is
proportional the number of images already in the
topic (or γ) followed by the probability that each
of the entities in the image were drawn from that
topic.

6.3 Model 2: Explicit Entities and Modifiers
Certain entities cannot be distinguished simply by
head word alone, such in the example in Figure 2.
Model 2 augments Model 1 with the ability to gen-
erate modifiers. In addition to an entity type, each
entity draws an attribute from a global distribution
drawn from a GEM distribution with hyperparam-

eter η. An attribute is a multinomial distribution,
on possible modifier words, drawn from a Dirich-
let prior with parameter ζ. From the attribute, each
modifier word is drawn independently. There-
fore given an attribute b and a set of modifiers d:
P (d|b) ∝

∏
d∈d(sd + ζ) where sd is number of

times modifier d is produced by attribute b. In ad-
dition, the probability of a certain attribute b given
all other assignments is given by:

P (bia = b|b−i,a) ∝

(
η, If its a new attribute
rb, Otherwise

where rb is the number of entities with at-
tribute b. As in Model 1, mentions assigned to
the same entity are considered coreferent. Con-
sider the “smaller black dog” mention in Figure 2.
When the mention is being resampled, the at-
tribute choice for each table will bias the probabil-
ity distribution towards the table whose attribute
is more likely to produce “smaller” and “black”.
Therefore, the model can now better distinguish
the two dogs in the image.

6.3.1 Sampling Model 2
The addition of modifiers only directly effects the
distribution when resampling entity assignments
since attributes are independent of entity types,
image topics, and headwords of noun phrases. The
sampling distribution are again shown in Figure 3.
In a separate sampling step, it is now necessary to
resample the attribute assigned to each entity: The
probability of drawing a certain attribute is illus-
trated in Figure 3 with Di

a as the set of all the mod-
ifiers of all the noun phrases currently assigned to
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entity a of image i, and s−i,a
b,d as the number of

times attribute b produces modifier d without the
current assignment of entity a of image i.

6.4 Implementation
The topic assignments for each image are initial-
ized to correspond to the Flickr groups the images
were taken from. Each mention was initialized as
its own entity with type and attribute sampled from
a uniform distribution.

As our training is unsupervised, each of the
models were ran on the entire dataset. For Model
0, after burn-in, 20 samples of Z were taken
spaced 200 iterations apart, while for Model 1
samples were taken spaced 100 apart, and 25 apart
for Model 2. The implementation of Model 2 ran
too slow to effectively judge when burn in oc-
curred, impacting the results.

The values of parameters α, β, γ, κ, η, ζ, and
the number of initial attributes were hand-tuned
based on the average performance on our anno-
tated development subset of 100 images.13

7 Evaluation of coreference resolution

We evaluate each of the generative models and the
heuristic coreference algorithm on the annotated
test subset of our corpus consisting of 100 images
with both the OpenNLP chunking and the gold
standard chunking. We report our scores based
on the MUC evaluation metric. The results are
reported in Table 2 as the average scores across
all the samples of two independent runs of each
model. We also present results on Model 0 with-
out using WordNet where every word can be an
expression of one of 200 fake entity sets. The
same table also shows the performance of a base-
line model and the upper bound on performance
imposed by WordNet.

A baseline model: In our baseline model, two
noun phrases in captions of the same image are
coreferent if they share the same head noun.

Upper bound on performance: Although
WordNet synsets provide a good indication of
whether two mentions can refer to the same
entity or not, they may also be overly restrictive
in other cases. We measure the upper bound
on performance that our reliance on WordNet
imposes by finding the best-scoring coreference
assignment that is consistent with our lexicon.

13(0.1, 0.1, 100, 0.001875, 100, 0.0002, 20) respectively.

This achieves an F-score of 90.2 on the test data
with gold chunks.

Performance increases in each subsequent
model. The heuristic beats each of the models, but
in some sense it is an extreme version of Model
1. Both it and Model 1 attempt to produce en-
tity sets that cover as many captions as possible,
while minimizing the number of distinct words in-
volved. The heuristic locally forces this case, at
the expense of no longer being a generative model.

8 Ontological Class Prediction

As a further step towards understanding the se-
mantics of images, we develop a model that labels
each entity with one of the ontological classes de-
fined in section 2. The immediate difficulty of this
task is that our ontology includes not only seman-
tic distinctions, but also spatial and visual ones.
While it may be easy to tell which words are an-
imals and which are people, there is only a fine
distinction at the language level whether an object
is movable, fixed, or part of the background.14

8.1 Model and Features

We define our task as a classification problem,
where each entity must be assigned to one of
twenty classes defined by our ontology. We use a
Maximum Entropy classifier, implemented in the
MALLET toolkit (McCallum, 2002), and define
the following text features:

NP Chunk: We include all the words in the NP
chunk, unfiltered.

WordNet Synsets and Hypernyms: The most
likely synset is either the first one that appears in
WordNet or one of the ones predicted by our coref-
erence system. For each of these possibilities, we
include all of that synset’s hypernyms.

Syntactic Role: We parsed our captions with the
C&C parser (Clark and Curran, 2007), and record
whether the word appears as a direct object of a
verb, as the object of a preposition, as the subject
of the sentence, or as a modifier. If it is a modi-
fier, we also add the head word of the phrase being
modified.

14For example, we deem bowls and silverware to be mov-
able objects; furniture, fixed; and carpets, background. More-
over, in all three cases, we must correctly distinguish that
these objects are man-made and not found in nature.
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Model OpenNLP chunks Gold chunks
Rec. Prec. F1 Rec. Prec. F1

Baseline 57.3 89.5 69.9 64.1 96.2 77.0
Upper bound 82.1 100 90.2
WN Heuristic 70.6 84.8 77.0 80.4 90.6 85.2
Model 0 w/o WN 79.7 59.8 68.4 85.1 62.7 72.2
Model 0 66.8 83.1 74.1 75.9 90.3 82.5
Model 1 69.6 83.8 76.0 78.0 90.8 83.9
Model 2 69.2 84.4 76.1 77.9 91.5 84.1

Table 2: Coreference resolution results (MUC scores; Models 0-2 are averaged over all samples)

8.2 Experiments
We use two baselines. The naive baseline catego-
rizes words by selecting the most frequent class
of the word. If no instances of the word have oc-
curred, it uses the overall most frequent class. The
WordNet baseline works by finding the most fre-
quent class amongst the most relevant synsets for
a word. It calculates the class frequency for each
synset by assuming each word has the sense of its
first synset and incrementing the frequency of the
first synset and its hypernyms. When categorizing
a word, it finds the set of closest hypernyms of the
word that have a non-zero frequency, and chooses
the class with the greatest sum of frequency counts
amongst those hypernyms.

We train the MaxEnt classifier using semi-
supervised learning. Initially, we train a classifier
using the 500 sentence gold standard development
set. For each class, we use the top 5%15 of the la-
bels to label the unlabeled data and provide addi-
tional training data. We then retrain the classifier
on the newly labeled examples and the develop-
ment set, and run it on the test set. For each coref-
erence chain in the test set, we relabel all of the
mentions in the chain to use the majority class, if
a clear majority exists. If no such majority exists,
we leave the labels as is. The MaxEnt classifier
experiments were conducted by varying the source
of the synset assigned to each word. For each of
our coreference systems, we report two scores (Ta-
ble 3). The first is the average accuracy when us-
ing the output from two runs of each model with
about 20 samples per run, and the second uses the
output that performs best on the coreference task
when scored on the development data.

Discussion Although we use WordNet to clas-
sify our entity mentions, we designed our ontology
by considering only the images and their captions,
with no particular mapping to WordNet in mind.

15This was tuned using 10-fold cross-validation of the de-
velopment set.

Classifier (synset prediction) Accuracy (gold chunks)
Naive Baseline 72.0
WordNet Baseline 81.0
MaxEnt (1st-synset) 84.4
MaxEnt (WN heuristic) 82.7

Avg. σ Best-Coref
MaxEnt (Model 1) 83.9 0.5 84.5
MaxEnt (Model 2) 84.1 0.4 85.3

Table 3: Prediction of ontological classes

Therefore, these experiments provide of a proof of
concept for the semi-supervised labeling of a cor-
pus using any semantic/visual ontology.

Overall, Model 2 had the best performance for
this task. This demonstrates that the additional
features of Model 2 force synset selections that are
consistent across the entire corpus, and are sen-
sitive to the modifiers appearing with them. The
WordNet heuristic selects synsets in a fairly ar-
bitrary manner - all other things being equal, the
synsets are chosen without reference to what other
synsets are chosen by similar clusters of nouns.

9 Evaluating entity prediction

Together, the coreference resolution algorithm and
ontology classification model provide us with a set
of distinct, ontologically-categorized entities ap-
pearing in each image. We perform a final experi-
ment to evaluate how well our models can recover
the mentioned entities and their ontological types
for each image. We now represent each entity as a
tuple (L, c), where L is its coreference chain, and
c is the ontological class of these mentions. 16

We compute the precision and recall between
the predicted and gold standard tuples for each im-
age. We consider a tuple (L′, c′) correctly pre-
dicted only when a copy of (L′, c′) occurs both
in the set of predicted tuples and the set of gold
standard tuples.17 Then, as usual, for precision we

16Note that for each image, the tuples of all entities corre-
spond to a partition of the set of the head-word mentions in
an image.

17We assign no partial credit because incorrect typing or

169



Model Recall Precision F-score
Baseline 28.4 20.6 23.9

WordNet Heuristic 48.3 43.9 46.0
Model 1 (avg) 51.7 42.8 46.8

Model 1 (best-coref) 50.9 45.4 48.0
Model 2 (avg) 52.2 42.7 47.0

Model 2 (best-coref) 52.3 46.0 49.0

Table 4: Overall entity recovery. We measure
how many entities we identify correctly (requiring
complete recovery of their coreference chains and
correct prediction of their ontological class.

normalize the number of overlapping tuples by the
number of predicted tuples, and for recall, by the
number of gold standard tuples. We report average
precision and recall over all images in our test set.

We report scores for four different pairs of on-
tological class and coreference chain predictions.
As a baseline, we use the ontological classes pre-
dicted by the our naive baseline and the chains pre-
dicted by the “same-words-are-coreferent” coref-
erence resolution baseline.

We also report results using the classes and
chains predicted by Model 1, Model 2, and the
WordNet Heuristic Algorithm. The influence of
the different coreference algorithms comes from
the entity types that are used to determine corefer-
ence chains, and that also correspond to WordNet
candidate synsets. In other words, although the
final coreference chain may be predicted by two
different models, the synsets they use to do so may
differ, affecting the synset and hypernym features
used for ontological prediction. We present results
in Table 4 for these four different set-ups.

The synsets chosen by the different corefer-
ence algorithms clearly have different applicabil-
ity when it comes to ontological class prediction.
Although Model 2 performs comparably to Model
1 and does worse than the WordNet heuristic al-
gorithm for coreference chain prediction, it cer-
tainly does better on this task. Since our end goal
is creating a unified semantic representation, this
final task judges the effectiveness of our models to
capture the most detailed entity information. The
success of Model 2 means that the incorporation
of adjectives informs the proper choice of synsets
that are useful in predicting ontological classes.

10 Conclusion

As a first step towards automatic image under-
standing, we have collected a corpus of images as-

incomplete coreference chaining both completely change the
semantics of an image.

sociated with several simple descriptive captions,
which provide more detailed information about
the image than simple keywords. We plan to make
this data set available for further research in com-
puter vision and natural language processing. In
order to enable the creation of a semantic repre-
sentation of the image content that is consistent
with the captions in our data set, we use Word-
Net and a series of Bayesian models to perform
cross-caption coreference resolution. Similar to
Haghighi and Klein (2009), who find that linguis-
tic heuristics can provide very strong baselines for
standard coreference resultion, relatively simple
heuristics based on WordNet alone perform sur-
prisingly well on our task, although they are out-
performed by our Bayesian models for overall en-
tity prediction. Since our generative models are
based on Dirichlet Process priors, they are de-
signed to favor a small number of unique entities
per image. In the heuristic algorithm, this bias
is built in explicitly, resulting in slightly higher
performance on the coreference resolution task.
However, while the generative models can use
global information to learn what entity type each
word is likely to represent, the heuristic is unable
to capture any non-local information about the en-
tities, and thus provides less useful input for the
prediction of ontological classes.

Future work will aim to improve on these re-
sults by overcoming the upper bound on perfor-
mance imposed by WordNet, and through a more
sophisticated model of modifiers. We will also in-
vestigate how image features can be incorporated
into our model to improve performance on entity
detection. Ultimately, identifying the depicted en-
tities from multiple image captions will require
novel ways to correctly handle the semantics of
plural NPs (i.e. that one caption’s “two dogs” con-
sist of another’s “golden retreiver” and “smaller
black dog”). We foresee similar challenges when
dealing with verbs and events.

The creation of an actual semantic representa-
tion of the image content is a challenging problem
in itself, since the different captions often focus
on different aspects of the depicted situation, or
provide different interpretation of ambiguous sit-
uations. We believe that this poses many inter-
esting challenges for natural language processing,
and will ultimately require ways to integrate the
information conveyed in the caption with visual
features extracted from the image.
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