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Abstract

This paper presents an algorithm for unsu-
pervised co-occurrence based parsing that
improves and extends existing approaches.
The proposed algorithm induces a context-
free grammar of the language in question
in an iterative manner. The resulting struc-
ture of a sentence will be given as a hier-
archical arrangement of constituents. Al-
though this algorithm does not use any a
priori knowledge about the language, it
is able to detect heads, modifiers and a
phrase type’s different compound compo-
sition possibilities. For evaluation pur-
poses, the algorithm is applied to manually
annotated part-of-speech tags (POS tags)
as well as to word classes induced by an
unsupervised part-of-speech tagger.

1 Introduction

With the growing amount of textual data available
in the Internet, unsupervised methods for natural
language processing gain a considerable amount
of interest. Due to the very special usage of lan-
guage, supervised methods trained on high quality
corpora (e. g. containing newspaper texts) do not
achieve comparable accuracy when being applied
to data from fora or blogs. Huge annotated corpora
consisting of sentences extracted from the Internet
barely exist until now.

Consequential a lot of effort has been put into
unsupervised grammar induction during the last
years and results and performance of unsuper-
vised parsers improved steadily. Klein and Man-
ning (2002)’s constituent context model (CCM)
obtains 51.2% f-score on ATIS part-of-speech
strings. The same model achieves 71.1% on Wall
Street Journal corpus sentences with length of
at most 10 POS tags. In (Klein and Manning,
2004) an approach combining constituency and

dependency models yields 77.6% f-score. Bod
(2006)’s all-subtree approach — known as Data-
Oriented Parsing (DOP) — reports 82.9% for
UML-DOP. Seginer (2007)’s common cover links
model (CCL) does not need any prior tagging and
is applied on word strings directly. The f-score
for English is 75.9%, and for German (NEGRA10)
59% is achieved. Ḧanig et al. (2008) present a co-
occurrence based constituent detection algorithm
which is applied to word forms, too (unsupervised
POS tags are induced using unsuPOS, see (Bie-
mann, 2006)). An f-score of 63.4% is reported for
German data.

In this paper, we want to present a new unsu-
pervised co-occurrence based grammar induction
model based on Ḧanig et al. (2008). In the fol-
lowing section, we give a short introduction to the
base algorithmunsuParse. Afterwards, we present
improvements to this algorithm. In the final sec-
tion, we evaluate the proposed model against ex-
isting ones and discuss the results.

2 Co-occurrence based parsing

It has been shown in (Ḧanig et al., 2008) that
statistical methods like calculating significant co-
occurrences and context clustering are applicable
to grammar induction from raw text. The underly-
ing assumption states that each word prefers a cer-
tain position within a phrase. Two particular cases
are of special interest: a word’s occurrence at the
beginning of a sentence and a word’s occurrence at
the end of a sentence. Those positions obviously
are constituent borders and can be easily used to
extract syntactic knowledge. One possibility is to
discover constituents employing constituency tests
(see (Adger, 2003)), whereby these two cases can
be used to express and use one of them in a formal
way: the movement test.

Three neighbourhood co-occurrences express
the aforementioned observations:
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• Value a denotes the significance of wordA
standing at the last position of a sentence
(where$ is an imaginary word to mark a sen-
tences’ end).

a = sig (A, $) (1)

• Contrary, variableb denotes the significance
of a wordB being observed at the beginning
of a sentence (wherêis an imaginary word
to mark the beginning of a sentence).

b = sig (̂ , B) (2)

• Additionally, a third value is necessary to rep-
resent the statistical significance of the neigh-
bourhood co-occurrence containing wordA

andB.
c = sig (A, B) (3)

To compute those significance values for a corpus,
the log-likelihood measure (see (Dunning, 1993))
is applied using corpus sizen, term frequencies
nA andnB (for the wordsA andB) and frequency
nAB of the co-occurrence ofA andB.

To detect constituent borders between two
words, a separation valuesepAB can be defined
as:

sepAB =
a

c
·
b

c
=

a · b

c2
(4)

If word A occurs more significantly at the end of
a sentence as in front ofB, then a

c
> 1. Addi-

tionally, b is larger thanc if B is observed more
significantly at the beginning of a sentence as af-
ter A and b

c
will be > 1. In this casesepAB is

> 1 and obviously, a constituent border would be
situated betweenA andB.

The basic approach to create parse trees from
separation values between two adjacent words is
to consecutively merge the two subtrees contain-
ing the words with the smallest separation value
between them — starting with each word in a sep-
arate subtree. In order to avoid data sparseness
problems, co-occurrences and separation values
are primarily calculated on part-of-speech tags.
However, word co-occurrences will be used to pre-
serve word form specific dependencies.

In this paper, we want to presentunsuParse+
— an extension of this co-occurrence based ap-
proach. The first extension is the distinction be-
tween endocentric and exocentric elements which
introduces the detection of heads along with their

modifiers (see section 2.2). Furthermore, learning
of recursive constructions is facilitated. Secondly,
we will consider discontiguous dependencies and
present a possibility to detect rare constructions
like complex noun phrases (see section 2.3). As
third enhancement, we employ a simple cluster-
ing algorithm to induced phrases in order to detect
constituents holding identical syntactic functions.
Those phrases will be labeled the same way in-
stead of by different phrase numbers (see section
2.4).

First, we will start with the detection of con-
stituent candidates.

2.1 Detection of constituent borders

Instead of usingsepAB to detect constituent bor-
ders we use neighbourhood co-occurrence signif-
icances on account of an experiment in (Hänig et
al., 2008) showing that the pure significance value
c is sufficient.

Furthermore, we do not restrict the detection
of phrases to bigrams and allow the detection of
arbitrary n-grams. The motivation behind this is
basically caused by coordinating conjunctions for
which discussions on thecorrect1 structure are
raised. While Chomsky (1965) argues in favor of
symmetric multiple-branching coordinating con-
structions (see Figure 1), recent discussions in the
context of unification grammars (especially head-
driven phrase structure grammar (see (Pollard and
Sag, 1994)) prefer asymmetric endocentric con-
structions (see (Kayne, 1995) and (Sag, 2002)).
The corresponding structure can be seen in Figure
2. Nevertheless, a symmetric construction con-
taining two heads seems to be more appropriate for
some languages (e. g. German, see (Lang, 2002)).

NP

NNS CC NNS

cats and dogs

Figure 1: Symmetric
coordinating conjunc-
tion

ConJ

NNS Conj’

cats CC NNS

and dogs

Figure 2: Asymmetric
coordinating conjunc-
tion

1correct meaning considered to be correct

2



Thus, the presented algorithm is able to deal
with phrases containing any number of com-
pounds.

As in (Hänig et al., 2008), phrases will be
learned in an iterative manner (see details in sec-
tion 2.5). Within each iteration, the n-gramP
yielding the highest significance is considered to
be the best candidate for being a valid constituent.

P = [p0 . . . pn−1] (5)

The preferred position of part-of-speech tags is
maintained as we definepref (A) for every POS
tagA. This value is initialized as the ratio of two
particular significances as in Equ. 6:

pref (A) =
sig (̂ , A)

sig (A, $)
(6)

Analogous tosepAB (see section 2)pref (A) is
> 1 if POS tagA prefers the first position within
a phrase and vice versa.

Before a phrase candidate is used to create a
new grammar rule, its validity has to be checked.
Using the assumption that every word prefers a
certain position within a constituent leads us to
check the first word of a phrase candidate for pre-
ferring the first position and the last word for fa-
voring the last one.

But there are at least two exceptions: coordi-
nating conjunctions and compound nouns. Those
constructions (e. g.cats/NNS and/CC dogs/NNS,
dog/NN house/NN) usually start and end with the
same phrase respectively POS tag. This would
lead to wrong validation results, because NNS
or NN do prefer the last position within a con-
stituent and should not occur at the beginning. As
both constructions are endocentric, they prefer the
head’s position within the superordinating phrase
and thus, their existence does not stand in contrast
to the assumption made about preferred positions.

Formally, we get the following proposition:

valid (P )⇔ p0 = pn−1 ∨

pref (p0) ≥ ϕ ∧ pref (pn−1) ≤
1

ϕ

(7)

An uncertaintyfactor is introduced byϕ, as some
parts-of-speech tend to not appear at the borders
of a sentence although they prefer a certain posi-
tion within constituents. Some examples (given in
Table 1) of the 5 most frequent English2 and Ger-

2Penn Tree Tagset, see (Marcus et al., 1993)

man3 parts-of-speech will demonstrate this effect.

English German
NN 0.08 NN 0.30
IN 31.45 ART 242.48

NNP 1.39 APPR 143.62
DT 84.19 ADJA 5.06

NNS 0.31 NE 1.11

Table 1: Values ofpref (POS) for the 5 most fre-
quent parts-of-speech of English and German

In both languages proper nouns (NNPresp.NE)
occur slightly more often at the beginning of a sen-
tence than at its end, although proper nouns pre-
fer — like normal nouns — the last position of a
phrase. To account for this effect,pref (A)will be
iteratively adapted to the observations of learned
grammar rules as given in Equ. 8:

pref (p0)←
1

δ
· pref (p0)

pref (pn−1)← δ · pref (pn−1)
(8)

Due to iterative learning of rules, we can use
knowledge obtained during a previous itera-
tion. Every rule contains reinforcing information
about the preferred position of a part-of-speech.
pref (A) is adapted by a factorδ (with 0 < δ < 1)
for the corresponding parts-of-speech and it will
converge to its preferred position.

In later iterations, significances of phrase can-
didates do not differ considerably from each other
and thus, the order of phrase candidates is not very
reliable anymore. Consequently, parts-of-speech
occur at non-preferred positions more often and
trustworthy knowledge (in form ofpref (A))
about the preferred positions of parts-of-speech is
very helpful to avoid those phrase candidates from
being validated.

We want to give one example for English: ad-
jectives (JJ). Before the first iteration,pref (JJ)
is initialized with1.046 which means thatJJ has
no preferred position. The most significant rules
containingJJ are JJ NN, JJ NNSand JJ NNP
— supporting a preference of the first position
within a constituent. An iterative adaption of
pref (JJ) will represent this observation and dis-
approve constituents ending withJJ (like DT JJor
IN JJ) in upcoming iterations.

3Stuttgart-T̈ubingen Tagset, see (Thielen et al., 1999)
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After having detected a new and valid con-
stituent, we can use context similarity and other
statistical methods to learn more about its be-
haviour and inner construction.

2.2 Classification into endocentric and
exocentric constructions

Endocentric constructions contain a head — or
more than one in symmetric coordinate construc-
tions — which is syntactically identical to the en-
docentric compound. Additionally, at least one
optional element subordinating to the head is con-
tained in the construction. An exocentric con-
struction on the other hand does not contain any
head element which is syntactically identical to the
whole construction.

The following example sentences will demon-
strate the distinction of these two types. Sentence
(a) contains a determiner phrase (DP:a new car)
which has a noun phrase embedded (NP:new car).
The NP can be replaced by its head as in sentence
(b) and thus is regarded to be endocentric. The DP
is exocentric — it can neither be replaced by the
determiner (sentence (c)) nor by the NP (sentence
(d)) without losing its syntactical correctness.

(a) I buy a new car.

(b) I buy a car.

(c) * I buy a.

(d) * I buy new car.

Detection of endocentric constructions yields
valuable information about the language in ques-
tion. It is possible to detect heads along with their
modifiers without any a priori knowledge. Fur-
thermore, detection of optional modifiers reduces
the complexity of sentences and thus, facilitates
learning of high precision rules.

Without classification into endocentric and exo-
centric constructions, two rules (P#1← JJ NN

and P#2 ← JJ P#1 would be necessary to
parse the phrasefirst civil settlementas given in
Figure 3. Using knowledge about subordinating
elements achieves the same result (see Figure 4)
with one rule (NN ← JJ NN ). Addition-
ally, data-sparseness problems are circumvented
as no rare occurrences likeJJ . . . JJ NN need
to be contained in the training corpus to eventu-
ally parse those phrases.

Following the definition of endocentricity, a
phrase containing a head and an optional element

P#2

JJ P#1

first JJ NN

civil settlement

Figure 3: Structure
without knowledge
about endocentricity

NN

JJ NN

first JJ NN

civil settlement

Figure 4: Structure
using knowledge
about endocentricity

should be equally distributed — in respect to its
context – as the head. Consequentially, a phrase
is considered to be endocentric, if it contains an
element showing high context similarity (see Equ.
9).

endocentric (P )⇔

∃i : sim (context (P ) , context (pi)) ≥ ϑ
(9)

The global contextcontext (P ) of a phrase or
POS tagP is the sum of all local contexts ofP
within the training corpus. We use the two left
and right neighbours including the aforementioned
markers for the beginning and the end of a sen-
tence if necessary. We apply the Cosine Measure
to calculate the similarity between the two con-
texts and in case of passing a defined thresholdϑ,
the phrase is considered to be endocentric. See Ta-
ble 2 for some examples (ϑ = 0.9).

NNS ← JJ NNS
NN ← JJ NN

NNP ← NNP CC NNP
NN ← NN CC NN

VBZ ← RB VBZ

Table 2: Examples of endocentric constructions

2.3 Discontiguous dependencies

Additionally to endocentric constructions contain-
ing a head and a modifier, some parts-of-speech
like articles and possessive pronouns do not occur
without a noun or noun phrase. While those parts-
of-speech are grouped together as determiners
(DT) in the Penn Tree Tagset, for other tagsets and
languages they might be distributed among multi-
ple classes (as in the German Stuttgart–Tübingen
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Tagset amongART, PPOSAT, PIAT . . .). To de-
tect such strong dependencies, we propose a sim-
ple test measuring the relative score of observing
two wordsA andB together within a maximum
rangen.

depn (A, B) =

∑n
d=0

freq (A, B, d)

min (freq (A) , freq (B))
(10)

Equ. 10 formally describes the relative score
wherefreq (A, B, d) denotes the frequency ofA

and B occurring together with exactlyd other
tokens between them. Ifdepn (A, B) passes a
thresholdϑ (0.9 for our experiments), then the
dependency betweenA and B is allowed to oc-
cur discontiguously. Including these dependen-
cies facilitates the parsing of rare and insignificant
phrases like adjectival phrases.

NP

ART AP NN

Der mit zwei Festplatten
ausgestattete

Computer

The with two disks
equipped

computer

Figure 5: Adjectival Phrase

In the example given in Figure 5, the discon-
tiguous dependency between articles (ART) and
normal nouns (NN) can be applied to two possi-
ble word pairs. On the one hand, there isDer . . .

Festplatten(The. . . disks), the other possibility is
Der . . . Computer(The. . . computer). We choose
the pair achieving the highest neighbourhood co-
occurrence significance. Regarding our example,
it is quite obvious thatComputeris the noun to
choose asDer and Computershow grammatical
agreement while this is not the case forFestplat-
ten. Consequently, the significance ofDer Com-
puter is much higher than the one ofDer Festplat-
ten. Although articles and other parts-of-speech
are not unambiguous regarding gender, number
and case for all languages, this approach can re-
solve some of those cases for certain languages.

2.4 Phrase Clustering

One objection to unsupervised parsing is the fact
that phrases belonging to the same phrase type are

not labeled the same way. And of course, without
any prior knowledge, induced phrases will never
be labeledNP, PP or like any other known phrase
type. This complicates the application of any fur-
ther algorithms relying on that knowledge. Never-
theless, it is possible to cluster syntactic identical
phrases into one class.

As in section 2.2, similarity between two global
contexts is calculated. If the similarity of phraseP

(the one being tested) andQ (see most similar one,
see Equ. 11) exceeds a thresholdϑ, then phraseP
is considered to have the same phrase type asQ

(see Equ. 12). In this case,P will be labeled by
the label ofQ and thus, is treated likeQ.

Q = arg max
q ∈ phrases

sim (context (P ) , context (q))

(11)
Type (P ) = Type (Q)⇔ sim (P, Q) ≥ ϑ (12)

As it can be seen in Table 3 (ϑ = 0.9), cluster-
ing finds syntactic similar phrases and facilitates
iterative learning as rules can be learned for each
phrase type and not for each composition.

P#1 ← DT JJ NN
P#1 ← DT NN
P#1 ← PRP$ NNS
P#2 ← IN P#1
P#2 ← IN NN
P#2 ← IN NNS

Table 3: Results of phrase clustering

2.5 Iterative learning

Learning rules is realized as an iterative process.
A flow chart of the proposed process is given in
Figure 6.

First, an empty parser model is initialized. At
the beginning of an iteration all rules are applied
to transform the corpus. Resulting structures form
the data which is used for the next iteration. The
sentence in Figure 7 will be transformed by al-
ready induced rules.

After application of ruleNN ← JJ NN , the
optional elementJJ is removed (see Fig. 8).

The next rule (P#1 ← DT NN ) reduces the
complexity of the sentence and from now on, fur-
ther rules will be created on those parts-of-speech
and phrases (see Fig. 9).

Learning will be aborted after one of the follow-
ing three conditions becomes true:
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Begin

Initialization

Application of induced rules

Abort
learning? End

Detection of
new phrase candidate

Valid?

Endocentric?
Create a rule

labeled by its head

Discontinuity test

Similar to
existing

phrase type?

Create a rule
labeled by

existing phrase type

Create a rule
labeled by a new unique label

Yes

No

Yes

No

No

Yes

Yes

No

Figure 6: Flow chart
of the proposed learning process

1. The algorithm reaches the maximum number
of rules.

2. The last phrase candidate is not considered to
be significant enough. A threshold in relation
to the highest significance can be set up.

3. All sentences contained in the training corpus
are reduced to one phrase.

Afterwards, the most significant n-gram passing
the validity test will be regarded as a phrase. In the
following steps, the label of the new phrase will be
determined. Either it is labeled by its head (in case
of an endocentric construction) or by a syntactic
identical phrase type that has been learned before.
If neither is the case, it gets a new unique label.
Afterwards, the next iteration is triggered.

S

DT JJ NN VBZ $ CD

The minimum unit is $ 100

Figure 7: Example

S

DT NN VBZ $ CD

The is $ 100

Figure 8: Example after application of rule
NN ← JJ NN

S

P#1 VBZ $ CD

is $ 100

Figure 9: Example after additional application of
ruleP#1 ← DT NN

3 Evaluation

To evaluate unsuParse+ against unsuParse and
other unsupervised parsing algorithms, we apply
the same experimental setup as in (Klein, 2005),
(Bod, 2006) and (Ḧanig et al., 2008). For German
punctuation and empty element tags are removed
from the NEGRA corpus (see (Skut et al., 1998)).
Afterwards, all sentences containing more than 10
elements are dismissed. The resulting corpus is re-
ferred to as NEGRA10 (2175 sentences). To take
more complex sentences into account, we also pre-
pared a corpus containing sentences to a maximum
length of 40 elements (NEGRA40).

We present results for both — POS tags and
word strings. As most unsupervised parsing mod-
els (except (Seginer, 2007)), we apply the hand-
annotated data of the NEGRA corpus. Addition-
ally, we used an unsupervised part-of-speech tag-
ger (see (Biemann, 2006)) to tag the NEGRA cor-
pus to be able to present a complete unsupervised
parsing process relying on word strings only. We
applied the modelde40Mwhich has been created
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on a corpus containing 40 million sentences and
contains 510 word classes.

To compare the performance of different pars-
ing algorithms, we used the Unlabeled Brackets
Measure as in (Klein and Manning, 2002) and
(Klein and Manning, 2004). Additionally to un-
labeled precision UP and unlabeled recall UR, the
unlabeled f-score UF is defined as:

UF =
2 · UP · UR

UP + UR
(13)

The baseline algorithm is based on neighbour-
hood co-occurrences. First, a parse tree is ini-
tialized and all tokens of a sentence are added as
leaves. Afterwards, the two adjacent nodes con-
taining the POS tags with the highest neighbour-
hood co-occurrence significance are merged con-
secutively until a binary tree has been created.

Results for NEGRA10 are given in Table 4.un-
suParse+improves the performance ofunsuParse
in both categories: supervised and unsupervised
annotated POS tags. While recall is improved sig-
nificantly for hand-annotated data, just a slight im-
provement is achieved for word strings. Especially
clustering of phrases leads to the increased recall
as rules do not need to be learned for every possi-
ble compound composition of a given phrase type
as they are already covered by the phrase type
itself. Models based on unsuParse achieve the
highest precision among all models. This is not
very surprising as most of the other models (ex-
cept Common Cover Links) generate binary parses
achieving a higher recall. Nevertheless,unsu-
Parse+yields comparable results and obtains the
highest f-score for German data.

Parsing Model UP UR UF
Baseline (POS tags) 35.5 66.0 46.2
CCM 48.1 85.5 61.6
DMV + CCM 49.6 89.7 63.9
U-DOP 51.2 90.5 65.4
UML-DOP — — 67.0
U-DOP* — — 63.8
unsuParse (POS tags) 76.9 53.9 63.4
unsuParse+ (POS tags)71.1 67.9 69.5
Baseline (words) 23.6 43.9 30.7
Common Cover Links 51.0 69.8 59.0
unsuParse (words) 61.2 59.1 60.2
unsuParse+ (words) 63.1 60.4 61.7

Table 4: UP, UR and UF for NEGRA10

Performance drops for more complex sentences

(see Table 5). As for short sentences, the recall of
our approach is in the same order as for the base-
line. However, precision is increased by a factor
of two in comparison to the baseline, which is also
similar to short sentences.

Parsing Model UP UR UF
Baseline (POS tags) 24.8 49.3 33.0
unsuParse+ (POS tags)55.3 51.4 53.3

Table 5: UP, UR and UF for NEGRA40

Table 6 shows the most frequently over- and
under-proposed phrases for NEGRA10. Noun and
prepositional phrases are often over-proposed due
to a flat representation within the NEGRA corpus.
The most frequently under-proposed phraseNE
NE is learned and classified as endocentric con-
struction (NE← NE NE). Due to the removal of
punctuation, proper nouns which naturally would
be separated by e. g. commas will be represented
by one flat phrase without deeper analysis of the
inner structure. This includes some underproposi-
tions which will not occur while parsing sentences
containing punctuation.

Overproposed Underproposed
ART NN 369 NE NE 42

CARD NN 111 NN NE 35
ADV ADV 103 ART NN NE 27
ADJA NN 99 ADV ART NN 24

APPR ART NN 93 APPR PPER 23

Table 6: Most frequently over- and under-
proposed constituents

4 Conclusions and further work

In this paper, we presented an improved model for
co-occurrence based parsing. This model creates
high accuracy parses employing a constituent de-
tection algorithm yielding competitive results. Al-
though no a priori knowledge about the language
in question is taken into account, it is possible to
detect heads, modifiers and different phrase types.
Especially noun phrases and prepositional phrases
are clustered into their respective classes. For fur-
ther processing like relation extraction, precise re-
sults for the aforementioned phrase types are es-
sential and provided by this algorithm in an unsu-
pervised manner.

Our future work will include the investigation of
unsupervised methods for dependency identifica-
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tion between verbs and their arguments. Further-
more, the inclusion of further constituency tests
like substitution and deletion could provide addi-
tional certainty for constituent candidates.
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