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Abstract

In this paper we explore the computational
modelling of compositionality in distri-
butional models of semantics. In par-
ticular, we model the semantic composi-
tion of pairs of adjacent English Adjec-
tives and Nouns from the British National
Corpus. We build a vector-based seman-
tic space from a lemmatised version of
the BNC, where the most frequent A-N
lemma pairs are treated as single tokens.
We then extrapolate three different mod-
els of compositionality: a simple additive
model, a pointwise-multiplicative model
and a Partial Least Squares Regression
(PLSR) model. We propose two evalu-
ation methods for the implemented mod-
els. Our study leads to the conclusion that
regression-based models of composition-
ality generally out-perform additive and
multiplicative approaches, and also show a
number of advantages that make them very
promising for future research.

1 Introduction

Word-space vector models or distributional mod-
els of semantics (henceforth DSMs), are com-
putational models that build contextual seman-
tic representations for lexical items from corpus
data. DSMs have been successfully used in the
recent years for a number of different computa-
tional tasks involving semantic relations between
words (e.g. synonym identification, computation
of semantic similarity, modelling selectional pref-
erences, etc., for a thorough discussion of the field,
cf. Sahlgren, 2006). The theoretical foundation of
DSMs is to be found in the “distributional hypoth-
esis of meaning”, attributed to Z. Harris, which
maintains that meaning is susceptible to distribu-
tional analysis and, in particular, that differences

in meaning between words or morphemes in a
language correlate with differences in their distri-
bution (Harris 1970, pp. 784–787).

While the vector-based representation of word
meaning has been used for a long time in com-
putational linguistics, the techniques that are cur-
rently used have not seen much development with
regards to one of the main aspects of semantics in
natural language: compositionality.

To be fair, the study of semantic composition-
ality in DSMs has seen a slight revival in the re-
cent times, cf. Widdows (2008), Mitchell & La-
pata (2008), Giesbrecht (2009), Baroni & Lenci
(2009), who propose various DSM approaches
to represent argument structure, subject-verb and
verb-object co-selection. Current approaches to
compositionality in DSMs are based on the appli-
cation of a simple geometric operation on the basis
of individual vectors (vector addition, pointwise-
multiplication of corresponding dimensions, ten-
sor product) which should in principle approxi-
mate the composition of any two given vectors.

On the contrary, since the the very nature of
compositionality depends on the semantic rela-
tion being instantiated in a syntactic structure, we
propose that the composition of vector representa-
tions must be modelled as a relation-specific phe-
nomenon. In particular, we propose that the usual
procedures from machine learning tasks must be
implemented also in the search for semantic com-
positionality in DSM.

In this paper we present work in progress on
the computational modelling of compositionality
in a data-set of English Adjective-Noun pairs ex-
tracted from the BNC. We extrapolate three differ-
ent models of compositionality: a simple additive
model, a pointwise-multiplicative model and, fi-
nally, a multinomial multiple regression model by
Partial Least Squares Regression (PLSR).
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2 Compositionality of meaning in DSMs

Previous work in the field has produced a small
number of operations to represent the composi-
tion of vectorial representations of word meaning.
In particular, given two independent vectors v1
and v2, the semantically compositional result v3
is modelled by:

• vector addition, the compositional meaning
of v3 consists of the sum of the independent
vectors for the constituent words:
v1i + v2i = v3i

• pointwise-multiplication (Mitchell and La-
pata 2008), each corresponding pair of com-
ponents of v1 and v2 are multiplied to obtain
the corresponding component of v3:
v1i × v2i = v3i

• tensor product, v1 ⊗ v2 = v3, where v3 is
a matrix whose ij-th entry is equal to v1iv2j

(cf. Widdows 2008, who also proposes the
related method of convolution product, both
imported from the field of quantum mechan-
ics)

In the DSM literature, the additive model has be-
come a de facto standard approach to approximate
the composed meaning of a group of words (or a
document) as the sum of their vectors (which re-
sults in the centroid of the starting vectors). This
has been successfully applied to document-based
applications such as the computation of document
similarity in information retrieval.

Mitchell & Lapata (2008) indicate that the var-
ious variations of the pointwise-multiplication
model perform better than simple additive mod-
els in term similarity tasks (variations included
combination with simple addition and adding
weights to individual vector components). Wid-
dows (2008) Obtain results indicating that both the
tensor product and the convolution product per-
form better than the simple additive model.

For the sake of simplifying the implementa-
tion of evaluation methods, in this paper we will
compare the first two approaches, vector addition
and vector pointwise-multiplication, with regres-
sion modelling by partial least squares.

3 Partial least squares regression of
compositionality

We assume that the composition of meaning in
DSMs is a function mapping two or more inde-
pendent vectors in a multidimensional space to a

newly composed vector the same space and, fur-
ther, we assume that semantic composition is de-
pendent on the syntactic structure being instanti-
ated in natural language.1

Assuming that each dimension in the starting
vectors v1 and v2 is a candidate predictor, and that
each dimension in the composed vector v3 is a de-
pendent variable, vector-based semantic composi-
tionality can be formulated as a problem of multi-
variate multiple regression. This is, in principle,
a tractable problem that can be solved by stan-
dard machine learning techniques such as multi-
layer perceptrons or support vector machines.

However, given that sequences of words tend to
be of very low frequency (and thus difficult to rep-
resent in a DSM), suitable data sets will inevitably
suffer the curse of dimensionality: we will often
have many more variables (dimensions) than ob-
servations.

Partial Least Squares Regression (PLSR) is a
multivariate regression technique that has been de-
signed specifically to tackle such situations with
high dimensionality and limited data. PLSR is
widely used in in unrelated fields such as spec-
troscopy, medical chemistry, brain-imaging and
marketing (Mevik & Wehrens, 2007).

4 Materials and tools

We use a general-purpose vector space extracted
from the British National Corpus. We used the
Infomap software to collect co-occurrence statis-
tics for lemmas within a rectangular 5L–5R win-
dow. The corpus was pre-processed to represent
frequent Adjective-Noun lemma pairs as a sin-
gle token (e.g. while in the original corpus the
A-N phrase nice house consists in two separate
lemmas (nice and house), in the processed cor-
pus it appears as a single entry nice_house). The
corpus was also processed by stop-word removal.
We extracted a list of A-N candidate pairs with
simple regex-based queries targeting adjacent se-
quences composed of [Det/Art–A–N] (e.g. that lit-
tle house). We filtered the candidate list by fre-
quency (> 400) obtaining 1,380 different A-N
pairs.

The vector space was built with the 40,000 most
frequent tokens in the corpus (a cut-off point that
included all the extracted A-N pairs). The origi-
nal dimensions were the 3,000 most frequent con-

1Mitchell & Lapata (2008) make very similar assumptions
to the ones adopted here.
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tent words in the BNC. The vector space was
reduced to the first 500 “latent” dimensions by
SVD as implemented by the Infomap software.
Thus, the resulting space consists in a matrix with
40, 000× 500 dimensions.

We then extracted the vector representation for
each A-N candidate as well as for each indepen-
dent constituent, e.g. vectors for nice_house (v3),
as well as for nice (v1) and house (v2) were saved.
The resulting vector subspace was imported into
the R statistical computing environment for the
subsequent model building and evaluation. In
particular, we produced our regression analysis
with the pls package (Mevik & Wehrens, 2007),
which implements PLSR and a number of very
useful functions for cross-validation, prediction,
error analysis, etc.

By simply combining the vector representations
of the independent Adjectives and Nouns in our
data-set (v1 and v2) we built an additive predic-
tion model (v1 + v2) and a simplified pointwise
multiplicative prediction model (v1× v2) for each
candidate pair.

We also fitted a PLSR model using v1 and v2
as predictors and the corresponding observed pair
v3 as dependent variable. The data were divided
into a training set (1,000 A-N pairs) and a testing
set (the remaining 380 A-N pairs). The model’s
parameters were estimated by performing 10-fold
cross-validation during the training phase.

In what follows we briefly evaluate the three re-
sulting models of compositionality.

5 Evaluation

In order to evaluate the three models of composi-
tionality that were built, we devised two different
procedures based on the Euclidean measure of ge-
ometric distance.

The first method draws a direct comparison of
the different predicted vectors for each candidate
A-N pair by computing the Euclidean distance be-
tween the observed vector and the modelled pre-
dictions. We also inspect a general distance matrix
for the whole compositionality subspace, i.e. all
the observed vectors and all the predicted vectors.
We extract the 10 nearest neighbours for the 380
Adjective-Noun pairs in the test set and look for
the intended predicted vectors in each case. The
idea here is that the best models should produce
predictions that are as close as possible to the orig-
inally observed A-N vector.

Our second evaluation method uses the 10 near-
est neighbours of each of the observed A-N pairs
in the test set as gold-standard (excluding any
modelled predictions), and compares them with
the 10 nearest neighbours of each of the corre-
sponding predictions as generated by the models.
The aim is to assess if the predictions made by
each model share any top-10 neighbours with their
corresponding gold-standard. We award 1 point
for every shared neighbour.

5.1 The distance of predictions

We calculated the Euclidean distance between
each observed A-N pair and the corresponding
prediction made by each model. On general in-
spection, it is clear that the approximation of A-N
compositional vectors made by PLSR is consid-
erably closer than those produced by the additive
and multiplicative models, cf. Table 1.

Min. 1st Q. Median Mean 3rd Q. Max.
ADD 0.877 1.402 1.483 1.485 1.570 1.814
MUL 0.973 0.998 1.002 1.002 1.005 1.019
PLSR 0.624 0.805 0.856 0.866 0.919 1.135

Table 1: Summary of distance values between the 380
observed A-N pairs and the predictions from each model
(ADD=additive, MUL=multiplicative, PLSR=Partial Least
Squares Regression).

We also computed in detail which of the three pre-
dicted composed vectors was closest to the corre-
sponding observation. To this effect we extracted
the 10 nearest neighbours for each A-N pair in the
test set using the whole compositionality subspace
(all the predicted and the original vectors). In 94
cases out of 380, the PLSR intended prediction
was the nearest neighbour. Cumulatively, PLSR’s
predictions were in the top-10 nearest neighbour
list in 219 out of 380 cases (57.6%). The other
models’ performance in this test was negligible,
cf. Table 2. Overall, 223 items in the test set had
at least one predicted vector in the top-10 list; of
these, 219 (98%) were generated by PLSR and the
remaining 4 (1%) by the multiplicative model.

1 2 3 4 5 6 7 8 9 10 Tot.
ADD 0 0 0 0 0 0 0 0 0 0 0
MUL 0 1 0 2 1 0 0 0 0 0 4
PLSR 94 51 24 18 10 7 7 5 2 1 219

Table 2: Nearest predicted neighbours and their positions in
the top-10 list.
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5.2 Comparing prediction neighbours to the
gold standard

Since the main use of DSMs is to extract similar
vectors from a multidimensional space (represent-
ing related documents, distributional synonyms,
etc.), we would like to test if the modelling of se-
mantic compositionality is able to produce predic-
tions that are as similar as possible to the originally
observed data. A very desirable result would be
if any predicted compositional A-N vector could
be reliably used instead of the extracted bigram.
This could only be achieved if a model’s predic-
tions show a similar distributional behaviour with
respect to the observed vector.

To test this idea using our data, we took the
10 nearest neighbours of each of the observed A-
N pairs in the test set as gold standard. These
gold neighbours were extracted from the obser-
vation testing subspace, thus excluding any mod-
elled predictions. This is a very restrictive set-
ting: it means that the gold standard for each of
the 380 test items is composed of the 10 nearest
neighbours from the same 380 items (which may
turn out to be not very close at all). We then ex-
tracted the 10 nearest neighbours for each of the
three modelled predictions, but this time the sub-
space included all predictions, as well as all the
original observations (380× 4 = 1520 items). Fi-
nally, we tested if the predictions made by each
model shared any top-10 neighbours with their
corresponding gold-standard. We awarded 1 point
for every shared neighbour.

The results obtained with these evaluation set-
tings were very poor. Only the additive model
scored points (48), although the performance was
rather disappointing (maximum potential score for
the test was 3,800 points). Both the pointwise mul-
tiplicative model and the PLSR model failed to re-
trieve any of the gold standard neighbours. This
poor results can be attributed to the very restric-
tive nature of our gold standard and, also, to the
asymmetrical composition of the compared data
(gold standard: 3,800 neighbours from a pool of
just 380 different items; prediction space: 11,400
neighbours from a pool of 1,520 items).

However, given the that DSMs are known
for their ability to extract similar items from
the same space, we decided to relax our test
settings by awarding points not only to shared
neighbours, but also to the same model’s predic-
tions of those neighbours. Thus, given a tar-

get neighbour such as good_deal, in our sec-
ond setting we awarded points not only to the
gold standard good_deal, but also to the pre-
dictions good_deal_ADD, good_deal_MUL and
good_deal_PLSR when evaluating each corre-
sponding model. With these settings the compared
spaces become less asymmetrical (gold standard:
7,600 neighbours from a pool of just 380 different
items plus predictions; prediction space: 11,400
neighbours from a pool of 1,520 items). The ob-
tained results show a great improvement (max. po-
tential score 7,600 points):

Shared Neigh. Predicted Neigh. Total
ADD 48 577 625
MUL 0 37 37
PLSR 0 263 263
Not shared: 6,675

Table 3: Shared neighbours with respect to the gold standard
and shared predicted neighbours.

Once again, the additive model showed the best
performance, followed by PLSR. The multiplica-
tive model’s performance was negligible.

While carrying out these experiments, an unex-
pected fact became evident. Each of the models in
turn produces predictions that are relatively close
to each other, regardless of the independent words
that were used to calculate the compositional vec-
tors. This has the consequence that the nearest
neighbour lists for each model’s predictions are,
by and large, populated by items generated in the
same model, as shown in Table 4.

ADD MUL PLSR OBS
ADD 2,144 (56%) – – –
MUL 59 (1%) 3,800 (100%) 998 (26%) 1,555 (40%)
PLSR 1,472 (38%) – 2,802 (73%) 2,190 (57%)
OBS 125 (3%) – – 55 (1%)

Table 4: Origins of neighbours in each models’ top-10 list
of neighbours extracted from the full space composed of
observations and predictions (380 × 4 = 1, 440 items)
(ADD=additive, MUL=multiplicative, PLSR=Partial Least
Squares Regression, OBS=observed vectors) .

Neighbours of predictions from the multiplicative
model are all multiplicative. The additive model
has the most varied set of neighbours, but the
majority of them are additive-neighbours. PLSR
shows a mixed behaviour. However, PLSR pro-
duced neighbours that find their way into the
neighbour sets of both the additive model and the
observations.

These remarks point in the same direction: ev-
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ery model is a simplified and specialised version
of the original space, somewhat more orderly than
the observed data, and may give different results
depending on the task at stake. PLSR (and to a
lesser extent also the multiplicative model) is par-
ticularly efficient as generator of neighbours for
real vectors, a characteristic that could be applied
to guess distributional synonyms of unseen A-N
pairs. On the other hand, the additive model (and
to a lesser extent PLSR) is especially successful
in attracting gold standard neighbours. Overall,
even at this experimental stage, PLSR is clearly
the model that produces the most consistent re-
sults.

6 Concluding remarks

This paper proposed a novel method to model
the compositionality of meaning in distributional
models of semantics. The method, Partial Least
Squares Regression, is well known in other data-
intensive fields of research, but to our knowledge
had never been put to work in computational dis-
tributional semantics. Its main advantage is the
fact that it is designed to approximate functions
in problems of multivariate multiple regression
where the number of observations is relatively
small if compared to the number of variables (di-
mensions).

We built a DSM targeting a type of semantic
composition that has not been treated extensively
in the literature before, adjacent A-N pairs.

The model built by PLSR performed better than
both a simple additive model and a multiplicative
model in the first proposed evaluation method.

Our second evaluation test (using comparison
to a gold standard) gave mixed results: the best
performance was obtained by the simple additive
model, with PLSR coming in second place.

This is work in progress, but the results look
very promising. Future developments will cer-
tainly focus on the creation of better evaluation
methods, as well as on extending the experi-
ments to other techniques (e.g. convolution prod-
uct as discussed by Widdows, 2008 and Gies-
brecht, 2009). Another important issue that we
still have not touched is the role played by lex-
ical association (collocations) in the prediction
models. We would like to make sure that we
are not modelling the compositionality of non-
compositional examples.

A last word on the view of semantic composi-

tionality suggested by our approach. Modelling
compositionality as a machine learning task im-
plies that a great number of different “types” of
composition (functions combining vectors) may
be learned from natural language samples. In prin-
ciple, any semantic relation instantiated by any
syntactic structure could be learned if sufficient
data is provided. This approach must be con-
fronted with other linguistic phenomena, also of
greater complexity than just a set of bigrams. Fi-
nally, we might wonder if there is an upper limit to
the number of compositionality functions that we
need to learn in natural language, or if there are
types of functions that are more difficult, or even
impossible, to learn.
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