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Abstract

Dimensionality reduction has been shown
to improve processing and information ex-
traction from high dimensional data. Word
space algorithms typically employ lin-
ear reduction techniques that assume the
space is Euclidean. We investigate the ef-
fects of extracting nonlinear structure in
the word space using Locality Preserv-
ing Projections, a reduction algorithm that
performs manifold learning. We apply
this reduction to two common word space
models and show improved performance
over the original models on benchmarks.

1 Introduction

Vector space models of semantics frequently em-
ploy some form of dimensionality reduction for
improvement in representations or computational
overhead. Many of the dimensionality reduc-
tion algorithms assume that the unreduced word
space is linear. However, word similarities have
been shown to exhibit many non-metric proper-
ties: asymmetry, e.g North Korea is more sim-
ilar to Red China than Red China is to North
Korea, and non-transitivity, e.g. Cuba is similar
the former USSR, Jamaica is similar to Cuba,
but Jamaica is not similar to the USSR (Tversky,
1977). We hypothesize that a non-linear word
space model might more accurately preserve these
non-metric relationships.

To test our hypothesis, we capture the non-
linear structure with dimensionality reduction by
using Locality Preserving Projection (LPP) (He
and Niyogi, 2003), an efficient, linear approxi-
mation of Eigenmaps (Belkin and Niyogi, 2002).
With this reduction, the word space vectors are as-
sumed to exist on a nonlinear manifold that LPP
learns in order to project the vectors into a Eu-
clidean space. We measure the effects of us-
ing LPP on two basic word space models: the

Vector Space Model and a Word Co-occurrence
model. We begin with a brief overview of these
word spaces and common dimensionality reduc-
tion techniques. We then formally introduce LPP.
Following, we use two experiments to demonstrate
LPP’s capacity to accurately dimensionally reduce
word spaces.

2 Word Spaces and Reductions

We consider two common word space models
that have been used with dimensionality reduc-
tion. The first is the Vector Space Model (VSM)
(Salton et al., 1975). Words are represented as
vectors where each dimension corresponds to a
document in the corpus and the dimension’s value
is the number of times the word occurred in the
document. We label the second model the Word
Co-occurrence (WC) model: each dimension cor-
respond to a unique word, with the dimension’s
value indicating the number of times that dimen-
sion’s word co-occurred.

Dimensionality reduction has been applied to
both models for three kinds of benefits: to im-
prove computational efficiency, to capture higher
order relationships between words, and to reduce
noise by smoothing or eliminating noisy features.
We consider three of the most popular reduction
techniques and the general word space models to
which they have been applied: linear projections,
feature elimination and random approximations.

The most frequently applied linear projection
technique is the Singular Value Decomposition
(SVD). The SVD factors a matrixA, which rep-
resents a word space, into three matricesUΣV ⊤

such thatΣ is a diagonal matrix containing the
singular values ofA, ordered descending based on
their effect on the variance in the values ofA. The
original matrix can be approximated by using only
the topk singular values, setting all others to 0.
The approximation matrix,̂A = UkΣkV

⊤

k , is the
least squares best-fit rank-k approximation ofA.
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The SVD has been used with great success on
both models. Latent Semantic Analysis (LSA)
(Landauer et al., 1998) extends the (VSM) by de-
composing the space using the SVD and mak-
ing the word space the left singular vectors,Uk.
WC models have also utilized the SVD to improve
performance (Scḧutze, 1992; Bullinaria and Levy,
2007; Baroni and Lenci, 2008).

Feature elimination reduces the dimensional-
ity by removing those with low information con-
tent. This approach has been successfully applied
to WC models such as HAL (Lund and Burgess,
1996) by dropping those with low entropy. This
technique effectively removes the feature dimen-
sions of high frequency words, which provide lit-
tle discriminatory content.

Randomized projections have also been suc-
cessfully applied to VSM models, e.g. (Kanerva
et al., 2000) and WC models, e.g. (Sahlgren et al.,
2008). This reduction statistically approximates
the original space in a much lower dimensional
space. The projection does not take into account
the structure of data, which provides only a com-
putational benefit from fewer dimensions, unlike
the previous two reductions.

3 Locality Preserving Projection

For a set of vectors,x1, x2, . . . , xn ∈ R
m, LPP

preserves the distance in thek-dimensional space,
wherek ≪ m, by solving the following minimiza-
tion problem,

min
w

∑

ij

(w⊤xi −w
⊤
xj)

2Sij (1)

wherew is a transformation vector that projectsx

into the lower dimensional space, andS is a ma-
trix that represents the local structure of the origi-
nal space. Minimizing this equation is equivalent
to finding the transformation vector that best pre-
serves the local distances in the original space ac-
cording toS. LPP assumes that the data pointsxi

exist on a manifold. This is in contrast to the SVD,
which assumes that the space is Euclidean and per-
forms a global, rather than local, minimization. In
treating the space as a manifold, LPP is able to dis-
cover some of the nonlinear structure of the data
from its local structure.

To solve the minimization problem in Equation
1, LPP uses a linear approximation of the Lapla-
cian Eigenmaps procedure (Belkin and Niyogi,
2002) as follows:

1. LetX be a matrix wherexi is theith row vec-
tor. Construct an adjacency matrix,S, which
represents the local structure of the original
vector space, by making an edge between
pointsxi andxj if xj is locally proximate to
xi. Two variations are available for determin-
ing proximity: either thek-nearest neighbors,
or all the data points with similarity> ǫ.

2. Weight the edges inS proportional to the
closeness of the data points. Four main op-
tions are available: a Gaussian kernel, a poly-
nomial kernel, cosine similarity, or binary.

3. Construct the diagonal matrixD where entry
Dii =

∑
j Sij . Let L = D − S. Then solve

the generalized eigenvector problem:

XLX⊤
w = λXDX⊤

w. (2)

He and Niyogi (2003) show that solving this
problem is equivalent to solving Equation 1.

4. LetWk = [w1, . . . ,wk] denote the matrix of
transformation vectors, sorted in descending
order according to their eigenvaluesλ. The
original space is projected intok dimensions
by W⊤

k X → Xk.

For many applications of LPP, such as doc-
ument clustering (He et al., 2004), the original
data matrixX is transformed by first perform-
ing Principle Component Analysis and discarding
the smallest principle components, which requires
computing the full SVD. However, for large data
sets such as those frequently used in word space
algorithms, performing the full SVD is computa-
tionally infeasible.

To overcome this limitation, Cai et al. (2007a)
show how Spectral Regression may be used as
an alternative for solving the same minimization
equation through an iterative process. The princi-
ple idea is that Equation 2 may be recast as

Sy = λDy (3)

wherey = X⊤
w, which ensuresy will be an

eigenvector with the same eigenvalue for the prob-
lem in Equation 2. Finding the transformation
matrix Wk, used in step 4, is done in two steps.
First, Equation 3 is solved to produce eigenvectors
[y0, . . . ,yk], sorted in decreasing order according
to their eigenvaluesλ. Second, the set of trans-
formation vectors composingWk, [w1, . . . ,wk],
is found by a least-squares regression:

wj = argmin
w

n∑

i=1

(w⊤xi − y
j
i )

2 + α||w||2 (4)
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wherey
j
i denotes the value of thejth dimension

of yi. The α parameter penalizes solutions pro-
portionally to their magnitude, which Cai et al.
(2007b) note ensures the stability ofw as an ap-
proximate eigenproblem solution.

4 Experiments

Two experiments measures the effects of nonlin-
ear dimensionality reduction for word spaces. For
both, we apply LPP to two basic word space mod-
els, the VSM and WC. In the first experiment,
we measure the word spaces’ abilities to model
semantic relations, as determined by priming ex-
periments. In the second experiment, we evaluate
the representation capabilities of the LPP-reduced
models on standard word space benchmarks.

4.1 Setup

For the VSM-based word space, we consider three
different weighting schemes: no weighting, TF-
IDF and the log-entropy (LE) used in (Landauer
et al., 1998). For the WC-based word space, we
use a 5 word sliding window. Due to the large pa-
rameter space for LPP models, we performed only
a limited configuration search. An initial analysis
using the 20 nearest neighbors and cosine simi-
larity did not show significant performance differ-
ences when the number of dimensions was varied
between 50 and 1000. We therefore selected 300
dimensions for all tests. Further work is needed to
identify the impact of different parameters. Stop
words were removed only for the WC+LPP model.
We compare the LPP-based spaces to three mod-
els: VSM, HAL, and LSA.

Two corpora are used to train the models in both
experiments. The first corpus, TASA, is a collec-
tion of 44,486 essays that are representative of the
reading a student might see upon entering college,
introduced by (Landauer et al., 1998). The cor-
pus consists of 98,420 unique words; no filtering
is done when processing this corpus. The second
corpus, WIKI, is a 387,082 article subset of a De-
cember 2009 Wikipedia snapshot consisting of all
the articles with more than 1,000 tokens. The cor-
pus is filtered to retain the top 100,000 most fre-
quent tokens in addition to all the tokens used in
each experiment’s data set.

4.2 Experiment 1

Semantic priming measures word association
based on human responses to a provided cue.

Priming studies have been used to evaluate word
spaces by equating vector similarity with an in-
creased priming response. We use data from two
types of priming experiments to measure whether
LPP models better correlate with human perfor-
mance than non-LPP word spaces.

Normed Priming Nelson et al. (1998) collected
free association responses to 5,019 prime words.
An average of 149 participants responded to each
prime with the first word that came to mind.

Based on this dataset, we introduce a new
benchmark that correlates word space similarity
with the associative strength of semantic priming
pairs. We use three measures for modeling prime-
target strength, which were inspired by Steyvers
et al. (2004). LetWab be the percentage of partici-
pants who responded to primea with targetb. The
three measures of associative strength are

S1

ab = Wab

S2

ab = Wab + Wba

S3

ab = S2

ab +
∑

c S2
acS

2

cb

These measure three different levels of semantic
relatedness between wordsa andb. S1

ab measures
the relationship froma to b, which is frequently
asymmetric due to ordering, e.g. “orange” pro-
duces “juice” more frequently than “juice” pro-
duces “orange.”S2

ab measures the symmetric asso-
ciation betweena andb; Steyvers et al. (2004) note
that this may better model the associative strength
by including weaker associates that may have been
a suitable second response.S3

ab further increases
the association by including the indirect associa-
tions betweena andb from all cued primes.

For each measure, we rank a prime’s targets
according to their strength and then compute the
Spearman rank correlation with the prime-target
similarities in the word space. The rank compari-
son measures how well word space similarity cor-
responds to the priming association. We report the
average rank correlation of associational strengths
over all primes.

Priming Effect The priming study by Hodgson
(1991), which evaluated how different semantic
relationships affected the strength of priming, pro-
vides the data for our second priming test. Six re-
lationships were examined in the study: antonymy,
synonymy, conceptual association (sleep and bed),
categorical coordinates (mist and rain), phrasal as-
sociates (pony and express), and super- and sub-
ordinates. Each relationship contained an average

3



Antonymy Conceptual Coordinates

Algorithm Rb U E R U E R U E

VSM+LPP+LE 0.103 0.018 0.085 0.197 0.050 0.147 0.071 0.027 0.044
VSM+LPP+TF-IDF 0.348 0.321 0.027 0.408 0.414 -0.005 0.323 0.294 0.029
VSM+LPP 0.247 0.122 0.124 0.312 0.120 0.193 0.230 0.111 0.119
VSM+LPPa 0.298 0.070 0.228 0.284 0.033 0.252 0.321 0.0370.284
WC+LPP 0.255 0.071 0.185 0.413 0.110 0.303 0.431 0.1340.298
HAL 0.813 0.716 0.096 0.845 0.814 0.031 0.861 0.809 0.052
HALa 0.915 0.879 0.037 0.867 0.846 0.021 0.913 0.861 0.052
LSA 0.235 0.023 0.213 0.392 0.028 0.364 0.199 0.014 0.185
LSAa 0.287 0.061 0.226 0.362 0.041 0.321 0.316 0.037 0.278
VSM 0.051 0.011 0.040 0.111 0.012 0.099 0.032 0.008 0.024

Phrasal Ordinates Synonymy

Algorithm R U E R U E R U E

VSM+LPP+LE 0.147 0.039 0.108 0.225 0.032 0.193 0.081 0.027 0.053
VSM+LPP+TF-IDF 0.438 0.425 0.013 0.277 0.290 -0.013 0.344 0.328 0.017
VSM+LPP 0.234 0.107 0.127 0.273 0.115 0.158 0.237 0.157 0.080
VSM+LPPa 0.202 0.031 0.171 0.270 0.032 0.238 0.299 0.069 0.230
WC+LPP 0.274 0.087 0.186 0.324 0.076 0.248 0.345 0.111 0.233
HAL 0.805 0.776 0.029 0.825 0.789 0.036 0.757 0.681 0.076
HALa 0.866 0.856 0.010 0.881 0.857 0.024 0.898 0.879 0.019
LSA 0.280 0.021 0.258 0.258 0.018 0.240 0.197 0.019 0.178
LSAa 0.269 0.030 0.238 0.326 0.032 0.294 0.327 0.052 0.275
VSM 0.104 0.013 0.091 0.061 0.008 0.053 0.052 0.009 0.043
a Processed using the WIKI corpus
b R are related primes, U are unrelated primes, E is the priming effect

Table 1: Experiment 1 priming results for the six relation categories from Hodgson (1991)

Word Choice Word Association

Algorithm Corpus TOEFL ESL RDWP F. et al. R.&G. Deese

VSM+LPP+le TASA 24.000 50.000 45.313 0.296 0.092 0.034
VSM+LPP+tf-idf TASA 22.667 25.000 37.209 0.023 0.086 0.001
VSM+LPP TASA 41.333 54.167 39.063 0.219 0.136 0.045
VSM+LPP Wiki 33.898 48.780 43.434 0.530 0.503 0.108
WC+LPP TASA 46.032 40.000 45.783 0.423 0.414 0.126
HAL TASA 44.00 20.83 50.00 0.173 0.180 0.318
HAL Wiki 50.00 31.11 43.44 0.261 0.195 0.042
LSA TASA 56.000 50.000 55.814 0.516 0.651 0.349
LSA Wiki 60.759 54.167 59.200 0.614 0.681 0.206
VSM TASA 61.333 52.083 84.884 0.396 0.496 0.200

Table 2: Results from Experiment 2 on six word space benchmarks

of 23 word pairs. Hodgson’s results showed that
priming effects were exhibited by the prime-target
pairs in all six categories.

We use the same methodology as Padó and La-
pata (2007) for this data set; the prime-target (Re-
lated Primes) cosine similarity is compared with
the average cosine similarity between the prime
and all other targets (Unrelated Primes) within the
semantic category. The priming effect is the dif-
ference between the two similarity values.

4.3 Experiment 2

We use six standard word space benchmarks to
test our hypothesis that LPP can accurately capture

general semantic knowledge and association based
relations. The benchmarks come in two forms:
word association and word choice tests.

Word choice tests provide a target word and a
list of options, one of which has the desired rela-
tion to the target. To answer these questions, we
select the option with the highest cosine similar-
ity with the target. Three word choice synonymy
benchmarks are used: the Test of English as a For-
eign Language (TOEFL) test set from (Landauer
et al., 1998), the English as a Second Language
(ESL) test set from (Turney, 2001), and the Cana-
dian Reader’s Digest Word Power (RDWP) from
(Jarmasz and Szpakowicz, 2003).
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Algorithm Corpus S
1

S
2

S
3

VSM+LPP+LE TASA 0.457 0.413 0.255
VSM+LPP+TF-IDF TASA 0.464 0.390 0.207
VSM+LPP TASA 0.457 0.427 0.275
VSM+LPP Wiki 0.472 0.440 0.333
WC+LPP TASA 0.469 0.437 0.315
HAL TASA 0.485 0.434 0.310
HAL Wiki 0.462 0.406 0.266
LSA TASA 0.494 0.481 0.414
LSA Wiki 0.489 0.472 0.398
VSM TASA 0.484 0.460 0.407

Table 3: Experiment 1 results for normed priming.

Word association tests measure the semantic re-
latedness of two words by comparing their simi-
larity in the word space with human judgements.
These tests are more precise than word choice tests
because they take into account the specific value
of the word similarity. Three word association
benchmarks are used: the word similarity data set
of Rubenstein and Goodenough (1965), the word-
relatedness data set of Finkelstein et al. (2002),
and the antonymy data set of Deese (1964), which
measures the degree to which high similarity cap-
tures the antonymy relationship. The Finkelstein
et al. test is notable in that the human judges were
free to score based on any word relationship.

5 Results and Discussion

The LPP-based models show mixed performance
in comparison to existing models on normed prim-
ing tasks, shown in Table 3. Adding LPP to
the VSM decreased performance; however, when
WIKI was used instead of TASA, the VSM+LPP
model increased .15 on all correlations, whereas
LSA’s performance decreased. This suggests that
LPP needs more data than LSA to properly model
the word space manifold. WC+LPP performs
comparably to HAL, which indicates that LPP
is effective in retaining the original WC space’s
structure in significantly fewer dimensions.

For the categorical priming tests shown in Ta-
ble 1, LPP-based models show competitive results.
VSM+LPP with the WIKI corpus performs much
better than other VSM+LPP configurations. Un-
like in the previous priming experiment, adding
LPP to the base models resulted in a significant
performance improvement. We also note that both
HAL models and the VSM+LPP+TF-IDF model
have high similarity ratings for unrelated primes.
We posit that these models’ feature weighting re-
sults in poor differentiation between words in the

same semantic category, which causes their de-
creased performance.

For experiment 2, LPP-based spaces showed
mixed results on word choice benchmarks, while
showing notable improvement on the more pre-
cise word association benchmarks. Table 2 lists
the results. Notably, LPP-based spaces performed
well on the ESL synonym benchmark but poorly
on the TOEFL synonym benchmark, even when
the larger WIKI corpus was used. This suggests
that LPP was not effective in retaining the re-
lationship between certain classes of synonyms.
Given that performance did not improve with the
WIKI corpus, further analysis is needed to iden-
tify whether a different representation of the local
structure would improve results or if the poor per-
formance is due to another factor. While LSA and
VSM model performed best on all benchmarks,
LPP-based spaces performed competitively on the
word association tests. In all but two tests, the
WC+LPP model outperformed HAL.

The results from both experiments indicate that
LPP is capable of accurately representing distri-
butional information in a much lower dimensional
space. However, in many cases, applications using
the SVD-reduced representations performed bet-
ter. In addition, application of standard weight-
ing schemes worsened LPP-models’ performance,
which suggests that the local neighborhood is ad-
versely distorted. Nevertheless, we view these re-
sults as a promising starting point for further eval-
uation of nonlinear dimensionality reduction.

6 Conclusions and Future Work

We have shown that LPP is an effective dimen-
sionality reduction technique for word space algo-
rithms. In several benchmarks, LPP provided a
significant benefit to the base models and in a few
cases outperformed the SVD. However, it does not
perform consistently better than existing models.
Future work will focus on four themes: identifying
optimal LPP parameter configurations; improving
LPP with weighting; measuring LPP’s capacity to
capture higher order co-occurrence relationships,
as was shown for the SVD (Lemaire et al., 2006);
and investigating whether more computationally
expensive nonlinear reduction algorithms such as
ISOMAP (Tenenbaum et al., 2000) are better for
word space algorithms. We plan to release imple-
mentations of the LPP-based models as a part of
the S-Space Package (Jurgens and Stevens, 2010).
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