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Preface

Most modern Natural Language Processing (NLP) systems are subject to the well known problem of lack
of portability to new domains and genres: there is a substantial drop in their performance when tested
on data from a new domain, i.e., when test data is drawn from a related but different distribution from
training data. This problem is inherent in the assumption of independent and identically distributed (i.i.d.)
variables for machine learning systems, but has started to get attention only in recent years. The need
for domain adaptation arises in almost all NLP tasks – the goal of this workshop is to provide a meeting
point for research that approaches the problem of adaptation from the varied perspectives of machine
learning and a variety of NLP tasks. We believe there is much to gain by treating domain adaptation as
a general learning strategy that utilizes prior knowledge of a specific or a general domain in learning
about a new domain. Sharing insights, methodologies and successes across tasks will contribute towards
a better understanding of this problem. To this end, this workshop presents original research in areas
such as parsing, machine translation, dialog act tagging, entity recognition, summarization, etc. with the
common theme of domain adaptation. We received sixteen submissions in all, out of which eight were
selected for inclusion in the workshop.

We thank the members of the Program Committee for timely and insightful reviews, and the invited
speaker John Blitzer for his talk.

Hal Daumé III, Tejaswini Deoskar, David McClosky, Barbara Plank and Jörg Tiedemann
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Abstract
We discuss the problem of model adapta-
tion for the task of named entity recog-
nition with respect to the variation of la-
bel distributions in data from different do-
mains. We investigate an adaptive exten-
sion of the sequence perceptron, where the
adaptive component includes parameters
estimated from unlabelled data in combi-
nation with background knowledge in the
form of gazetteers. We apply this idea
empirically on adaptation experiments in-
volving two newswire datasets from dif-
ferent domains and compare with other
popular methods such as self training and
structural correspondence learning.

1 Introduction

Model adaptation is a central problem in learning-
based natural language processing. In the typical
setting a model is trained on annotated in domain,
or source, data, and is used on out of domain, or
target, data. The main difference with respect to
similar problems such as semi-supervised learning
is that source and target data are not assumed to
be drawn from the same distribution, which might
actually differ in relevant distributional properties:
topic, domain, genre, style, etc. In some formu-
lations of the problem a few target labeled data is
assumed to be available (Daumé III, 2007). How-
ever, we are interested in the case in which no la-
beled data is available from the target domain –
except for evaluation purposes and fine tuning of
hyperparameters.

Most of the work in adaptation has focused
so far on the input side; e.g, proposing solutions
based on generating shared source-target represen-
tations (Blitzer et al., 2006). Here we focus in-
stead on the output aspect. We hypothesize that

∗This work was carried out while the first author was
working at Yahoo! Research Barcelona.

part of the loss incurred in using a model out of
domain is due to its built-in class priors which
do not match the class distribution in the target
data. Thus we attempt to explicitly correct the
prediction of a pre-trained model for a given la-
bel by taking into account a noisy estimate of the
label frequency in the target data. The correc-
tion is carried out by means of adaptive param-
eters, estimated from unlabelled target data and
background “world knowledge” in the form of
gazetteers, and taken in consideration in the de-
coding phase. We built a suitable dataset for exper-
imenting with different adaptation approaches for
named entity recognition (NER). The main find-
ings from our experiments are as follows. First,
the problem is challenging and only marginal im-
provements are possible under all evaluated frame-
works. Second, we found that our method com-
pares well with current state-of-the-art approaches
such as self training and structural correspondence
learning (McClosky et al., 2006; Blitzer et al.,
2006) and taps on an interesting aspect which
seems worth of further research. Although we
concentrate on a segmentation task within a spe-
cific framework, the perceptron HMM introduced
by Collins (2002), we speculate that the same in-
tuition could be straightforwardly applied in other
learning frameworks (e.g., Support Vector Ma-
chines) and different tasks (e.g., standard classi-
fication).

2 Related work

Recent work in domain adaptation has focused
on approaches such as self-training and struc-
tural correspondence learning (SCL). The former
approach involves adding self-labeled data from
the target domain produced by a model trained
in-domain (McClosky et al., 2006). The latter
approach focuses on ways of generating shared
source-target representations based on good cross-
domain (pivot) features (Blitzer et al., 2006) (see
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also (Ando, 2004)). Self training has proved ef-
fective in syntactic parsing, particularly in tan-
dem with discriminative re-ranking (Charniak and
Johnson, 2005), while the SCL has been applied
successfully to tasks such PoS tagging and opin-
ion analysis (Blitzer et al., 2006; Blitzer et al.,
2007). We address a different aspect of the adapta-
tion problem, namely the difference in label distri-
butions between source and target domains. Chan
and Ng (2006) proposed correcting the class priors
for domain adaptation purposes in a word sense
disambiguation task. They adopt a generative
framework where the base model is a naive Bayes
classifier and priors are re-estimated with EM. The
approach proposed by Chelba and Acero (2004) is
also related as they propose a MAP adaptation via
Gaussian priors of a MaxEnt model for recovering
the correct capitalization of text.

Domain adaptation naturally invokes the exis-
tence of a specific task and data. As such it is
natural to consider the modeling aspects within
the context of a specific application. Here we
focus on the problem of named entity recogni-
tion (NER). There is still little work on adapta-
tion for NER. Ando (2004) reports successful ex-
periments on adapting with an SCL-like approach,
while Ciaramita and Altun (2005) effectively used
external knowledge in the form of gazetteers in
a semi-Markov model. Mika et al. (2008) used
Wikipedia to generate additional training data for
domain adaptation purposes.

3 Problem statement

Named entity taggers detect mentions of instances
of pre-defined categories such as person (Per),
location (Loc), organization (Org) and miscel-
laneous (Misc). The problem can be naturally
framed as a segmentation and labeling task. State
of the art systems, e.g., based on sequential op-
timization, achieve excellent accuracy in domain.
However, accuracy degrades if the target data di-
verges in relevant distributional aspects from the
source. As an example, the following is the out-
put of a perceptron HMM1 trained on the CoNLL
2003 English data (news) (Sang and Muelder,
2003) when applied to a molecular biology text:2

1We used the implementation available from http:
//sourceforge.net/projects/supersensetag,
more details on this tagger can be found in (Ciaramita and
Altun, 2006).

2The same model achieves F-scores well in excess of 90%
evaluated in domain.

(1) Cdc2-cyclin Org B-activated Polo-like Misc

kinase specifically phosphorylates at least three

components of APC Org .

The tagger predicts several CoNLL entities which
are unlikely to occur in that context. One source
of confusion is probably the shape of words, in-
cluding case, numbers, and non alphabetical char-
acters, which are also typical, and thus mislead-
ing, of unrelated CoNLL entities. However, we
argue that the problem is partially due to the pa-
rameters learned which reflect the distribution of
classes in the source data. The parameter, acting
as biased priors, lead the tagger to generate inap-
propriate distributions of labels. We propose that
this aspect of the problem might be alleviated by
correcting the score for each class with an estimate
of the class frequency in the target data. Thus,
with respect to the example, we would like to de-
crease the score of “Org” labels according to their
expected frequency in a molecular biology corpus.

4 A perceptron with adjustable priors

As generic taggers we adopt perceptron-trained
HMMs (Collins, 2002) which have excellent ef-
ficiency/performance trade-off (Nguyen and Guo,
2007). The objective of learning is a discrimi-
nant F : X × Y → IR, where Y denotes se-
quences of labels from a pre-defined set of cate-
gories Y . F (x,y;α) = 〈α,Φ(x,y)〉 is linear in
a feature representation Φ defined over a joint in-
put/output space,3 a global feature representation
mapping each (x,y) pair to a vector of feature
counts Φ(x,y) ∈ IRd:

[Φ(x,y)]i =
|y|∑
j=1

φi(yj−1, yj ,x), (2)

where φi is a (binary) predicate. Given an input
sequence x, we find the optimal label sequence,
f(x;α) = arg maxy∈Y F (x,y;α), with Viterbi
decoding. The model α is learned with the per-
ceptron algorithm.

Each feature represents a spelling or contex-
tual property, or the previous label. The sim-
plest baseline (model B) uses the features listed
in the upper half of Table 1. In previous work
on NER adaptation, Ciaramita and Altun (2005)
found that gazetteers, in combination with semi-
Markov models, significantly improved adapta-
tion. Similarly, we define additional features using

3〈u,v〉 denoting the inner product between u and v.
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Model B features
Feature example token feature value(s) Position
Lowercase word Pierre pierre i-1, i, i+1
Part of Speech Pierre NNP i-1, i, i+1
Word Shape Pierre Xx i-1, i, i+1
Suffix2/3 Pierre {re, rre} i
Prefix2/3 Pierre {pi, pie} i
Previous label Vinken (in “Pierre Vinken”) B-PER (label on “Pierre”) i

Additional features of model BG
Feature example token feature value(s) Position
InGazetteer Islands (in “Cayman Islands”) I-Country2 (inside a 2-word country name) i-1, i, i+1
Most frequent supersense Eve B-Per1 (1 token Person label) i
2 most frequent supersenses Eve B-Per-Time1 (1 token Person/Time label) i
Number of supersenses Eve B-NSS41 i

Table 1. Feature list and examples. The upper half lists the features for the baseline tagger (B), the lower half
lists the additional features extracted from the gazetteers included to the second non-adapted tagger (BG). The
last number on the feature indicates the length of the entry in the list; e.g., “Islands” in the example is the end of
a two-word item, in the country gazetteer, because of “Cayman Islands”. The remaining features capture the most
frequent Wordnet supersense of the word, the first and second most frequent supersenses, and the total number of
supersenses.

the gazetteers from GATE,4 (Cunningham et al.,
2002) namely, countries, person first/last names,
trigger words; and also from Wordnet: using the
lexicographers or supersense labels; and a list of
company names from Fortune 500. For this sec-
ond baseline (model BG) we also extract the fea-
tures in the bottom half of Table 1.

4.1 Decoding with external priors
In our method training is performed on the source
data using the perceptron algorithm. Adaptation
takes place at decoding time, when the score of
the entity labels is adjusted according to a k-
dimensional parameter vector θ, k = |Y |, esti-
mated by comparing the source and the unlabeled
target data. The score of a sequence ŷ for input x
in the target domain is computed with a variant of
the original discriminant:

F ′(x,y;α) =
|y|∑
j=1

(
d∑
i=1

φi(yj−1, yj ,x)αi

)
+ τθyj (3)

where θyj is the adaptive parameter associated
with yj , and τ is a scaling factor. The new predic-
tion for x is f ′(x;α) = arg maxy∈Y F

′(x,y;α).

5 Adaptive parameters

5.1 Theta
The vector θ encodes information about the ex-
pected difference in frequency of each cate-
gory between source and target. Let gQ(c) =

4http://www.gate.ac.uk/.

count(c,Q)P
c′ count(c

′,Q) be an estimate of the relative fre-
quency of class c in corpus Q. We propose to for-
mulate θc as:

θc =
gT (c)− gS(c)

gS(c)
(4)

where T and S are, respectively, the source and
target data. This is the ratio of the difference be-
tween in and out domain relative frequencies for
class c, with respect to the in domain frequency.
Intuitively, gS(c) represents an estimate of the fre-
quency of c in the source S, and θc an estimate
of the expected decrease/increase as a fraction of
the initial guess; θc is negative if class c is less
frequent in the target data than in the source data,
and positive otherwise. From this, it is clear that
equation (3) will offset the scores in the desired
direction.

A crucial issue is the estimation of count(c,Q),
a guess of the frequency of c in Q. A simple
solution could be to count directly the class fre-
quencies from the labeled source data, and to ob-
tain a noisy estimate on the target data by count-
ing the occurrence of entities that have known la-
bels in the source data. This approach unfortu-
nately works very badly for at least two reasons.
First, the number of entities in each class reflects
the frequency of the class in the source. There-
fore using lists of entities from the source as prox-
ies for the class in the target data can transfer the
source bias to the target. Second, entities can have
different senses in different domains; e.g., several
English city names occur in the Wall Street Jour-
nal as locations (Liverpool, Manchester, etc.) and

3



Attribute CoNLL BBN-4
# tokens 300K 1.046M
Source Reuters Wall Street Journal
Domain General news Financial
Years 1992 1987
# entities 34,841 58,637
Loc 30.48% 22.51%
Per 28.58% 20.08%
Org 26.55% 46.27%
Misc 14.38% 10.41%

Table 2. BBN and CoNLL datasets.

in Reuters news as both locations and organiza-
tions (football clubs). We propose to use lists of
words which are strongly associated with entities
of specific classes but are extracted from an inde-
pendent third source. In this way, we hope the bias
they carry will be transferred in similar ways to
both source and target. Similarly, potential am-
biguities should be randomly distributed between
source and target. Thus, as a first approximation,
we propose that given a list of words Lc, suppos-
edly related to c and generated independently from
source and target, count(c,Q) can be defined as:

count(c,Q) ≡
∑
w∈Lc

count(w,Q) (5)

5.2 Tau

The scalar τ needs to be large enough to revise
the decision of the base model, if necessary. How-
ever, τ should not be too large, otherwise the best
prediction of the base model would be ignored.
In order for τ to have an effective, but balanced,
magnitude we introduce a simple notion of mar-
gin. Let the score of a given label ys on token s
be: G(x, ys;α) =

∑d
i=1 φi(ys−1, ys,x)αi, and let

ŷs = arg maxy∈Y G(x, y;α), we define the mar-
gin on s as:

Ms ≡ min
ys 6=ŷs

(G(x, ŷs;α)−G(x, ys;α)). (6)

The mean of M provides a rough quantification
of the necessary amount by which we need to
offset the scores G(x, ys;α) in order to change
the predictions. As a first guess, we take τ =
µ(MS) = 1

|S|
∑|S|

s Ms, which we interpret as an
upper bound on the desired value of τ . While
experimenting on the development data we found
that τ /2 yields good results.

6 Experimental setup

6.1 Data

We used two datasets for evaluation. The first
is the English CoNLL 2003 dataset (Sang and
Muelder, 2003), a corpus of Reuters news an-
notated with person, location, organization and
miscellaneous entity tags. The second is the
BBN corpus (BBN, 2005), which supplements the
WSJ Penn TreeBank with annotation for 105 cat-
egories: named entities, nominal entities and nu-
meric types. We made the two datasets “seman-
tically” compatible as follows. We tagged a large
collection of text from the English Wikipedia with
CoNLL and BBN taggers. We counted the fre-
quencies of BBN/CoNLL tag pairs for the same
strings, and assigned each BBN tag the most fre-
quent CoNLL tag;5 e.g.,

BBN tag CoNLL tag
Work of art:Book → Misc
Organization:Educational → Org
Location:Continent → Loc
Person → Per

48 BBN-to-CoNLL pairs were labelled in this
way. Remaining categories, e.g., descriptive and
numerical types, were mapped to the Outside tag
as they are not marked in CoNLL. Finally, we sub-
stituted all tags in the BBN corpus with the corre-
sponding CoNLL tag, we call this corpus BBN-
4. The data is summarized in Table 2. Notice
the different label distributions: the BBN-4 data
is characterized by a skewed distribution of labels
with organization by far the most frequent class,
while the CoNLL data has a more uniform dis-
tribution with location as the most frequent class.
The CoNLL data was randomly split in three dis-
joint sets of sentences for training (16,540 sen-
tences), development (2.068) and test (2,136). For
BBN-4 we used WSJ sections 2-21 for training
(39,823), section 22 for development (1,700) and
section 23 for test (2,416). We evaluated models in
both directions; i.e., swapping CoNLL and BBN-4
as source/target.

6.2 Model tuning

We regularize the perceptrons by averaging (Fre-
und and Schapire, 1999). The perceptron HMM

5A simpler approach might that of manually mapping the
two tagsets, however a number of cases that are not trivial to
resolve emerges in this way. For this reason we decided to
adopt the described data-driven heuristic approach.
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has only one hyper-parameter, the number of train-
ing iterations (or epochs). Models trained for ap-
plication out of domain can benefit from early
stopping which provides an additional mean of
regularization. For all models compared we used
the development sets for choosing the number of
epochs for training the perceptron on the source
data. This is an important step as different adapta-
tion approaches yield different overfitting pattern
and it is important to control for this factor for a
fair comparison. As an example, we found that
the self-training models consistently overfit after
just a few iterations after which performance has a
steep drop. The order of presentation of instances
in the training algorithm is randomized; for each
method we repeat the process 10 times and report
average F-score and standard error.

The vector θ was estimated using one of the
same gazetteers used in the base tagger (BG), a
list of 1,438 trigger words from GATE.6 These
are words associated with certain categories; e.g.,
“abbess/Per”, “academy/Org”, “caves/Loc”, and
“manifesto/Misc”. The lists for different classes
contain varying numbers of items and might con-
tain misleading words. To obtain more reliable es-
timates of comparable magnitude between classes
we computed equation (4) several times by sam-
pling an equal number of words from each list
and taking the mean. On the development set this
proved better than computing the counts from the
entire list.

Other sources could be evaluated, for exam-
ple lists of entities of each class extracted from
Wikipedia. We used all single-word triggers: 191
for Loc, 171 for Misc, 89 for Org and 592 for Per.
With each list we estimated θ as in Section 5.1 for
each of the four labels starting with “B”, i.e., en-
tity beginnings, θ = 0 for the other five labels. To
find θ we use as source S, the in-domain data, and
as target T the out-domain data. The lists contain
different number of items and might contain mis-
leading words.

To set τ we compute the mean margin (6)
on CoNLL, using the tagger trained on CoNLL
(mean(Ms) ≈ 50), similarly for BBN-4
(mean(Ms) ≈ 38). We used the development
set to fine tune the adaptive rate setting it equal
to τ = 1

2mean(Ms).

6This list corresponds to the list of words Lc of Sec-
tion 5.1.

6.3 Self training

To compare with self-training we trained a tagger
(BG) on the training set of CoNLL. With the tag-
ger we annotated the training set of BBN-4, and
added the self-labeled data, 39,823 BBN-4 sen-
tences, to the gold standard CoNLL training. Sim-
ilarly, in the reverse direction we trained a tagger
(BG) on the training set of BBN-4, annotated the
training set of CoNLL, and added the self-labeled
16,540 CoNLL sentences to the BBN-4 training.
We denote these models BGSELF , and the aug-
mented sources as CoNLL+ and BBN-4+.

6.4 Structural correspondence learning

We first implemented a simple baseline following
the idea presented in (Ando, 2004). The basic idea
consists in performing an SVD decomposition of
the feature-token matrix, where the matrix con-
tains all the sentences from the source and target
domains. The goal is to capture co-occurrences of
features and derive new features which are more
stable. More specifically, we extracted the 50 prin-
cipal directions of the feature-token matrix and
projected all the data onto these directions. This
results in 50 new additional features for each to-
ken that we append to the original (sparse binary)
feature vector φi, 1 ≤ i ≤ d. In order to give
equal importance to the original and new features,
we multiplied the new features by a constant fac-
tor such that the average L1 norms of the new and
old features are the same. Note that this weight-
ing might not be optimal but should be sufficient
to detect if these new features are helpful or not.

We then implemented several versions of struc-
tural correspondence learning. First, following the
original formulation (we refer to this model as
SCL1), 100 pivot features are selected, these are
frequent features in both source and target data.
For a given pivot feature k, a vector wk ∈ Rd

is computed by performing a regularized linear
regression between all the other features and the
given pivot feature. The matrixW whose columns
are the wk is formed and the original feature vec-
tors are projected onto the 50 top left singular vec-
tors of W , yielding 50 new features. We also tried
the following variants. In the version we refer to
as SCL2 we rescale the left singular vectors of W
by their corresponding singular values. In the last
variant (SCL3) we select the pivot features which
are frequent in the source and target domains and
which are also predictive for the task (as measured

5



Model Source Target Test
B BBN-4 CoNLL 60.4 ±.28
BG BBN-4 CoNLL 66.1 ±.32
BGSVD BBN-4 CoNLL 66.5 ±.26
BGSCL1 BBN-4 CoNLL 66.8 ±.18
BGSCL2 BBN-4 CoNLL 64.7 ±.24
BGSCL3 BBN-4 CoNLL 66.8 ±.27
BGSELF BBN-4+ CoNLL 65.5 ±.26
BGθ BBN-4 CoNLL 66.8 ±.53

Model Source Target Test
B CoNLL BBN-4 65.0 ±.77
BG CoNLL BBN-4 67.6 ±.69
BGSVD CoNLL BBN-4 67.9 ±.54
BGSCL1 CoNLL BBN-4 67.9 ±.45
BGSCL2 CoNLL BBN-4 68.1 ±.53
BGSCL3 CoNLL BBN-4 67.8 ±.34
BGSELF CoNLL+ BBN-4 68.3 ±.36
BGθ CoNLL BBN-4 70.3 ±.61

Table 3. Results of baselines and adaptive models.

by the mutual information between the feature and
the class label). The 50 additional features are ap-
pended to the original (sparse binary) feature vec-
tor φi, 1 ≤ i ≤ d, and again, they are first rescaled
in order to have the same average L1 norm as the
old features over the entire dataset.

7 Results and discussion

Table 3 summarizes the experimental results on
both datasets. We refer to our adaptive model as
BGθ. Adapting a model from BBN-4 to CoNLL,
self training (BGSELF, 65.5%) performs slightly
worse than the base model (BG, 66.1%). The
best SCL model, the original formulation, pro-
duces a small, but likely significant, improvement
(BGSCL1, 66.8%). Our model (BGθ, 66.8%),
achieves the same result but with larger variance.
The improvement of the best models over the first
baseline (B, 60.4%) is considerable, +6.4%, but
mostly due to gazetteers.

In the adaptation experiments from CoNLL to
BBN-4 both self training (BGSELF, 68.3%) and
the best SCL model (BGSCL1, 68.1%) are com-
parable to the baseline (BG, 67.6%). The adap-
tive perceptron HMM (BGθ, 70.3%) improves by
2.7%, as much as model BG over B, again with a
slightly larger variance. It is not clear why other
methods do not improve as much. Speculatively,
although we implemented several variants, SCL
might benefit from further tuning as it involves
several pre-processing steps. As for self training,
the base tagger might be too inaccurate to support
this technique. It is fair to assume that the ad-
ditional hyperparameters available to our model,
e.g., τ , provided some additional flexibility. We

also experimented with a few variants of estimat-
ing θ on the development set; i.e., different splits
of the unlabeled source/target data and different
sampling modes: with and without replacement,
number of trials. All of these aspects can have
a significant impact on the quality of the model.
This point brings up a more general issue with
the type of approach explored here: while adapt-
ing the class priors seems easier than adapting the
full model it is not trivial to encode noisy world
knowledge into meaningful priors. Alternatively,
in the presence of some labeled data one could op-
timize θ directly. This information could be also
elicited from domain experts. Another interesting
alternative is the unsupervised estimation via EM
as in (Chan and Ng, 2006).

Overall, adaptation from BBN-4 to CoNLL is
harder than from CoNLL to BBN-4. A possi-
ble explanation is that adapting from specific to
general is harder then in the opposite direction:
the specific corpus is more heavily biased towards
a domain (finance). This intuition is compatible
with the baselines performing better in the CoNLL
to BBN-4 direction. However, the opposite argu-
ment, that adapting from specific to general should
be easier, has some appeal as well; e.g., if more
general means higher entropy it seems easier to
make a distribution more uniform than finding the
right peak.

In general, all adaptive techniques we evalu-
ated provided only marginal improvements over
the baseline (BG) model. To put things in con-
text, it is useful to recall that when evaluated in
domain the CoNLL and BBN-4 taggers (model
BG) achieve, respectively, 92.7% and 91.6% aver-
age F-scores on the test data. As the results illus-
trate there is a considerable drop in out domain ac-
curacy, significantly alleviated by adding features
from gazetteers and to some extent by other meth-
ods. Following Dredze et al. (2007) we hypoth-
esize that a significant fraction of the loss is due
to labeling inconsistencies between datasets. Al-
though we did our best to optimize the benchmark
methods it is possible that even better results could
be achieved with self-training and SCL. However
we stress that different methods get at different
aspects of the problem: self-training targets data
sparseness, SCL methods aims at generating better
shared input representations, while our approach
focuses on generating output distribution more
compatible with the target data. It seems reason-
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able to expect that better adaptation performance
would result from composite approaches, aiming
at both better machine learning and task-specific
aspects for the named entity recognition problem.

8 Conclusion

We investigated the model adaptation problem for
named entity recognition where the base model is
a discriminatively trained HMM (Collins, 2002).
We hypothesized that part of the loss incurred in
using a pre-trained model out of domain is due
to its built-in class priors which do not match the
class distribution of the out of domain data. To
test this hypothesis, and attempt a solution, we
propose to explicitly correct the prediction of the
model for a given label by taking into account a
noisy estimate of the label frequency in the tar-
get data. We found encouraging results from pre-
liminary experiments. It might thus be worth in-
vestigating more principled formulations of this
type of method, in particular to eliminate some
heuristic aspects, improve unsupervised estima-
tions, and generalize to other classification tasks
beyond NER.
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Abstract
We report results from a domain adapta-
tion task for statistical machine translation
(SMT) using cache-based adaptive lan-
guage and translation models. We apply
an exponential decay factor and integrate
the cache models in a standard phrase-
based SMT decoder. Without the need for
any domain-specific resources we obtain a
2.6% relative improvement on average in
BLEU scores using our dynamic adapta-
tion procedure.

1 Introduction

Most data-driven approaches to natural lan-
guage processing (NLP) are subject to the well-
known problem of lack of portability to new do-
mains/genres. Usually there is a substantial drop
in performance when testing on data from a do-
main different to the training data. Statistical ma-
chine translation is no exception. Despite its pop-
ularity, standard SMT approaches fail to provide a
framework for general application across domains
unless appropriate training data is available and
used in parameter estimation and tuning.

The main problem is the general assumption
of independent and identically distributed (i.i.d.)
variables in machine learning approaches applied
in the estimation of static global models. Recently,
there has been quite some attention to the prob-
lem of domain switching in SMT (Zhao et al.,
2004; Ueffing et al., 2007; Civera and Juan, 2007;
Bertoldi and Federico, 2009) but ground breaking
success is still missing. In this paper we report
our findings in dynamic model adaptation using
cache-based techniques when applying a standard
model to the task of translating documents from a
very different domain.

The remaining part of the paper is organized as
follows: First, we will motivate the chosen ap-
proach by reviewing the general phenomenon of

repetition and consistency in natural language text.
Thereafter, we will briefly discuss the dynamic ex-
tensions to language and translation models ap-
plied in the experiments presented in the second
last section followed by some final conclusions.

2 Motivation

Domain adaptation can be tackled in various ways.
An obvious choice for empirical systems is to ap-
ply supervised techniques in case domain-specific
training data is available. It has been shown that
small(er) amounts of in-domain data are suffi-
cient for such an approach (Koehn and Schroeder,
2007). However, this is not really a useful alter-
native for truly open-domain systems, which will
be confronted with changing domains all the time
including many new, previously unknown ones
among them.

There are also some interesting approaches to
dynamic domain adaptation mainly using flexible
mixture models or techniques for the automatic se-
lection of appropriate resources (Hildebrand et al.,
2005; Foster and Kuhn, 2007; Finch and Sumita,
2008). Ideally, a system would adjust itself to the
current context (and thus to the current domain)
without the need of explicit topic mixtures. There-
fore, we like to investigate techniques for general
context adaptation and their use in out-of-domain
translation.

There are two types of properties in natural lan-
guage and translation that we like to explore. First
of all, repetition is very common – much more
than standard stochastic language models would
predict. This is especially true for content words.
See, for instance, the sample of a medical docu-
ment shown in figure 1. Many content words are
repeated in close context. Hence, appropriate lan-
guage models should incorporate changing occur-
rence likelihoods to account for these very com-
mon repetitions. This is exactly what adaptive lan-
guage models try to do (Bellegarda, 2004).
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“They may also have episodes of depression . Abilify is

used to treat moderate to severe manic episodes and to

prevent manic episodes in patients who have responded to

the medicine in the past . The solution for injection is used

for the rapid control of agitation or disturbed behaviour

when taking the medicine by mouth is not appropriate .

The medicine can only be obtained with a prescription .”

Figure 1: A short example from a document from
the European Medicines Agency (EMEA)

Another known fact about natural language is con-
sistency which is also often ignored in statistical
models. A main problem in most NLP applica-
tions is ambiguity. However, ambiguity is largely
removed within specific domains and contexts in
which ambiguous items have a well-defined and
consistent meaning. This effect of “meaning con-
sistency” also known as the principle of “one sense
per discourse” has been applied in word sense
disambiguation with quite some success (Gale et
al., 1992). For machine translation this means
that adapting to the local domain and sticking to
consistent translation choices within a discourse
seems to be better than using a global static model
and context independent translations of sentences
in isolation. For an illustration, look at the exam-
ples in figure 2 taken from translated movie subti-
tles. Interesting is not only the consistent meaning
of “honey” within each discourse but also the con-
sistent choice among equivalent translations (syn-
onyms “älskling” och “gumman”). Here, the dis-
tinction between “honey” and “sweetheart” has
been transferred to Swedish using consistent trans-
lations.

The 10 commandments Kerd ma lui
To some land flowing with
milk and honey!
Till ett land fullt av mjölk
och honung.

I’ve never tasted honey.
Jag har aldrig smakat ho-
nung.
...

Mari honey ...
Mari, gumman ...

Sweetheart, where are
you going?
Älskling, var ska du?
...
Who was that, honey?
Vem var det, gumman?

Figure 2: Consistency in subtitle translations

In summary: Repetition and consistency are very
important when modeling natural language and
translation. A proper translation engine should
move away from translating sentences in isolation
but should consider wider context to include these

discourse phenomena. In the next section we dis-
cuss the cache-based models that we implemented
to address this challenge.

3 Cache-based Models

The main idea behind cache-based language mod-
els (Kuhn and Mori, 1990) is to mix a large global
(static) language model with a small local (dy-
namic) model estimated from recent items in the
history of the input stream. It is common to use
simple linear interpolations and fixed cache sizes k
(100-5000 words) to achieve this: P (wn|history) =

(1− λ)Pn−gram(wn|history) + λPcache(wn|history)
Due to data sparseness one is usually restricted

to simple cache models. However, unigram mod-
els are often sufficient and smoothing is not nec-
essary due to the interpolation with the smoothed
background model. From the language model-
ing literature we know that caching is an effi-
cient way to reduce perplexity (usually leading to
modest improvements on in-domain data and large
improvements on out-of-domain data). Table 1
shows this effect yielding 53% reduction of per-
plexity on our out-of-domain data.

different settings for λ
cache 0.05 0.1 0.2 0.3

0 376.1 376.1 376.1 376.1
50 270.7 259.2 256.4 264.9

100 261.1 246.6 239.2 243.3
500 252.2 233.1 219.1 217.0

1000 240.6 218.0 199.2 192.9
2000 234.6 209.6 187.9 179.1
5000 235.3 209.1 185.8 175.8

10000 237.6 210.7 186.6 176.1
20000 239.9 212.5 187.7 176.7

Table 1: Perplexity of medical texts (EMEA) us-
ing a language model estimated on Europarl and a
unigram cache component

Even though a simple unigram cache is quite ef-
fective it now requires a careful optimization of its
size. In order to avoid the dependence on cache
size and to account for recency a decaying factor
can be introduced (Clarkson and Robinson, 1997):

Pcache(wn|wn−k..wn−1) ≈
1

Z

n−1∑
i=n−k

I(wn = wi)e
−α(n−i)

Here, I(A) = 1 if A is true and 0 otherwise. Z
is a normalizing constant. Figure 3 illustrates the
effect of cache decay on our data yielding another
significant reduction in perplexity (even though
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Figure 3: Out-of-domain perplexity using lan-
guage models with decaying cache.

the improvement is much less impressive than the
one obtained by introducing the cache).

The motivation of using these successful tech-
niques in SMT is obvious. Language models play
a crucial role in fluency ranking and a better fit
to real data (supporting the tendency of repetition)
should be preferred. This, of course, assumes cor-
rect translation decisions in the history in our SMT
setting which will almost never be the case. Fur-
thermore, simple cache models like the unigram
model may wrongly push forward certain expres-
sions without considering local context when us-
ing language models to discriminate between var-
ious translation candidates. Therefore, success-
fully applying these adaptive language models in
SMT is surprisingly difficult (Raab, 2007) espe-
cially due to the risk of adding noise (leading to
error propagation) and corrupting local dependen-
cies.

In SMT another type of adaptation can be ap-
plied: cache-based adaptation of the translation
model. Here, not only the repetition of content
words is supported but also the consistency of
translations as discussed earlier. This technique
has already been tried in the context of interactive
machine translation (Nepveu et al., 2004) in which
cache features are introduced to adapt both the lan-
guage model and the translation model. However,
in their model they require an automatic align-
ment of words in the user edited translation and the
source language input. In our experiments we in-
vestigate a close integration of the caching proce-
dure into the decoding process of fully automatic
translation. For this, we fill our cache with trans-
lation options used in the best (final) translation

hypothesis of previous sentences. In our imple-
mentation of the translation model cache we use
again a decaying factor in order to account for re-
cency. For known source language items (fn for
which translation options exist in the cache) the
following formula is used to compute the cache
translation score:

φcache(en|fn) =

∑K

i=1
I(〈en, fn〉 = 〈ei, fi〉) ∗ e−αi∑K

i=1
I(fn = fi)

Unknown items receive a score of zero. This score
is then used as an additional feature in the standard
log-linear model of phrase-based SMT1.

4 Experiments

Our experiments are focused on the unsupervised
dynamic adaptation of language and translation
models to a new domain using the cache-based
mixture models as described above. We apply
these techniques to a standard task of translat-
ing French to English using a model trained on
the publicly available Europarl corpus (Koehn,
2005) using standard settings and tools such as the
Moses toolkit (Koehn et al., 2007), GIZA++ (Och
and Ney, 2003) and SRILM (Stolcke, 2002). The
log-linear model is then tuned as usual with mini-
mum error rate training (Och, 2003) on a separate
development set coming from the same domain
(Europarl). We modified SRILM to include a de-
caying cache model and implemented the phrase
translation cache within the Moses decoder. Fur-
thermore, we added the caching procedures and
other features for testing the adaptive approach.
Now we can simply switch the cache models on
or off using additional command-line arguments
when running Moses as usual.

4.1 Experimental Setup

For testing we chose to use documents from the
medical domain coming from the EMEA corpus
that is part of the freely available collection of
parallel corpora OPUS2 (Tiedemann, 2009). The
reason for selecting this domain is that these doc-
uments include very consistent instructions and
repetitive texts which ought to favor our caching
techniques. Furthermore, they are very different

1Logarithmic values are used in the actual implementation
which are floored to a low constant in case of zero φ scores.

2The OPUS corpus is available at this URL:
http://www.let.rug.nl/tiedeman/OPUS/.
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from the training data and, thus, domain adapta-
tion is very important for proper translations. We
randomly selected 102 pairs of documents with al-
together 5,478 sentences. Sentences have an aver-
age length of about 19 tokens with a lot of varia-
tion among them. Documents are compiled from
the European Public Assessment Reports (EPAR)
which reflect scientific conclusions at the end of a
centralized evaluation procedure for medical prod-
ucts. They include a lot of domain-specific ter-
minology, short facts, lists and tables but also de-
tailed textual descriptions of medicines and their
use. The overall lowercased type/token ratio in the
English part of our test collection is about 0.045
which indicates quite substantial repetitions in the
text. This ratio is, however, much higher for indi-
vidual documents.

In the experiment each document is processed
individually in order to apply appropriate dis-
course breaks. The baseline score for applying a
standard phrase-based SMT model yields an aver-
age score of 28.67 BLEU per document (28.60 per
sentence) which is quite reasonable for an out-of-
domain test. Intuitively, the baseline performance
should be crucial for the adaptation. As discussed
earlier the cache-based approach assumes correct
history and better baseline performance should in-
crease the chance of adding appropriate items to
the cache.

4.2 Applying the LM Cache

In our first experiment we applied a decaying uni-
gram cache in the language model. We performed
a simple linear search on a separate development
set for optimizing the interpolation weight which
gave as a value of λ = 0.001. The size of the cache
was set to 10,000 and the decay factor was set to
α = 0.0005 (according to our findings in figure
3). The results on our test data compared to the
standard model are illustrated (with white boxes)
in figure 4.

There is quite some variation in the effect of the
cache LM on our test documents. The translations
of most EMEA documents could be improved ac-
cording to BLEU scores, some of them substan-
tially, whereas others degraded slightly. Note that
the documents differ in size and some of them are
very short which makes it a bit difficult to interpret
and directly compare these scores. On average the
BLEU score is improved by 0.43 points per doc-
ument and 0.39 points per sentence. This might
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Figure 4: The differences in BLEU between a
standard model and models with cache for 102
EMEA documents (sorted by overall BLEU score
gain – see figure 5)

be not as impressive as we were hoping for af-
ter the tremendous perplexity reduction presented
earlier. However, considering the simplicity of the
approach that does not require any additional re-
sources nor training it is still a valuable achieve-
ment.

4.3 Applying the TM Cache

In the next experiment we tested the effect of the
TM cache on translation quality. Using our hy-
pothesis of translation consistency we expected
another gain on our test set. In order to reduce
problems of noise we added two additional con-
straints: We only cache phrases that contain at
least one word longer than 4 characters (a simplis-
tic attempt to focus on content words rather than
function words) and we only cache translation op-
tions for which the transition costs (of adding this
option to the current hypothesis) in the global de-
coding model is larger than a given threshold (an
attempt to use some notion of confidence for the
current phrase pair; in our experiments we used a
log score of -4). Using this setup and applying the
phrase cache in decoding we obtained the results
illustrated with filled boxes in the figure 4 above.

Again, we can observe a varied outcome but
mostly improvements. The impact of the phrase
translation cache (with a size of 5,000 items) is not
as strong as for the language model cache which
might be due to the rather conservative settings
(λ = 0.001, α = 0.001) and the fact that matching
phrase pairs are less likely to appear than matching
target words. On average the gain is about 0.275
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BLEU points per document (0.26 per sentence).

4.4 Combining the Cache Models
Finally, we applied both types of cache in one
common system using the same settings from the
individual runs. The differences to the baseline
model are shown in figure 5.
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Figure 5: The BLEU score differences between a
standard model and a model with cache for both
TM and LM (sorted by BLEU score gain).

In most cases, applying the two types of cache
together has a positive effect on the final BLEU
score. Now, we see only a few documents with
a drop in translation performance. On average
the gain has increased to about 0.78 BLEU points
per document (0.74 per sentence) which is about
2.7% relative improvement compared to the base-
line (2.6% per sentence).

5 Discussion

Our experiments seem to suggest that caching
could be a way to improve translation quality on
a new domain. However, the differences are small
and the assumption that previous translation hy-
potheses are good enough to be cached is risky.
One obvious question is if the approach is ro-
bust enough to be helpful in general. If that is
the the case we should also see positive effects
on in-domain data where a cache model could ad-
just to topical shifts within that domain. In order
to test this ability we ran an experiment with the
2006 test data from the workshop on statistical ma-
chine translation (Koehn and Monz, 2006) using
the same models and settings as above. This re-
sulted in the following scores (lowercased BLEU):
BLEUbaseline = 32.46 (65.0/38.3/25.4/17.6, BP=0.999)
BLEUcache = 31.91 (65.1/38.1/25.1/17.3, BP=0.991)

Clearly, the cache models failed on this test even
though the difference between the two runs is not
large. There is a slight improvement in unigram
matches (first value in brackets) but a drop on
larger n-gram scores and also a stronger brevity
penalty (BP). This could be an effect of the sim-
plicity of the LM cache (a simple unigram model)
which may improve the choice of individual lexi-
cal items but without respecting contextual depen-
dencies.

One difference is that the in-domain data was
translated in one step without clearing the cache at
topical shifts. EMEA documents were translated
one by one with empty caches at the beginning. It
is now the question if proper initialization is es-
sential and if there is a correlation between docu-
ment length and the effect of caching. How much
data is actually needed to take advantage of cached
items and is there a point where a positive effect
degrades because of topical shifts within the docu-
ment? Let us, therefore, have a look at the relation
between document length and BLEU score gain in
our test collection (figure 6).
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Figure 6: Correlation between document lengths
(in number of tokens) and BLEU score gains with
caching.

Concluding from this figure there does not seem
to be any correlation. The length of the document
does not seem to influence the outcome. What
else could be the reason for the different behaviour
among our test documents? One possibility is the
quality of baseline translations assuming that bet-
ter performance increases the chance of caching
correct translation hypotheses. Figure 7 plots the
BLEU score gains in comparison with the baseline
scores.

Again, no immediate correlation can be seen.
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Figure 7: Correlation between baseline BLEU
scores and BLEU score gains with caching

The baseline performance does not seem to give
any clues for a possible success of caching. This
comes as a surprise as our intuitions suggested that
good baseline performance should be essential for
the adaptive approach.

Another reason for their success should be the
amount of repetition (especially among content
words) in the documents to be translated. An in-
dication for this can be given by type/token ratios
assuming that documents with lower ratios contain
a larger amount of repetitive text. Figure 8 plots
the type/token ratios of all test documents in com-
parison with the BLEU score gains obtained with
caching.
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Figure 8: Correlation between type/token ratios
and BLEU score gains with caching

Once again there does not seem to be any obvi-
ous correlation. So far we could not identify any
particular property of documents that might help
to reliably predict the success of caching. The an-
swer is probably a combination of various factors.

Further experiments are needed to see the effect on
different data sets and document types.

Note that some results may also be an artifact
of the automatic evaluation metrics applied. Qual-
itative evaluations using manual inspection could
probably reveal important aspects of the caching
approach. However, tracing changes caused by
caching is rather difficult due to the interaction
with other factors in the global decoding process.
Some typical cases may still be identified. Fig-
ure 9 shows an example of a translation that has
been improved in the cached model by making the
translation more consistent (this is from a docu-
ment that actually got a lower BLEU score in the
end with caching).

baseline: report ( evaluation of european public epar )
vivanza
in the short epar public
this document is a summary of the european public to
evaluation report ( epar ) .

cache: report european public assessment ( epar )
vivanza
epar to sum up the public
this document is a summary of the european public as-
sessment report ( epar ) .

reference: european public assessment report ( epar )
vivanza
epar summary for the public
this document is a summary of the european public as-
sessment report ( epar ) .

Figure 9: A translation improved by caching.

Other improvements may not be recognized by au-
tomatic evaluation metrics and certain acceptable
differences may be penalized. Look, for instance,
at the examples in figure 10.

This is, of course, not a general claim that
cache-based translations are more effected by this
problem than, for example, the baseline system.
However, this could be a direction for further in-
vestigations to quantify these issues.

6 Conclusions

In this paper we presented adaptive language and
translation models that use an exponentially de-
caying cache. We applied these models to a do-
main adaptation task translating medical docu-
ments with a standard model trained on Europarl.
On average the dynamic adaptation approach led
to a gain of about 2.6% relative BLEU points per
sentence. The main advantage of this approach is
that it does not require any domain-specific train-
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baseline: the medication is issued on orders .
cache: the medication is issued on prescription-only .

reference: the medicine can only be obtained with a prescription .
baseline: benefix is a powder keg , and a solvent to dissolve the injection for .

cache: benefix consists of a powder and a solvent to dissolve the injection for .
reference: benefix is a powder and solvent that are mixed together for injection .
baseline: the principle of active benefix is the nonacog alfa ( ix coagulation factor of recombinant ) which favours

the coagulation blood .
cache: the principle of benefix is the nonacog alfa ( ix coagulation factor of recombinant ) which favours the

coagulation blood .
reference: benefix contains the active ingredient nonacog alfa ( recombinant coagulation factor ix , which helps

blood to clot ) .
baseline: in any case , it is benefix used ?

cache: in which case it is benefix used ?
reference: what is benefix used for ?
baseline: benefix is used for the treatment and prevention of saignements among patients with haemophilia b ( a

disorder hémorragique hereditary due to a deficiency in factor ix ) .
cache: benefix is used for the treatment and prevention of saignements among patients suffering haemophilia

b ( a disorder hémorragique hereditary due to a lack factor in ix ) .
reference: benefix is used for the treatment and prevention of bleeding in patients with haemophilia b ( an inher-

ited bleeding disorder caused by lack of factor ix ) .
baseline: benefix can be used for adults and children over 6 years .

cache: benefix can be used for adults and children of more than 6 years
reference: benfix can be used in adults and children over the age of 6.

Figure 10: Examples translations with and without caching.

ing, tuning (assuming that interpolation weights
and other cache parameters can be fixed after some
initial experiments) nor the incorporation of any
other in-domain resources. Cache based adapta-
tion can directly be applied to any new domain
and similar gains should be possible. However, a
general conclusion cannot be drawn from our ini-
tial results presented in this paper. Further exper-
iments are required to verify these findings and to
explore the potentials of cache-based techniques.
The main obstacle is the invalid assumption that
initial translations are correct. The success of the
entire method crucially depends on this assump-
tion. Error propagation and the reinforcement of
wrong decisions is the largest risk. Therefore,
strategies to reduce noise in the cache are impor-
tant and can still be improved using better selec-
tion criteria. A possible strategy could be to iden-
tify simple cases in a first run that can be used
to reliably fill the cache and to use the full cache
model on the entire text in a second run. Another
idea for improvement is to attach weights to cache
entries according to the translation costs assigned
by the model. These weights could easily be incor-
porated into the cache scores returned for match-
ing items. In future, we would like to explore these
ideas and also possibilities to combine cache mod-
els with other types of adaptation techniques.
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Abstract 

 
We are interested in improving the sum-
marization of conversations by using 
domain adaptation. Since very few email 
corpora have been annotated for summa-
rization purposes, we attempt to leverage 
the labeled data available in the multi-
party meetings domain for the summari-
zation of email threads. In this paper, we 
compare several approaches to super-
vised domain adaptation using out-of-
domain labeled data, and also try to use 
unlabeled data in the target domain 
through semi-supervised domain adapta-
tion. From the results of our experiments, 
we conclude that with some in-domain 
labeled data, training in-domain with no 
adaptation is most effective, but that 
when there is no labeled in-domain data, 
domain adaptation algorithms such as 
structural correspondence learning can 
improve summarization.  

1 Introduction 

On a given day, many people engage in conver-
sations via several modalities, including face-to-
face speech, telephone, email, SMS, chat, and 
blogs. Being able to produce automatic summa-
ries of multi-party conversations occurring in one 
or several of these modalities would enable the 
parties involved to keep track of and make sense 
of this diverse data. However, summarizing spo-
ken dialogue is more challenging than summariz-
ing written monologues such as books and arti-
cles, as speech tends to be more fragmented and 
disfluent. 

We are interested in using both fully and semi-
supervised techniques to produce extractive 
summaries for conversations, where each sen-

tence of a text is labeled with its informativeness, 
and a subset of sentences are concatenated into 
an extractive summary of the text. In previous 
work (Murray and Carenini, 2008), it has been 
shown that conversations in different modalities 
can be effectively characterized by a set of “con-
versational” features that are useful in detecting 
informativeness for the task of extractive sum-
marization. However, because of privacy con-
cerns, annotated corpora are rarely publicly 
available for conversational data, including for 
the email domain. One promising solution to this 
problem is domain adaptation, which aims to use 
labeled data in a well-studied source domain and 
a limited amount of labeled data from a different 
target domain to train a model that performs well 
in that target domain. In this work, we investi-
gate using domain adaptation that leverages la-
beled data in the domain of meetings along with 
labeled and unlabeled email data for summariz-
ing email threads. We evaluate several domain 
adaptation algorithms, using both a small set of 
conversational features and a large set of simple 
lexical features to determine what settings will 
yield the best results for summarizing email con-
versations. In our experiments, we do not get a 
significant improvement from using out-of-
domain data in addition to in-domain data in su-
pervised domain adaptation, though in the setting 
where only unlabeled in-domain data is avail-
able, we gain from using it through structural 
correspondence learning. We also observe that 
conversational features are more useful in super-
vised methods, whereas lexical features are bet-
ter leveraged in semi-supervised adaptation.  

The next section surveys past research in do-
main adaptation and in summarizing conversa-
tional data. In section 3 we present the corpora 
and feature sets we used, and we describe our 
experimental setting in section 4. We then com-
pare the performance of different methods in sec-
tion 5 and draw conclusions in section 6.  
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2 Related Work 

We give an overview first of work on supervised 
and semi-supervised domain adaptation, then of 
research on summarization of conversations. 

2.1 Supervised Domain Adaptation 

Many domain adaptation methods have been 
proposed for the supervised case, where a small 
amount of labeled data in the target domain is 
used along with a larger amount of labeled 
source data. Two baseline approaches are to train 
only on the source data or only on target training 
data. One way of using information from both 
domains is merging the source and target labeled 
data sets and training a model on the combina-
tion. A method inspired by boosting is to take a 
linear combination of the predictions of two clas-
sifiers, one trained on the source and one trained 
on the target training data. Another simple me-
thod is to train a predictor on the source data, run 
it on the target data, and then use its predictions 
on each instance as additional features for a 
target-trained model. This was first introduced 
by Florian et al. (2004), who applied it to 
multilingual named entity recognition. 

The prior method of domain adaptation by 
Chelba and Acero (2006) involves using the 
source data to find optimal parameter values of a 
maximum entropy model on that data, and then 
setting these as a prior on the values of a model 
trained on the target data. They find improve-
ment in a capitalizer that adapts using out-of-
domain and a small amount of in-domain data 
versus only training on out-of-domain WSJ data.  
Similar to the prior method, Daume’s MEGA 
model also trains a MEMM. It achieves domain 
adaptation through hyperparameters that indicate 
whether an instance is generated by a source, 
target, or general distribution, and finds the op-
timal values of the parameters through condi-
tional EM (Daume and Marcu, 2006). A simpler 
method of domain adaptation, that achieves a 
performance similar to prior and MEGA, was 
proposed by Daume (2007) and successfully ap-
plied to a variety of NPL sequence labeling prob-
lems, such as named entity recognition, shallow 
parsing, and part-of-speech (POS) tagging. Fur-
thermore, this approach is straightforward to ap-
ply by copying feature values so there is a source 
version, a target version, and a general version of 
the feature, and was found to be faster to train 
than MEGA and prior. For all these reasons, we 
use Daume’s method and not the other two in our 
experiments. 

2.2 Semi-supervised Domain Adaptation 

Because unlabeled data is usually much easier to 
collect than labeled data in a new domain, semi-
supervised domain adaptation methods that ex-
ploit unlabeled data are potentially very useful.  

In self-training, a training set is used that is 
originally composed of labeled data, and repeat-
edly augmented with the highest confidence pre-
dictions on unlabeled data. McClosky et al. 
(2006) apply this in a domain adaptation setting 
for parsing: with only unlabeled data in the target 
Brown domain, and labeled and unlabeled 
datasets in the news domain (WSJ and NANC 
respectively), a self-trained reranking parser per-
forms almost as well as a parser trained only on 
Brown labeled data. However, McClosky con-
cludes that self-training alone is not beneficial, 
and most of the improvements they get over pre-
vious work on domain adaptation for parsing are 
due to using the reranker to select the candidate 
instances produced in each iteration of self-
training. Thus, one of the issues addressed in this 
paper is to asses whether self-training is useful 
for domain adaptation. 

A more sophisticated semi-supervised domain 
adaptation method is structural correspondence 
learning (SCL). SCL uses unlabeled data to de-
termine correspondences between features in the 
two domains by correlating them with so-called 
pivot features, which are features exhibiting 
similar behaviors in the source and target do-
mains. Blitzer applied this algorithm successfully 
to POS tagging (Blitzer et al., 2006) and senti-
ment classification (Blitzer et al., 2007). SCL 
seems promising for other tasks as well, for ex-
ample parse disambiguation (Plank, 2009). 

2.3 Summarization 

We would like to use domain adaptation to aid in 
summarizing multi-party conversations hailing 
from different modalities. This contrasts with 
much of previous work on summarization of 
conversations, which has focused on domain-
specific features (e.g., Rambow et al, 2004). We 
will treat summarization as a supervised binary 
classification problem where the sentences of a 
conversation are rated by their informativeness 
and a subset is selected to form an extractive 
summary. Research in meeting summarization 
relevant to our task has investigated the utility of 
employing a large feature set including prosodic 
information, speaker status, lexical and structural 
discourse features (Murray et al., 2006; Galley, 
2006). For email summarization, we view an 
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email thread as a conversation. For summarizing 
email threads, Rambow (2004) used lexical fea-
tures such as tf.idf, features that considered the 
thread to be a sequence of turns, and email-
specific features such as number of recipients 
and the subject line. Asynchronous multi-party 
conversations were successfully represented for 
summarization through a small number of con-
versational features by Murray and Carenini 
(2008). This paved the way to cross-domain 
conversation summarization by representing both 
email threads and meetings with a set of common 
conversational features. The work we present 
here investigates using data from both emails and 
meetings in summarizing emails, and compares 
using conversational versus lexical features. 

3 Summarization setting 

Because the meetings domain has a large corpus, 
AMI, annotated for summarization, we will use it 
as the source domain for adaptation and the 
email domain as the target, with data from the 
Enron corpus as unlabeled email data, and the 
BC3 corpus as test data. 

3.1 Datasets 

The AMI meeting corpus: We use the scenario 
portion of the AMI corpus (Carletta et al., 2005), 
for which groups of four participants take part in 
a series of four meetings and play roles within a 
fictitious company. While the scenario given to 
them is artificial, the speech and the actions are 
completely spontaneous and natural. The dataset 
contains approximately 115000 dialogue act 
(DA) segments. For the annotation, annotators 
wrote abstract summaries of each meeting and 
extracted transcript DA segments that best con-
veyed or supported the information in the ab-
stracts. A many-to-many mapping between tran-
script DAs and sentences from the human ab-
stract was obtained for each annotator, with three 
annotators assigned to each meeting. We con-
sider a dialogue act to be a positive example if it 
is linked to a given human summary, and a nega-
tive example otherwise. Approximately 13% of 
the total DAs are ultimately labeled as positive. 

The BC3 email corpus 1 : composed of 40 
email threads from the World Wide Web Con-
sortium (W3C) mailing list which feature a vari-
ety of topics such as web accessibility and plan-
ning face-to-face meetings. Each thread is anno-
tated similarly to the AMI corpus, with three an-

                                                
1 http://www.cs.ubc.ca/labs/lci/bc3.html 

notators authoring abstracts and linking email 
thread sentences to the abstract sentences. 

The Enron email corpus 2 : a collection of 
emails released as part of the investigation into 
the Enron corporation, it has become a popular 
corpus for NLP research due to being realistic, 
naturally-occurring data from a corporate envi-
ronment. We use 39 threads from this corpus to 
supplement the BC3 email data. 

3.2 Features Used 

We consider two sets of features for each sen-
tence: a small set of conversational structure fea-
tures, and a large set of lexical features.  

Conversational features: We extract 24 con-
versational features from both the email and 
meetings domain, and which consider both 
emails and meetings to be conversations com-
prised of turns between multiple participants. For 
an email thread, a turn consists of a single email 
fragment in the exchange. Similarly, for meet-
ings, a turn is a sequence of dialogue acts by the 
same speaker. The conversational features, 
which are described in detail in (Murray and 
Carenini, 2008), include sentence length, sen-
tence position in the conversation and in the cur-
rent turn, pause-style features, lexical cohesion, 
centroid scores, and features that measure how 
terms cluster between conversation participants 
and conversation turns. 

Lexical features: We derive an extensive set of 
lexical features, originally proposed in (Murray 
et al., 2010) from the AMI and BC3 datasets, and 
then compute their occurrence in the Enron cor-
pus. After throwing out features that occur less 
than five times, we end up with approximately 
200,000 features. The features derived are: char-
acter trigrams, word bigrams, POS tag bigrams, 
word pairs, POS pairs, and varying instantiation 
ngram (VIN) features. For word pairs, we extract 
the ordered pairs of words that occur in the same 
sentence, and similarly for POS pairs. To derive 
VIN features, we take each word bigram w1,w2 
and further represent it as two patterns p1,w2 and 
w1,p2 each consisting of a word and a POS tag.  

3.3 Classifier 

In all of our experiments, we train logistic re-
gression classifiers using the liblinear toolkit3. 
This choice was partly motivated by our earlier 
summarization research, where logistic regres-
sion classifiers were compared alongside support 

                                                
2 http://www.cs.cmu.edu/˜enron/  
3 http://www.csie.ntu.edu.tw/˜cjlin/liblinear/ 
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vector machines. The two types of classifier 
yielded very similar results, with logistic regres-
sion classifiers being much faster to train.  

3.4 Evaluation Metric 

Given the predicted labels on a test set and the 
existing gold-standard labels of the test set data, 
in each of our experiments we compute the area 
under the receiver operator curve as a measure of  
performance. The area under the ROC (auROC) 
is a common summary statistic used to measure 
the quality of binary classification, where a per-
fect classifier would achieve an auROC of 1.0, 
and a random classifier, near 0.5. 

4 Experiments 

4.1 Experimental Design 

The available labeled BC3 data totals about 3000 
sentences, and the available labeled AMI data 
totals over 100,000 sentences, so for both effi-
ciency and to not overwhelm the in-domain data, 
in each of our runs we subsample 10,000 sen-
tences from the AMI data to use for training. Af-
ter some initial experiments, where increasing 
the amount of target data beyond this did not im-
prove accuracy, we decided not to incur the run-
time cost of training on larger amounts of source 
data. Similarly, given that we extracted about 
200,000 lexical features from our corpora, from 
our initial experiments trading off auROC and 
runtime, we decided to select a subset of 10,000 
lexical features chosen by having the top mutual 
information with respect to the summarization 
labels. We did 5-fold cross-validation to split the 
target set into training and testing portions, and 
ran all the domain adaptation methods using the 
same split. We report the auROC performance of 
each method averaged over three runs of the 5-
fold cross-validation. To test for significant dif-
ferences between the performances of the various 
methods, we compute pairwise t-tests between 
the auROC values obtained on the same run. To 
account for an increased chance of false positives 
in reporting results of several pairwise t-tests, we 
report significance for p-values < 0.005 rather 
than at the customary 0.05 level.  

4.2 Methods Implemented 

We compare supervised domain adaptation me-
thods to the baseline INDOMAIN, in which only 
the training folds of the target data are used for 
training. In the MERGE method, we simply 
combine the labeled source and target sets and 
train on their combination. For ENSEMBLE, we 

train a classifier on the source training data, a 
classifier on the target training data, run each of 
them on the target test data, and for each test in-
stance compute the average of the two probabili-
ties predicted by the classifiers and use it to 
make a label prediction. We could vary the trade-
off between the contribution of the source and 
target classifier in ENSEMBLE and determine 
the optimal parameter by cross-validation, 
though for simplicity we used 0.5 which pro-
duced satisfying results. For the PRED approach, 
we use the source data to train a classifier, use it 
to make a prediction for the label of each point in 
the target data, and add the predicted probability 
as an additional feature to an in-domain trained 
classifier. The final supervised method FEAT-
COPY (Daume, 2007) takes the existing features 
and extends the feature space by making a gen-
eral, a source-specific, and a target-specific ver-
sion of each feature. Hence, a sentence with fea-
tures (x) gets represented as (x, x, 0) if it comes 
from the source domain, and as (x, 0, x) if it 
comes from the target domain.  

For semi-supervised domain adaptation meth-
ods, our baseline does not exploit any unlabeled 
target data. We train a classifier on the source 
data only, and call this TRANSFER. In contrast 
our two semi-supervised methods try to leverage 
unlabeled target data to help a classifier trained 
with labeled source data be more suited to the 
target domain.  

For the SCL approach, we implemented Blit-
zer’s structural correspondence learning (SCL) 
algorithm. An important part of the algorithm is 
training a classifier for each of a set of m selected 
pivot features to determine the correlations of the 
other features with respect to the pivot. The m 
models’ weights are combined in a matrix, and 
its SVD with truncation factor of k is then ap-
plied to the data to yield k new features for the 
data, that are added to the existing features. For 
the larger set of lexical features, we ran SCL 
with Blitzer’s original choice of m=1000 and 
k=50, but since the computation was extremely 
time consuming we scale down m to 100. For the 
tests with conversational features, since the 
number of features is 24, we picked m=24 and 
k=24. We also test SCLSMALL, which uses the 
same algorithm as SCL to find augmented fea-
tures, except it then uses only these k features to 
train, not adding them to the original features.  
This possibility was suggested in (Blitzer 2008).  

As a second semi-supervised method, we im-
plemented SELFTRAIN. The standard self-
training algorithm we implemented, inspired by 
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Blum and Mitchell (1998), is to start with a la-
beled training set T, create a subset of a fixed 
size of the unlabeled data U, and then iterate 
training a classifier on T, making a prediction on 
the data in U, and take the highest-confidence 
positive p predictions and highest-confidence 
negative n predictions from U with their pre-

dicted labels to add to T before replenishing U 
from the rest of the unlabeled data. We picked 
the size of the subset U as 200, and to select the 
top p=3 and bottom n=17 predictions at each step 
in order to achieve a ratio of summary to total 
sentences of 15%, which is near to the known 
ratio of the labels for AMI. 

 

method indomain merge ensem-
ble featcopy pred transfer selftrain scl sclsmall 

using conversational features 

auROC 0.838 0.747 0.751 0.839 0.838 0.677 0.678 0.663 0.646 
time(s) 0.79 2.42 2.64 8.44 5.38 2.08 100.2 52.85 66.74 

using lexical features 
auROC 0.623 0.638 0.667 0.615 0.625 0.636 0.636 0.651 0.742 
time(s) 4.87 13.64 13.77 78.63 30.99 9.73 448.8 813.7 828.3 

Table 1. Performance and time of domain adaptation methods with the two feature sets 

5 Results 

In our first experiment, we ran all the domain 
adaptation methods on the data with conversa-
tional features; in our second experiment, we did 
the same on the data with lexical features. We 
computed the average of the auROCs and run-
ning times obtained for each method in each ex-
periment. Table 1 lists the results of the super-
vised methods MERGE, ENSEMBLE, and 
FEATCOPY with baseline INDOMAIN, and the 
semi-supervised methods SELFTRAIN, SCL, 
and SCLSMALL with baseline TRANSFER.  

The best results for supervised methods (and 
overall) are achieved by FEATCOPY, PRED, 
and INDOMAIN with the conversational fea-
tures, with a similar performance that is signifi-
cantly better than for MERGE and ENSEMBLE. 
However, for lexical features MERGE and EN-
SEMBLE beat their performance, with the sig-
nificant differences from the baseline INDO-
MAIN being those of ENSEMBLE and FEAT-
COPY, the latter now being the worst performer.  

For the set of lexical features, all semi-
supervised methods improve on TRANSFER. In 
this setting, all of the differences are significant, 
with SCLSMALL generating a considerable gain 
of 10%. For the set of conversational features, 
SELFTRAIN yields an auROC similar to 
TRANSFER, and the small difference between 
the two is not significant. Unlike when using 
lexical features, SCL and SCLSMALL perform 

significantly worse than TRANSFER, though 
this is not unexpected. Because it relies on de-
termining correlation between features, we be-
lieve that structural correspondence learning is 
more appropriate in a high rather than low-
dimensional feature space. 

Figure 1 shows, for each of the methods, a dark 
grey bar representing the auROC obtained with 
the set of conversational features next to a lighter 
grey one for the lexical features. For the super-
vised methods on the left (INDOMAIN to 
PRED), the conversational features yield better 
performance, and this by an absolute ROC dif-
ference of more than 5%. However, notice that 
no method outperform the baseline INDOMAIN. 
For the semi-supervised methods on the right, the 
difference in performance between the two fea-
ture sets is less marked, although the auROC of 
SCLSMALL with lexical features is exception-
ally larger. 

As shown in Table 1, every one of the domain 
adaptation methods has a higher average time 
with lexical features than with conversational 
features. The semi-supervised methods take 
longer than the fully supervised methods, and 
this is due to their algorithms involving more 
steps. Both SCL and SELFTRAIN take minutes 
instead of seconds to make a prediction, though 
their running times are more reasonable than 
with the initial parameter settings we used in pre-
liminary experiments. 
 

20



 
Figure 1. Comparison of auROCs of all domain 

adaptation methods and baselines 

6 Conclusions and Future Work 

This paper is a comparative study of the per-
formance of several domain adaptation methods 
on the task of summarizing conversational data 
when a large amount of annotated data is avail-
able in the domain of meetings and a smaller (or 
no) amount of annotation exists in the target do-
main of email threads.  

One surprising finding of our experiments is 
that of the methods we implemented, the best 
performance is achieved by training on in-
domain data using conversational features. 
Hence, it seems that when sufficient labeled in-
domain data is available, supervised domain ad-
aptation is not useful for summarization of 
emails with the features and amounts of labeled 
data we used. 

However, semi-supervised methods using unla-
beled data and labeled out-of-domain data are 
useful in the absence of these labels, with the 
SCLSMALL method greatly outperforming the 
baseline. This is a promising result for using an-
notated corpora in well-studied domains or con-
versational modalities to summarize data in new 
domains.  

In our experiments, we have explored the effec-
tiveness of conversational and lexical features 
separately. The two sets of features differ in their 
impact on domain adaptation: with conversa-
tional features, no method improves significantly 
over the baseline, whereas with lexical features, 
the semi-supervised methods given no labeled 
target data perform better than the supervised 
baseline of training in-domain. One hypothesis to 
explain this is that lexical features behave simi-
larly in the two domains, so training on the larger 
amount of labeled target data is beneficial, while 
conversational features are more domain spe-

cific, likely because emails and meetings are 
structured differently. As the next step in our 
work, we intend to combine the two sets of fea-
tures. In doing this, we will have to ensure that 
the conversational features are not washed out by 
a very large number of lexical features.   

A scenario of practical interest in domain adap-
tation for new domains is when the target domain 
has a considerable amount of unlabeled data and 
a subset of this data can easily be annotated by 
hand, for example five threads in the email do-
main. We are currently exploring injecting a 
small amount of labeled target data into the semi-
supervised methods we have implemented to ac-
count for differences that cannot be observed in 
the unlabeled data. Blitzer (2008) did such an 
adjustment to SCL using a small amount of la-
beled target data to correct misaligned features 
and thus improve accuracy. 

Finally, it may be worth investigating how to 
combine several of the methods, for example by 
adding the feature of PRED based on training a 
classifier on the source, alongside augmented 
features using more unlabeled data through SCL, 
and adding the highest-confidence labels from 
SELFTRAIN to the training set.  
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Abstract

Most supervised language processing sys-
tems show a significant drop-off in per-
formance when they are tested on text
that comes from a domain significantly
different from the domain of the training
data. Sequence labeling systems like part-
of-speech taggers are typically trained on
newswire text, and in tests their error
rate on, for example, biomedical data can
triple, or worse. We investigate techniques
for building open-domain sequence label-
ing systems that approach the ideal of a
system whose accuracy is high and con-
stant across domains. In particular, we in-
vestigate unsupervised techniques for rep-
resentation learning that provide new fea-
tures which are stable across domains, in
that they are predictive in both the train-
ing and out-of-domain test data. In exper-
iments, our novel techniques reduce error
by as much as 29% relative to the previous
state of the art on out-of-domain text.

1 Introduction

Supervised natural language processing (NLP)
systems exhibit a significant drop-off in perfor-
mance when tested on domains that differ from
their training domains. Past research in a vari-
ety of NLP tasks, like parsing (Gildea, 2001) and
chunking (Huang and Yates, 2009), has shown that
systems suffer from a drop-off in performance on
out-of-domain tests. Two separate experiments
with part-of-speech (POS) taggers trained on Wall
Street Journal (WSJ) text show that they can reach
accuracies of 97-98% on WSJ test sets, but achieve
accuracies of at most 90% on biomedical text
(R.Codena et al., 2005; Blitzer et al., 2006).

The major cause for poor performance on out-
of-domain texts is the traditional representation

used by supervised NLP systems. Most systems
depend to varying degrees on lexical features,
which tie predictions to the words observed in
each example. While such features have been used
in a variety of tasks for better in-domain perfor-
mance, they are pitfalls for out-of-domain tests for
two reasons: first, the vocabulary can differ greatly
between domains, so that important words in the
test data may never be seen in the training data.
And second, the connection between words and
labels may also change across domains. For in-
stance, “signaling” appears only as a present par-
ticiple (VBG) in WSJ text (as in, “signaling that
...”), but predominantly as a noun (as in “signaling
pathway”) in biomedical text.

Representation learning is a promising new ap-
proach to discovering useful features that are sta-
ble across domains. Blitzeret al. (2006) and our
previous work (2009) demonstrate novel, unsu-
pervised representation learning techniques that
produce new features for domain adaptation of a
POS tagger. This framework is attractive for sev-
eral reasons: experimentally, learned features can
yield significant improvements over standard su-
pervised models on out-of-domain tests. Since
the representation learning techniques are unsu-
pervised, they can be applied to arbitrary new do-
mains to yield the best set of features for learning
on WSJ text and predicting on the new domain.
There is no need to supply additional labeled ex-
amples for each new domain. This reduces the ef-
fort for domain adaptation, and makes it possible
to apply systems to open-domain text collections
like the Web, where it is prohibitively expensive
to collect a labeled sample that is truly representa-
tive of all domains.

Here we explore two novel directions in the
representation-learning framework for domain
adaptation. Specifically, we investigate empiri-
cally the effects of representation learning tech-
niques on POS tagging to answer the following:
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1. Can we produce multi-dimensional represen-
tations for domain adaptation?Our previous ef-
forts have provided only a single new feature in
the learned representations. We now show how
we can perform a multi-dimensional clustering
of words such that each dimension of the clus-
tering forms a new feature in our representation;
such multi-dimensional representations dramati-
cally reduce the out-of-domain error rate of our
POS tagger from 9.5% to 6.7%.
2. Can maximum-entropy models be used to pro-
duce representations for domain adaptation?Re-
cent work on contrastive estimation (Smith and
Eisner, 2005) has shown that maximum-entropy-
based latent variable models can yield more accu-
rate clusterings for POS tagging than more tradi-
tional generative models trained with Expectation-
Maximization. Our preliminary results show that
such models can be used effectively as represen-
tations for domain adaptation as well, matching
state-of-the-art results while using far less data.

The next section provides background informa-
tion on learning representations for NLP tasks us-
ing latent-variable language models. Section 3 de-
scribes our experimental setup. In Sections 4 and
5, we empirically investigate our two questions
with a series of representation-learning methods.
Section 6 analyzes our best learned representation
to help explain its effectiveness. Section 7 presents
previous work, and Section 8 concludes and out-
lines directions for future work.

2 Open-Domain Sequence Labeling by
Learning Representations

Let X be an instance set for a learning problem;
for POS tagging, for instance, this could be the set
of all English sentences. LetY be the space of
possible labels for an instance, and letf : X → Z
be the target function to be learned. Arepresen-
tation is a functionR: X → Y, for some suitable
feature spaceY (such asRd). A domainis defined
as a distributionD over the instance setX . An
open-domain system observes a set of training ex-
amples(R(x), f(x)), where instancesx ∈ X are
drawn from asourcedomain, to learn a hypothe-
sis for classifying examples drawn from a separate
targetdomain.

Previous work by Ben-Davidet al. (2007) uses
Vapnik-Chervonenkis (VC) theory to show that
the choice of representation is crucial to open-
domain learning. As is customary in VC the-

ory, a good choice of representation must allow
a learning machine to achieve low error rates dur-
ing training. Just as important, however, is that
the representation must simultaneously make the
source and target domains look as similar to one
another as possible.

For open-domain sequence-labeling, then, the
traditional representations are problematic. Typ-
ical representations in NLP use functions of the
local context to produce features. Although many
previous studies have shown that such lexical
features allow learning systems to achieve im-
pressively low error rates during training, they
also make texts from different domains look very
dissimilar. For instance, a sentence containing
“bank” is almost certainly from the WSJ rather
than biomedical text; a sentence containing “path-
way” is almost certainly from a biomedical text
rather than from the WSJ.

Our recent work (2009) shows how to build
systems that learn new representations for open-
domain NLP using latent-variable language mod-
els like Hidden Markov Models (HMMs). In POS-
tagging and chunking experiments, these learned
representations have proven to meet both of Ben-
David et al.’s criteria for representations. They
help discriminate among classes of words, since
HMMs learn distributional similarity classes of
words that often correlate with the labels that need
to be predicted. Moreover, it would be difficult to
tell apart two domains based on the set of HMM
states that generated the texts, since a given HMM
state may generate words from any number of do-
mains.

In the rest of this paper, we investigate ways to
improve the predictive power of the learned rep-
resentations, without losing the essential property
that the features remain stable across domains. We
stay within the framework of using graphical mod-
els to learn representations, and demonstrate sig-
nificant improvements on our original technique.

3 Experimental Setup

We use the same experimental setup as Blitzer
et al. (2006): the Penn Treebank (Marcus et al.,
1993) Wall Street Journal portion for our labeled
training data; 561 MEDLINE sentences (9576
words) from the Penn BioIE project (PennBioIE,
2005) for our labeled test set; and all of the un-
labeled text from the Penn Treebank WSJ portion
plus Blitzeret al.’s MEDLINE corpus of 71,306
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unlabeled sentences to train our latent variable
models. The two texts come from two very dif-
ferent domains, making this data a tough test for
domain adaptation. 23% of the word types in the
test text are Out-Of-Vocabulary (OOV), meaning
that they are never observed in the training data.

We use a number of unsupervised representa-
tion learning techniques to discover features from
our unlabeled data, and a supervised classifier to
train on the training set annotated with learned fea-
tures. We use an open source Conditional Random
Field (CRF) (Lafferty et al., 2001) software pack-
age1 designed by Sunita Sajarwal and William W.
Cohen to implement our supervised models. We
refer to the baseline system with feature set fol-
lowing our previous work (2009) as PLAIN -CRF.
Our learned features will supplement this set.

For comparison, we also report on the perfor-
mance of Blitzeret al.’s Structural Correspon-
dence Learning (SCL) (2006), our HMM-based
model (2009)(HY09), and two other baselines:

• TEST-CRF: Our baseline model, trained and
tested on the test data. This is our upper
bound.

• SELF-CRF: Following the self-training
paradigm (e.g., (McClosky et al., 2006b;
McClosky et al., 2006a)), we train our
baseline first on the training set, then apply it
to the test set, then retrain it on the training
set plus the automatically labeled test set.
We perform only one iteration of retraining,
although in general multiple iterations are
possible, usually with diminishing marginal
returns.

4 Multi-dimensional Representations

From a linguistic perspective, words are multi-
dimensional objects. For instance, the word “we”
in “We like doing domain adaptation research” is a
pronoun, a subject, first person, and plural, among
other things. Each of these properties is a sepa-
rate feature of this word, which can be changed
without changing the other features. For exam-
ple, if “we” is changed to “they” in the previ-
ous example, it is exactly the same as “we” in
all aspects, except that it is third person; if “we”
is changed to “us”, then it changes from subject
case to object case. In morphologically rich lan-
guages, many syntactic distinctions are marked in

1Available from http://sourceforge.net/projects/crf/

the surface forms of words; in more analytic or
isolating languages like English, the distinctions
are still there, but must often be inferred from con-
text rather than word form. Beyond syntactic di-
mensions, numerous semantic properties can also
distinguish words, such as nouns that refer to cog-
nitive agents versus nouns that refer to materials
and tools.

We seek to learn multidimensional representa-
tions of words. Our HMM-based model is able to
categorize words in one dimension, by assigning
a single HMM latent state to each word. Since
the HMM is trained on unlabeled data, this di-
mension may partially reflect POS categories, but
more likely represents a mixture of many different
word dimensions. By adding in multiple hidden
layers to our sequence model, we aim to learn a
multi-dimensional representation that may help us
to capture word features from multiple perspec-
tives. The supervised CRF system can then sort
out which dimensions are relevant to the sequence-
labeling task at hand.

A Factorial HMM (FHMM) can be used to
model multiple hidden dimensions of a word.
However, the memory requirements of an FHMM
increase exponentially with the number of lay-
ers in the graphical model, making it hard to use
(see Table 1). Although other parameterizations
may require much less memory, like using a log-
linear output distribution conditioned on the fac-
tors, exact inference is still computationally in-
tractable; exploring FHMMs with approximate in-
ference and learning is an interesting area for fu-
ture work. Here, we choose to create several
single-layer HMMs separately. Figure 1 shows
our Independent-HMM model (I-HMM). I-HMM
has several copies of the observation sequence and
each copy is associated with its own hidden label
sequence. To encourage each layer of the I-HMM
model to find a different local maximum in pa-
rameter space during training (and thus a different
model of the observation sequence), we initialize
the parameters randomly.

Suppose there areL independent layers in an I-
HMM model for corpusx = (x1, . . . , xN ), and
each layer is (yl

1,yl
2,...yl

N ), wherel = 1...L and
eachy can haveK states. The distribution of the
corpus and one hidden layerl is

P (x,yl) =
∏

i

P (xi|y
l
i)P (yl

i|y
l
i−1)

For each layerl, for each positioni, each HMM
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Figure 1: Graphical models of an Independent Hidden

Markov Model. The dash line rectangle indicates that they

are copies of the observation sequence

Model
Number of

Memory
layers words states

HMM 1 W K O(WK + K2)
FHMM L W K O(WKL + LK2)
I-HMM L W K O(WKL + LK2)

Table 1:The memory requirement for HMM, FHMM, and

I-HMM models.

statey and each POS tagz, we add a new boolean
feature to our CRF system that indicates whether
Y l

i = y andZi=z.
We experiment with two versions of I-HMM:

first, we fix the number of states in each layer at
80 states, and increase the number of HMM lay-
ers from 1 to 8 (I-HMM(80)). Second, to provide
greater encouragement for each layer to represent
separate information, we vary the number of states
in each layer (I-HMM(vary)). The detailed config-
uration for this model is shown in Table 2.

The results for our two models are shown in Fig-
ure 2. We can see that the accuracy of I-HMM(80)
model keeps increasing from 90.5% to 93.3% until
7 layers of HMM features (we call this 7-layer rep-
resentation I-HMM*). This is a dramatic 29% de-
crease in the best reported error rate for this dataset
when no labeled data from the biomedical domain
is used. Unlike with an FHMM, there is no guar-
antee that the different layers of an I-HMM will
model different aspects of the observation signal,
but our results indicate that for at least several lay-
ers, the induced models are complementary. After
7 layers, results begin to decrease, most likely be-
cause the added layer is no longer complementary
to the existing latent-variable models and is caus-
ing the supervised CRF to overfit the training data.

For the I-HMM(vary) model with up to 5 lay-

Number Number of States
of Layers in each Layer

1 10
2 10 20
3 10 20 40
4 10 20 40 60
5 10 20 40 60 80

Table 2:The configuration of HMM layers and HMM states

for the I-HMM(vary) model
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Figure 2:Our best multi-dimensional smoothed-HMM tag-

ger with 7 layers reaches 93.3% accuracy, a drop of nearly 3%

in the error rate from the previous state of the art (HY09).

ers, the accuracy is not as good as I-HMM(80), al-
though the 5-layer model still outperforms HY09.
Individually, HMM models with fewer than 80
states perform worse than the 80-state model (a
model with 40 states achieved 89.4% accuracy,
and a model with 20 states achieved 88.9%). We
had hoped that by using layers with different
numbers of states, we could force the layers to
learn complementary models, but the results indi-
cate that any benefit from complementarity is out-
weighed by the lower performance of the individ-
ual layers.

5 Learning Representations with
Contrastive Estimation

In recent years, many NLP practitioners have be-
gun using discriminative models, and especially
maximum-entropy-based models like CRFs, be-
cause they allow the modeler to incorporate ar-
bitrary, interacting features of the observation se-
quence while still providing tractable inference.
To see if the same benefit can carry over to our rep-
resentation learning, we aim to build maximum-
entropy-based linear-chain models that, unlike
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most discriminative models, train on unannotated
data. We follow Smith and Eisner (2005) in
training our models using a technique calledcon-
trastive estimation, which we explain below. We
call the resulting model the Smith and Eisner
Model (SEM).

The key to SEM is that the contrastive estima-
tion training procedure forces the model to explain
why the given training data are better than per-
turbed versions of the data, called neighbor points.
For example, the sentence “We like doing domain
adaptation research” is a valid sentence, but if we
switched “like” and “doing”, the new sentence
“We doing like domain adaptation research” is not
valid. SEM learns a model of the original sen-
tence by contrasting it with the invalid neighbor
sentences.

Let ~x =< x1, x2, ..., xN > be the observed ex-
ample sentences, and letY be the space of possible
hidden structures forxi. Let N (xi) be a “neigh-
borhood” forxi, or a set of negative examples ob-
tained by perturbingxi, plusxi itself. Given a vec-
tor of feature functions~f(x, y), SEM tries to find
a set of weights~θ that maximize a log-likelihood
function:

LN (~θ) = log
∏

i

∑

y∈Y u(xi, y|~θ)
∑

(x,y)∈N (xi)×Y
u(x, y|~θ)

whereu(x, y|~θ) = exp(~θ · ~f(x, y)) is the “un-
normalized probability” of an (example, hidden
structure) pair (x,y). Following Smith and Eisner,
we use the best performing neighborhood, called
TRANS1, to conduct our experiments. TRANS1
is the set of sentences resulting from transposing
any pair of adjacent words for any given training
example.

The base feature space for SEM includes two
kinds of boolean features analogous to HMM
emission and transition probabilities. For an ob-
servation sequencex1, . . . , xT and a label se-
quencey1, . . . , yT , a boolean emission feature in-
dicates whetherxt = x andyt = y for all possible
t, x, andy. A boolean transition feature indicates
whetheryt−1 = y andyt = y′ for all possiblet, y,
andy′.

Because contrastive estimation is a computa-
tionally expensive training procedure, we take two
steps to reduce the computational cost: we reduce
the unlabeled data set, and we prune the feature
set of SEM. For our training data, we use only the
sentences with length less than or equal to 10. We

also get rid of punctuation and the corresponding
tags, change all words to lowercase and change all
numbers into a single symbol.

To reduce the feature space, we create a tag-
ging dictionary from Penn Treebank sections 02-
21: for every word in these sections, the dictionary
records the set of POS tags that were ever asso-
ciated with that word. We then prune the emis-
sion features for words that appear in this dic-
tionary to include only the features that associate
words with their corresponding POS tags in the
dictionary. For the words that don’t appear in the
Penn Treebank, they are associated with all pos-
sible POS tags. This procedure reduces the total
number of features in our SEM model from over
500,000 to just over 60,000.

After we train the model, we use a Viterbi-like
algorithm to decode it on the testing set. Unlike
the HMM model, the decoded states of SEM are
already meaningful POS tags, so we can use these
decoded states as POS tags (PLAIN -SEM), or use
them as features for a CRF model (SEM-CRF).
We show the result of both models, as well as
several comparison models, in Table 3. From the
result, we can see that the unsupervised PLAIN -
SEM outperforms the supervised PLAIN -CRF on
both all words and OOV words. This impres-
sive performance results from its ability to adapt
to the new domain through the unlabeled train-
ing examples and the contrastive estimation train-
ing procedure. In addition, the SEM-CRF model
significantly outperforms the SCL model (88.9%)
and the HMM-based CRF with 40 hidden states
(89.4%) while using only 36 hidden states, al-
though it does not quite reach the performance
of HY09. These results, which use a subset of
the available unlabeled training text, suggest that
maximum-entropy-style representation learning is
a promising area for further investigation.

6 Analysis

As we mention in Section 2, the choice of repre-
sentation is crucial to open-domain learning. In
Sections 4 and 5, we demonstrate empirically that
learned representations based on latent-variable
graphical models can significantly improve the ac-
curacy of a POS tagger on a new domain, com-
pared with using the traditional word-level repre-
sentations. We now examine our best representa-
tion, I-HMM*, in light of the theoretical predic-
tions made by VC theory.
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All OOV
Model words words

PLAIN -CRF 88.3 67.3
SELF-CRF 88.5 70.4

PLAIN -SEM 88.5 69.8
SCL 88.9 72.0

SEM-CRF 90.0 71.9
HY09 90.5 75.2

I-HMM* 93.3 76.3
TEST-CRF 98.9 NA

Table 3: SEM-CRF reduces error compared with
SCL by 1.1% on all words; I-HMM* closes 33%
of the gap between the state-of-the-art HY09 and
the upper-bound, TEST-CRF.

In particular, Ben-Davidet al.’s analysis shows
that the distance between two domains under a
representationR of the data is crucial to domain
adaptation. However, their analysis depends on
a particular notion of distance, theH-divergence,
that is computationally intractable to calculate.
For our analysis, we resort instead to a crude
but telling approximation of this measure, using a
more standard notion of distance: Jensen-Shannon
Divergence (DJS).

To calculate the distance between domains un-
der a representationR, we represent a domainD
as a multinomial probability distribution over the
set of features inR. We take maximum-likelihood
estimates of this distribution using our samples
from the WSJ and MEDLINE domains. We then
measure the Jensen-Shannon Divergence between
the two distributions, which for discrete distribu-
tions is calculated as

DJS(p||q) =
1

2

∑

i

[

pilog

(

pi

mi

)

+ qilog

(

qi

mi

)]

wherem = p+q
2 .

Figure 3 shows the divergence between these
two domains under purely lexical features, and un-
der only HMM-based features. OOV words make
up a substantial portion of the divergence between
the two domains under the lexical representation,
but even if we ignore them the HMM features are
substantially less variable across the two domains,
which helps to explain their ability to provide su-
pervised classifiers with stable features for domain
adaptation. Because there are so few HMM states
compared with the number of word types, there is
no such thing as an OOV HMM state, and the word
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Figure 3: The Jensen-Shannon Divergence be-
tween the newswire domain and the biomedical
domain, according to a word-based representation
of the domains and a HMM-based representation.
The portion of the distance that is due to words
which appear in the biomedical domain but not the
newswire domain is shown in gray.

states that appear in training data appear roughly
as often in test data. This means that any asso-
ciations that the CRF might learn between HMM
states and predicted outcomes is likely to remain
useful on the test data, but associations between
words and outcomes are less likely to be useful.

7 Previous Work

Previous work on artificial neural networks
(ANNs) (Fahlman and Lebiere, 1990) has shown
that it is possible to learn effectively by adding
more hidden units to the neural network that cor-
relate with the residual error of the existing hidden
units (Cascade-Correlation learning). Like our I-
HMM technique, this work aims to build a multi-
dimensional model, and it is capable of learning
the number of appropriate dimensions. Unlike
the ANN scenario, our multi-dimensional learn-
ing techniques must handle unlabeled data, and
they rely on the sequential structure of language
to learn effectively, whereas Cascade-Correlation
learning assumes samples are independent and
identically distributed. Our techniques do not (yet)
automatically determine the best number of layers
in the model.

Unlike our techniques for domain adaptation, in
most cases researchers have focused on the sce-
nario where labeled training data is available in
both the source and the target domain (e.g., (Bac-
chiani et al., 2006; Dauḿe III, 2007; Chelba and

28



Acero, 2004; Dauḿe III and Marcu, 2006; Blitzer
et al., 2007)). Our techniques use only raw text
from the target domain. This reduces the cost
of domain adaptation and makes the techniques
more widely applicable to new domains like web
processing, where the domain and vocabulary is
highly variable, and it is extremely difficult to
obtain labeled data that is representative of the
test distribution. When labeled target-domain data
is available, instance weighting and similar tech-
niques can potentially be used in combination with
our techniques to improve our results further.

Several researchers have previously studied
methods for using unlabeled data for sequence la-
beling, either alone or as a supplement to labeled
data. Ando and Zhang develop a semi-supervised
chunker that outperforms purely supervised ap-
proaches on the CoNLL 2000 dataset (Ando and
Zhang, 2005). Recent projects in semi-supervised
(Toutanova and Johnson, 2007) and unsupervised
(Biemann et al., 2007; Smith and Eisner, 2005)
tagging also show significant progress. HMMs
have been used many times for POS tagging in
supervised, semi-supervised, and in unsupervised
settings (Banko and Moore, 2004; Goldwater and
Griffiths, 2007; Johnson, 2007). The REALM sys-
tem for sparse information extraction has also used
unsupervised HMMs to help determine whether
the arguments of a candidate relation are of the
appropriate type (Downey et al., 2007). Schütze
(1994) has presented an algorithm that categorizes
word tokens in context instead of word types for
tagging words. We take a novel perspective on the
use of unsupervised latent-variable models by us-
ing them to compute features of each token that
represent the distribution over that token’s con-
texts. These features prove to be highly useful
for supervised sequence labelers in out-of-domain
tests.

In the deep learning (Bengio, 2009) paradigm,
researchers have investigated multi-layer latent-
variable models for language modeling, among
other tasks. Whilen-gram models have tradition-
ally dominated in language modeling, two recent
efforts develop latent-variable probabilistic mod-
els that rival and even surpassn-gram models in
accuracy (Blitzer et al., 2005; Mnih and Hinton,
2007). Several authors investigate neural network
models that learn a vector of latent variables to
represent each word (Bengio et al., 2003; Emami
et al., 2003; Morin and Bengio, 2005). And facto-

rial Hidden Markov Models (Ghahramani and Jor-
dan, 1997) are a multi-layer variant of the HMM
that has been used in speech recognition, among
other things. We use simpler mixtures of single-
layer models for the sake of memory-efficiency,
and we use our models as representations in a su-
pervised task, rather than as language models.

8 Conclusion and Future Work

Our representation learning approach to domain
adaptation yields state-of-the-art results in POS
tagging experiments. Our best models use multi-
dimensional clustering to find several latent cate-
gories for each word; the latent categories serve
as useful and domain-independent features for
our supervised learner. Our exploration has
yielded significant progress already, but it has only
scratched the surface of possible models for this
task. The current representation learning tech-
niques we use are unsupervised, meaning that they
provide the same set of categories, regardless of
what task they are to be used for. Semi-supervised
learning approaches could be developed to guide
the representation learning process towards fea-
tures that are best-suited for a particular task, but
are still useful across domains. Our current ap-
proach also requires retraining of a CRF for every
new domain; incremental retraining techniques for
new domains would speed up the process and
make domain adaptation much more accessible.
Finally, there are cases where small amounts of la-
beled data are available for new domains; models
that combine our representation learning approach
with instance weighting and other forms of super-
vised domain adaptation may take better advan-
tage of these cases.
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Abstract
Many natural language processing (NLP)
tools exhibit a decrease in performance
when they are applied to data that is lin-
guistically different from the corpus used
during development. This makes it hard to
develop NLP tools for domains for which
annotated corpora are not available. This
paper explores a number of metrics that
attempt to predict the cross-domain per-
formance of an NLP tool through statis-
tical inference. We apply different sim-
ilarity metrics to compare different do-
mains and investigate the correlation be-
tween similarity and accuracy loss of NLP
tool. We find that the correlation between
the performance of the tool and the sim-
ilarity metric is linear and that the latter
can therefore be used to predict the perfor-
mance of an NLP tool on out-of-domain
data. The approach also provides a way to
quantify the difference between domains.

1 Introduction

Domain adaptation has recently turned into a
broad field of study (Bellegarda, 2004). Many re-
searchers note that the linguistic variation between
training and testing corpora is an important fac-
tor in assessing the performance of an NLP tool
across domains. For example, a tool that has been
developed to extract predicate-argument structures
from abstracts of biomedical research papers, will
exhibit a lower performance when applied to legal
texts.

However, the notion of domain is mostly arbi-
trarily used to refer to some kind of semantic area.
There is unfortunately no unambiguous measure
to assert a domain shift, except by observing the
performance loss of an NLP tool when applied
across different domains. This means that we typ-
ically need annotated data to reveal a domain shift.

In this paper we will show how unannotated data
can be used to get a clearer view on how datasets
differ. This unsupervised way of looking at data
will give us a method to measure the difference be-
tween data sets and allows us to predict the perfor-
mance of an NLP tool on unseen, out-of-domain
data.

In Section 2 we will explain our approach in
detail. In Section 3 we deal with a case study
involving basic part-of-speech taggers, applied to
different domains. An overview of related work
can be found in Section 4. Finally, Section 5 con-
cludes this paper and discusses options for further
research.

2 Approach

When developing an NLP tool using supervised
learning, annotated data with the same linguistic
properties as the data for which the tool is devel-
oped is needed, but not always available. In many
cases, this means that the developer needs to col-
lect and annotate data suited for the task. When
this is not possible, it would be useful to have a
method that can estimate the performance on cor-
pus B of an NLP tool trained on corpus A in an
unsupervised way, i.e., without the necessity to an-
notate a part of B.

In order to be able to predict in an unsupervised
way the performance of an NLP tool on different
corpora, we need a way to measure the differences
between the corpora. The metric at hand should
be independent from the annotation labels, so that
it can be easily applied on any given corpus. The
aim is to find a metric such that the correlation be-
tween the metric and the performance is statisti-
cally significant. In the scope of this article the
concept metric stands for any way of assigning a
sufficiently fine-grained label to a corpus, using
only unannotated data. This means that, in our
view, a metric can be an elaborate mixture of fre-
quency counts, rules, syntactic pattern matching or
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even machine learner driven tools. However, in the
remainder of this paper we will only look at fre-
quency based similarity metrics since these met-
rics are easily applicable and the experiments con-
ducted using these metrics were already encourag-
ing.

3 Experimental design

3.1 Corpus

We used data extracted from the British National
Corpus (BNC) (2001) and consisting of written
books and periodicals1. The BNC annotators pro-
vided 9 domain codes (i.e. wridom), making it
possible to divide the text from books and peri-
odicals into 9 subcorpora. These annotated se-
mantic domains are: imaginative (wridom1), nat-
ural & pure science (wridom2), applied science
(wridom3), social science (wridom4), world af-
fairs (wridom5), commerce & finance (wridom6),
arts (wridom7), belief & thought (wridom8), and
leisure (wridom9).

The extracted corpus contains sentences in
which every token is tagged with a part-of-speech
tag as defined by the BNC. Since the BNC has
been tagged automatically, using the CLAWS4 au-
tomatic tagger (Leech et al., 1994) and the Tem-
plate Tagger (Pacey et al., 1997), the experiments
in this article are artificial in the sense that they do
not learn real part-of-speech tags but rather part-
of-speech tags as they are assigned by the auto-
matic taggers.

3.2 Similarity metrics

To measure the difference between two corpora
we implemented six similarity metrics: Rényi2

(Rényi, 1961), Variational (L1) (Lee, 2001),
Euclidean (Lee, 2001), Cosine (Lee, 2001),
Kullback-Leibler (Kullback and Leibler, 1951)
and Bhattacharyya coefficient (Comaniciu et al.,
2003; Bhattacharyya, 1943). We selected these
measures because they are well-described and pro-
duce results for this task in an acceptable time
span.

The metrics are computed using the relative fre-
quencies of words. For example, to calculate the

1This is done by selecting texts with BNC category codes
for text type (i.e. alltyp3 (written books and periodicals)) and
for medium (i.e. wrimed1 (book), wrimed2 (periodical), and
wrimed3 (miscellaneous: published)).

2The Rényi divergence has a parameter α and Kullback-
Leibler is a special case of the Rényi divergence, viz. with
α = 1.

Rényi divergence between corpus P and corpus Q
the following formula is applied:

Rényi(P ;Q;α) = 1
(α−1) log2

(∑k p1−α
k qαk

)

pk is the relative frequency of a token k in the
first corpus P , and qk is the relative frequency of
token k in the second corpus Q. α is a free param-
eter and with α = 1 the Rényi divergence becomes
equivalent to the Kullback-Leibler divergence.

Rényi 0.99 Euclidean

LESS SIMILAR                                                                                        

MORE SIMILAR                                                                                        

social-art                                                                                          social-belief                                                                                       

social-world                                                                                        

social-imaginative                                                                                  

art-social                                                                                          

MORE SIMILAR                                                                                        

LESS SIMILAR                                                                                        

social-art                                                                                          

social-belief                                                                                       

social-world                                                                                        

social-imaginative                                                                                  

Figure 1: A visual comparison of two similarity
metrics: Rényi with α = 0.99 and Euclidean.

Figure 1 gives an impression of the difference
between two similarity metrics: Rényi (α = 0.99)
and Euclidean. Only four domain combinations
are shown for the sake of clarity. From the graph
it can be observed that the social and imaginative
domains are the least similar in both cases. Be-
sides the different ordering, there is also a differ-
ence in symmetry. Contrary to the symmetric Eu-
clidean metric, the Rényi scores differ, depending
on whether social constitutes the test set and art
the training set, or vice versa. The dashed line on
Figure 1 (left) is a reverse score, namely for art-
social. A divergence score may diverge a lot from
its reverse score.

In practice, the best metric to choose is the met-
ric that gives the best linear correlation between
the metric and the accuracy of an NLP tool applied
across domains. We tested 6 metrics: Rényi, Vari-
ational (L1), Euclidean, Cosine, Kullback-Leibler,
and the Bhattacharyya coefficient. For Rényi, we
tested four different α-values: 0.95, 0.99, 1.05,
and 1.1. Most metrics gave a linear correlation
but for our experiments with data-driven POS tag-
ging, the Rényi metric with α = 0.99 was the best
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according to the Pearson product-moment corre-
lation. For majority this correlation was 0.91, for
Mbt 0.93, and for SVMTool 0.93.

3.3 Part-of-speech tagging

The experiments carried out in the scope of this
article are all part-of-speech (POS) tagging tasks.
There are 91 different POS labels in the BNC cor-
pus which are combinations of 57 basic labels. We
used three algorithms to assign part-of-speech la-
bels to the words from the test corpus:

Majority This algorithm assigns the POS label
that occurs most frequently in the training set for a
given word, to the word in the test set. If the word
did not occur in train, the overall most frequent tag
was used.

Memory based POS tagger (Daelemans and
van den Bosch, 2005) A machine learner that
stores examples in memory (Mbt) and uses the
kNN algorithm to assign POS labels. The default
settings were used.

SVMTool POS tagger (Giménez and Márquez,
2004) Support vectors machines in a sequential
setup are used to assign the POS labels. The de-
fault settings were used.

3.4 Results and analysis

Figure 2 shows the outcome of 72 cross-validation
experiments on the data from the British National
Corpus. The graph for the majority baseline is
shown in Figure 2a. The results for the memory
based tagger are shown in Figure 2b and the graph
for SVMTool is displayed in Figure 2c.

For every domain, the data is divided into five
parts. For all pairs of domains, each part from
the training domain is paired with each part from
the testing domain. This results in a 25 cross-
validation cross-domain experiment. A data point
in Figure 2 is the average outcome of such a 25
fold experiment. The abscissa of a data point
is the Rényi similarity score between the train-
ing and testing component of an experiment. The
α parameter was set to 0.99. We propose that
the higher (less negative) the similarity score, the
more similar training and testing data are.

The ordinate is the accuracy of the POS tagging
experiment. The dotted lines are the 95% predic-
tion intervals for every data point. These bound-
aries are obtained by linear regression using all
other data points. The interpretation of the inter-
vals is that any point, given all other data points
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(b) Memory based POS tagger.
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Figure 2: The varying accuracy of three POS tag-
gers with varying distance between train and test
corpus of different domains.

from the graph, can be predicted with 95% cer-
tainty, to lie between the upper and lower interval
boundary at the similarity score of that point. The
average difference between the lower and the up-
per interval boundary is 4.36% for majority, 1.92%
for Mbt and 1.59% for SVMTool. This means that,

33



Majority Mbt SVMTool

average accuracy 84.94 91.84 93.48
standard deviation 2.50 1.30 1.07

Table 1: Average accuracy and standard deviation on 72 cross-validation experiments.

when taking the middle of the interval as the ex-
pected accuracy, the maximum error is 0.8% for
SVMTool. Since the difference between the best
and worst accuracy score is 4.93%, using linear re-
gression means that one can predict the accuracy
three times better. For Mbt with a range of 5.84%
between best and worst accuracy and for majority
with 12.7%, a similar figure is obtained.

Table 1 shows the average accuracies of the al-
gorithms for all 72 experiments. For this article,
the absolute accuracy of the algorithms is not un-
der consideration. Therefore, no effort has been
made to improve on these accuracy scores. One
can see that the standard deviation for SVMTool
and Mbt is lower than for majority, suggesting that
these algorithms are less susceptible to domain
variation.

The good linear fit for the graphs of Figure 2
cannot be reproduced with every algorithm. For
algorithms that do not have a sufficiently strong re-
lation between training corpus and assigned class
label, the linear relation is lost. Clearly, it remains
feasible to compute an interval for the data points,
but as a consequence of the non-linearity, the pre-
dicted intervals would be similar or even bigger
than the difference between the lowest and highest
accuracy score.

In Figure 3 the experiments of Figure 2 are
reproduced using test and training sets from the
same domain. Since we used the same data sets
as for the out-of-domain experiments, we had to
carry out 20 fold cross-validation for these exper-
iments. Because of this different setup the results
are shown in a different figure. There is a data
point for every domain.

Although the average distance between test and
training set are smaller for in-domain experiments,
we still observe a linear relation for Mbt and SVM,
for majority there is still a visual hint of linearity.
For in-domain the biggest difference between test
and train set is for the leisure domain (Rényi score:
-6.0) which is very close to the smallest out-of-
domain difference (-6.3 for social sciences–world
affairs). This could mean that the random varia-
tion between test and train can approach the varia-
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(b) Memory based POS tagger.
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Figure 3: The varying accuracy of three POS tag-
gers with varying distance between train and test
corpus of the same domain.
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tion between domains but this observation is made
in abstraction from the different data set sizes for
in and out of domain experiments. For majority
the average accuracy over all domains is 88.25%
(stdev: 0.87), for Mbt 94.07% (0.63), and for
SVMTool 95.06% (0.59). Which are, as expected,
higher scores than the figures in Table 1.

4 Related Work

In articles dealing with the influence of domain
shifts on the performance of an NLP tool, the
in-domain data and out-of-domain data are taken
from different corpora, e.g., sentences from movie
snippets, newspaper texts and personal weblogs
(Andreevskaia and Bergler, 2008). It can be ex-
pected that these corpora are indeed dissimilar
enough to consider them as separate domains, but
no objective measure has been used to define them
as such. The fact that the NLP tool produces
lower results for cross-domain experiments can be
taken as an indication of the presence of sepa-
rate domains. A nice overview paper on statisti-
cal domain adaptation can be found in Bellegarda
(2004).

A way to express the degree of relatedness,
apart from this well-known accuracy drop, can be
found in Daumé and Marcu (2006). They propose
a domain adaptation framework containing a pa-
rameter π. Low values of π mean that in-domain
and out-of-domain data differ significantly. They
also used Kullback-Leibler divergence to compute
the similarity between unigram language models.

Blitzer et al. (2007) propose a supervised way
of measuring the similarity between the two do-
mains. They compute the Huber loss, as a proxy
of the A-distance (Kifer et al., 2004), for every
instance that they labeled with their tool. The re-
sulting measure correlates with the adaptation loss
they observe when applying a sentiment classifi-
cation tool on different domains.

5 Conclusions and future work

This paper showed that it is possible to narrow
down the prediction of the accuracy of an NLP
tool on an unannotated corpus by measuring the
similarity between this unannotated corpus and the
corpus the tagger was trained on in an unsuper-
vised way. A prerequisite to be able to make a reli-
able prediction, is to have sufficient annotated data
to measure the correlation between the accuracy
and a metric. We observed that, in order to make a

prediction interval that is narrower than the differ-
ence between the lowest and highest accuracy on
the annotated corpora, the algorithm used, should
capture sufficient information from training.

The observation that it is feasible to make re-
liable predictions using unannotated data, can be
of help when training a system for a task in a do-
main for which no annotated data is available. As
a first step, the metric resulting in the best linear
fit between the metric and the accuracy should be
searched. If a linear relation can be established,
one can take annotated training data from the do-
main that is closest to the unannotated corpus and
assume that this will give the best accuracy score.

In this article we implemented a way to mea-
sure the similarity between two corpora. One may
decide to use such a metric to categorize the avail-
able corpora for a given task into groups, depend-
ing on their similarity. It should be noted that in
order to do this, a symmetric metric should be
used. Indeed, an asymmetric metric like the Rényi
divergence will give a different value depending
on whether the similarity between corpus P and
corpus Q is measured as Rényi(P ;Q;α) or as
Rényi(Q;P ;α).

Further research should explore the usability of
linear regression for other NLP tasks. Although
no specific adaptation to the POS tagging task was
made, it may not be straightforward to find a lin-
ear relation for more complicated tasks. For such
tasks, it may be useful to insert n-grams into the
metric. Or, if a parser was first applied to the data,
it is possible to insert syntactic features in the met-
ric. Of course, these adaptations may influence
the efficiency of the metric, but if a good linear
relation between the metric and the accuracy can
be found, the metric is useful. Another option to
make the use of the metric less task dependent is
by not using the distribution of the tokens but by
using distributions of the features used by the ma-
chine learner. Applying this more generic setup of
our experiments to other NLP tools may lead to the
discovery of a metric that is generally applicable.
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Abstract 

We compare self-training with and with-
out reranking for parser domain adapta-
tion, and examine the impact of syntactic 
parser adaptation on a semantic role la-
beling system.  Although self-training 
without reranking has been found not to 
improve in-domain accuracy for parsers 
trained on the WSJ Penn Treebank, we 
show that it is surprisingly effective for 
parser domain adaptation.  We also show 
that simple self-training of a syntactic 
parser improves out-of-domain accuracy 
of a semantic role labeler. 

1 Introduction 

Improvements in data-driven parsing approaches, 
coupled with the development of treebanks that 
serve as training data, have resulted in accurate 
parsers for several languages.  However, port-
ability across domains remains a challenge: pars-
ers trained using a treebank for a specific domain 
generally perform comparatively poorly in other 
domains.  In English, the most widely used train-
ing set for parsers comes from the Wall Street 
Journal portion of the Penn Treebank (Marcus et 
al., 1993), and constituent parsers trained on this 
set are now capable of labeled bracketing preci-
sion and recall of over 90% (Charniak and John-
son, 2005; Huang, 2008) on WSJ testing sen-
tences.  When applied without adaptation to the 
Brown portion of the Penn Treebank, however, 
an absolute drop of over 5% in precision and re-
call is typically observed (McClosky et al., 
2006b).  In pipelined NLP applications that in-
clude a parser, this drop often results in severely 
degraded results downstream. 

We present experiments with a simple self-
training approach to semi-supervised parser do-
main adaptation that produce results that contra-
dict the commonly held assumption that im-
proved parser accuracy cannot be obtained by 
self-training a generative parser without rerank-
ing (Charniak, 1997; Steedman et al., 2003; 
McClosky et al., 2006b, 2008).1  We compare 
this simple self-training approach to the self-
training with reranking approach proposed by 
McClosky et al. (2006b), and show that although 
McClosky et al.’s approach produces better la-
beled bracketing precision and recall on out-of-
domain sentences, higher F-score on syntactic 
parses may not lead to an overall improvement in 
results obtained in NLP applications that include 
parsing, contrary to our expectations.  This is 
evidenced by results obtained when different ad-
aptation approaches are applied to a parser that 
serves as a component in a semantic role labeling 
(SRL) system.  This is, to our knowledge, the 
first attempt to quantify the benefits of semi-
supervised parser domain adaptation in semantic 
role labeling, a task in which parsing accuracy is 
crucial. 

2 Semi-supervised parser domain adap-
tation with self-training 

Because treebanks are expensive to create, while 
plain text in most domains is easily obtainable, 
semi-supervised approaches to parser domain 
adaptation are a particularly attractive solution to 
the domain portability problem.  This usually 
involves a manually annotated training set (a 
                                                
1 Reichart and Rappoport (2007) show that self-training 
without reranking is effective when the manually annotated 
training set is small.  We show that this is true even for a 
large training set (the standard WSJ Penn Treebank training 
set, with over 40k sentences). 
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treebank), and a larger set of unlabeled data 
(plain text).   

Bacchiani and Roark (2003) obtained positive 
results in unsupervised domain adaptation of 
language models by using a speech recognition 
system with an out-of-domain language model to 
produce an automatically annotated training cor-
pus that is used to adapt the language model us-
ing a maximum a posteriori (MAP) adaptation 
strategy.  In subsequent work (Roark and Bac-
chiani, 2003), this MAP adaptation approach was 
applied to PCFG adaptation, where an out-of-
domain parser was used to annotate an in-domain 
corpus automatically with multiple candidate 
trees per sentence.  A substantial improvement 
was achieved in out-of-domain parsing, although 
the obtained accuracy level was still far below 
that obtained with domain-specific training data. 

More recent work in unsupervised domain ad-
aptation for state-of-the-art parsers has achieved 
accuracy levels on out-of-domain text that is 
comparable to that achieved with domain-
specific training data (McClosky et al., 2006b).  
This is done in a self-training setting, where a 
parser trained on a treebank (in a seed domain) is 
used to parse a large amount of unlabeled data in 
the target domain (assigning only one parse per 
sentence).  The automatically parsed corpus is 
then used as additional training data for the 
parser.  Although initial attempts to improve in-
domain parsing accuracy with self-training were 
unsuccessful (Charniak, 1997; Steedman et al., 
2003), recent work has shown that self-training 
can work in specific conditions (McClosky et al., 
2006b), and in particular it can be used to im-
prove parsing accuracy on out-of-domain text 
(Reichart and Rappoport, 2007). 

2.1 Self-training with reraking 

McClosky et al. (2006b) presented the most suc-
cessful semi-supervised approach to date for ad-
aptation of a WSJ-trained parser to Brown data 
containing several genres of text (such as relig-
ion, mystery, romance, adventure, etc.), obtain-
ing a substantial accuracy improvement using 
only unlabeled data.  Their approach involves the 
use of a first-stage n-best parser and a reranker, 
which together produce parses for the unlabeled 
dataset.  The automatically parsed in-domain 
corpus is then used as additional training mate-
rial.  In light of previous failed attempts to im-
prove generative parsers through self-training 
(Charniak, 1997; Steedman et al., 2003), 
McClosky et al. (2006a) argue that the use of a 
reranker is an important factor in the success of 

their approach.  That work used text from the LA 
Times (taken from the North American News 
Corpus, or NANC), which is presumably more 
similar to the parser’s training material than to 
text in the Brown corpus, and resulted not only in 
an improvement of parser accuracy on out-of-
domain text (from the Brown corpus), but also in 
an improvement in accuracy on in-domain text 
(the standard WSJ test set of the Penn Treebank). 

It can be argued that the McClosky et al. ap-
proach is not a pure instance of self-training, 
since two parsing models are used: the first-stage 
generative model, and a discriminative model for 
reranking.  The generative parser is improved 
based on the output of the discriminative model, 
but McClosky et al. found that the discriminative 
model does not improve when retrained with its 
own output. 

2.2 Self-training without reraking 

Although there have been instances of self-
training (or similar) approaches that produced 
improved parser accuracy without reranking, the 
success of these efforts are often attributed to 
other specific factors. 

Reichart and Rappoport (2007) obtained posi-
tive results in in-domain and out-of-domain sce-
narios with self-training without reranking, but 
under the constant condition that only a rela-
tively small set of manually labeled data is used 
as the seed training set.  Sagae and Tsujii (2007) 
improved the out-of-domain accuracy of a de-
pendency parser trained on the entire WSJ train-
ing set (40k sentences) by using unlabeled data 
in the same domain as the out-of-domain test 
data (biomedical text).  However, they used 
agreement between different parsers to estimate 
the quality of automatically generated training 
instances and selected only sentences with high 
estimated accuracy.  Although the parser im-
proves when trained with its own output, the 
training instances are selected through the use of 
a separate dependency parsing model. 

2.3 Simple self-training without reranking 
for domain adaptation 

It is now commonly assumed that the simplest 
form of self-training, where a single parsing 
model is retrained with its own output (a single 
parse tree per sentence, without reranking or 
other means of training instance selection or es-
timation of parse quality), does not improve the 
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model’s accuracy.2  This assumption, however, is 
largely based on previous attempts to improve 
in-domain accuracy through self-training 
(Steedman et al., 2003; Charniak, 1997; 
McClosky et al., 2006a, 2008).  We will refer to 
this type of self-training as simple self-training, 
to avoid confusion with other self-training set-
tings, such as McClosky et al.’s, where a 
reranker is involved. 

We propose a simple self-training framework 
for domain adaptation, as follows:  

1. A generative parser is trained using a tree-
bank in a specific source domain. 

2. The parser is used to generate parse trees 
from text in a target domain, different 
from the source domain. 

3. The parser is retrained using the original 
treebank, augmented with the parse trees 
generated in step 2. 

There are intuitive reasons that may lead one 
to assume that simple self-training should not 
work.  One is that no additional information is 
provided to the model.  In self-training with 
reranking, the generative model can be enriched 
with information produced by the discriminative 
model.  When two parsers are used for training 
instance selection, one parser informs the other.  
In simple self-training, however, there is no addi-
tional source of syntactic knowledge with which 
the self-trained model would be enriched. 

Another possible reason is that the output of 
the self-trained parser should be expected to in-
clude the same errors found in the automatically 
generated training material.  If the initial parser 
has poor accuracy on the target domain, the 
training data it generates will be of poor quality, 
resulting in no improvement in the resulting 
trained model.  The self-trained model may sim-
ply learn to make the same mistakes as the origi-
nal model. 

Conversely, there are also intuitive reasons for 
why it might work.  A possible source of poor 
performance in new domains is that the model 
lacks coverage.  Specific lexical items and syn-
tactic structures in a new domain appear in a va-
riety of contexts, accompanied by different 
words and structures.  The parser trained on the 
source domain may analyze some of these new 

                                                
2 Except for in cases where the initial model is trained using 
a very small treebank. 

items and structures correctly, and it may also 
make mistakes.  As long as errors in the auto-
matically generated training material are not all 
systematic, the benefits of adding target-domain 
information could outweigh the addition of noise 
in the model. 

Naturally, it may be that these conditions hold 
for some pairs of source and target domains but 
not others.  In the next section, we present ex-
periments that investigate whether simple self-
training is effective for one particular set of train-
ing (WSJ) and testing (Brown) corpora, which 
are widely used in parsing research for English. 

3 Domain adaptations experiments 

In our experiments we use primarily the 
Charniak (2000) parser.  In a few specific ex-
periments we also use the Charniak and Johnson 
(2005) reranker; such cases are noted explicitly 
and are not central to the paper, serving mostly 
for comparisons.  We follow the three steps de-
scribed in section 2.3.  The manually labeled 
training corpus is the standard WSJ training sec-
tions of the Penn Treebank (sections 02 to 21).  
Sections 22 and 23 are used as in-domain devel-
opment and testing sets, respectively.  The out-
of-domain material is taken from the Brown por-
tion of the Penn Treebank.  We use the same 
Brown test set as McClosky et al. (2006b), every 
tenth sentence in the corpus.  Another tenth of 
the corpus is used as a development set, and the 
rest of the Brown corpus is not used.  The out-of-
domain text then contains not one but several 
genres of text.  The larger set of unlabeled data is 
composed of approximately 5.3 million words 
(320k sentences) of 20th century novels available 
from Project Gutenberg3, which do not match 
exactly the target domain, but is closer to it in 
general than to the source domain (WSJ).  

3.1 Simple self-training results 

The precision, recall and F-score of labeled 
brackets of the initial parser, trained only on the 
WSJ Penn Treebank, are shown in the first row 
of results in Table 1 for the WSJ (in-domain) test 
set and the Brown (out-of-domain) test set.  
These figures serve as our baseline.  The second 
row of results in Table 1 shows the results ob-
tained with a model produced using simple self-
training.  The baseline model is used to parse the 
entire unlabeled dataset (320k sentences), and 

                                                
3 http://www.gutenberg.org 
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the resulting parse trees are added to the WSJ 
training set to produce the self-trained model.   

A substantial improvement is observed for the 
target test set (Brown), close to an absolute im-
provement of 2% in precision, recall and F-score. 
Table 1 also shows that parser accuracy fell by 
1% on WSJ.  Although we do not see this as a 
problem, since the our goal is to produce an im-
proved model for parsing Brown, it is interesting 
that, unlike in the work of McClosky et al. 
(2006a, 2006b) where self-training includes 
reranking, simple self-training is effective spe-
cifically for domain adaptation, but not for im-
proving the accuracy of the parser on in-domain 
data.  At least in this case, simple self-training 
does not result in an absolutely improved parsing 
model (as appears to be the case with McClosky 
et al.’s self-training), although it does result in an 
improved model for the target data. 

Finally, the last row in Table 1 shows the re-
sults on WSJ and Brown obtained by McClosky 
et al. (2006a, 2006b) using self-training with 
reranking.  As they have shown, the discrimina-
tive reranker can be used to provide further im-
provements, as discussed in the next subsection. 

Unlike McClosky et al. (2006a), we did not 
give different weights to the original and auto-
matically generated training instances.  In our 
experiments with the Brown development data, 
varying the weight of the gold-standard WSJ 
training data from 1 to 7, we observed only small 
differences in F-score (Table 2).  The highest F-
score, obtained when the WSJ training corpus is 
given a relative weight of 3, was only 0.07 
higher than the F-score obtained when the WSJ 
training corpus is given a relative weight of 1. 

 
WSJ relative weight Brown dev F-score 

1 84.51 
2 84.52 
3 84.58 
4 84.53 
5 84.51 
6 84.55 
7 84.57 

Baseline (WSJ only) 82.91 

Table 2: Brown development set F-scores ob-
tained with self-trained models with different 
relative weights given to the gold-standard WSJ 
training data.  The last row shows the F-score for 
the original model (without adaptation). 

 
 
Table 3 shows results on the Brown develop-

ment set when different amounts of unlabeled 
data are used to create the self-trained model.  
Although F-score generally increases with more 
unlabeled data, the effect is not monotonic.  
McClosky et al. observed a similar effect in their 
self-training experiments, and hypothesized that 
this may be due to differences between portions 
of the unlabeled data and the target corpus, and 
to varying parsing difficulty in portions of the 
unlabeled data, which results in varying quality 
of the parse trees produced automatically for 
training.  A large improvement in F-score over 
the baseline is observed when adding only 30k 
sentences.  Additional improvement is observed 
when additional sentences are added, but these 
are small in comparison.  One interesting note is 

 WSJ Brown 

 Precision Recall F-score Precision Recall F-score 

Baseline 89.49 88.78 89.13 83.93 83.19 83.56 

Self-trained 88.26 87.86 88.06 85.78 85.05 85.42 

MCJ   91.0   87.1 
 
Table 1. Labeled constituent precision, recall and F-score for the WSJ and Brown test sets, ob-
tained with the baseline model (trained only on the WSJ training set) and with the self-trained 
model.  Results on Brown show an absolute improvement of almost 2%, while results on WSJ 
show a drop of about 1%.  The last row shows the results obtained by McClosky et al. (2006a, 
2006b) using self-training with reranking (denoted as MCJ), for comparison purposes. 
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that, although self-training produced improved 
bracketing precision and recall, part-of-speech 
tagging accuracy of Brown remained largely un-
changed from the baseline, in the range of 
94.42% to 94.50% accuracy.  It is possible that 
separate adaption for part-of-speech tagging may 
improve parsing F-score further. 

The results in this section show that simple 
self-training is effective in adapting WSJ-trained 
parser to Brown, but more experiments are 
needed to determine if the same effects observed 
in our simple self-training experiments would 
also be observed with other pairs of seed training 
data and target datasets, and what characteristics 
of the datasets may affect domain adaptation. 

3.2 Self-training with reranking results 

To provide a more informative comparison be-
tween the results obtained with simple self-
training and other work, we also performed 
McClosky et al.’s self-training with reranking 
using our unlabeled dataset.  In this experiment, 
intended to provide a better understanding of the 
role of the unlabeled data (20th century novels 
vs. LA Times articles), we parse the unlabeled 
dataset with the Charniak (2000) parser and the 
Charniak and Johnson (2005) discriminative 
reranker to produce additional training material 
for the generative parser.  The resulting genera-
tive parser produces slightly improved F-scores 
compared to the simple self-training setting 
(88.78% on WSJ and 86.01 on Brown), although 
a slight drop in WSJ F-score is still observed, 
indicating that the use of news text is likely an 

important factor in McClosky et al.’s superior F-
score figures. 

All of these models can be used to produce n-
best parses with the Charniak parser, and these 
can be reranked with the Charniak and Johnson 
reranker, whether or not the self-training proce-
dure that created the generative model involved 
reranking.  McClosky et al. found that although 
their self-training procedure involves reranking, 
the gains in accuracy are orthogonal to those 
provided by a final reranking step, applied to the 
output of the self-trained model.   As in their 
case, applying the WSJ-trained reranker to our 
self-trained model improves its accuracy.  In the 
case of our simple self-trained model, the im-
provement is of about 1.7%, which means that if 
a reranker is used at run-time (but not during 
self-training), F-score goes up to 87.12%.  Inter-
estingly, applying a final pass of reranking to the 
model obtained with self-training with reranking 
brings F-score up only by less than 1.2%, to 
87.17%.  So at least in our case, improvements 
provided by the use the reranker appear not to be 
completely orthogonal. 

4 Semantic Role Labeling with syntactic 
parser adaptation 

To investigate the impact of parser domain adap-
tation through self-training on applications that 
depend on parser output, we use an existing se-
mantic role labeling (SRL) system, the Illinois 
Semantic Role Labeler4, replacing the provided 
parsing component with our (WSJ) baseline and 
(adapted) self-trained parsers. 

We tested the SRL system using the datasets 
of the CoNLL 2005 shared task (Carreras and 
Màrquez, 2005).  The system is trained on the 
WSJ domain using PropBank (Palmer et al. 
2005), and the shared task includes WSJ and 
Brown evaluation sets.  Using the baseline WSJ 
syntactic parser, the SRL system has an F-score 
of 77.49 on WSJ, which is a competitive result 
for systems using a single syntactic analysis per 
sentence.  The highest scoring system (also a 
UIUC system) in the shared task has 79.44 F-
score, and used multiple parse trees, which has 
been shown to improve results (Punyakanok et 
al., 2005).  On the Brown evaluation, F-score is 
64.75, a steep drop from the performance of the 
system on WSJ, which reflects that not just the 
syntactic parser, but also other system compo-
nents, were trained with WSJ material.  The 

                                                
4 http://l2r.cs.uiuc.edu/~cogcomp/asoftware.php?skey=SRL 

Sentences added Brown dev. F-score 
0 (baseline) 82.91 

10k 83.76 
20k 84.02 
30k 84.29 
50k 84.26 

100k 84.19 
150k 84.38 
200k 84.51 
250k 84.42 
300k 84.51 

Table 3: Brown development set F-scores 
obtained with self-trained models created 
with different amounts of unlabeled data. 
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highest scoring system on the Brown evaluation 
in the CoNLL 2005 shared task had 67.75 F-
score. 

Table 4 shows the results on the Brown 
evaluation set using the baseline WSJ SRL sys-
tem and the results obtained under three self-
training parser domain adaptation schemes: sim-
ple self-training using novels as unlabeled data 
(section 3.1), the self-trained model of McClosky 
et al.5, and the reranked results of the McClosky 
et al. self-trained model (which has F-score com-
parable to that of a parser trained on the Brown 
corpus). 

As expected, the contributions of the three 
adapted parsing models allowed the system to 
produce overall SRL results that are better than 
those produced with the baseline setting.  Sur-
prisingly, however, the use of the model created 
using simple self-training and sentences from 
novels (sections 2.3 and 3.1) resulted in better 
SRL results than the use of McClosky et al.’s 
reranking-based self-trained model (whether its 
results go through one additional step of rerank-
ing or not), which produces substantially higher 
syntactic parsing F-score.  Our self-trained pars-
ing model results in an absolute increase of 4% 
in SRL F-score, outscoring all participants in the 
shared task (of course, systems in the shared task 
did not use adapted parsing models or external 
resources, such as unlabeled data). The im-
provement in the precision of the SRL system 

                                                
5 http://www.cs.brown.edu/~dmcc/selftraining.html 

using simple self-training is particularly large.  
Improvements in the precision of the core argu-
ments Arg0, Arg1, Arg2 contributed heavily to 
the improvement of overall scores.  

We note that other parts of the SRL system 
remained constant, and the difference in the re-
sults shown in Table 4 come solely from the use 
of different (adapted) parsers. 

5 Conclusion 

We explored the use of simple self-training, 
where no reranking or confidence measurements 
are used, for parser domain adaptation.  We 
found that self-training can in fact improve the 
accuracy of a parser in a different domain from 
the domain of its training data (even when the 
training data is the entire standard WSJ training 
material from the Penn Treebank), and that this 
improvement can be carried on to modules that 
may use the output of the parser.  We demon-
strated that a semantic role labeling system 
trained with WSJ training data can improve sub-
stantially (4%) on Brown just by having its 
parser be adapted using unlabeled data. 

Although the fact that self-training produces 
improved parsing results without reranking does 
not necessarily conflict with previous work, it 
does contradict the widely held assumption that 
this type of self-training does not improve parser 
accuracy.  One way to reconcile expectations 
based on previous attempts to improve parsing 
accuracy with self-training (Charniak, 1997; 

 Precision Recall F-score 

Baseline (WSJ parser) 66.57 63.02 64.75 

Simple self-trained parser 
(this paper) 

71.66 66.10 68.77 

MCJ self-trained parser 69.18 65.37 67.22 

MCJ self-train and rerank 68.62 65.78 67.17 

 
Table 4. Semantic role labeling results using the Illinois Semantic Role Labeler (trained on 
WSJ material from PropBank) using four different parsing models: (1) a model trained on 
WSJ, (2) a model built from the WSJ training data and 320k sentences from novels as unla-
beled data, using the simple self-training procedure described in sections 2.3 and 3.1, (3) the 
McClosky et al. (2006a) self-trained model, and (4) the McClosky et al. self-trained model, 
reranked with the Charniak and Johnson (2005) reranker. 
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Steedman et al., 2003) and the results observed 
in our experiments is that we focus specifically 
on domain adaptation.  In fact, the in-domain 
accuracy of our adapted model is slightly inferior 
to that of the baseline, more in line with previous 
findings. 

This work represents only one additional step 
towards understanding of how and when self-
training works for parsing and for domain adap-
tation.  Additional analysis and experiments are 
needed to understand under what conditions and 
in what domains simple self-training can be ef-
fective.   

One question that seems particularly interest-
ing is why the models adapted using self-training 
with reranking and news text, which produce 
substantially higher parsing F-scores, did not 
outperform our model built with simple self-
training in contribution to the SRL system.  Al-
though we do not have an answer to this ques-
tion, two factors that may play a role are the do-
main of the training data and the use of the 
reranker, which may provide improvements in 
parse quality that are of a different kind of those 
most needed by the SRL system.  This points to 
another interesting direction, where adapted 
parsers can be combined.  Having different ways 
to perform semi-supervised parser adaptation 
may result in the creation of adapted models with 
improved accuracy on a target domain but differ-
ent characteristics.  The output of these parsers 
could then be combined in a voting scheme 
(Henderson and Brill, 1999) for additional im-
provements on the target domain. 

Acknowledgments 
We thank Andrew S. Gordon and the anonymous 
reviewers for valuable comments and sugges-
tions.  The work described here has been spon-
sored by the U.S. Army Research, Development, 
and Engineering Command (RDECOM).  State-
ments and opinions expressed do not necessarily 
reflect the position or the policy of the United 
States Government, and no official endorsement 
should be inferred. 

References 
Michiel Bacchiani and Brian Roark. 2003. Unsuper-

vised language model adaptation. In Proceedings 
of the International Conference on Acoustics, 
Speech and Signal Processing (ICASSP). 

Xavier Carreras and Lluís Màrquez. 2005. Introduc-
tion to the CoNLL-2005 Shared Task: Semantic 

Role Labeling. In Proceedings of the CoNLL 2005 
shared task. 

Eugene Charniak. 1997. Statistical parsing with a con-
text-free grammar and word statistics. In Proceed-
ings of AAAI, pages 598–603. 

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proceedings of the First Meet-
ing of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL). 
Pages 132-139. Seattle, WA. 

Eugene Charniak and Mark Johnson. 2005. Coarse- 
to-fine n-best parsing and MaxEnt discriminative 
reranking. In Proceedings of the 2005 Meeting of 
the Association for Computational Linguistics 
(ACL), pages 173–180.  

John C. Henderson, Eric Brill. 1999. Exploiting Di-
versity in Natural Language Processing: Combin-
ing Parsers. In Proceedings of the Fourth Confer-
ence on Empirical Methods in Natural Language 
Processing (EMNLP-99), pp. 187–194. College 
Park, Maryland. 

Liang Huang (2008). Forest Reranking: Discrimina-
tive Parsing with Non-Local Features.  In Proceed-
ings of the 2008 Meeting of the Association for 
Computational Linguistics (ACL). Columbus, OH. 

Mitchell P. Marcus, Mary Ann Marcinkiewicz and 
Beatrice Santorini. 1993. Building a large anno-
tated corpus of English: the Penn Treebank. In 
Computational Linguistics 19(2), 313-330.  

David McClosky, Eugene Charniak and Mark John-
son. 2006a. Effective self-training for parsing. In 
Proceedings of the Main Conference on Human 
Language Technology Conference of the North 
American Chapter of the Association of Computa-
tional Linguistics (NAACL).  New York, NY. 

David McClosky, Eugene Charniak and Mark John-
son. 2006b. Reranking and self-training for parser 
adaptation. In Proceedings of the 21st international 
Conference on Computational Linguistics and the 
44th Annual Meeting of the Association For Com-
putational Linguistics (ACL).  Sydney, Australia. 

David McClosky, Eugene Charniak and Mark John-
son. 2008. When is self-training effective for pars-
ing? In Proceedings of the 22nd international Con-
ference on Computational Linguistics (COLING) - 
Volume 1. Manchester, United Kingdom. 

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 
2005. The proposition bank: An annotated corpus 
of semantic roles. Computational Linguistics, 
31(1).  

Vasin Punyakanok, Peter Koomen, Dan Roth and 
Wen-tau Yih. 2005. Generalized Inference with 
Multiple Semantic Role Labeling Systems.  In Pro-
ceedings of the CoNLL 2005 shared task. 

43



Roi Reichart and Ari Rappoport. 2007. Self-training 
for enhancement and domain adaptation of statisti-
cal parsers trained on small datasets.  In Proceed-
ings of the 45th Annual Meeting of the Association 
for Computational Linguistics (ACL). Pages 616-
623.  Prague, Czech Republic. 

Brian Roark and Michiel Bacchiani. 2003. Supervised 
and unsupervised PCFG adaptation to novel do-
mains. In Proceedings of the 2003 Conference of 
the North American Chapter of the Association for 
Computational Linguistics on Human Language 
Technology – Volume 1 (NAACL-HLT). 

Kenji Sagae and Jun’ichi Tsujii. 2007.  Multilingual 
dependency parsing and domain adaptation with 
data-driven LR models and parser ensembles.  In 
Proceedings of the CoNLL 2007 shared task. Pra-
gue, Czech Republic. 

Mark Steedman, Rebecca Hwa, Stephen Clark, Miles 
Osborne, Anoop Sarkar, Julia Hockenmaier, Paul 
Ruhlen, Steven Baker and Jeremiah Crim. 2003. 
Bootstrapping statistical parsers from small 
datasets. In Proceedings of Tenth Conference of the 
European Chapter of the Association for Computa-
tional Linguistics (EACL) – Volume 1. Budapest, 
Hungary. 

44



Proceedings of the 2010 Workshop on Domain Adaptation for Natural Language Processing, ACL 2010, pages 45–52,
Uppsala, Sweden, 15 July 2010. c©2010 Association for Computational Linguistics

Domain Adaptation with Unlabeled Data for Dialog Act Tagging

Anna Margolis1,2 Karen Livescu2

1Department of Electrical Engineering, University of Washington, Seattle, WA, USA.
2TTI-Chicago, Chicago, IL, USA.

amargoli@ee.washington.edu, klivescu@ttic.edu, mo@ee.washington.edu

Mari Ostendorf1

Abstract

We investigate the classification of utter-
ances into high-level dialog act categories
using word-based features, under condi-
tions where the train and test data dif-
fer by genre and/or language. We han-
dle the cross-language cases with ma-
chine translation of the test utterances.
We analyze and compare two feature-
based approaches to using unlabeled data
in adaptation: restriction to a shared fea-
ture set, and an implementation of Blitzer
et al.’s Structural Correspondence Learn-
ing. Both methods lead to increased detec-
tion of backchannels in the cross-language
cases by utilizing correlations between
backchannel words and utterance length.

1 Introduction

Dialog act (or speech act) tagging aims to label
abstract functions of utterances in conversations,
such as Request, Floorgrab, or Statement; poten-
tial applications include automatic conversation
analysis, punctuation transcription, and human-
computer dialog systems. Although some appli-
cations require domain-specific tag sets, it is often
useful to label utterances based on generic tags,
and several tag sets have been developed for this
purpose, e.g. DAMSL (Core and Allen, 1997).
Many approaches to automatic dialog act (DA)
tagging assume hand-labeled training data. How-
ever, when building a new system it may be diffi-
cult to find a labeled corpus that matches the tar-
get domain, or even the language. Even within the
same language, speech from different domains can
differ linguistically, and the same DA categories
might be characterized by different cues. The do-
main characteristics (face-to-face vs. telephone,
two-party vs. multi-party, informal vs. agenda-
driven, familiar vs. stranger) can influence both
the distribution of tags and word choice.

This work attempts to use unlabeled target do-
main data in order to improve cross-domain train-
ing performance, an approach referred to as both
unsupervised and semi-supervised domain adapta-
tion in the literature. We refer to the labeled train-
ing domain as the source domain. We compare
two adaptation approaches: a simple one based
on forcing the classifier to learn only on “shared”
features that appear in both domains, and a more
complex one based on Structural Correspondence
Learning (SCL) from Blitzer et al. (2007). The
shared feature approach has been investigated for
adaptation in other tasks, e.g. Aue and Gamon
(2005) for sentiment classification and Dredze et
al. (2007) for parsing. SCL has been used suc-
cessfully for sentiment classification and part-of-
speech tagging (Blitzer et al., 2006); here we in-
vestigate its applicability to the DA classification
task, using a multi-view learning implementation
as suggested by Blitzer et al. (2009). In addition to
analyzing these two methods on a novel task, we
show an interesting comparison between them: in
this setting, both methods turn out to have a simi-
lar effect caused by correlating cues for a particu-
lar DA class (Backchannel) with length.

We classify pre-segmented utterances based on
their transcripts, and we consider only four high-
level classes: Statement, Question, Backchannel,
and Incomplete. Experiments are performed us-
ing all train/test pairs among three conversational
speech corpora : the Meeting Recorder Dialog Act
corpus (MRDA) (Shriberg et al., 2004), Switch-
board DAMSL (Swbd) (Jurafsky et al., 1997), and
the Spanish Callhome dialog act corpus (SpCH)
(Levin et al., 1998). The first is multi-party,
face-to-face meeting speech; the second is topic-
prompted telephone speech between strangers;
and the third is informal telephone speech between
friends and family members. The first two are in
English, while the third is in Spanish. When the
source and target domains differ in language, we
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apply machine translation to the target domain to
convert it to the language of the source domain.

2 Related Work

Automatic DA tagging across domain has been
investigated by a handful of researchers. Webb
and Liu (2008) investigated cross-corpus train-
ing between Swbd and another corpus consist-
ing of task-oriented calls, although no adaptation
was attempted. Similarly, Rosset et al. (2008)
reported on recognition of task-oriented DA tags
across domain and language (French to English)
by using utterances that had been pre-processed
to extract entities. Tur (2005) applied supervised
model adaptation to intent classification across
customer dialog systems, and Guz et al. (2010)
applied supervised model adaptation methods for
DA segmentation and classification on MRDA us-
ing labeled data from both MRDA and Swbd.
Most similar to our work is that of Jeong et al.
(2009), who compared two methods for semi-
supervised adaptation, using Swbd/MRDA as the
source training set and email or forums corpora as
the target domains. Both methods were based on
incorporating unlabeled target domain examples
into training. Success has also been reported for
self-training approaches on same-domain semi-
supervised learning (Venkataraman et al., 2003;
Tur et al., 2005). We are not aware of prior work
on cross-lingual DA tagging via machine transla-
tion, although a translation approach has been em-
ployed for cross-lingual text classification and in-
formation retrieval, e.g. Bel et al. (2003).

In recent years there has been increasing in-
terest in domain adaptation methods based on
unlabeled target domain data. Several kinds of
approaches have been proposed, including self-
training (Roark and Bacchiani, 2003), instance
weighting (Huang et al., 2007), change of feature
representation (Pan et al., 2008), and clustering
methods (Xing et al., 2007). SCL (Blitzer et al.,
2006) is one feature representation approach that
has been effective on certain high-dimensional
NLP problems, including part-of-speech tagging
and sentiment classification. SCL uses unlabeled
data to learn feature projections that tie together
source and target features via their correlations
with features shared between domains. It first se-
lects “pivot features” that are common in both do-
mains; next, linear predictors for those features are
learned on all the other features. Finally, singular

value decomposition (SVD) is performed on the
collection of learned linear predictors correspond-
ing to different pivot features. Features that tend
to get similar weights in predicting pivot features
will be tied together in the SVD. By learning on
the SVD dimensions, the source-trained classifier
can put weight on target-only features.

3 Methods

Our four-class DA problem is similar to problems
studied in other work, such as Tur et al. (2007)
who used five classes (ours plus Floorgrab/hold).
When defining a mapping from each corpus’ tag
set to the four high-level classes, our goal was to
try to make the classes similarly defined across
corpora. Note that the Incomplete category is de-
fined in Swbd-DAMSL to include only utterances
too short to determine their DA label (e.g., just a
filler word). Thus, for our work the MRDA In-
complete category excludes utterances also tagged
as Statement or Question; it includes those con-
sisting of just a floor-grab, hold or filler word.

For classification we used an SVM with linear
kernel, with L2 regularization and L1 loss, as im-
plemented in the Liblinear package (Fan et al.,
2008) which uses the one-vs.-rest configuration
for multiclass classification. SVMs have been suc-
cessful for supervised learning of DAs based on
words and other features (Surendran and Levow,
2006; Liu, 2006). Features are derived from the
hand transcripts, which are hand-segmented into
DA units. Punctuation and capitalization are re-
moved so that our setting corresponds to classifi-
cation based on (perfect) speech recognition out-
put. The features are counts of unigrams, bi-
grams, and trigrams that occur at least twice in
the train set, including beginning/end-of-utterance
tags (〈s〉, 〈/s〉), and a length feature (total num-
ber of words, z-normalized across the training
set). Note that some previous work on DA tag-
ging has used contextual features from surround-
ing utterances, or Markov models for the DA se-
quence. In addition, some work has used prosodic
or other acoustic features. The work of Stolcke
et al. (2000) found benefits to using Markov se-
quence models and prosodic features in addition
to word features, but those benefits were relatively
small, so for simplicity our experiments here use
only word features and classify utterances in iso-
lation.

We used Google Translate to derive English
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translations of the Spanish SpCH utterances, and
to derive Spanish translations of the English Swbd
and MRDA utterances. Of course, translations are
far from perfect; DA classification performance
could likely be improved by using a translation
system trained on spoken dialog. For instance,
Google Translate often failed on certain words like
“i” that are usually capitalized in text. Even so,
when training and testing on translated utterances,
the results with the generic system are surprisingly
good.

The results reported below used the standard
train/test splits provided with the corpora: MRDA
had 51 train meetings/11 test; Swbd had 1115 train
conversations/19 test; SpCH had 80 train conver-
sations/20 test. The SpCH train set is the smallest
at 29k utterances. To avoid issues of differing train
set size when comparing performance of different
models, we reduced the Swbd and MRDA train
sets to the same size as SpCH using randomly se-
lected examples from the full train sets. For each
adaptation experiment, we used the target domain
training set as the unlabeled data, and report per-
formance on the target domain test set. The test
sets contain 4525, 15180, and 3715 utterances for
Swbd, MRDA, and SpCH respectively.

4 Results

Table 1 shows the class proportions in the training
sets for each domain. MRDA has fewer Backchan-
nels than the the others, which is expected since
the meetings are face-to-face. SpCH has fewer In-
completes and more Questions than the others; the
reasons for this are unclear. Backchannels have
the shortest mean length (less than 2 words) in all
domains. Incompletes are also short, while State-
ments have the longest mean length. The mean
lengths of Statements and Questions are similar
in the English corpora, but are shorter in SpCH.
(This may point to differences in how the utter-
ances were segmented; for instance Swbd utter-
ances can span multiple turns, although 90% are
only one turn long.)

Because of the high class skew, we consider two
different schemes for training the classifiers, and
report different performance measures for each.
To optimize overall accuracy, we use basic un-
weighted training. To optimize average per-class
recall (weighted equally across all classes), we use
weighted training, where each training example is
weighted inversely to its class proportion. We op-

timize the regularization parameter using a source
domain development set corresponding to each
training set. Since the optimum values are close
for all three domains, we choose a single value for
all the accuracy classifiers and a single value for
all the per-class recall classifiers. (Different values
are chosen for different feature types correspond-
ing to the different adaptation methods.)

Inc. Stat. Quest. Back.
Swbd 8.1% 67.1% 5.8% 19.1%
MRDA 10.7% 67.9% 7.5% 14.0%
SpCH 5.7% 60.6% 12.1% 21.7%

Table 1: Proportion of utterances in each
DA category (Incomplete, Statement, Question,
Backchannel) in each domain’s training set.

Table 2 gives baseline performance for all train-
test pairs, using translated versions of the test set
when the train set differs in language. It also lists
the in-domain results using translated (train and
test) data, and results using the adaptation methods
(which we discuss below). Figure 1 shows details
of the contribution of each class to the average per-
class recall; bar height corresponds to the second
column in Table 2.

4.1 Baseline performance and analysis

We observe first that translation does not have a
large effect on in-domain performance; degrada-
tion occurs primarily in Incompletes and Ques-
tions, which depend most on word order and there-
fore might be most sensitive to ordering differ-
ences in the translations. We conclude that it is
possible to perform well on the translated test sets
when the training data is well matched. However,
cross-domain performance degradation is much
worse between pairs that differ in language than
between the two English corpora.

We now describe three kinds of issues contribut-
ing to cross-domain domain degradation, which
we observed anecdotally. First, some highly im-
portant words in one domain are sometimes miss-
ing entirely from another domain. This issue ap-
pears to have a dramatic effect on Backchannel
detection across languages: when optimizing for
average per-class recall, the English-trained clas-
sifiers detect about 20% of the Spanish translated
Backchannels and the Spanish classifier detects
a little over half of the English ones, while they
each detect more than 80% in their own domain.
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train set Acc (%) Avg. Rec. (%)
Test on Swbd

Swbd 89.2 84.9
Swbd translated 86.7 80.4
MRDA baseline 86.4 78.0
MRDA shared only 85.7* 77.7
MRDA SCL 81.8* 69.6
MRDA length only 78.3* 51.4
SpCH baseline 74.5 57.2
SpCH shared only 77.4* 64.2
SpCH SCL 76.8* 64.8
SpCH length only 77.7* 48.2
majority 67.7 25.0

Test on MRDA
MRDA 83.8 80.5
MRDA translated 80.5 74.7
Swbd baseline 81.0 71.6
Swbd shared only 80.1* 72.1
Swbd SCL 75.6* 68.1
Swbd length only 68.6* 44.9
SpCH baseline 66.9 50.5
SpCH shared only 66.8 52.1
SpCH SCL 66.1* 58.4
SpCH length only 68.3* 44.6
majority 65.2 25.0

Test on SpCH
SpCH 83.1 72.8
SpCH translated 82.4 71.3
Swbd baseline 63.8 41.1
Swbd shared only 66.2* 50.9
Swbd SCL 68.2* 47.2
Swbd length only 72.6* 43.6
MRDA baseline 65.1 42.9
MRDA shared only 65.5 51.2
MRDA SCL 67.6* 50.9
MRDA length only 72.6* 44.7
majority 65.3 25.0

Table 2: Overall accuracy and average per-class
recall on each test set, using in-domain, in-domain
translated, and cross-domain training. Starred re-
sults under the accuracy column are significantly
different from the corresponding cross-domain
baseline under McNemar’s test (p < 0.05). (Sig-
nificance is not calculated for the average per-class
recall column.) “Majority” classifies everything as
Statement.

The reason for the cross-domain drop is that many
backchannel words in the English corpora (uhhuh,
right, yeah) do not overlap with those in the Span-
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Figure 1: Per-class recall of weighted classifiers
in column 2 of Table 2. Bar height represents
average per-class recall; colors indicate contribu-
tion of each class: I=incomplete, S=statement,
Q=question, B=backchannel. (Maximum possible
bar height is 100%, each color 25%).

ish corpora (mmm, sı́, ya) even after translation—
for example, “ya” becomes “already”, “sı́” be-
comes “yes”, “right” becomes “derecho”, and “uh-
huh”, “mmm” are unchanged.

A second issue has to do with different kinds
of utterances found in each domain, which some-
times lead to different relationships between fea-
tures and class label. This is sometimes caused
by the translation system; for example, utterances
starting with “es que . . .” are usually statements
in SpCH, but without capitalization the translator
often gives “is that . . .”. Since “〈s〉–is–that” is
a cue feature for Question in English, these utter-
ances are usually labeled as Question by the En-
glish domain classifiers. The existence of differ-
ent types of utterances can result in sets of features
that are more highly correlated in one domain than
the other. In both Swbd and translated SpCH, ut-
terances containing the trigram “〈s〉–but–〈/s〉” are
most likely to be in the Incomplete class. In Swbd,
the bigram “but–〈/s〉” rarely occurs outside of that
trigram, but in SpCH it sometimes occurs at the
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end of long (syntactically-incomplete) Statements,
so it corresponds to much lower likelihood for the
Incomplete class.

The last issue concerns utterances whose true
label probabilities given the word sequence are
not the same across domains. We distinguish two
such kinds utterances. The first are due to class
definition differences across domains and anno-
tators, e.g., long statements or questions that are
also incomplete are more often labeled Incomplete
in SpCH and Swbd than in MRDA. The second
kind are utterances whose class labels are not com-
pletely determined by their word sequence. To
minimize error rate the classifier should label an
utterance with its most frequent class, but that may
differ across domains. For example, “yes” can be
either a Statement of Backchannel; in the English
corpora, it is most likely to be a Statement (“yeah”
is more commonly used for Backchannels). How-
ever, “sı́” is most likely to be a Backchannel in
SpCH. To measure the effect of differing label
probabilities across domains, we trained “domain-
general” classifiers using concatenated training
sets for each pair of domains. We found that they
performed about the same or only slightly worse
than domain-specific models, so we conclude that
this issue is likely only a minor effect.

4.2 Adaptation using shared features only

In the cross-language domain pairs, some dis-
criminative features in one domain are missing
in the other. By removing all features from the
source domain training utterances that are not ob-
served (twice) in the target domain training data,
we force the classifier to learn only on features
that are present in both domains. As seen in
Figure 1, this had the effect of improving re-
call of Backchannels in the four cross-language
cases. Backchannels are the second-most frequent
class after Statements, and are typically short in
all domains. Many typical Backchannel words
are domain-specific; by removing them from the
source data, we force the classifier to attempt to
detect Backchannels based on length alone. The
resulting classifier has a better chance of recog-
nizing target domain Backchannels that lack the
source-only Backchannel words. At the same
time, it mistakes many other short utterances for
Backchannels, and does particularly worse on In-
completes, for which length is also strong cue.
Although average per-class recall improved in all

four cross-language cases, total accuracy only im-
proved significantly in two of those cases, and
for the Swbd/MRDA pair, accuracy got signifi-
cantly worse. The effect on the one-vs.-rest com-
ponent classifiers was mixed: for some (State-
ment and some Backchannel classifiers in the
cross-language cases), accuracy improved, while
in other cases it decreased.

As noted above, the shared feature approach
was investigated by Aue and Gamon (2005), who
argued that its success depends on the assump-
tion that class/feature relationships be the same
across domains. However, we argue here that the
success of this method requires stronger assump-
tions about both the relationship between domains
and the correlations between domain-specific and
shared features. Consider learning a linear model
on either the full source domain feature set or the
reduced shared feature set. In general, the co-
efficients for a given feature will be different in
each model—in the reduced case, the coefficients
incorporate correlation information and label pre-
dictive information for the removed (source-only)
features. This is potentially useful on the tar-
get domain, provided that there exist analogous,
target-only features that have similar correlations
with the shared features, and similar predictive co-
efficients.

For example, consider the discriminative source
and target features “uhhuh” and “mmm,” which
are both are correlated with a shared, noisier, fea-
ture (length). Forcing the model to learn only on
the shared, noisy feature incorporates correlation
information about “uhhuh”, which is similar to
that of “mmm”. Thus, the reduced model is poten-
tially more useful on the target domain, compared
to the full source domain model which might not
put weight on the noisy feature. On the other hand,
the approach is inappropriate in several other sce-
narios. For one, if the target domain utterances
actually represent samples from a subspace of the
source domain, the absence of features is informa-
tive: the fact that an utterance does not contain
“〈s〉–verdad–〈/s〉”, for instance, might mean that
it is less likely to be a Question, even if none of
the target domain utterances contain this feature.

4.3 Adaptation using SCL

The original formulation of SCL proposed predict-
ing pivot features using the entire feature set, ex-
cept for those features perfectly correlated with
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the pivots (e.g., the pivots themselves). Our ex-
periments with this approach found it unsuitable
for our task, since even after removing the pivots
there are many features which remain highly cor-
related with the pivots due to overlapping n-grams
(i-love vs. love). The number of features that over-
lap with pivots is large, so removing these would
lead to few features being included in the projec-
tions. Therefore, we adopted the multi-view learn-
ing approach suggested by Blitzer et al. (2009).
We split the utterances into two parts; pivot fea-
tures in the first part were predicted with all the
features in the second, and vice versa. We experi-
mented with splitting the utterances in the middle,
but found that since the number of words in the
first part (nearly) predicts the number in the sec-
ond part, all of the features in the first part were
positively predictive of pivots in the second part
so the main dimension learned was length. In the
results presented here, the first part consists of the
first word only, and the second part is the rest of
the utterance. (All utterances in our experiments
have at least one word.) Pivot features are selected
in each part and predicted using a least-squares
linear regression on all features in the other part.

We used the SCL-MI method of Blitzer et al.
(2007) to select pivot features, which requires that
they be common in both domains and have high
mutual information (MI) with the class (according
to the source labels.) We selected features that oc-
curred at least 10 times in each domain and were
in the top 500 ranked MI features for any of the
four classes; this resulted in 78-99 first-part piv-
ots and 787-910 second-part pivots (depending on
the source-target pair). We performed SVD on
the learned prediction weights for each part sep-
arately, and the top (at most) 100 dimensions were
used to project utterances on each side.

In all train-test pairs, the first dimension of the
first part appeared to distinguish short utterance
words from long ones. Such short-utterance words
included backchannels from both domains, in ad-
dition to acknowledgments, exclamations, swear
words and greetings. An analogous dimension ex-
isted in the second part, which captured words cor-
related with short utterances greater than one word
(right, really, interesting). The other dimensions of
both domains were difficult to interpret.

We experimented with using the SCL fea-
tures together with the raw features (n-grams and
length), as suggested by (Blitzer et al., 2006). As

in (Blitzer et al., 2006), we found it necessary to
scale up the SCL features to increase their utiliza-
tion in the presence of the raw features; however,
it was difficult to guess the optimal scaling factor
without having access to labeled target data. The
results here use SCL features only, which also al-
lows us to more clearly investigate the utility of
those features and to compare them with the other
feature sets.

The most notable effect was an improvement
in Backchannel recall, which occurred under both
weighted and unweighted training. In addition,
there was high confusability between Statements
and the other classes, and more false detections
of Backchannels. When optimizing for accuracy,
SCL led to an improvement in accuracy in three
of the four cross-language cases. When optimiz-
ing for average per-class recall, it led to improve-
ment in all cross-language cases; however, re-
call of Statements went down dramatically in all
cases. In addition, while there was no clear ben-
efit of the SCL vs. the shared-feature method on
the cross-language cases, the SCL approach did
much worse than the shared-feature approach on
the Swbd/MRDA pair, causing large degradation
from the baseline.

As we have noted, utterance length appears
to underlie the improvement seen in the cross-
language performance for both the SCL and
shared-feature approaches. Therefore, we include
results for a classifier based only on the length
feature. Optimizing for accuracy, this method
achieves the highest accuracy of all methods in
the cross-language pairs. (It does so by classifying
everything as Statement or Backchannel, although
with weighted training, as shown in Figure 1, it
gets some Incompletes.) However, under weighted
class training, the average per-class recall of this
method is much worse than the shared-feature and
SCL approaches.

Comparison with other SCL tasks Although
we basically take a text classification approach to
the problem of dialog act tagging, our problem dif-
fers in several ways from the sentiment classifi-
cation task in Blitzer et al. (2007). In particular,
utterances are much shorter than documents, and
we use position information via the start/end-of-
sentence tags. Some important DA cue features
(such as the value of the first word) are mutually
exclusive rather than correlated. In this way our
problem resembles the part-of-speech tagging task
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(Blitzer et al., 2006), where the category of each
word is predicted using values of the left, right,
and current word token. In fact, that work used
a kind of multi-view learning for the SCL projec-
tion, with three views corresponding to the three
word categories. However, our problem essen-
tially uses a mix of bag-of-words and position-
based features, which poses a greater challenge
since there is no natural multi-view split. The ap-
proach described here suffers from the fact that it
cannot use all the features available to the base-
line classifier—bigrams and trigrams spanning the
first and second words are left out. It also suffers
from the fact that the first-word pivot feature set is
extremely small—a consequence of the small set
of first words that occur at least 10 times in the
29k-utterance corpora.

5 Conclusions

We have considered two approaches for domain
adaptation for DA tagging, and analyzed their
performance for source/target pairs drawn from
three different domains. For the English domains,
the baseline cross-domain performance was quite
good, and both adaptation methods generally led
to degradation over the baseline. For the cross-
language cases, both methods were effective at im-
proving average per-class recall, and particularly
Backchannel recall. SCL led to significant accu-
racy improvement in three cases, while the shared
feature approach did so in two cases. On the
other hand, SCL showed poor discrimination be-
tween Statements and other classes, and did worse
on the same-language pair that had little cross-
domain degradation. Both methods work by tak-
ing advantage of correlations between shared and
domain-specific class-discriminative features. Un-
fortunately in our task, membership in the rare
classes is often cued by features that are mutually
exclusive, e.g., the starting n-gram for Questions.
Both methods might therefore benefit from addi-
tional shared features that are correlated with these
n-grams, e.g., sentence-final intonation for Ques-
tions. (Indeed, other work on semi-supervised
DA tagging has used a richer feature set: Jeong
et al. (2009) included parse, part-of-speech, and
speaker sequence information, and Venkataraman
et al. (2003) used prosodic information, plus a
sequence-modeling framework.) From the task
perspective, an interesting result is that machine
translation appears to preserve most of the dialog-

act information, in that in-domain performance is
similar on original and translated text.
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School Of Computing

University of Utah
hal@cs.utah.edu

Abhishek Kumar
School Of Computing

University of Utah
abhik@cs.utah.edu

Avishek Saha
School Of Computing

University of Utah
avishek@cs.utah.edu

Abstract

In this work, we propose a semi-
supervised extension to a well-known
supervised domain adaptation approach
(EA) (Dauḿe III, 2007). Our proposed
approach (EA++) builds on the notion
of augmented space (introduced in EA)
and harnesses unlabeled data in target do-
main to ameliorate the transfer of infor-
mation fromsourceto target. This semi-
supervised approach to domain adaptation
is extremely simple to implement, and can
be applied as a pre-processing step to any
supervised learner. Experimental results
on sequential labeling tasks demonstrate
the efficacy of the proposed method.

1 Introduction

A domain adaptation approach for sequential la-
beling tasks in NLP was proposed in (Daumé
III, 2007). The proposed approach, termed
EASYADAPT (EA), augments thesource domain
feature space using features from labeled data in
target domain. EA is simple, easy to extend and
implement as a preprocessing step and most im-
portantly is agnostic of the underlying classifier.
However, EA requires labeled data in the target
and hence applies tofully supervised(labeled data
in sourceand target) domain adaptation settings
only. In this paper, we propose asemi-supervised1

(labeled data insource, and both labeled and un-
labeled data intarget) approach to leverage unla-
beled data for EASYADAPT (which we call EA++)
and empirically demonstrate its superior perfor-
mance over EA as well as few other existing ap-
proaches.

1We refer, labeled data in source andonly unlabeled data
in target, as theunsuperviseddomain adaptation setting.

There exists prior work on supervised domain
adaptation (or multi-task learning) that can be re-
lated to EASYADAPT. An algorithm for multi-
task learning using shared parameters was pro-
posed (Evgeniou and Pontil, 2004) for multi-task
regularization where each task parameter was rep-
resented as sum of a mean parameter (that stays
same for all tasks) and its deviation from this
mean. SVM was used as the base classifier
and the algorithm was formulated in the standard
SVM dual optimization setting. Subsequently,
this framework (Evgeniou and Pontil, 2004) was
extended (Dredze et al., 2010) to online multi-
domain setting. Prior work on semi-supervised
approaches to domain adaptation also exists in lit-
erature. Extraction of specific features from the
available dataset was proposed (Arnold and Co-
hen, 2008; Blitzer et al., 2006) to facilitate the
task of domain adaptation. Co-adaptation (Tur,
2009), a combination of co-training and domain
adaptation, can also be considered as a semi-
supervised approach to domain adaptation. A
semi-supervised EM algorithm for domain adap-
tation was proposed in (Dai et al., 2007). Sim-
ilar to graph based semi-supervised approaches,
a label propagation method was proposed (Xing
et al., 2007) to facilitate domain adaptation. The
recently proposed Domain Adaptation Machine
(DAM) (Duan et al., 2009) is a semi-supervised
extension of SVMs for domain adaptation and
presents extensive empirical results. However, in
almost all of the above cases, the proposed meth-
ods either use specifics of the datasets or are cus-
tomized for some particular base classifier and
hence it is not clear how the proposed methods
can be extended to other existing classifiers.

EA, on the other hand, is remarkably general in
the sense that it can be used as a pre-processing
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step in conjunction with any base classifier. How-
ever, one of the prime limitations of EA is its inca-
pability to leverage unlabeled data. Given its sim-
plicity and generality, it would be interesting to
extend EA to semi-supervised settings. In this pa-
per we propose EA++, a co-regularization based
semi-supervised extension to EA. We present our
approach and results for a single pair of source
and target domain. However, we note that EA++
can also be extended to multiple source settings.
If we havek sources and a single target domain
then we can introduce a co-regularizer for each
source-target pair. Due to space constraints, we
defer details to a full version.

2 Background

2.1 Problem Setup and Notations

Let X ⊂ R
d denote the instance space andY

= {−1, +1} denote the label space. We have a set
of source labeled examplesLs(∼ Ds(x, y)) and
a set of target labeled examplesLt(∼ Dt(x, y)),
where|Ls| = ls ≫ |Lt| = lt. We also have target
unlabeled data denoted byUt(∼ Dt(x)), where
|Ut| = ut. Our goal is to learn a hypothesish :
X 7→ Y having low expected error with respect to
the target domain. In this paper, we considerlin-
ear hypothesesonly. However, the proposed tech-
niques extend to non-linear hypotheses, as men-
tioned in (Dauḿe III, 2007). Source and target
empirical errors for hypothesish are denoted by
ǫ̂s(h, fs) and ǫ̂t(h, ft) respectively, wherefs and
ft are source and target labeling functions. Sim-
ilarly, the corresponding expected errors are de-
noted byǫs(h, fs) and ǫt(h, ft). Shorthand no-
tions of ǫ̂s, ǫ̂t, ǫs andǫt have also been used.

2.2 EasyAdapt (EA)

In this section, we give a brief overview of
EASYADAPT proposed in (Dauḿe III, 2007). Let
us denoteRd as theoriginal space. EA operates
in anaugmentedspace denoted by̆X ⊂ R

3d (for a
single pair of source and target domain). Fork do-
mains, theaugmentedspace blows up toR(k+1)d.
The augmented feature mapsΦs, Φt : X 7→ X̆ for
source and target domains are defined as,

Φs(x) = 〈x, x, 0〉

Φt(x) = 〈x, 0, x〉
(2.1)

where x and 0 are vectors inR
d, and 0 de-

notes a zero vector of dimensiond. The firstd-
dimensional segment corresponds to commonality
between source and target, secondd-dimensional
segment corresponds to the source domain while
the last segment corresponds to the target domain.
Source and target domain features are transformed
using these feature maps and the augmented fea-
ture space so constructed is passed onto the un-
derlying supervised classifier. One of the most ap-
pealing properties of EASYADAPT is that it is ag-
nostic of the underlying supervised classifier be-
ing used to learn in theaugmentedspace. Al-
most anystandard supervised learning approach
for linear classifiers(for e.g., SVMs, perceptrons)
can be used to learn alinear hypothesis̆h ∈ R

3d

in the augmented space. As mentioned earlier,
this work considers linear hypotheses only and the
the proposed techniques can be extended (Daumé
III, 2007) to non-linear hypotheses. Let us denote
h̆ = 〈hc, hs, ht〉, where each ofhc, hs, ht is of
dimensiond and represent thecommon, source-
specificand target-specificcomponents of̆h, re-
spectively. During prediction on target data, the
incoming target featurex is transformed to obtain
Φt(x) and h̆ is applied on this transformed fea-
ture. This is equivalent to applying(hc + ht) on
x.

A good intuitive insight into why this simple
algorithm works so well in practice and outper-
forms most state-of-the-art algorithms is given
in (Dauḿe III, 2007). Briefly, it can be thought to
be simultaneously training two hypotheses:ws =
(hc +hs) for source domain andwt = (hc +gt)
for target domain. The commonality between the
domains is represented byhc whereas the source
and target domain specific information is captured
by hs and ht, respectively. This technique can
be easily extended to a multi-domain scenario by
making more copies of the original feature space
((K +1) copies in case ofK domains). A kernel-
ized version of the algorithm has also been pre-
sented in (Dauḿe III, 2007).

3 Using Unlabeled data

As discussed in the previous section, the
EASYADAPT algorithm is attractive because it
performs very well empirically and can be used in
conjunction with any underlying supervised clas-
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sifier. One drawback of EASYADAPT is that it
does not make use of unlabeled target data which
is generally available in large quantity in most
practical problems. In this section, we propose a
semi-supervised extension of this algorithm while
maintaining the desirable classifier-agnostic prop-
erty.

3.1 Motivation

In multi-view approach for semi-supervised learn-
ing algorithms (Sindhwani et al., 2005), different
hypotheses are learned in differentviews. There-
after, unlabeled data is utilized to co-regularize
these learned hypotheses by making them agree
on unlabeled samples. In domain adaptation, the
source and target data come from two different
distributions. However, if the source and tar-
get domains arereasonably closeto each other,
we can employ a similar form of regularization
using unlabeled data. A similar co-regularizer
based approach for unlabeled data was previously
shown (Duan et al., 2009) to give improved empir-
ical results for domain adaptation task. However,
their technique applies for the particular base clas-
sifier they consider and hence does not extend to
EASYADAPT.

3.2 EA++: EASYADAPT with unlabeled data

In our proposed semi-supervised extension to
EASYADAPT, the source and target hypothesis are
made to agree on unlabeled data. We refer to
this algorithm as EA++. Recall that EASYADAPT

learns a linear hypothesis̆h ∈ R
3d in the aug-

mentedspace. The hypothesis̆h contains com-
mon, source and target sub-hypotheses and is ex-
pressed as̆h = 〈hc, hs, ht〉. In original space
(ref. section 2.2), this is equivalent to learning a
source specific hypothesisws = (hc + hs) and a
target specific hypothesiswt = (hc + ht).

In EA++, we want source hypothesisws and
target hypothesiswt to agree on unlabeled data.
For some unlabeled target samplexi ∈ Ut ⊂ R

d,
EA++ would implicitly want to make the predic-
tions of wt andwt on xi to agree. Formally, it

aims to achieve the following condition:

ws · xi ≈ wt · xi

⇐⇒ (hc + hs) · xi ≈ (hc + ht) · xi

⇐⇒ (hs − ht) · xi ≈ 0

⇐⇒ 〈hc, hs, ht〉 · 〈0, xi, −xi〉 ≈ 0.

(3.1)

We define another feature mapΦu : X 7→ X̃ for
unlabeled data as below:

Φu(x) = 〈0, x, −x〉. (3.2)

Every unlabeled sample is transformed using the
mapΦu(.). The augmented feature space that re-
sults from the application of three feature maps,
namely,Φs : X 7→ X̆, Φt : X 7→ X̆, Φu : X 7→
X̆, on source labeled samples, target labeled sam-
pled and target unlabeled samples is summarized
in Figure 1.

As shown in Eq. 3.1, during the training phase,
EA++ assigns a predicted value close to0 for each
unlabeled sample. However, it is worth noting
that, during the test phase, EA++ predicts labels
from two classes:+1 and −1. This warrants
further exposition of the implementation specifics
which is deferred until the next subsection.
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Figure 1: Diagrammatic representation of feature
augmentation in EA and EA++

Algorithm 1 presents the EA++ approach in de-
tail.

3.3 Implementation

In this section, we present implementation specific
details of EA++. We consider SVM as our base
supervised learner (LEARN in Algorithm 1).
However, these details hold for other supervised
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Algorithm 1 EA++

Input: Ls; Lt; Ut; LEARN : supervised clas-
sifier
Output: h̆ : classifier learned in augmented
space
/* initialize augmented training set */
1: P := {}
/* construct augmented training set */
2: ∀(x, y) ∈ Ls, P := P ∪ {Φs(x), y}
3: ∀(x, y) ∈ Lt, P := P ∪ {Φt(x), y}
4: ∀x ∈ Ut, P := P ∪ {Φu(x), 0}
/* output learned classifier */
5: h̆ = LEARN (P )

classifiers too. In the dual form of SVM optimiza-
tion function, the labels are multiplied with the in-
ner product of features. This can make the un-
labeled samples redundant since we want their la-
bels to be0 according to Eq. 3.1. To avoid this, we
create as many copies ofΦu(x) as there are labels
and assign each label to one copy. For the case of
binary classification, we create two copies of ev-
ery augmented unlabeled sample, and assign+1
label to one copy and−1 to the other. The learner
attempts to balance the loss of the two copies, and
tries to make the prediction on unlabeled sample
equal to0. Figure 2 shows the curves of the hinge
loss for class+1, class−1 and their sum. The ef-
fective loss for each unlabeled sample is similar to
the sum of losses for+1 and−1 classes (shown in
Figure 2c).

4 Experiments

In this section, we demonstrate the empirical per-
formance of EA augmented with unlabeled data.

4.1 Setup

We follow the same experimental setup used
in (Dauḿe III, 2007) and perform two sequence
labelling tasks (a) named-entity-recognition
(NER), and (b) part-of-speech-tagging (POS )on
the following datasets:

PubMed-POS: Introduced by (Blitzer et al.,
2006), this dataset consists of two domains.
The WSJ portion of the Penn Treebank
serves as the source domain and the PubMed
abstracts serve as the target domain. The

Lo
ss

Lo
ss

Lo
ss

(a)

(b)

(c)

Figure 2: Loss functions for class+1, class−1
and unlabeled samples.

task is to perform part-of-speech tagging on
unlabeled PubMed abstracts with a classifier
trained on labeled WSJ and PubMed data.

Treebank-Brown. Treebank-Chunk data consists
of the following domains: the standard WSJ
domain (the same data as for CoNLL 2000),
the ATIS switchboard domain and the Brown
corpus. The Brown corpus consists of data
combined from six subdomains. Treebank-
Chunk is a shallow parsing task based on
the data from the Penn Treebank. Treebank-
Brown is identical to the Treebank-Chunk
task, However, in Treebank-Brown we con-
sider all of the Brown corpus to be a single
domain.

Table 1 presents a summary of the datasets
used. All datasets use roughly the same feature
set which are lexical information (words, stems,
capitalization, prefixes and suffixes), membership
on gazetteers, etc. We use an averaged perceptron
classifier from the Megam framework (implemen-
tation due to (Dauḿe III, 2004)) for all the afore-
mentioned tasks. The training sample size varies
from 1k to 16k. In all cases, the amount of unla-
beled target data was equal to the total amount of
labeled source and target data.
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Task Dom #Tr #De #Te #Ft
PubMed src 950,028 - - 571k
POS tgt 11,264 1,987 14,554 39k

wsj 191,209 29,455 38,440 94k
swbd3 45,282 5,596 41,840 55k
br-cf 58,201 8,307 7,607 144k

Tree br-cg 67,429 9,444 6,897 149k
bank- br-ck 51,379 6,061 9,451 121k
Chunk br-cl 47,382 5,101 5,880 95k

br-cm 11,696 1,324 1,594 51k
br-cn 56,057 6,751 7,847 115k
br-cp 55,318 7,477 5,977 112k
br-cr 16,742 2,522 2,712 65k

Table 1: Summary of Datasets. The columns de-
note task, domain, size of training, development
and test data sets, and the number of unique fea-
tures in the training data.

4.2 Results

We compare the empirical performance of
EA++ with a few other baselines, namely, (a)
SOURCEONLY (classifier trained on source la-
beled samples), (b) TARGETONLY -FULL (classi-
fier trained on the same number of target labeled
samples as the number of source labeled samples
in SOURCEONLY ), (c) TARGETONLY (classifier
trained on small amount of target labeled sam-
ples, roughly one-tenth of the amount of source la-
beled samples in SOURCEONLY ), (d) ALL (clas-
sifier trained on combined labeled samples of
SOURCEONLY and TARGETONLY ), (e) EA (clas-
sifier trained inaugmented feature spaceon the
same input training set as ALL ), (f) EA++ (clas-
sifier trained inaugmented feature spaceon the
same input training set as EA and an equal amount
of unlabeledtarget data). All these approaches
were tested on the entire amount of availabletar-
get test data.

Figure 3 presents the learning curves for
(a) SOURCEONLY , (b) TARGETONLY -FULL , (c)
TARGETONLY , (d) ALL , (e) EA, and (f) EA++
(EA with unlabeled data). The x-axis repre-
sents the number of training samples on which
the predictor has been trained. At this point,
we note that the number of training samples
vary depending on the particular approach being
used. For SOURCEONLY , TARGETONLY -FULL

and TARGETONLY , it is just the corresponding
number of labeled source or target samples, re-
spectively. For ALL and EA, it is the summa-
tion of labeled source and target samples. For
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Figure 3: Test accuracy of (a) PubMed-POS and
(b) Treebank-Brown for, SOURCEONLY , TARGE-
TONLY -FULL , TARGETONLY , ALL , EA and
EA++.

EA++, thex-value plotted denotes the amount of
unlabeled target data used (in addition to an equal
amount of source+target labeled data, as in ALL

or EA). We plot this number for EA++, just to
compare its improvement over EA when using an
additional (and equal) amount of unlabeled target
data. This accounts for the differentx values plot-
ted for the different curves. In all cases, the y-axis
denotes the error rate.

As can be seen in Figure 3(a), EA++ performs
better than the normal EA (which uses labeled
data only). The labeled and unlabeled case start
together but with increase in number of samples
their gap increases with the unlabeled case result-
ing in much lower error as compared to the labeled
case. Similar trends were observed in other data
sets as can be seen in Figure 3(b). We also note
that EA performs poorly for some cases, as was
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shown (Dauḿe III, 2007) earlier.

5 Summary

In this paper, we have proposed a semi-supervised
extension to an existing domain adaptation tech-
nique (EA). Our approach EA++, leverages the
unlabeled data to improve the performance of EA.
Empirical results demonstrate improved accuracy
for sequential labeling tasks performed on stan-
dardized datasets. The previously proposed EA
could be applied exclusively tofully supervised
domain adaptation problems only. However, with
the current extension, EA++ applies to bothfully
supervisedand semi-superviseddomain adapta-
tion problems.

6 Future Work

In both EA and EA++, we use features from
source and target space to construct an augmented
feature space. In other words, we are sharing fea-
tures across source and targetlabeleddata. We
term such algorithms asFeature Sharing Algo-
rithms. Feature sharing algorithms are effective
for domain adaptation because they are simple,
easy to implement as a preprocessing step and out-
perform many existing state-of-the-art techniques
(shown previously for domain adaptation (Daumé
III, 2007)). However, despite their simplicity and
empirical success, it is not theoretically apparent
why these algorithms perform so well. Prior work
provides some intuitions but is mostly empirical
and a formal theoretical analysis to justify FSAs
(for domain adaptation) is clearly missing. Prior
work (Maurer, 2006) analyzes the multi-task reg-
ularization approach (Evgeniou and Pontil, 2004)
(which is related to EA) but they consider a cumu-
lative loss in multi-task (or multi-domain) setting.
This does not apply to domain adaptation setting
where we are mainly interested in loss in the target
domainonly.

Theoretically analyzing the superior perfor-
mance of EA and EA++ and providing gener-
alization guarantees is an interesting line of fu-
ture work. One approach would be to model
the feature sharing approach in terms of co-
regularization; an idea that originated in the
context of multiview learning and for which
some theoretical analysis has already been done
(Rosenberg and Bartlett, 2007; Sindhwani and

Rosenberg, 2008). Additionally, the afore-
mentioned techniques, namely, SOURCEONLY ,
TARGETONLY , ALL have been empirically com-
pared to EA and EA++. It would be interest-
ing to formally frame these approaches and see
whether their empirical performance can be justi-
fied within a theoretical framework.
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Hal Dauḿe III. 2007. Frustratingly easy domain adap-
tation. In ACL’07, pages 256–263, Prague, Czech
Republic.

Mark Dredze, Alex Kulesza, and Koby Crammer.
2010. Multi-domain learning by confidence-
weighted parameter combination.Machine Learn-
ing, 79.

Lixin Duan, Ivor W. Tsang, Dong Xu, and Tat-Seng
Chua. 2009. Domain adaptation from multiple
sources via auxiliary classifiers. InICML’09, pages
289–296, Montreal, Quebec.

Theodoros Evgeniou and Massimiliano Pontil. 2004.
Regularized multitask learning. InKDD’04, pages
109–117, Seattle, WA, USA.

Andreas Maurer. 2006. The Rademacher complexity
of linear transformation classes. InCOLT’06, pages
65–78, Pittsburgh, Pennsylvania.

D. S. Rosenberg and P. L. Bartlett. 2007. The
Rademacher complexity of co-regularized kernel
classes. InAISTATS’07, San Juan, Puerto Rico.

Vikas Sindhwani and David S. Rosenberg. 2008.
An RKHS for multi-view learning and manifold
co-regularization. InICML’08, pages 976–983,
Helsinki, Finland.

58



Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin.
2005. A co-regularization approach to semi-
supervised learning with multiple views. InICML
Workshop on Learning with Multiple Views, pages
824–831, Bonn, Germany.

Gokhan Tur. 2009. Co-adaptation: Adaptive
co-training for semi-supervised learning. In
ICASSP’09, pages 3721–3724, Taipei, Taiwan.

Dikan Xing, Wenyuan Dai, Gui-Rong Xue, and Yong
Yu. 2007. Bridged refinement for transfer learning.
In PKDD’07, pages 324–335, Warsaw, Poland.

59





Author Index

Carenini, Giuseppe, 16
Chapelle, Olivier, 1
Ciaramita, Massimiliano, 1

Daelemans, Walter, 31
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