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Abstract

Synchronous tree insertion grammars
(STIG) are formal models for syntax-
based machine translation. We formal-
ize a decoder for probabilistic STIG; the
decoder transforms every source-language
string into a target-language tree and cal-
culates the probability of this transforma-
tion.

1 Introduction

Tree adjoining grammars (TAG) were invented in
(Joshi et al. 1975) in order to better character-
ize the string sets of natural languages1. One of
TAG’s important features is the ability to introduce
two related syntactic units in a single rule, then
push those two units arbitrarily far apart in sub-
sequent derivation steps. For machine translation
(MT) between two natural languages, each being
generated by a TAG, the derivations of the two
TAG may be synchronized (Abeille et al., 1990;
Shieber and Shabes, 1990) in the spirit of syntax-
directed transductions (Lewis and Stearns, 1968);
this results insynchronous TAG(STAG). Recently,
in (Nesson et al., 2005, 2006) probabilistic syn-
chronous tree insertion grammars (pSTIG) were
discussed as model of MT; a tree insertion gram-
mar is a particular TAG in which the parsing prob-
lem is solvable in cubic-time (Schabes and Wa-
ters, 1994). In (DeNeefe, 2009; DeNeefe and
Knight 2009) a decoder for pSTIG has been pro-
posed which transforms source-language strings
into (modifications of) derivation trees of the
pSTIG. Nowadays, large-scale linguistic STAG
rule bases are available.

In an independent tradition, the automata-
theoretic investigation of the translation of trees
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1see (Joshi and Shabes, 1997) for a survey

led to the rich theory of tree transducers (Gécseg
and Steinby, 1984, 1997). Roughly speaking, a
tree transducer is a finite term rewriting system. If
each rewrite rule carries a probablity or, in gen-
eral, a weight from some semiring, then they are
weighted tree transducers (Maletti, 2006, 2006a;
Fülöp and Vogler, 2009). Such weighted tree
transducers have also been used for the specifi-
cation of MT of natural languages (Yamada and
Knight, 2001; Knight and Graehl, 2005; Graehl et
al., 2008; Knight and May 2009).

Martin and Vere (1970) and Schreiber (1975)
established the first connections between the two
traditions; also Shieber (2004, 2006) and Maletti
(2008, 2010) investigated their relationship.

The problem addressed in this paper is the
decoding of source-language strings into target-
language trees where the transformation is de-
scribed by a pSTIG. Currently, this decoding re-
quires two steps: first, every source string is
translated into a derivation tree of the underly-
ing pSTIG (DeNeefe, 2009; DeNeefe and Knight
2009), and second, the derivation tree is trans-
formed into the target tree using an embedded tree
transducer (Shieber, 2006). We propose a trans-
ducer model, called abottom-up tree adjoining
transducer, which performs this decoding in a sin-
gle step and, simultaneously, computes the prob-
abilities of its derivations. As a basis of our ap-
proach, we present a formal definition of pSTIG.

2 Preliminaries

For two setsΣ andA, we letUΣ(A) be the set of
all (unranked) trees overΣ in which also elements
of A may label leaves. We abbreviateUΣ(∅) by
UΣ. We denote the set ofpositions, leaves, and
non-leavesof ξ ∈ UΣ by pos(ξ) ⊆ N

∗, lv(ξ), and
nlv(ξ), resp., whereε denotes the root ofξ and
w.i denotes theith child of positionw; nlv(ξ) =
pos(ξ) \ lv(ξ). For a positionw ∈ pos(ξ), thela-
bel of ξ at w (resp.,subtree ofξ at w) is denoted
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by ξ(w) (resp.,ξ|w). If additionally ζ ∈ UΣ(A),
thenξ[ζ]w denotes the tree which is obtained from
ξ by replacing its subtree atw by ζ. For every
∆ ⊆ Σ ∪A, the setpos∆(ξ) is the set of all those
positionsw ∈ pos(ξ) such thatξ(w) ∈ ∆. Simi-
larly, we can definelv∆(ξ) andnlv∆(ξ). Theyield
of ξ is the sequenceyield(ξ) ∈ (Σ ∪ A)∗ of sym-
bols that label the leaves from left to right.

If we associate withσ ∈ Σ a rankk ∈ N, then
we require that in every treeξ ∈ UΣ(A) everyσ-
labeled position has exactlyk children.

3 Probabilistic STAG and STIG

First we will define probabilistic STAG, and sec-
ond, as a special case, probabilistic STIG.

LetN andT be two disjoint sets of, resp., non-
terminals and terminals. Asubstitution ruler is a
tuple(ζs, ζt, V,W, P

r
adj) where

• ζs, ζt ∈ UN (T ) (sourceand target tree) and
|lvN (ζs)| = |lvN (ζt)|,

• V ⊆ lvN (ζs)×lvN (ζt) (substitution sites), V
is a one-to-one relation, and|V | = |lvN (ζs)|,

• W ⊆ nlvN (ζs)×nlvN (ζt) (potential adjoin-
ing sites), and

• P r
adj : W → [0, 1] (adjoining probability).

An auxiliary ruler is a tuple(ζs, ζt, V,W, ∗, P r
adj)

whereζs, ζt,W , andP r
adj are defined as above and

• V is defined as above except that|V | =
|lvN (ζs)| − 1 and

• ∗ = (∗s, ∗t) ∈ lvN (ζs)× lvN (ζt) and neither
∗s nor ∗t occurs in any element ofV ; more-
over,ζs(ε) = ζs(∗s) andζt(ε) = ζt(∗t), and
∗s 6= ε 6= ∗t; the node∗s (and∗t) is called
thefoot-node ofζs (resp.,ζt).

An (elementary) ruleis either a substitution rule
or an auxiliary rule. Theroot-categoryof a ruler
is the tuple(ζs(ε), ζt(ε)), denoted byrc(r).

A probabilistic synchronous tree ad-
joining grammar (pSTAG) is a tuple
G = (N,T, (Ss, St),S,A, P ) such that N
andT are two disjoint sets (resp., of nonterminals
and terminals),(Ss, St) ∈ N×N (start nontermi-
nal), S andA are finite sets of, resp., substitution
rules and auxiliary rules, andP : S ∪ A → [0, 1]
such that for every(A,B) ∈ N ×N ,

∑

r∈S
rc(r)=(A,B)

P (r) = 1 and
∑

r∈A
rc(r)=(A,B)

P (r) = 1

assuming that in each case the number of sum-
mands is not zero. In the following, letG always
denote an arbitrary pSTAG.

Ss
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α

a
r1⇐⇒
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∗
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adj(e) = .8

A

α

r4⇐⇒

B

β
P (r4) = .1

A

γ

r5⇐⇒
B

δ
P (r5) = .9

Figure 1: The running example pSTAGG.

In Fig. 1 we show the rules of our running ex-
ample pSTAG, where the capital Roman letters are
the nonterminals and the small Greek letters are
the terminals. The substitution site (in ruler1) is
indicated by↓, and the potential adjoining sites are
denoted2 by a, b, c, d, ande. For instance, in for-
mal notation the rulesr1 andr2 are written as fol-
lows:

r1 = (Ss(α, A, A(α)), St(B(β), B, β), {↓}, {a}, P r1

adj)

where↓ = (2, 2) anda = (3, 1), and

r2 = (A(A, γ), B(B(δ), B), ∅, {b, c}, ∗, P r2

adj)

whereb = (ε, ε), c = (ε, 1), and∗ = (1, 2).
In the derivation relation ofG we will distin-

guish four types of steps:
1. substitution of a rule at a substitution site

(substitution),
2. deciding to turn a potential adjoining site into

an activated adjoining site (activation),
3. deciding to drop a potential adjoining site,

i.e., not to adjoin, (non-adjoining) and
4. adjoining of a rule at an activated adjoining

site (adjoining).
In the sentential forms (defined below) we will
maintain for every adjoining sitew a two-valued
flag g(w) indicating whetherw is a potential
(g(w) = p) or an activated site (g(w) = a).

Theset of sentential forms ofG is the setSF(G)
of all tuplesκ = (ξs, ξt, V,W, g) with

2Their placement (as left or right index) does not play a
role yet, but will later when we introduce pSTIG.
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• ξs, ξt ∈ UN (T ),
• V ⊆ lvN (ξs)× lvN (ξt) is a one-to-one rela-

tion, |V | = |lvN (ξs)| = |lvN (ξt)|,
• W ⊆ nlvN (ξs)× nlvN (ξt), and
• g : W → {p,a}.
The derivation relation (ofG) is the binary

relation ⇒ ⊆ SF(G) × SF(G) such that
for every κ1 = (ξ1s , ξ

1
t , V1,W1, g1) and κ2 =

(ξ2s , ξ
2
t , V2,W2, g2) we haveκ1 ⇒ κ2 iff one of

the following is true:

1. (substitution) there arew = (ws, wt) ∈ V1

andr = (ζs, ζt, V,W, P
r
adj) ∈ S such that

– (ξ1s (ws), ξ
1
t (wt)) = rc(r),

– ξ2s = ξ1s [ζs]ws andξ2t = ξ1t [ζt]wt ,
– V2 = (V1 \ {w}) ∪ w.V ,3

– W2 = W1 ∪ w.W , and
– g2 is the union ofg1 and the set of pairs

(w.u,p) for everyu ∈W ;
this step is denoted byκ1

w,r
=⇒ κ2;

2. (activation) there is aw ∈ W1 with g1(w) =
p and (ξ1s , ξ

1
t , V1,W1) = (ξ2s , ξ

2
t , V2,W2),

andg2 is the same asg1 except thatg2(w) =
a; this step is denoted byκ1

w
=⇒ κ2;

3. (non-adjoining) there isw ∈ W1 with
g1(w) = p and(ξ1s , ξ

1
t , V1) = (ξ2s , ξ

2
t , V2),

W2 = W1 \ {w}, andg2 is g1 restricted to
W2; this step is denoted byκ1

¬w
=⇒ κ2;

4. (adjoining) there arew ∈ W1 with g1(w) =
a, andr = (ζs, ζt, V,W, ∗, P

r
adj) ∈ A such

that, forw = (ws, wt),
– (ξ1s (ws), ξ

1
t (wt)) = rc(r),

– ξ2s = ξ1s [ζ ′s]ws whereζ ′s = ζs[ξ
1
s |ws ]∗s ,

ξ2t = ξ1t [ζ ′t]wt whereζ ′t = ζt[ξ
1
t |wt ]∗t ,

– V2 is the smallest set such that (i) for
every(us, ut) ∈ V1 we have(u′s, u

′
t) ∈ V2

where

u′s =

{

us if ws is not a prefix ofus,

ws. ∗s .u if us = ws.u for someu;

andu′t is obtained in the same way fromut,
wt, and∗t, and (ii)V2 containsw.V ;

– W2 is the smallest set such that (i) for every
(us, ut) ∈ W1 \ {w} we have(u′s, u

′
t) ∈

W2 whereu′s and u′t are obtained in the
same way as forV2, and g2(u′s, u

′
t) =

g1(us, ut) and (ii) W2 containsw.W and
g2(w.u) = p for everyu ∈W ;

this step is denoted byκ1
w,r
=⇒ κ2.

3w.V = {(ws.vs, wt.vt) | (vs, vt) ∈ V }

In Fig. 2 we show a derivation of our running
example pSTAG where activated adjoining sites
are indicated by surrounding circles, the other ad-
joining sites are potential.

Ss↓ ⇐⇒ St↓

substitution of
r1 at (ε, ε)

=
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Figure 2: An example derivation with total proba-
bility 1× .1× .9× .4× .4× .8 = .01152.

The only initial sentential form isκin =
(Ss, St, {(ε, ε)}, ∅, ∅). A sentential formκ is final
if it has the form(ξs, ξt, ∅, ∅, ∅). Let κ ∈ SF(G).
A derivation (ofκ) is a sequenced of the form
κ0u1κ1 . . . unκn with κ0 = κin and n ≥ 0,
κi−1

ui⇒ κi for every1 ≤ i ≤ n (andκn = κ). We
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denoteκn also bylast(d), and the set of all deriva-
tions ofκ (resp., derivations) byD(κ) (resp.,D).
We calld ∈ D successfulif last(d) is final.

The tree transformation computed byG is
the relation τG ⊆ UN (T ) × UN (T ) with
(ξs, ξt) ∈ τG iff there is a successful derivation
of (ξs, ξt, ∅, ∅, ∅).

Our definition of the probability of a deriva-
tion is based on the following observation.4 Let
d ∈ D(κ) for someκ = (ξs, ξt, V,W, g). Then,
for everyw ∈ W , the rule which createdw and
the corresponding local position in that rule can
be retrieved fromd. Let us denote this rule by
r(d, κ, w) and the local position byl(d, κ, w).

Now let d be the derivationκ0u1κ1 . . . unκn.
Then theprobability ofd is defined by

P (d) =
∏

1≤i≤n

Pd(κi−1
ui⇒ κi)

where
1. (substitution)Pd(κi−1

w,r
=⇒ κi) = P (r)

2. (activation)
Pd(κi−1

w
=⇒ κi) = P r′

adj(w
′) wherer′ =

r(d, κi−1, w) andw′ = l(d, κi−1, w)
3. (non-adjoining)
Pd(κi−1

¬w
=⇒ κi) = 1 − P r′

adj(w
′) wherer′

andw′ are defined as in the activation case
4. (adjoining)
Pd(κi−1

w,r
=⇒ κi) = P (r).

In order to describe the generative model of
G, we impose a deterministic strategysel on the
derivation relation in order to obtain, for every
sentential form, a probability distribution among
the follow-up sentential forms. Adeterministic
derivation strategyis a mappingsel : SF(G) →
(N∗ × N

∗) ∪ {⊥} such that for everyκ =
(ξs, ξt, V,W, g) ∈ SF(G), we have thatsel(κ) ∈
V ∪W if V ∪W 6= ∅, andsel(κ) = ⊥ otherwise.
In other words,sel chooses the next site to operate
on. Then we define⇒sel in the same way as⇒ but
in each of the cases we require thatw = sel(κ1).
Moreover, for every derivationd ∈ D, we denote
by next(d) the set of all derivations of the form
duκ wherelast(d)

u
⇒sel κ.

The generative model ofG comprises all the
generative stories ofG. A generative storyis a
treet ∈ UD; the root oft is labeled byκin. Let
w ∈ pos(t) and t(w) = d. Then eitherw is a
leaf, because we have stopped the generative story

4We note that a different definition occurs in (Nesson et
al., 2005, 2006).

atw, orw has|next(d)| children, each one repre-
sents exactly one possible decision about how to
extendd by a single derivation step (where their
order does not matter). Then, for every generative
storyt, we have that

∑

w∈lv(t)

P (t(w)) = 1 .

We note that(D,next, µ) can be considered as
a discrete Markov chain (cf., e.g. (Baier et al.,
2009)) where the initial probability distribution
µ : D → [0, 1] mapsd = κin to 1, and all the
other derivations to0.

A probabilistic synchronous tree insertion
grammar (pSTIG) G is a pSTAG except that
for every ruler = (ζs, ζt, V,W, P

r
adj) or r =

(ζs, ζt, V,W, ∗, P
r
adj) we have that

• if r ∈ A, then|lv(ζs)| ≥ 2 and|lv(ζt)| ≥ 2,
• for ∗ = (∗s, ∗t) we have that∗s is either the

rightmost leaf ofζs or its leftmost one; then
we callr, resp.,L-auxiliary in the sourceand
R-auxiliary in the source; similarly, we re-
strict ∗t; the source-spine ofr (target-spine
of r) is the set of prefixes of∗s (resp., of∗t)

• W ⊆ nlvN (ζs)×{L,R}×nlvN (ζt)×{L,R}
where the new components are thedirection-
typeof the potential adjoining site, and

• for every(ws, δs, wt, δt) ∈ W , if ws lies on
the source-spine ofr andr is L-auxiliary (R-
auxiliary) in the source, thenδs = L (resp.,
δs = R), and corresponding restrictions hold
for the target component.

According to the four possibilities for the foot-
node∗ we callr LL-, LR-, RL-, or RR-auxiliary.
The restriction for the probability distributionP of
G is modified such that for every(A,B) ∈ N×N
andx, y ∈ {L,R}:

∑

r∈A, rc(r)=(A,B)
r is xy−auxiliary

P (r) = 1 .

In the derivation relation of the pSTIGG we
will have to make sure that the direction-type of
the chosen adjoining sitew matches with the type
of auxiliarity of the auxiliary rule. Again we as-
sume that the data structureSF(G) is enriched
such that for every potential adjoining sitew of
κ ∈ SF(G) we know its direction-typedir(w).

We define the derivation relation of the pSTIG
G to be the binary relation⇒I ⊆ SF(G)×SF(G)
such that we haveκ1 ⇒I κ2 iff (i) κ1 ⇒ κ2 and
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(ii) if adjoining takes place atw, then the used aux-
iliary rule must bedir(w)-auxiliary. Since⇒I is
a subset of⇒, the concepts of derivation, success-
ful derivation, and tree transformation are defined
also for a pSTIG.

In fact, our running example pSTAG in Fig. 1 is
a pSTIG, wherer2 and r3 areRL-auxiliary and
every potential adjoining site has direction-type
RL; the derivation shown in Fig. 2 is a pSTIG-
derivation.

4 Bottom-up tree adjoining transducer

Here we introduce the concept of a bottom-up tree
adjoining transducer (BUTAT) which will be used
to formalize a decoder for a pSTIG.

A BUTAT is a finite-state machine which trans-
lates strings into trees. The left-hand side of each
rule is a string over terminal symbols and state-
variable combinations. A variable is either a sub-
stitution variable or an adjoining variable; a substi-
tution variable (resp., adjoining variable) can have
an output tree (resp., output tree with foot node) as
value. Intuitively, each variable value is a transla-
tion of the string that has been reduced to the cor-
responding state. The right-hand side of a rule has
the formq(ζ) whereq is a state andζ is an output
tree (with or without foot-node);ζ may contain the
variables from the left-hand side of the rule. Each
rule has a probabilityp ∈ [0, 1].

In fact, BUTAT can be viewed as the string-
to-tree version of bottom-up tree transducers (En-
gelfriet, 1975; Gecseg and Steinby, 1984,1997) in
which, in addition to substitution, adjoining is al-
lowed.

Formally, we letX = {x1, x2, . . .} andF =
{f1, f2, . . .} be the sets ofsubstitution variables
and adjoining variables, resp. Each substitu-
tion variable (resp., adjoining variable) has rank
0 (resp.,1). Thus when used in a tree, substitu-
tion variables are leaves, while adjoining variables
have a single child.

A bottom-up tree adjoining transducer(BU-
TAT) is a tupleM = (Q,Γ,∆, Qf , R) where
• Q is a finite set (ofstates),
• Γ is an alphabet (ofinput symbols), assuming

thatQ ∩ Γ = ∅,
• ∆ is an alphabet (ofoutput symbols),
• Qf ⊆ Q (set offinal states), and
• R is a finite set of rules of the form

γ0 q1(z1) γ1 . . . qk(zk) γk
p
→ q(ζ) (†)

wherep ∈ [0, 1] (probability of (†)), k ≥ 0,
γ0, γ1, . . . , γk ∈ Γ∗, q, q1, . . . , qk ∈ Q,
z1, . . . , zk ∈ X ∪ F , and ζ ∈ RHS(k)
where RHS(k) is the set of all trees over
∆ ∪ {z1, . . . , zk} ∪ {∗} in which the nullary
∗ occurs at most once.

The set ofintermediate results ofM is the set
IR(M) = {ι | ι ∈ U∆({∗}), |pos{∗}(ι)| ≤ 1}
and the set ofsentential forms ofM is the set
SF(M) = (Γ ∪ {q(ι) | q ∈ Q, ι ∈ IR(M)})∗.
The derivation relation induced byM is the bi-
nary relation⇒ ⊆ SF(M) × SF(M) such that
for everyξ1, ξ2 ∈ SF(M) we defineξ1 ⇒ ξ2 iff
there areξ, ξ′ ∈ SF(M), there is a rule of the form
(†) in R, and there areζ1, . . . , ζk ∈ IR(M) such
that:
• for every1 ≤ i ≤ k: if zi ∈ X, thenζi does

not contain∗; if zi ∈ F , thenζi contains∗
exactly once,

• ξ1 = ξ γ0 q1(ζ1) γ1 . . . qk(ζk) γk ξ
′, and

• ξ2 = ξ q(θ(ζ)) ξ′

where θ is a function that replaces variables
in a right-hand side with their values (subtrees)
from the left-hand side of the rule. Formally,
θ : RHS(k) → IR(M) is defined as follows:

(i) for everyξ = δ(ξ1, . . . , ξn) ∈ RHS(k), δ ∈
∆, we haveθ(ξ) = δ(θ(ξ1), . . . , θ(ξn)),

(ii) (substitution) for everyzi ∈ X, we have
θ(zi) = ζi,

(iii) (adjoining) for every zi ∈ F and ξ ∈
RHS(k), we haveθ(zi(ξ)) = ζi[θ(ξ)]v
wherev is the uniquely determined position
of ∗ in ζi, and

(iv) θ(∗) = ∗.
Clearly, the probablity of a rule carries over to
derivation steps that employ this rule. Since, as
usual, a derivationd is a sequence of derivation
steps, we let theprobability ofd be the product of
the probabilities of its steps.

The string-to-tree transformation computed by
M is the setτM of all tuples(γ, ξ) ∈ Γ∗×U∆ such
that there is a derivation of the formγ ⇒∗ q(ξ) for
someq ∈ Qf .

5 Decoder for pSTIG

Now we construct the decoderdec(G) for a pSTIG
G that transforms source strings directly into tar-
get trees and simultaneously computes the proba-
bility of the corresponding derivation ofG. This
decoder is formalized as a BUTAT.

Sincedec(G) is a string-to-tree transducer, we
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have to transform the source treeζs of a rule r
into a left-hand sideρ of a dec(G)-rule. This is
done similarly to (DeNeefe and Knight, 2009) by
traversingζs via recursive descent using a map-
ping ϕ (see an example after Theorem 1); this
creates appropriate state-variable combinations for
all substitution sites and potential adjoining sites
of r. In particular, the source component of the
direction-type of a potential adjoining site deter-
mines the position of the corresponding combina-
tion in ρ. If there are several potential adjoining
sites with the same source component, then we
create aρ for every permutation of these sites. The
right-hand side of adec(G)-rule is obtained by
traversing the target treeζt via recursive descent
using a mappingψρ and, whenever a nonterminal
with a potential adjoining sitew is met, a new po-
sition labeled byfw is inserted.5 If there is more
than one potential adjoining site, then the set of
all those sites is ordered as in the left-hand sideρ

from top to bottom.
Apart from these main rules we will employ

rules which implement the decision of whether or
not to turn a potential adjoining sitew into an ac-
tivated adjoining site. Rules for the first purpose
just pass the already computed output tree through
from left to right, whereas rules for the second pur-
pose create for an empty left-hand side the output
tree∗.

We will use the state behavior ofdec(G) in or-
der to check that (i) the nonterminals of a substi-
tution or potential adjoining site match the root-
category of the used rule, (ii) the direction-type
of an adjoining site matches the auxiliarity of the
chosen auxiliary rule, and (iii) the decisions of
whether or not to adjoin for each ruler of G are
kept separate.

Whereas each pair(ξs, ξt) in the translation of
G is computed in a top-down way, starting at the
initial sentential form and substituting and adjoin-
ing to the present sentential form,dec(G) builds
ξt in a bottom-up way. This change of direction is
legitimate, because adjoining is associative (Vijay-
Shanker and Weir, 1994), i.e., it leads to the same
result whether we first adjoinr2 to r1, and then
align r3 to the resulting tree, or first adjoinr3 to
r2, and then adjoin the resulting tree tor1.

In Fig. 3 we show some rules of the decoder
of our running example pSTIG and in Fig. 4 the

5We will allow variables to have structured indices that
are not elements ofN. However, by applying a bijective re-
naming, we can always obtain rules of the form(†).

derivation of this decoder which correponds to the
derivation in Fig. 2.

Theorem 1. Let G be a pSTIG overN and T .
Then there is a BUTATdec(G) such that for ev-
ery (ξs, ξt) ∈ UN (T ) × UN (T ) andp ∈ [0, 1] the
following two statements are equivalent:

1. there is a successful derivation of
(ξs, ξt, ∅, ∅, ∅) byG with probabilityp,

2. there is a derivation fromyield(ξs) to
[Ss, St](ξt) by dec(G) with probabilityp.

PROOF. Let G = (N,T, [Ss, St],S,A, P ) be a
pSTIG. We will construct the BUTATdec(G) =
(Q,T,N ∪T, {[Ss, St]}, R) as follows (where the
mappingsϕ andψρ will be defined below):
• Q = [N ×N ] ∪ [N ×{L,R}×N ×{L,R}]
∪{[r, w] | r ∈ A,w is an adjoining site ofr},

• R is the smallest setR′ of rules such
that for every r ∈ S ∪ A of the form
(ζs, ζt, V,W, P

r
adj) or (ζs, ζt, V,W, ∗, P

r
adj):

– for everyρ ∈ ϕ(ε), if r ∈ S, then the
main rule

ρ
P (r)
→ [ζs(ε), ζt(ε)]

(

ψρ(ε)
)

is in R′, and if r ∈ A and r is δsδt-
auxiliary, then the main rule

ρ
P (r)
→ [ζs(ε), δs, ζt(ε), δt]

(

ψρ(ε)
)

is inR′, and
– for everyw = (ws, δs, wt, δt) ∈ W the

rules

qw
(

fw

) P r
adj

(w)
−→ [r, w]

(

fw(∗)
)

with qw = [ζ(ws), δs, ζt(wt), δt] for ac-
tivation atw, and the rule

ε
1−P r

adj
(w)

−→ [r, w](∗)

for non-adjoining atw are inR′.
We define the mapping

ϕ : pos(ζs) → P((T ∪Q(X ∪ F ))∗)

with Q(X ∪ F ) = {q(z) | q ∈ Q, z ∈ X ∪ F}
inductively on its argument as follows. Letw ∈
pos(ζs) and letw haven children.
(a) Letζs(w) ∈ T . Thenϕ(w) = {ζs(w)}.
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(b) (substitution site) Letζs(w) ∈ N and let
w′ ∈ pos(ζt) such that(w,w′) ∈ V . Then

ϕ(w) = {[ζs(w), ζt(w
′)]

(

x(w,w′)

)

}.

(c) (adjoining site) Letζs(w) ∈ N and let there
be an adjoining site inW with w as first
component. Then, we defineϕ(w) to be the
smallest set such that for every permutation
(u1, . . . , ul) (resp.,(v1, . . . , vm)) of all the L-
adjoining (resp., R-adjoining) sites inW with
w as first component, the set6

J ◦ ϕ(w.1) ◦ . . . ◦ ϕ(w.n) ◦K

is a subset ofϕ(w), whereJ = {u′1 . . . u
′
l}

andK = {v′m . . . v′1} and

u′i = [r, ui]
(

fui

)

andv′j = [r, vj ]
(

fvj

)

for 1 ≤ i ≤ l and1 ≤ j ≤ m.
(d) Let ζs(w) ∈ N , w 6= ∗, and letw be neither

the first component of a substitution site inV
nor the first component of an adjoining site in
W . Then

ϕ(w) = ϕ(w.1) ◦ . . . ◦ ϕ(w.n) .

(e) Letw = ∗. Then we defineϕ(w) = {ε}.
For everyρ ∈ ϕ(ε), we define the mapping

ψρ : pos(ζt) → UN∪F∪X(T ∪ {∗})

inductively on its argument as follows. Let
w ∈ pos(ζt) and letw haven children.
(a) Letζt(w) ∈ T . Thenψρ(w) = ζt(w).
(b) (substitution site) Letζt(w) ∈ N and let

w′ ∈ pos(ζs) such that(w′, w) ∈ V . Then
ψρ(w) = x(w′,w).

(c) (adjoining site) Letζt(w) ∈ N and let there
be an adjoining site inW with w as third
component. Then let{u1, . . . , ul} ⊆ W be
the set of all potential adjoining sites withw
as third component, and we define

ψρ(w) = fu1
(. . . ful

(ζ) . . .)

where ζ = ζt(w)(ψρ(w.1), . . . , ψρ(w.n))
and theui’s occur inψρ(w) (from the root
towards the leaves) in exactly the same order
as they occur inρ (from left to right).

(d) Let ζt(w) ∈ N , w 6= ∗, and letw be neither
the second component of a substitution site
in V nor the third component of an adjoining
site inW . Then

ψρ(w) = ζt(w)(ψρ(w.1), . . . , ψρ(w.n)).

6using the usual concatenation◦ of formal languages

(e) Letw = ∗. Thenψρ(w) = ∗.
With dec(G) constructed as shown, for each
derivation ofG there is a corresponding deriva-
tion ofdec(G), with the same probability, and vice
versa. The derivations proceed in opposite direc-
tions. Each sentential form in one has an equiv-
alent sentential form in the other, and each step
of the derivations correspond. There is no space
to present the full proof, but let us give a slightly
more precise idea about the formal relationship be-
tween the derivations ofG anddec(G).

In the usual way we can associate a deriva-
tion treedt with every successful derivationd of
G. Assume thatlast(d) = (ξs, ξt, ∅, ∅, ∅), and
let Es andEt be the embedded tree transducers
(Shieber, 2006) associated with, respectively, the
source component and the target component of
G. Then it was shown in (Shieber, 2006) that
τEs

(dt) = ξs and τEt
(dt) = ξt where τE de-

notes the tree-to-tree transduction computed by an
embedded tree transducerE. Roughly speaking,
Es andEt reproduce the derivations of, respec-
tively, the source component and the target com-
ponent ofG that are prescribed bydt. Thus, for
κ = (ξ′s, ξ

′
t, V,W, g), if κin ⇒

∗
G κ andκ is a prefix

of d, then there is exactly one subtreedt[(w,w′)]
of dt associated with every(w,w′) ∈ V ∪ W ,
which prescribes how to continue at(w,w′) with
the reproduction ofd. Having this in mind, we ob-
tain the sentential form of thedec(G)-derivation
which corresponds toκ by applying a modifica-
tion of ϕ to κ where the modification amounts to
replacingx(w,w′) andf(w,w′) by τEt

(dt[(w,w′)]);
note thatτEt

(dt[(w,w′)]) might contain∗. �

As illustration of the construction in Theorem 1
let us apply the mappingsϕ andψρ to rule r2 of
Fig. 1, i.e., tor2 = (ζs, ζt, ∅, {b, c}, ∗, P

r2

adj)
with ζs = A(A, γ), ζt = B(B(δ), B),
b = (ε,R, ε,L), c = (ε,R, 1,L), and∗ = (1, 2).

Let us calculateϕ(ε) on ζs. Due to (c),

ϕ(ε) = J ◦ ϕ(1) ◦ ϕ(2) ◦K.

Since there are no L-adjoinings atε, we have that
J = {ε}. Since there are the R-adjoiningsb andc
atε, we have the two permutations(b, c) and(c, b).
(v1, v2) = (b, c): K = {[r2, c](fc)[r2, b](fb)}
(v1, v2) = (c, b): K = {[r2, b](fb)[r2, c](fc)}

Due to (e) and (a), we have thatϕ(1) = {ε} and
ϕ(2) = {γ}, resp. Thus,ϕ(ε) is the set:

{γ [r2, c](fc) [r2, b](fb), γ [r2, b](fb) [r2, c](fc)}.
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r1

(r1, a)

r2

(r2,¬b) (r2,¬c)

r4

α

[A,B]

x(2,2)

α

[r1, a]

fa

1
−→

[Ss, St]

St

f

B

β

x βa (2,2)

[A,R, B,L]

fa

.9
−→

[r1, a]

f

∗

a

γ

[r2, b]

f b

[r2, c]

fc

.4
−→

[A,R, B,L]

f

B

f

B

δ

∗

b

c

ε
.8
−→

[r2, b]

∗
ε

.4
−→

[r2, c]

∗

α
.1
−→

[A,B]

B

β

Figure 3: Some rules of the running example de-
coder.

Now letρ = γ [r2, b](fb) [r2, c](fc). Let us cal-
culateψρ(ε) on ζt.

ψρ(ε)
(c)
= fb(B(ψρ(1), ψρ(2)))
(c)
= fb(B(fc(B(ψρ(1.1))), ψρ(2)))
(a)
= fb(B(fc(B(δ)), ψρ(2)))
(e)
= fb(B(fc(B(δ)), ∗))

Hence we obtain the rule

γ [r2, b](fb) [r2, c](fc) →

[A,R, B,L](fb(B(fc(B(δ)), ∗)))

which is also shown in Fig. 3.

α α α γ

α α α γ
[r2, b]

∗

α α α γ
[r2, b]

∗

[r2, c]

∗

α α α

α α α

α

[A,B]

B

β

α

[A,R, B,L]

B

B

δ

∗

=
⇒

=
⇒

=
⇒

=
⇒

=
⇒

[Ss, St]

St

B

B

δ

B

β

B

β

β

prob. .8

prob. .4

prob. .4

prob. .9

prob. .1

=
⇒ prob. .1

[r1, a]

B

B

δ

∗

(r2,¬b)

(r2,¬c)

(r2, bc)

(r1, a)

r4

r1

[r1, a]

B

B

δ

∗

Figure 4: Derivation of the decoder corresponding
to the derivation in Fig. 2.
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