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Abstract

Topological and dynamic features of com-
plex networks have proven to be suitable
for capturing text characteristics in recent
years, with various applications in natu-
ral language processing. In this article we
show that texts with positive and negative
opinions can be distinguished from each
other when represented as complex net-
works. The distinction was possible by
obtaining several metrics of the networks,
including the in-degree, out-degree, short-
est paths, clustering coefficient, between-
ness and global efficiency. For visu-
alization, the obtained multidimensional
dataset was projected into a 2-dimensional
space with the canonical variable analysis.
The distinction was quantified using ma-
chine learning algorithms, which allowed
an recall of 70% in the automatic dis-
crimination for the negative opinions, even
without attempts to optimize the pattern
recognition process.

1 Introduction

The use of statistical methods is well estab-
lished for a number of natural language pro-
cessing tasks (Manning and Schuetze, 2007), in
some cases combined with a deep linguistic treat-
ment in hybrid approaches. Representing text as
graphs (Antiqueira et al., 2007), in particular, has
become popular with the advent of complex net-
works (CN) (Newman, 2003; Albert and Barabasi,
2002), especially after it was shown that large
pieces of text generate scale-free networks (Ferrer
i Cancho and Sole, 2001; Barabasi, 2009). This
scale-free nature of such networks is probably the
main reason why complex networks concepts are
capable of capturing features of text, even in the
absence of any linguistic treatment. Significantly,

the scale-free property has also allowed CN to be
applied in diverse fields (Costa et al., 2008), from
neuroscience (Sporns, 2002) to physics (Gfeller,
2007), from linguistics (Dorogovtsev and Mendes,
2001) to computer science (Moura et al., 2003), to
mention a few areas. Other frequently observed
unifying principles that natural networks exhibit
are short paths between any two nodes and high
clustering coefficients (i.e. the so-called small-
world property), correlations in node degrees, and
a large number of cycles or specific motifs.

The topology and the dynamics of CN can be
exploited in natural language processing, which
has led to several contributions in the literature.
For instance, metrics of CN have been used to as-
sess the quality of written essays by high school
students (Antiqueira et al., 2007). Furthermore,
degrees, shortest paths and other metrics of CN
were used to produce strategies for automatic sum-
marization (Antiqueira et al., 2009), whose results
are among the best for methods that only employ
statistics. The quality of machine translation sys-
tems can be examined using local mappings of lo-
cal measures (Amancio et al., 2008). Other re-
lated applications include lexical resources anal-
ysis (Sigman and Cecchi, 2002), human-induced
words association (Costa, 2004), language evolu-
tion (Dorogovtsev and Mendes, 2002), and author-
ship recognition (Antiqueira et al., 2006).

In this paper, we model texts as complex net-
works with each word being represented by a
node and co-occurrences of words defining the
edges (see next section). Unlike traditional meth-
ods of text mining and sentiment detection of re-
views (Tang et al., 2009; Pennebaker et al., 2003),
the method described here only takes into account
the relationships between concepts, regardless of
the semantics related to each word. Specifically,
we analyze the topology of the networks in order
to distinguish between texts with positive and neg-
ative opinions. Using a corpus of 290 pieces of
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Before pre-processing After pre-processing
The projection of the projection
network data into two network data two
dimensions is crucial dimension be crucial

for big networks big network

Table 1: Adjacency list obtained from the sentence
“The projection of the network data into two di-
mensions is crucial for big networks”.

text with half of positive opinions, we show that
the network features allows one to achieve a rea-
sonable distinction.

2 Methodology

2.1 Representing texts as complex networks

Texts are modeled as complex networks here by
considering each word (concept) as a node and es-
tablishing links by co-occurrence of words, disre-
garding the punctuation. In selecting the nodes,
the stopwords were removed and the remaining
words were lemmatized to combine words with
the same canonical form but different inflections
into a single node. Additionally, the texts were
labeled using the MXPost part-of-speech Tag-
ger based on the Ratnaparki’s model (Ratnaparki,
1996), which helps to resolve problems of am-
biguity. This is useful because the words with
the same canonical form and same meaning are
grouped into a single node, while words that have
the same canonical form but distinct meanings
generate distinct nodes. This pre-processing is
done by accessing a computational lexicon, where
each word has an associated rule for the genera-
tion of the canonical form. For illustrative means,
Table 1 shows the pre-processed form of the sen-
tence “The projection of the network data into two
dimensions is crucial for big networks” and Figure
1 shows the network obtained for the same sen-
tence.

Several CN metrics have been used to analyze
textual characteristics, the most common of which
are out-degree (kout), in-degree (kin), cluster co-
efficient (C) and shortest paths (l). Here we also
use the betweenness (ϱ) and the global efficiency
(η). The out-degree corresponds to the number
of edges emanating from a given node, where
the weight of each link between any two nodes
may also be considered, being referred to as out-
strength. Analogously, the node’s in-degree is de-
fined as the number of edges arriving at a given

Figure 1: Network obtained from the sentence
“The projection of the network data into two di-
mensions is crucial for big networks”.

node. The network’s kout and kin are evaluated
by calculating the average among all the nodes,
note that such global measures kout and kin are
always equal. Regarding the adjacency matrix to
represent the network, for a given node i, its kout

and kin are calculated by eqs 1 and 2, where N
represents the number of distinct words in the pre-
processed text:

kout(i) =
N∑

j=1

Wji (1)

kin(i) =
N∑

j=1

Wij (2)

The cluster coefficient (C) is defined as follows.
Let S be the set formed by nodes receiving edges
of a given node i, and Nc is the cardinality of this
set. If the nodes of this set form a completely con-
nected set, then there are Nc(Nc-1) edges in this
sub graph. However, if there are only B edges,
then the coefficient is given by eq. (3):

C(i) =
B

Nc(Nc − 1)
(3)

If Nc is less than 1, then C is defined as zero.
Note that this measure quantifies how the nodes
connected to a specific node are linked to each
other, with its value varying between zero and one.

The shortest paths are calculated from all pairs
of nodes within the network. Let dij be the min-
imum distance between any two words i and j in
the network. The shortest path length l of a node i
is given in equation 4.
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l(i) =
1

N − 1

∑
j ̸=i

dij (4)

Another measure often used in network analy-
sis is the global efficiency (η), which is defined in
equation 5, and may be interpreted as the speed
with which information is exchanged between any
two nodes, since a short distance dij contributes
more significantly than a long distance. Note that
the formula below prevents divergence; therefore,
it is especially useful for networks with two or
more components. The inverse of η, named har-
monic mean of geodesic distances, has also been
used to characterize complex networks.

η =
1

N(N − 1)

∑
i̸=j

1

dij
(5)

While l and η use the length of shortest paths,
the betweenness uses the number of shortest paths.
Formally, the betweenness centrality for a given
vertex v is given in equation 6, where the numera-
tor represents the number of shortest paths passing
through the vertices i, v and j and the denomina-
tor represents the number of shortest paths pass-
ing through the vertices i and j. In other words,
if there are many shortest paths passing through a
given node, this node will receive a high between-
ness centrality.

ϱ(v) =
∑

i

∑
j

σ(i, v, j)

σ(i, j)
(6)

2.2 Corpus
The corpus used in the experiments was ob-
tained from the Brazilian newspaper Folha de São
Paulo1, from which we selected 290 articles over a
10-year period from a special section where a pos-
itive opinion is confronted with a negative opinion
about a given topic. For this study, we selected
the 145 longest texts with positive opinion and the
145 longest text with negative opinions2, in order
to have meaningful statistical data for the CN anal-
ysis.

2.3 Machine Learning Methods
In order to discriminate the topological features
from distinct networks we first applied a technique
for reducing the dimension of the dataset, the
canonical variable analysis (McLachlan, 2004).

1http://www.folha.com.br
2The average size of the selected corpus is 600 words.

The projection of network data into a lower di-
mension is crucial for visualization, in addition
to avoids the so-called “curse of dimensional-
ity” (Bishop, 2006). To calculate the axes points
for projecting the data, a criterion must be es-
tablished with which the distances between data
points are defined. Let S be the overall disper-
sion of the measurements, as shown in equation 7,
where ζ is the number of instances (ζ = 290), −→xc is
the set of metrics for a particular instance and ⟨−→x ⟩
is the average of all −→xc.

S =
ζ∑

c=1

(
−→xc − ⟨−→x ⟩

)(
−→xc − ⟨−→x ⟩

)T
(7)

Considering that two classes (C1 = positive
opinions and C2 = negative opinions) are used, the
scatter matrix Si is obtained for each class Ci, ac-
cording to equation 8, where ⟨−→x ⟩i is the analo-
gous of ⟨−→x ⟩ when only the instances belonging to
class Ci is taken into account.

Si =
∑
c∈Ci

(
−→xc − ⟨−→x ⟩i

)(
−→xc − ⟨−→x ⟩i

)T
(8)

The intraclass matrix, i.e. the matrix that gives
the dispersion inside C1 and C2, is defined as in
equation 9. Additionally, we define the interclass
matrix, i.e. the matrix that provides the dispersion
between C1 and C2, as shown in equation 10.

Sintra = S1 + S2 (9)

Sinter = S − Sintra (10)

The principal axes for the projection are then
obtained by computing the eigenvector associ-
ated with the largest eigenvalues of the ma-
trix Λ (McLachlan, 2004) defined in equation
11. Since the data were projected in a two-
dimensional space, the two principal axes were se-
lected, corresponding to the two largest eigenval-
ues.

Λ = S−1
intraSinter (11)

Finally, to quantify the efficiency of separa-
tion with the projection using canonical variable
analysis, we implemented three machine learn-
ing algorithms (decision tree, using the C4.5 algo-
rithm (Quinlan, 1993); rules of decision, using the
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RIP algorithm (Cohen, 1995), and Naive Bayes
algorithm (John and Langley, 1995)) and eval-
uated the accuracy rate using the 10-fold-cross-
validation (Kohavi, 1995).

3 Results and Discussion

The metrics out-degree (kout), in-degree (kin),
shortest paths (l), cluster coefficient (C), between-
ness (ϱ) and global efficiency (η) were computed
for each of the 145 texts for positive and nega-
tive opinions, as described in the Methodology.
The mean values and the standard deviations of
these metrics were used as attributes for each text.
This generated a dataset described in 10 attributes,
since the average kin is equal to the average kout

and the standard deviation of η is not defined (in
other words, it is always zero). Figure 2 shows the
projection of the dataset obtained with canonical
variable analysis, illustrating that texts with dif-
ferent opinions can be distinguished to a certain
extent. That is to say, the topological features of
networks representing positive opinion tend to dif-
fer from those of texts with negative opinion.

The efficiency of this methodology for charac-
terizing different opinions can be quantified using
machine learning algorithms to process the data
from the projection. The results are illustrated in
Table 2. Again, the distinction between classes is
reasonably good, since the accuracy rate reached
62%. Indeed, this rate seems to be a good result,
since the baseline method3 tested showed an ac-
curacy rate of 53%. One also should highlight
the coverage found for the class of negative re-
views by using the C4.5 algorithm, for which a
value of 82% (result not shown in the Table 2) was
obtained. This means that if an opinion is nega-
tive, the probability of being classified as negative
is only 18%. Thus, our method seems especially
useful when a negative view should be classified
correctly.

Method Correctly classified
C4.5 58%
Rip 60%

Naive Bayes 62%

Table 2: Percentage of correctly classified in-
stances.

3The baseline method used as attributes the frequency of
each word in each text. Then, the algorithm C4.5 was run
with the same parameters used for the methodology based on
complex networks.
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Figure 2: Projection obtained by using the method
of canonical variables. A reasonable distinction
could be achieved between positive and negative
opinions.

4 Conclusion and Further Work

The topological features of complex networks
generated with texts appear to be efficient in dis-
tinguishing between attitudes, as indicated here
where texts conveying positive opinions could be
distinguished from those of negative opinions.
The metrics of the CN combined with a projec-
tion technique allowed a reasonable separation of
the two types of text, and this was confirmed with
machine learning algorithms. An 62% accuracy
was achieved (the baseline reached 53%), even
though there was no attempt to optimize the met-
rics or the methods of analysis. These promis-
ing results are motivation to evaluate other types
of subtleties in texts, including emotional states,
which is presently being performed in our group.
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