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Introduction

We are delighted to present the Proceedings of the Eleventh Meeting of the ACL Special Interest Group
on Computational Morphology and Phonology (SIGMORPHON), to be held on July 15, 2010 at Uppsala
University, Uppsala, Sweden.

The purpose of SIGMORPHON is to foster computational research on the phonological, morphological,
and phonetic properties of human language. All three of these sub-areas deal largely with the local
structure of words and so share many technical methods. Furthermore, computational work that models
empirical data must often draw on at least two of these areas, with explicit consideration of the
morphology-phonology or phonology-phonetics interface.

We received a large number of submissions, on the full range of sub-areas, and accepted around forty
percent. This has enabled us to provide what we hope you will agree is a high quality program.

We are grateful to the program committee for their careful and thoughtful reviews and discussions of
the papers submitted this year. We are especially grateful to those reviewers who stepped in at the last
minute when the number of submissions became clear.

We hope that you enjoy the workshop and these proceedings.

Jeffrey Heinz
Lynne Cahill
Richard Wicentowski
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Instance-based acquisition of vowel harmony

Frédéric Mailhot
Institute of Cognitive Science

Carleton University
Ottawa, ON, Canada

fmailhot@connect.carleton.ca

Abstract

I present LIBPHON, a nonparametric
regression-based model of phonologi-
cal acquisition that induces a gener-
alised and productive pattern of vowel
harmony—including opaque and transpar-
ent neutrality—on the basis of simplified
formant data. The model quickly learns to
generate harmonically correct morpholog-
ically complex forms to which it has not
been exposed.

1 Explaining phonological patterns

How do infants learn the phonetic categories
and phonotactic patterns of their native lan-
guages? How strong are the biases that learn-
ers bring to the task of phonological acquis-
tion? Phonologists from the rationalist tradition
that dominated the past half-century of linguis-
tic research typically posit strong biases in ac-
quisition, with language learners using innately-
given, domain-specific representations (Chomsky
and Halle, 1968), constraints (Prince and Smolen-
sky, 2004) and learning algorithms (Tesar and
Smolensky, 2000; Dresher, 1999) to learn abstract
rules or constraint rankings from which they can
classify or produce novel instances.

In the last decade, however, there has been a
shift toward empiricist approaches to phonologi-
cal acquisition, use and knowledge. In this liter-
ature, eager learning algorithms (Aha, 1997), in
which training data are used to update intensional
representations of functions or categories then dis-
carded, have been the norm.1 However, research
in related fields—particularly speech perception—
indicates that speakers’ knowledge and use of
language, both in production and comprehen-
sion, is at least partly episodic, or instance-based
(Goldinger, 1996; Johnson, 1997). Additionally,

1Daelemans et al. (1994) is a notable exception.

motivation for instance-based models of categori-
sation has a lengthy history in cognitive psychol-
ogy (Medin and Schaffer, 1978), and these meth-
ods are well-known in the statistical and machine
learning literature, having been studied for over
half a century (Fix and Hodges, 1951; Cover and
Hart, 1967; Hastie et al., 2009). Consequently, it
seems a worthy endeavour applying an instance-
based method to a problem that is of interest to
traditional phonologists, the acquisition and use
of vowel harmony, while simultaneously effecting
a rapprochement with adjacent disicplines in the
cognitive sciences. In sections 2 and 3 I give some
brief background on vowel harmony and instance-
based models, respectively. Section 4 introduces
my model, LIBPHON, and section 5 the languages
it learns. I discuss some simulations and results in
section 6, and conclude in section 7.

2 Vowel harmony

Vowel harmony is a phonological phenomenon in
which there are co-occurrence constraints on vow-
els within words.2 The vowels in a language with
vowel harmony can be classified into disjoint sets,
such that words contain vowels from only one of
the sets. The Finnish system of vowel harmony ex-
emplified by the forms in Table 1 provides a stan-
dard example from the literature (van der Hulst
and van de Weijer, 1995).

surface form gloss
a. tuhmasta ‘naughty’ (elative)
b. tühmästä ‘stupid’ (elative)

Table 1: Finnish backness harmony

Crucially, the elative case marker alternates
systematically between front and back vowel

2“Word” is used pre-theoretically here; harmony can oc-
cur over both supra- and sublexical domains.
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variants—as -stä or -sta—depending on whether
the stem has front {ü, ä} or back {u, a} vowels.

2.1 Neutral vowels
In most languages with vowel harmony, there are
one or more vowels that systematically fail to
alternate. These are called neutral vowels, and
are typically further subclassified according to
whether or not they induce further harmonic al-
ternations in other vowels.

3 Instance-based models

Instance-based approaches to cognitive process-
ing, also called memory-based, case-based, and
exemplar-based models, have their modern origins
in psychological theories and models of percep-
tual categorisation and episodic memory (Medin
and Schaffer, 1978; Nosofsky, 1986), although
the earliest explicit discussion seems to be (Se-
mon, 1921); a theory of memory that anticipates
many features of contemporary models. The core
features of these models are: (i) explicit stor-
age/memorisation (viz. extensional representa-
tion) of training data, (ii) classification/processing
of novel data via similarity-based computation,
and (iii) lazy evaluation (Aha, 1997), whereby
all computations are deferred until the model is
queried with data.3

Instance-based models were introduced to lin-
guistics via research in speech perception suggest-
ing that at least some aspects of linguistic perfor-
mance rely on remembered experiential episodes
(Johnson and Mullenix, 1997). The models imple-
mented to date in phonetics and phonology have
largely focused on perception (e.g. speaker nor-
malisation in Johnson (1997)), or on diachronic
processes (e.g. lenition in Pierrehumbert (2001),
chain shifts in Ettlinger (2007)), leaving the types
of phenomena that typically interest “traditional”
phonologists, viz. productive, generalised pat-
terns, comparatively neglected.4

4 LIBPHON

LIBPHON, the Lazy Instance-based Phonologist,
is a lazy learning algorithm whose purpose (in the

3Compare eager learners, e.g. connectionist systems,
which build a global intensional representation of the func-
tion being learned on the basis of training data which are sub-
sequently discarded.

4Kirchner and Moore (2009) give a model of a syn-
chronic lenition process, and Daelemans and colleagues
give memory-based analyses of several linguistic phenomena
(Daelemans and van den Bosch, 2005).

context of the simulations described here) is to
model an instance-based approach to the core as-
pects of the acquisition and subsequent productive
usage of vowel harmony.

4.1 Decisions & mechanisms

As discussed in (Johnson, 2007), there are some
decisions that need to be made in implementing an
instance-based model of phonological knowledge
involving the basic units of analysis (e.g. their
size), the relevant type of these units (e.g. discrete
or continuous), and the mechanisms for similarity-
matching and activation spread in the lexicon.

Units The arguments given by Johnson (2007)
and Välimaa-Blum (2009) for the “word-sized”
(rather than e.g. segmental) experience of lan-
guage, suggest that “words” are the correct basic
unit of analysis in instance-based langugage mod-
els (a fortiori in LIBPHON). Stronger evidence
comes from the wealth of psycholinguistic data
(reviewed in (Lodge, 2009)) showing that illiter-
ates and literates of non-alphabetic writing sys-
tems have poor phonemic (or at least segmental)
awareness, both in monitoring and manipulation.
On this basis, I take meaning-bearing unanalysed
acoustic chunks to be the relevant units of repre-
sentation for LIBPHON.5

Feature type Having determined the size of
LIBPHON’s basic unit, I move now to its em-
bedding space, where distinctive features present
themselves as obvious candidate dimensions.
Since the middle of the 20th century (ca. Chom-
sky and Halle (1968)), phonological theories have
nearly all supposed that lexical representations are
stored in terms of articulatory features (cf. (Halle,
1997) for explicit discussion of this viewpoint).
Coleman (1998), citing evidence from the neuro-
scientific and psycholinguistic literatures on lexi-
cal representation, claims that evidence for this po-
sition (e.g. from speech perception and phoneme
monitoring experiments) is weak at best, and that
lexical representations are more likely to be acous-
tic than articulatory. In addition, Phillips et al.
(2000) review neurolinguistic evidence for the role
of acoustic cortex in phonetics and phonology, and

5The assumption that word-level segmentation of the
speech signal is available to the language learner prior to ac-
quisition of phonological phenomena is relatively uncontro-
versial, although there is evidence for the development of at
least some phonotactic knowledge prior to the emergence of
a productive lexicon (Jusczyk, 1999).
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Mielke (2008) discusses several aspects of the in-
duction of distinctive phonological features from
acoustic representations. Recognising that the is-
sue is far from resolved, for the purposes of the
simulations run here, I take LIBPHON’s instance
space to be acoustically-based, and use formant
values as the embedding dimension. Vowels are
specified by their midpoint formant values,6 and
consonants are specified by so-called “locus” val-
ues, which can be identified by inspecting the tra-
jectories of consonant-vowel transitions in speech
(Sussman et al., 1998). Since I am modelling
palatal harmony in particular, and F2 magnitude is
the primary acoustic correlate of vowel palatality, I
omit F3 and F4, restricting LIBPHON’s acoustic
representations to sequences of (F1, F2) values,
henceforth trajectories.

Similarity Given that LIBPHON’s instance-
space is continuous, and has a fairly intuitive
metric, I take simple Euclidean distance to be
LIBPHON’s similarity (or rather, dissimilarity)
function.7

Fixed-rate representations For the simulations
described here, I use fixed-rate trajectories, in
which consonants and vowels are represented
in a temporally coarse-grained manner with sin-
gle (F1, F2) tuples. Evidently, consonants and
vowels in actual human speech unfold in time,
but modelling segments at this level introduces
the problem of temporal variability; repeated to-
kens of a given word—both within and across
speakers—vary widely in duration. This variabil-
ity is one of the main obstacles in the develop-
ment of instance-based models of speech produc-
tion, due to the difficulty of aligning variable-
length forms. Although algorithms exist for align-
ing variable-length sequences, these require cog-
nitively implausible dynamic programming al-
gorithms, e.g. dynamic time warping (DTW)

6A reviewer asks about the psychological plausibility of
Hz-based formant represetations and the choice of point val-
ues for vowel and consonant representations, e.g. rather than
formant values at 20% and 80% of the vowel. These are
purely in the interests of simplicity for the work reported
here. As discussed below, future work with real speech ex-
emplars in psychophysically-motivated representational for-
mats, e.g. perceptual linear predictive coding (Hermansky,
1990), will render this issue moot.

7Often the measure of similarity in an instance-based
model is an exponential function of distance, d(xi, xj) of the
form exp(−cd(xi, xj)), so that increasing distance yields de-
creasing similarity (Nosofsky, 1986). The Euclidean measure
here is sufficient for the purpose at hand, although the shape
of the similarity measure is ultimately an empirical question.

and hidden Markov models (Rabiner and Juang,
1993). Even as proofs of concept, these may
be empirically inadequate; Kirchner and Moore
(2009) use DTW to good effect in an instance-
based production model of spirantisation using
real, temporally variable, speech signals. How-
ever, their inputs were all the same length in terms
of segmental content, and the model was only re-
quired to generalise within a word type. I am
currently investigating whether DTW can func-
tion as a proof of concept in a problem domain
like that addressed here, which involves learn-
ing about variably-sized “pieces” of morphology
across class labels.

4.2 Perception/categorisation

LIBPHON’s method of perception/categorisation
of inputs is a relatively standard nearest-
neighbour-based classification algorithm. See Al-
gorithm 1 for a description in pseudocode.

Algorithm 1 PERCEIVE(input, k)
Require: input as (LABEL ∈ [LEX](PL)[NOM |

ACC], instance ∈ Z2x{8,10,12}), k ∈ Z

if LABEL is not empty then
if LABEL /∈ lexicon then

Create LABEL in lexicon
end if
Associate(instance, LABEL)

else
neighbours ← k-nearest neighbours of
instance
LABEL ← majority class label of
neighbours
Associate(instance,LABEL)

end if

If LABEL is not empty, LIBPHON checks its lex-
icon to see whether it knows the word being pre-
sented to it, i.e. whether it exists as a class label.
If so, it simply appends the input acoustic form to
the set of forms associated with the input mean-
ing/label. If it has no corresponding entry, a new
lexical entry is created for the input meaning, and
the input trajectory is added as its sole associated
acoustic form.

If LABEL is empty, LIBPHON assigns
instance to the majority class of its k
nearest neighbours in acoustic space.
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4.3 Production
In production, LIBPHON is provided with a LA-
BEL and has to generate a suitable instance for
it. LABELs are decomposable, signalling an ar-
bitrary “lexical” meaning, an optional plural mor-
pheme, PL, and an obligatory case marker from
{NOM, ACC}. Thus, there are several different
possibilities to consider in generating output for
some queried meaning.

In the two simplest cases, either the full queried
meaning (viz. lexical label with all inflections)
is already in the lexicon, or else there are no
class LABELs with the same lexical meaning (i.e.
LIBPHON is being asked to produce a word that it
doesn’t know). In the former case, a stored trajec-
tory is uniform8 randomly selected from the list of
acoustic forms associated with the queried label as
a seed token, the entire set of associated acoustic
forms is used as the analogical set, and an output
is generated by taking a distance-weighted mean
over the seed’s k nearest neighbours.9 In the case
where the lexical meaning of the queried LABEL

is unknown, the query is ignored.
In the more interesting cases, LIBPHON has a

LABEL in its lexicon with the same lexical mean-
ing, but with differing inflectional specification.
Consider the case in which LIBPHON knows only
the singular NOM form of a query label that is
specified as PL ACC. A seed instance is (uni-
form) randomly selected from the set of trajec-
tories associated to the NOM entry in the agent’s
lexicon, as this is the only entry with the corre-
sponding lexical meaning, and it is a variant of this
meaning that LIBPHON must produce. In this case
the analogical set, the set of instances from which
the final output is computed, is composed of the
seed’s nearest neighbours in the set of all trajec-
tories associated with LABELs of the form [LEX

PL ACC]. Once again, the output produced is a
distance-weighted mean of the analogical set.

This general procedure (viz. seed from a known
item with same lexical meaning, analogical set
from all items with desired inflection) is carried
out in parallel cases with all other possible LA-
BEL mismatches, e.g. a singular LABEL queried,

8Exemplar models often bias the selection of seed to-
kens with degrees of “activation” that take into account re-
cency and frequency. Although the results discussed below
show that this is not necessary for ultimate attainment, it is
likely that this kind of bias will need to be incorporated into
LIBPHON to accurately model more nuanced aspects of the
acquisition path.

9k = 5 for all results reported here.

but only a plural LABEL in the lexicon, a NOM

query with only an ACC form in the lexicon, etc.
In the cases where the lexicon contains multiple
entries with the same lexical meaning, but not the
query, the seed is selected from the LABEL with
the closest “semantic” match. Algorithm 2 gives
pseudocode for LIBPHON’s production algorithm.

Algorithm 2 PRODUCE(LABEL, k)
Require: LABEL∈ [LEX](PL)[NOM | ACC], k ∈Z

if LABEL ∈ lexicon then
seed ← uniform random selection from
instances associated to LABEL

cloud← all instances associated to LA-
BEL

else if ∃ LABEL′ ∈ lexicon s.t. lex(LABEL′) =
lex(LABEL) then

seed ← uniform random selection from
instances associated to LABEL′)
cloud ← all instances associated to
plural(LABEL) ∪ case(LABEL)

else
pass

end if

neighbours← k-nearest neighbours of seed in
cloud
return distance-weighted mean of neighbours

4.4 Production as regression

The final steps in LIBPHON’s production algo-
rithm, finding the analogical set and computing the
output as a weighted average, together constitute
a technique known in the statistical learning lit-
erature as kernel-smoothed nearest-neighbour re-
gression, and in particular are closely related to the
well-known Nadaraya-Watson estimator (Hastie et
al., 2009):

f̂(x) =
∑N

i=1 Kλ(x, xi)yi∑N
i=1 Kλ(x, xi)

with inverse-distance as the kernel smoother, K,
and the bandwidth function, hλ(x) determined by
the number k of nearest neighbours. This link to
the statistical learning literature puts LIBPHON on
sound theoretical footing and opens the door to a
variety of future research paths, e.g. experiment-
ing with different kernel shapes, or formal analysis
of LIBPHON’s expected error bounds.
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5 The languages

On the view taken here, phonological knowledge
is taken to emerge from generalisation over lexical
items, and so the key to acquiring some phono-
logical pattern lies in learning a lexicon (Jusczyk,
2000). Consequently, the languages learned in
LIBPHON abstract away from sentence-level phe-
nomena, and the training data are simply labelled
formant trajectories, (LABEL, instance).

In order to get at the essence of the problem (viz.
the acquisition of vowel harmony as characterised
by morphophonological alternations), and in the
interests of computational tractability/efficiency,
the artificial languages learned by LIBPHON are
highly simplified, displaying only enough struc-
ture to capture the phenomena of interest.

5.1 Phonological inventory

The phonological inventory consists of three con-
sonants, {b, d, g}, and four vowels—two with high
F2 and two with low F2—which I label {i, e, u,
o}, for convenience.10 The formant values used
were generated from formant synthesis equations
in (de Boer, 2000), and from the locus equations
for CV-transitions in (Sussman et al., 1998).

5.2 Lexical items

LIBPHON’s lexicon is populated with instance
trajectories consisting of four-syllable11 “roots”
with zero, one or two one-syllable “affixes”. These
trajectories have associated class labels, which
from a formal point of view are contentless in-
dices. Rather than employing e.g. natural num-
bers as labels, I use character strings which corre-
spond more or less to the English pronounciations
of their associated trajectories. LABELs func-
tion, metaphorically-speaking, as “meanings”.
These are compositional, comprising a “lexical
meaning” (arbitrary CVCVCVCV string from the
phoneme set listed above), one of two obligato-
rily present “case markers” (NOM|ACC), and an
optionally present “plural marker” (PL). Hence,
word categories in the artificial languages come in
four forms, NOM-SG, NOM-PL, ACC-SG, and ACC-
PL.

10Because LIBPHON’s representations lack F3, the pri-
mary acoustic correlate of rounding, the back vowels would
be more standardly represented as /7, W/, but these are com-
paratively uncommon IPA symbols, so we will use the sym-
bols for the rounded variants. Nothing in the results or dis-
cussion hinges on this.

11All syllables are CV-shaped.
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Figure 1: Graphical representation of singular
forms of GIDEGEBI, as produced by teacher agent

Figure 1 gives examples of the singular NOM

and ACC forms of a high-F2 word. The NOM-
labelled trajectory has no suffixal morphology, and
corresponds to a bare form. The trajectory is eight
segments long,12 and the vowels in this case have
all high F2 (as in lexical front/back vowel har-
mony).13 Note also that ACC is realised with high
F2, in agreement with the root vowels.

5.3 Neutral vowels

The harmony processes seen thus far are in some
sense “local”, being describable in terms of vowel
adjacency e.g. adjacency on a hypothesised au-
tosegmental tier (although the presence of inter-
vening consonants still renders the harmony pro-
cess “nonlocal” in some more concrete articula-
tory sense). One of the hallmarks of vowel har-
mony, as discussed in subsection 2.1, is the phe-
nomenon of neutral vowels. These vowels fail to
alternate, and may or may not induce harmonic al-
ternations in vowels that precede or follow them.
To introduce a neutral vowel, I added a category
label, PL, whose realisation corresponds roughly
to [gu], and which is treated as being either opaque
or transparent in the simulations described below.

Figures 2 and 3 show the “plural inflected”
forms of the same root as in 1. We see that the

12The even-numbered indices on the x-axis correspond to
consonants and the odd-numbered indices, the “pinches” in
the graphs, correspond to vowels.

13The languages LIBPHON learns have only harmonic
singular forms. This is unrealistic, as speakers of vowel
harmony languages typically have some exceptional dishar-
monic forms in their lexicons. The effect of these forms on
LIBPHON’s performance is currently being investigated.
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realisation of PL has fixed, low F2, and that the
realisation of ACC has alternating F2, which real-
isations corresponding roughly to [be] (high F2)
and [bo] (low F2).

Figure 2: Graphical representation of plural forms
of GIDEGEBI, as produced by teacher agent, with
opaque PL realisation.
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Figure 3: Graphical representation of plural forms
of GIDEGEBI, as produced by teacher agent, with
transparent PL realisation.

These figures also illustrate the difference be-
tween languages with opaque versus transparent
PL, as reflected in the realisation of the word-final
ACC marker in the two lower graphs, which agrees
in F2 with the realised form of the PL or root, re-
spectively.

6 The experiments

Assessing successful learning/generalisation in a
computational model requires some measurable
outcome that can be tracked over time. Because
LIBPHON is an output-oriented model, its cate-

gorisation of inputs is a poor indicator of the ex-
tent to which it has learned a productive “rule” of
vowel harmony. In lieu of this measure, I have
opted to pursue two difference courses of evalua-
tion.

For the harmony cases, LIBPHON is queried on
a held-out test set of 500 previously unseen LA-
BELs and its output is compared to the mean value
of the teacher’s stored trajectories for the same LA-
BELs. In particular, given some LABEL which was
not in the training data, we can query LIBPHON

at various stages of acquisition (viz. with lexicons
of increasing size) by having it produce an output
for that LABEL, and track the change in its perfor-
mance over time.

The actual measure of error taken is the root-
mean-squared deviation between the learner’s out-
put, y and the mean, t, of the teacher’s stored
forms for some label, l, over all of the consonants
and vowels within a word, averaged across the re-
maining unseen items of the test set:

RMSE =
1
N

∑
l∈lex

√∑
i(ti − yi)2

len(t)

Figures 4 and 5 show RMSE vs. lexicon size
for both opaque and transparent neutrality (cf. the
cases in Figures 2 and 3), for five simulation runs
each. We can see clearly that error drops as the
lexicon grows, hence that LIBPHON is learning to
make its outputs more like those of the teacher,
but the informativity of this measure stops there.
From a linguistic point of view, we are interested
in what LIBPHON’s outputs look like, viz. has it
learned vowel harmony?

Figure 4: RMSE 1000-word lexicon. Opaque neu-
trality.

6



0 10 20 30 40 50 60 70 80 90 100 110 120
Lexicon size/10

300

400

500

600

700

800

900

1000

R
M

SE
pe

r
w

or
d

Learner 0

Learner 1

Learner 2

Learner 3

Learner 4

Figure 5: RMSE 1000-word lexicon. Transparent
neutrality.

Figures 6 and 7 show that vowel harmony is
learned, and moreover quite quickly, after going
through a brief initial phase of spurious outputs. In
these figures, LIBPHON is being asked to produce
outputs for all forms of the label GUBOGOBU. For
the particular run shown here, at the 10-word stage
(i.e. when LIBPHON had seen tokens from 10 la-
bels), the only tokens marked PL-ACC were from
high F2 (“front”) trajectories. Hence the nearest
neighbour calculation in the production algorithm
resulted in a fronted form being output. Although
acquisition research in vowel harmony languages
is relatively rare, or inaccessible to us due to lan-
guage barriers, what research there is seems to in-
dicate that harmony is mastered very quickly, with
virtually no errors by 2 years of age, hence it is un-
clear what status to assign to output patterns like
the one discussed here. Moreover, given the well-
known facts that (i) comprehension precedes pro-
duction, and (ii) infants avoid saying unfamiliar
words, it is unlikely that an infant could be coaxed
into producing an output form for such an early-
stage class.

7 Discussion and future work

The experiments discussed here show that on the
basis of limited input data, LIBPHON, an instance-
based learner that produces output via kernel-
smoothed nearest-neighbour regression, learns to
produce harmonically correct novel outputs. In
particular, it is able to generalise and produce cor-
rect morphologically complex forms to which it
has not been exposed in its training data, i.e. a
previously unseen case-marked form will be out-
put with harmonically correct F2, including neu-
trality (opaque or transparent). In ongoing re-

0 2 4 6 8 10 12
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500

1000

1500

2000

2500
NOM
ACC
PL NOM
PL ACC

Figure 6: Evolution of gubogobu in early acqui-
sition: 10 words

Figure 7: Evolution of gubogobu in early acqui-
sition: 30 words

search I am (i) evaluating LIBPHON’s perfor-
mance with respect to more traditional measures,
in particular F -score, on held-out data as the lexi-
con grows, and (ii) assessing the viability of DTW-
based alignment for preprocessing real speech to-
kens as inputs to LIBPHON.
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Abstract

This paper applies finite state technologies to
verify the typological validity of Turbid
Spreading, a theory of vowel harmony in Op-
timality Theory (OT) (Prince & Smolensky,
1993/2004). Previous analyses of vowel har-
mony in OT have been prone to typological
inconsistencies, predicting grammars that do
not occur in natural language (Wilson, 2003).
However, attempts to eliminate typological
pathologies relying on hand-made inputs and
candidate sets have been shown to be highly
prone to error (Wilson, 2005). Using a modi-
fied version of the Contenders Algorithm
(Riggle, 2004b), we verify that Turbid
Spreading makes typologically valid predic-
tions about the types of harmony processes
that may appear in natural language. This
modification of the Contenders Algorithm to
include complex spreading interactions and
intermediate representations demonstrates the
utility of computational methods for verifying
the typological predictions of complex
phonological theories.

1 Introduction

The goal of Optimality Theory (OT) (Prince &
Smolensky, 1993/2004) is to understand and ex-
plain the mechanisms responsible for linguistic
processes. Because it is possible to use constraint
rankings to generate a set of possible grammars,
OT is fundamentally a theory of cross-linguistic
typology.

One of the theoretical assumptions of OT is
that it is the job of the grammar to determine
which languages are possible and which are not.
While the full typology of identifiable languages
can never be verified, it is generally agreed that
there is a difference between unattested lan-
guages that are accidental gaps and unattested
languages that are pathological. While both are
unattested, accidental gaps are theoretically pos-

sible, and might be found given enough time.
Pathological languages are languages that are
logically possible, but violate general principles
of language, and no natural language is expected
to contain such pathologies.

Thus, OT assumes that a valid grammar is ty-
pologically sound if it does not generate pathol-
ogically unattested languages. However, it is ex-
tremely difficult to assess the typological validity
of phonological analyses because the output of a
typological prediction is dependent upon the set
of constraints, the output candidates considered,
and the underlying forms (inputs) of interest. The
theorist must therefore be able to consider all
possible inputs, to select an inclusive set of can-
didates, and to be sure to include the relevant
constraints. If any one of these factors is not
carefully constructed, the theorist may miss an
important typological prediction made by the OT
grammar.

These challenges can be significantly dimin-
ished through computational tools, such as finite-
state techniques. With such tools, it is possible to
understand typological predictions that would
have likely gone unnoticed without a computa-
tional model. This paper presents the results of
computational models used to revise and formu-
late a phonological theory. In this paper, we
make use of finite-state methods (specifically
Riggle’s (2004b) Contenders Algorithm) to un-
derstand and verify the typological predictions of
a particular theory of vowel harmony, Turbid
Spreading (Finley, 2008, in press). Without the
computational tools presented in this paper,
many unwanted predictions would have been
made.

Vowel harmony is a phonological process
whereby a particular phonological feature is
shared by all vowels in a given lexical domain.
For example, in Turkish vowel harmony, if the
first vowel of the word is [+Back], all following
vowels are [+Back], creating a spreading process
whereby [+Back] is spread from the left edge of
the word to the right.
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In simple1 cases of harmony, all possible vo w-
els undergo spreading. However, harmony fails
when a vowel is unable to take on the spreading
feature (e.g., if the language does not allow
[–High] vowels to be [+Back]). In these cases the
non-participating vowel can either block har-
mony and create a new spreading domain (as an
opaque vowel; [+ – –]) or allow the spreading
domain to skip the nonparticipating vowel (as a
transparent vowel; [+ – +]).

There are two reasons that vowel harmony in
OT is an ideal candidate for the present case
study of the use of finite-state techniques to ver-
ify linguistic typologies. First, vowel harmony is
cross-linguistically widespread, with a clear ty-
pology of patterns that are both frequent as well
as those that are unattested. Further, the ways in
which vowel harmony interacts with other proc-
esses (e.g., epenthesis and deletion) are well un-
derstood, such that it is possible to differentiate
between accidental gaps and pathological unat-
tested languages. For example, direction of
spreading in vowel harmony is determined by the
featural, morphological or (left or right) edge
status of the potential harmony source trigger
vowel. There are no languages that determine the
direction of spreading by fewest changes from
the input to output (referred to as ‘majority
rules’) (Finley & Badecker, 2008). However, this
pattern is easy to produce using Agree con-
straints which merely require adjacent vowels to
agree, and do not specify direction. It is these
kinds of unattested interactions that an ideal
model of vowel harmony in OT should avoid.
This ideal model must also be able to account for
the major harmony patterns (transparency, opac-
ity, etc.).

Establishing a theory of vowel harmony in OT
with both of these properties has been particu-
larly problematic. In addition to ‘majority rules’
patterns, interactions between non-participating
vowels and directionality of spreading have
posed a particular challenge. For example, tradi-
tional constraints used for vowel harmony (e.g.,
Align and Agree) predict harmony interactions
that do not exist, such as failure to spread to
regularly undergoing vowels in the presence of a
non-participating vowel, or deletion of a non-
participating vowel in order to preserve agree-
ment of vowel features (Wilson, 2003). These
harmony pathologies pose a great challenge for

                                                  
1 Like most phonological processes, vowel harmony is
subject to exceptions (Finley, 2010). Future work will in-
corporate exceptions into computational methods.

vowel harmony and OT in general. Turbid
Spreading is a representational approach to
vowel harmony in OT that has been designed
with this challenge in mind.

The second reason that vowel harmony is an
ideal method for studying the interaction of theo-
retical and computational methods is that vowel
harmony requires rich representations. These rich
representations pose a unique opportunity to in-
tegrate theoretical and computational method-
ologies. Specifically, we capture these rich repre-
sentations through the Contenders Algorithm
(Riggle, 2004b).

Further, vowel harmony is an important area
of research in computational phonology (Bird &
Ellison, 1994; Ellison, 1992; Goldsmith & Xan-
thos, 2009) because the representation of agree-
ment between vowels across consonants poses
unique challenges to the learner. This paper dif-
fers from previous computational models of
vowel harmony because the present work is an
instantiation of a generative OT model. The pre-
sent work focuses on framing work done in theo-
retical linguistics in a computational framework.

The paper begins with a brief overview of the
Contenders Algorithm (Section 2). This is fol-
lowed by a description of Turbid Spreading and
its formalization in finite-state representations
(Section 3). Section 4 presents the results of the
typological analysis.

2 The Contenders Algorithm

Riggle’s (2004a, 2004b) algorithm uses finite-
state techniques to find the set of candidates for a
given input that are possible optimal outputs un-
der any possible ranking. In order to compute
constraint violations, both GE N  and the con-
straints in CON are represented in terms of a fi-
nite state transducer. The use of finite represen-
tations of infinite sets of strings has important
consequences for Optimality Theory. As long as
GEN can be represented in terms of finite-state
transducers, it is possible to represent the infinite
candidate set in terms of a single computation.
When all constraints are combined and a single
input is evaluated, there will only be a finite set
of contenders2.

The Contenders Algorithm creates a single fi-
nite state transducer via the intersection of finite-
state transducers for GEN and CON. This com-
bined transducer is an unranked grammar. Be-

                                                  
2 See Riggle (2004b) for proof that the list of contenders
will always be a finite set.
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cause the goal of the algorithm is to produce a
list of candidates that could ‘win’ under some
ranking, the algorithm must entertain all possible
rankings.

Violations of constraints are instantiated
through costs for specific paths in the transducer
(e.g., a path that changes a [+F] vowel to a [–F]
vowel may have a cost of 1, incurring a single
violation). The combined transducer makes it
possible to find the constraint profile for any in-
put-output mappings created by GEN. This is the
cost of traversing the transducer from start to
finish for a given input-output pair. The Con-
tenders Algorithm compares violation profiles
for given constraints and candidates, making it
possible to predict which violation profiles (can-
didates) are able to win under some ranking (i.e.,
which candidates are contenders).

The Contenders Algorithm uses Ellison’s
(1994) model of finite-state transducers in OT to
find the least costly paths through the finite-state
grammar. Because each arc of the transducer cor-
responds to a segment in the string (along with
the input-output mapping for that segment), the
costs associated with that segment (i.e. constraint
violations) are found in each arc. These costs are
stored as n-tuples that can be used to compare
the costs associated with different candidates.

Riggle’s model is based on Dijktra’s (1959)
shortest path algorithm. Every time a candidate
violates a constraint, it increases the ‘distance’
through the transducer. According to Dijkstra’s
model, the shortest path through a transducer is
also the shortest path through each intermediate
step (as each intermediate step serves as a subset
of the shortest path). This means that candidates
that incur many violations will have the most
costly paths. By comparing each candidate’s cost
for each constraint, it is possible to find which
candidates are harmonically bound (i.e. cannot
win under any ranking) and which are not (the
contenders).

The Contenders Algorithm selects each node
of the intersected finite-state transducer and re-
cords the cost of each arc outside that node. The
cost of visiting that particular node is recorded if
that cost is less than or equal to previously re-
corded costs. After all nodes have been evalu-
ated, a list of the costs associated with each node
is produced. The Contenders Algorithm then
generates a list of all candidates whose costs do
not exceed that of the least-cost list; these are the
contenders for a given input.

The output of the Contenders Algorithm for a
large set of inputs can be used to create a typo-

logical analysis (Bane & Riggle, in press). This
typological analysis provides information about
the relationship between the different contenders
and the rankings that produce them. The typol-
ogy is formed by inputing the list of contenders
for a range of inputs into an algorithm that com-
putes Elementary Ranking Conditions (ERCs)
(Prince, 2002). ERCs produce a set of possible
ranking interactions from a set of candidates and
their violation profiles.

The present paper modifies Riggle’s (2004b)
model in several ways. First, Riggle’s model is
relatively simple in terms of the types of seg-
ments used. Riggle is able to model epenthesis
and deletion of segments listed as /a/ and /b/. In
the present model, we include binary vowel fea-
tures ([±F]) that are active in vowel harmony (in
addition to consonants). Second, the number and
complexity of constraints are increased. The pre-
sent model allows for deletion and insertion, as
well as feature agreement and featural marked-
ness. Third, the present model adds an interme-
diate level of representation between the input
and the output, thereby increasing the level of
complexity in both the constraints and the
evaluation. This demonstrates that Riggle’s
model is capable of handling rich representa-
tions, complex phonological processes and mul-
tiple assumptions about the architecture of repre-
sentations in phonology. Thus, the Contenders
Algorithm is important for a wide range of
problems in phonological theory, and has the
ability to bring computational approaches to
problems that affect researchers in phonology
beyond the computational linguist.

3 Turbid Spreading

Turbid Spreading is a representational approach
to vowel harmony based loosely on Turbidity
Theory (Goldrick, 2001), a model for opaque
representations in phonology. This model uses
hidden representations as a method for account-
ing for incremental phonological processes in a
parallel fashion. Turbid Spreading extends this
idea of hidden representations. In Turbid
Spreading, featural representations for segments
have three levels: the underlying representation
(UR), the projection level (PR), and the surface
level (SR). Relations between the underlying
form and the surface form are achieved at the
projection level. All segments have a feature
value at the projection level. Because we are
concerned with spreading between vowels, we
focus solely on the representations for vowels. In
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the present implementation, there is a single
harmonic feature of interest (±F) and a secondary
unary feature (B) that is penalized when a seg-
ment that possess both B and +F feature values
(and can therefore block harmony, such as a
[+High] vowel that cannot be [+Back]). All ±
notations refer to the feature F. Thus, +B is a
[+F, B] vowel and –B is a [–F, B] vowel.

All projection level representations are marked
±U, ±R, ±L, and ±P.  The ± refers to the feature
value for F (+F/–F), and the letter (U, L, etc.)
refers to the source of the projection, described
below.

 The source of the projected feature value can
be the underlying form (a faithful representation,
marked as ±U, in which +U refers to a +F vowel
projected by its underlying form, and –U refers
to a –F vowel projected by its underlying form),
a neighboring vowel (via spreading, marked as
±L/±R, in which +L refers to a +F vowel pro-
jected by the vowel to its left) or the phonetic
representation, via the surface level (marked as
±P, in which  +P refers to a +F vowel projected
by its surface form). Each vowel has one and
only one source for its projection value.

In Turbid Spreading, vowel harmony is
achieved when the feature value at the projection
level of the triggering vowel spreads to an adja-
cent vowel. In the example of spreading given in
Figure 1, the pictoral representation of spreading
is given on the left, with the notational features
given on the right.  The first vowel spreads [+F]
to the second vowel, causing the second vowel to
be represented as +L at the projection level (be-
cause it receives a [+F] feature from the vowel to
the left). The underlying form and the surface
form do not change as a result of spreading.

   [+F]      [–F]     UR:   +F   –F
                    

     [+F] [+F]      PR:   +U  +L

     [+F]     [+F]     SR:   +F  +F

Figure 1: Spreading

 An important restriction on spreading is that
the features at both sides of the ‘arrows’ must
match (e.g., [–F]  [+F] is prohibited3). In other
words, vowels may only spread the feature value
at the projection level. However, this does not

                                                  
3 The present model does not account for dissimilation, but
we assume that will be accounted for by some other mecha-
nism, and is subject to future work.

preclude feature values from changing at differ-
ent levels (e.g., from [+F] in the UR to [–F] in
the PR). Allowing changes to feature values at
different levels captures both direct spreading
processes, as well as opaque interactions be-
tween spreading and the surface form. For exam-
ple, a transparent vowel is created when [+F]
spreads to a non-participating vowel (giving
+L/+R at the PR) but the non-participating vowel
pronounces [–F] at the SR. In this case, the fea-
ture values at the projection and pronunciation
levels will not match. Transparent vowels there-
fore satisfy spreading constraints, but violate the
constraints requiring the feature values of the
surface form and the projection level to match.

For the purpose of formalizing Turbid
Spreading into regular expressions for the Con-
tenders Algorithm, we treat each level of repre-
sentation (UR, PR and SR) as an element of a
triple. There are four feature values that appear
in the UR and the SR: /+F, –F, +B, –B/. The
feature B (potential harmony blocker) is a
placeholder for a feature that may or may not
spread that harmonic feature. This allows us to
place restrictions on which vowels can undergo
spreading (e.g., a restriction that non-high vow-
els cannot undergo back harmony). This secon-
dary feature is important for evaluating the ty-
pology of interactions between participating and
non-participating vowels.

The projection level  (PR) representation con-
tains both featural information as well as the
source of spreading. The feature values for F are
shortened to be simply +/–. For example, a +F
vowel projected by U is written as +U rather than
+FU. Thus, ±U implies a faithful ±F feature rep-
resentation of the underlying form (e.g., –U im-
plies a faithful representation of the
–F feature value in the underlying form). ±P im-
plies that the phonetics has caused a change in
the representation. ±R implies leftward spreading
(the vowel to right spread to the current vowel).
±L implies rightward spreading (the vowel to the
left spread to the current vowel). The representa-
tion for each string of vowels is written as [UR:
PR: SR]. The pictorial representation in Figure 1
is therefore [+F –F: +U +L: +F +F].

We implemented Turbid Spreading in the
Contenders Algorithm by using finite state im-
plementations of GE N and of the constraints
known to interact with spreading4. Each arc of
the transducer represents a single segment, pre-

                                                  
4 Text versions of the FSA’s can be found at:
http://www.cog.jhu.edu/grad-students/finley/fsa.pdf
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sented as a tuple. A ‘.’ notation indicated that the
position in the tuple could be filled by any fea-
ture value. Non-crucial arcs were removed from
the diagrams of finite-state transducers (but were
included in the formal analysis). These include
the potential for vowel epenthesis (notated as [-])
and vowel deletion (notated as an [x]). Note that
the symbols ‘x’ and ‘-‘ are used solely for
‘bookkeeping’ purposes in the FSA’s and are not
necessarily part of the phonological representa-
tion.

We also removed several arcs allowing for the
presence of consonants (represented as [C]). Be-
cause projection from the surface form (+P/–P)
works the same as projection from the UR (in
terms of vowel harmony), these are left out of the
descriptions (but were included in the formal
analysis).

The transducer for Gen is given in Figure 2.
This finite state transducer accepts strings of
concatenated vowels for all potential inputs. This
transducer provides the basis for restrictions on
the representations for spreading. One such re-
striction is that the feature value of the projection
must match the source feature value. For exam-
ple, a vowel with a [+U] projection must have
[+F] in the UR (e.g., arc 0 to 1). A second re-
striction is a practical one; the first vowel in a
word cannot be projected by the vowel to its left
(because such a vowel does not exist).  The third
restriction is that vowels have one and only one
projection. Gen only produces segments that
have a single value at the projection.

Figure 2: GEN

Spreading is initiated by a vowel whose pro-
jection is its underlying form (+U/–U). A vowel
may only be projected by +L if it follows a
vowel that is projected by +U (and likewise for
–L).  This ensures that the only initiator for
rightwards spreading is a vowel projected by its
underlying form.

In Turbid Spreading, deletion of a segment
entails deletion of only the surface form; all

vowels with a UR have a representation at the
PR. Epenthesis can occur at either the PR level
(requiring representations at both the PR and SR)
or the SR (requiring only a representation at the
SR). Epenthetic vowels at the PR level undergo
spreading (e.g., arc 0 to 6), whereas epenthetic
vowels at the SR only are transparent to spread-
ing. The difference between epenthetic and de-
leted vowels is based on the fact that epenthetic
vowels may interact with spreading (at the pro-
jection level) or be transparent (and appear only
at the pronunciation level), but deleted vowels
may not interact with spreading (and therefore
appear only at the pronunciation level).

Rightwards spreading is instantiated in the arcs
from state 0 to states 3, 4, 6 and 7. Transitions
from 0 to 6 and 0 to 7 involve epenthetic vowels
(marked with a /-/ in the UR). Arcs from 0 to 3
and 0 to 6 involve spreading -F to the left (/-R/ at
the PR). Arcs from 0 to 7 and 0 to 4 involve
spreading +F to the right (/+R/ at the PR). In or-
der for a /+R/-R/ projected vowel to reach a final
state, the source of spreading must be +U/-U,
which is reflected in the arcs from 3 to 2, and 4
to 1. Spreading from the left to right involves a
vowel projected by its underlying form (transi-
tions 0 to 1 and 0 to 2). From there a vowel may
be projected as +L  (state 1) or as –L (state 2).

Constraints Turbid Spreading is instantiated
through several constraints. SPREAD-R and
SPREAD-L initiate vowel harmony. ID[F]-UR
regulates  featural identity between the underly-
ing representation and the projection. ID[F]-SR
regulates featural identity between the surface
representation and the projection.  Constraints
that govern epenthesis and deletion are MAX,
DEP, and *CC. The finite state transducers of
these constraints assign violation marks (e.g., -1)
to the output whenever a violation of the con-
straint is encountered.

ID[F]-UR is violated once for every vowel not
projected by its underlying form. Any vowel that
has an underlying form (i.e., not an epenthetic
vowel), but is not marked with ±U at the PR in-
curs a violation.
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Figure 3: ID[F]-UR

*B is a placeholder for a featural markedness
constraint (e.g., *[+Back, –High]). This con-
straint is violated when a vowel is marked ±B in
the input and is +F in the output (e.g., a [–High]
vowel becoming [+Back]). All other representa-
tions do not receive a violation5.

Figure 4: *B

The ID[F]-SR constraint is violated whenever
the feature values at the projection and the pro-
nunciation level do not match. For example, if
the pronunciation is [+], the projection must be
+U, +L, +R or +P.

Figure 5: ID[F]-SR

                                                  
5 This constraint assumes that no vowels may lose their /B/
specification from the input to the output (e.g., change from
[–HIGH] to [+HIGH] in order to allow spreading of [+Back]).
This process is called ‘re-pairing’ (Bakovic, 2000), and is
subject to future research.

The ‘x’ symbol is used to denote deleted vow-
els, which violate MAX, which assigns a viola-
tion if  ‘x’ appears in the pronunciation.

Figure 6: MAX

DEP is the constraint violated by epenthesis,
represented by the symbol ‘-‘ in the underlying
form. DEP searches for any vowel with (-) in the
UR and assigns a violation for each feature value
that appears on the projection and pronunciation
levels. Epenthesis at the pronunciation level in-
curs two violations of DEP, but epenthesis at the
projection level incurs one violation.

Figure 7: DEP

I assume that epenthesis is driven by the mark-
edness constraint *CC6. This constraint scans the
pronunciation level for two consonants in a row,
and assigns a violation for every pair of conso-
nants. *CC requires two states because *CC is
violated only when there are two consecutive
consonants, making one state for the first conso-
nant (no violations), and a second state for an
adjacent consonant (a violation).

                                                  
6 In addition to *CC, other constraints such as *#C or *C#
may trigger epenthesis. For simplicity, these additional con-
straints are not included in the present analysis.

14



Figure 8: *CC

Violations for both spreading constraints are
assigned directionally such that a violation on the
first vowel is more severe than violations later in
the word (Eisner, 2000), formalized in a simpli-
fied version where violations at different parts of
the word are greater than other parts of the word.
In order to prevent ‘gang’ effects, violations are
assigned exponentially such that for a three-
vowel input, violation on the second vowel in-
curs 100 violations, while a violation on the third
vowel incurs only 10 violations. This simplified
version of directional evaluation only allows for
a finite number of vowels in the input. However,
because the theory is tested with inputs of 3 and
4 vowels in length, these simplified transducers
capture the data analyzed here. Future work will
analyze directional spreading for an unlimited
number of vowels in the input.

SPREAD-R is satisfied if a vowel projects an L
(+/–L only occurs if a vowel spreads rightwards).
Spreading is represented in terms of the target of
spreading (e.g., a [+L] vowel is the target of
spreading). Because initial vowels cannot be a
target of rightward spreading (as there is no
vowel to the left), the initial vowel automatically
satisfies SPREAD-R.

Figure 9: SPREAD-R

From state 1, vowels that project an L satisfy
SPREAD and move to state 5. All other vowels
move to state 2 and incur 100 violations. From
states 2 and 5, if the third vowel satisfies
SPREAD, it moves to state 6. If the final vowel
satisfies SPREAD, it moves to state 7. If the third
vowel fails to satisfy SPREAD, it moves to state 3

(from state 5 or 2) and incurs 10 violations. If the
fourth vowel fails to satisfy SPREAD, it moves to
state 4 (from states 6 or 3) and incurs 1 violation.

One might assume that SPREAD-L simply is a
reversed version of SPREAD-R. However, this
simple reversal is not possible because the oppo-
site vowels trigger spreading for each constraint.
In SPREAD-R, the initial vowel is the optimal
trigger for harmony, but for SPREAD-L the final
vowel is the optimal trigger for harmony.

The final vowel always satisfies SPREAD-L be-
cause final vowels cannot be targets for leftward
spreading. Thus, the final vowel (state 7) never
incurs a violation. If the first vowel is projected
by +R or -R, then it satisfies SPREAD-L (state 3),
otherwise it violates the constraint, and incurs 1
violation (state 4). If the second non-final vowel
violates SPREAD-L, it moves to state 2 and incurs
10 violations. If the third non-final vowel vio-
lates SPREAD-L, it moves to state 3 and incurs
100 violations.

Violations of harmony from epenthetic vowels
are assigned based on the position of the word. If
an epenthetic vowel does not get its projected
feature from the right, it will incur a violation of
SPREAD-L. Epenthesis before the initial vowel
incurs 1 violation, epenthesis after the initial
vowel incurs 10 violations, etc.

Figure 9: SPREAD-L

4 Results

The finite state transducers implementing GEN
and the constraints were fed into the Contenders
Algorithm. This was a modified version of Rig-
gle’s java script program7. This program co m-
putes the contenders for a single input over the
grammar. While the finite-state transducers rep-
resent an infinite candidate set, it would be im-
possible to compute contenders for every possi-
ble input. We limited the input to 4 vowels be-
                                                  
7 Thanks to Colin Wilson for these modifications.
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cause all previously reported pathologies did not
change for words longer than four vowels (3 with
epenthesis)8. We used Microsoft Excel to co m-
pute all possible feature combinations for up to
four vowels (+F, –F, +B, –B) without epenthesis.
There were 256 combinations with 4 vowels in
the input, 64 combinations with 3 vowels, 16
combinations with 2 vowels, and 4 with 1 vowel
in the input. The input list with epenthesis used
the vowel combinations for up to 3 vowels, and
CC clusters were inserted at the left edge, right
edge, and medially (when applicable).

The results of the Contenders Algorithm were
fed into the Erculator program for computing
typologies using Elementary Ranking Conditions
(ERCs) (Riggle, 2007). Without epenthesis, there
was a typology containing 16 languages: 6
spread right, 6 spread left and 4 with no spread-
ing. For the no spread cases, there was one lan-
guage that allowed the marked segment ([+B]),
and three that did not. In the three that did not
allow [+B] in the output, underlyingly /+B/ seg-
ments were treated differently. In one language,
underlyingly /+B/ segments got their [–F] feature
from the vowel to its left, in another language,
underlyingly /+B/ segments got their [–F] feature
from the vowel to its right, and in the third lan-
guage, underlyingly /+B/ segments got their [–F]
feature from the pronunciation level.

The six spread-right and spread-left languages
were identical except for direction of spreading.
In one language all vowels participated in har-
mony. The second language was a case of ‘allo-
phonic harmony’. In this case, a [+B] vowel only
appears as a result of harmony. That is, harmony
creates allophones of a phoneme that would oth-
erwise not appear on the surface. Non-
participating vowels were transparent in the third
and fourth cases. In the third case, an underly-
ingly +B vowel was changed via spreading; in
the fourth case, an underlyingly +B vowel was
changed at the pronunciation level. In the fifth
and sixths cases, non-participating vowels were
opaque, blocking harmony and starting a new
harmonic domain. In the fifth case, underlyingly
/+B/ segments changed to [–F] via projection
from the surface. In the sixth language, underly-
ingly /+B/ segments could undergo spreading of
[–F] from either the left or the right, if possible.

With epenthesis, the predicted typology con-
tained 68 languages. There were 16 languages
with no epenthesis, 16 languages with epenthesis
always on the projection level and 16 languages
                                                  
8 Pilot tests with longer inputs did not change the results.

with epenthesis at the pronunciation level (giving
48 languages). Each of these sets of 16 languages
corresponded to the 16 languages with no epen-
thesis above. The final 20 languages were from
cases in which epenthesis occurred at the projec-
tion level only if spreading were possible from
the vowel to the left (10 languages) or the vowel
to the right (10 languages). These 20 languages
differed depending on how non-derived vowels
behaved. There were two sets of 4 no-spread
languages, 6 spread-right languages, and 6
spread-left, described above.

Pattern Examples
1. All vowels
participate

Kalenjin (Local & Lodge,
1996)
Degema (Elugbe, 1984)

2. Transparent
Vowels

Hungarian (Goldsmith, 1985)
Finnish (Goldsmith, 1985)

3. Opaque
Vowels

Mongolian (Goldsmith, 1985)
Turkish (Underhill, 1976)

4. Bi-
Directional
Harmony

Lango (Woock & Nooonan,
1979)
Kalenjin (Local & Lodge,
1996)
Turkana (Dimmendaal, 1983)

5. Allophonic
Harmony

Pasiego (Penny, 1969)
Akan (Clements, 1981)
Kinande (Archangeli & Pulley-
blank, 2002)
Nawuri (Casali, 2003)

Epenthetic Vowels
6. Transparent Karchevan (Vaux, 1995)

Agulus (Vaux, 1998)
7. Undergo
Harmony

Turkish (Clements & Sezer,
1982; Underhill, 1976)
Yawelmani (Archangeli, 1988)
Yoruba (Archangeli & Pulley-
blank, 1989)

8. Directional
Harmony

Levantine Arabic (Kenstowicz,
1981)
Mohawk (Postal, 1968),
Sesotho (Rose & Demuth,
2006)

9. Epenthetic
Vowels Only

Ponapean (Kitto & DeLacy,
1999)
Barra Gaelic (Sagey, 1987)
Marash (Vaux, 1998)

Table 1. Patterns of harmony languages

Importantly, all 68 of these languages represent
possible or known languages; none of these lan-
gauges share the properties of pathological ty-
pological predictions described by Wilson
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(2003). An important result of these computa-
tions is that epenthesis is never blocked by a
failure to participate in harmony, a prediction
that previous analyses of vowel harmony incor-
rectly predicted to be possible (Wilson, 2003).

Because the resulting languages varied system-
atically, we were able to divide the 68 languages
into nine different patterns. Examples from real
languages are presented in Table 1. The first
pattern is that all vowels participate in harmony;
there are no non-participating vowels. The sec-
ond and third patterns are vowel harmony lan-
guages with nonparticipating vowels, either
transparent to harmony (case 2) or opaque to
harmony (case 3). Case 4 occurs when spreading
applies both from right-to-left as well as left-to-
right. Case 5 involves allophonic harmony, dis-
cussed above. Cases 6-9 apply to epenthetic
vowels. In case 6, harmony skips epenthetic
vowels. In case 7, harmony applies to epenthetic
vowels as if they were an underlying vowel. In
case 8, harmony applies to epenthetic vowels,
but directionally (e.g., the epenthetic vowel gets
its features from the right or left, or defaults if
there is no vowel to spread to the epenthetic
vowel). Case 9 occurs when harmony does not
apply to underlying vowels in the language, and
only epenthetic vowels undergo harmony.

The important result found in these 9 case pat-
terns is that all the major harmony phenomena
are predicted (directionality, epenthesis, trans-
parency and opacity), without predicting typo-
logically implausible languages. This is an im-
portant result because many previous theories of
vowel harmony in OT made pathological predic-
tions when harmony interacted with non-
participating vowels, deletion and epenthesis.
For example, alignment constraints predict fail-
ure to epenthesize a vowel in the presence of a
non-participating vowel (Wilson, 2003). Such
pathologies are not found in Turbid Spreading.

While there other instances of vowel harmony
that are not covered in the present analysis, the
present approach provides a mechanism for un-
derstanding the typology of vowel harmony
processes and the mechanisms that produce the
attested and the unattested patterns.

It is important to note that while the present re-
sults are successful, the model is a result of revi-
sions based on previous iterations of the Con-
tenders Algorithm. Many of the unwanted pre-
dictions in previous models could not have been
found without the use of the computational tools
used in this paper.

5 Conclusion

Computations over finite-state transducers
made it possible to compute a complete typology
of vowel harmony interactions, including inter-
actions of vowel harmony and epenthesis. The
computational model verified that Turbid
Spreading only predicts languages known to be
attested in natural language, but does predict the
common pathologies known to be problematic
for previous vowel harmony analyses in OT.

Because we used all possible vowel combina-
tions for up to four vowels, we can be fairly cer-
tain that all relevant inputs were considered. Be-
cause the Contenders Algorithm models the infi-
nite candidate set in GEN, we can be certain that
the relevant candidates were considered. This
paper demonstrates the power of computational
tools for measuring and evaluating theories of
phonological phenomena.
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Abstract

The problem of the acquisition of Phono-
tactics in OT is shown to be not tractable
in its strong formulation, whereby con-
straints and generating function vary arbi-
trarily as inputs of the problem.

Tesar and Smolensky (1998) consider the ba-
sic ranking problem in Optimality Theory (OT).
According to this problem, the learner needs to
find a ranking consistent with a given set of data.
They show that this problem is solvable even in its
strong formulation, namely without any assump-
tions on the generating function or the constraint
set. Yet, this basic ranking problem is too sim-
ple to realistically model any actual aspect of lan-
guage acquisition. To make the problem more re-
alistic, we might want, for instance, to require the
learner to find not just any ranking consistent with
the data, rather one that furthermore generates a
smallest language (w.r.t. set inclusion). Prince and
Tesar (2004) and Hayes (2004) note that this com-
putational problem models the task of the acquisi-
tion of phonotactics within OT. This paper shows
that, contrary to the basic ranking problem consid-
ered by Tesar and Smolensky, this more realistic
problem of the acquisition of phonotactics is not
solvable, at least not in its strong formulation. I
conjecture that this complexity result has nothing
to do with the choice of the OT framework, namely
that an analogous result holds for the correspond-
ing problem within alternative frameworks, such
as Harmonic Grammar (Legendre et al., 1990b;
Legendre et al., 1990a). Furthermore, I conjec-
ture that the culprit lies with the fact that gener-
ating function and constraint set are completely
unconstrained. From this perspective, this paper
motivates the following research question: to find
phonologically plausible assumptions on generat-
ing function and constraint set that make the prob-
lem of the acquisition of phonotactics tractable.

1 Statement of the main result

Let the universal specifications of an OT typology
be a 4-tuple (X ,Y, Gen, C), as illustrated in (1):
X and Y are the sets of underlying and surface
forms; Gen is the generating function; and C is
the constraint set.

X = Y = {ta, da, rat, rad}
Gen =

ˆ
ta, da→ {ta, da} rat, rad→ {rat, rad} ˜

C =

8<:Fpos = IDNT[VCE]/ONSET,
F = IDNT[VCE],

M = ∗[+VCE, −SON]

9=;
(1)

Let�,�′, . . . be rankings over the constraint set,
as illustrated in (2) for the constraint set in (1).

Fpos �M � F Fpos �′ F �′ M (2)

Let OT� be the OT-grammar corresponding to a
ranking� (Prince and Smolensky, 2004), as illus-
trated in (3) for the ranking� in (2).

OT�(/ta/) = [ta] OT�(/da/) = [da]
OT�(/rat/) = [rat] OT�(/rad/) = [rat]

(3)

Let L(�) be the language corresponding to a
ranking�, illustrated in (4) for the rankings (2).

L(�) = {ta, da, rat}
L(�′) = {ta, da, rat, rad} (4)

A data set D is a finite set of pairs (x, ŷ) of an
underlying form x ∈ X and an intended winner
surface form ŷ∈Gen(x)⊆Y , as illustrated in (5).

D = {(/da/, [da]), (/rat/, [rat])} (5)

A data set D is called OT-compatible with a rank-
ing� iff the corresponding OT-grammar accounts
for all the pairs in D, namely OT�(x)= ŷ for ev-
ery pair (x, ŷ) ∈ D. A data set D is called OT-
compatible iff it is OT-compatible with at least a
ranking. Suppose that the actual universal specifi-
cations (X ,Y, Gen, C) are fixed and known. The
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basic Ranking problem (Rpbm) is (6). The learner
is provided with a set of data D corresponding to
some target language; and has to come up with a
ranking compatible with those data D.

given: an OT-comp. data set D ⊆ X × Y;

find: a ranking� over the constraint set
C that is OT-compatible with D.

(6)

At the current stage of the development of the
field, we have no firm knowledge of the actual
universal specifications. Thus, the Rpbm (6) is
of little interest. It is standard practice in the OT
computational literature to get around this diffi-
culty by switching to the strong formulation (7),
whereby the universal specifications vary arbitrar-
ily as an input to the problem (Wareham, 1998;
Eisner, 2000; Heinz et al., 2009). Switching from
(6) to (7) presupposes that the learner does not rely
on peculiar properties of the actual universal spec-
ifications.

given: univ. specs (X ,Y, Gen, C),
an OT-comp. data set D ⊆ X × Y;

find: a ranking� over the constraint set
C that is OT-compatible with D.

(7)

To complete the statement of the Rpbm (7), we
need to specify the size of its instances, that de-
termines the time that a solution algorithm is al-
lowed to take. Let width(D) be the cardinality of
the largest candidate set over all underlying forms
that appear in D, as stated in (8).

width(D) def= max(x,ŷ)∈D |Gen(x)| (8)

Of course, the size of an instance of the Rpbm (7)
depends on the cardinality |C| of the constraint set
and on the cardinality |D| of the data set. Tesar
and Smolensky (1998) (implicitly) assume that it
also depends on width(D), as stated in (9). 1

given: univ. specs (X ,Y, Gen, C),
an OT-comp. data set D ⊆ X × Y;

find: a ranking� of the constraint set C
that is OT-compatible with D;

size: max {|C|, |D|, width(D)}.

(9)

1A potential difficulty with the latter assumption is as
follows: width(D) could be very large, namely super-
polynomial in the number of constraints |C|; thus, letting the
size of an instance of the Rpbm depend on width(D) might
make the problem too easy, by loosening up too much the
tight dependence on |C|. Yet, this potential difficulty is harm-
less in the case of the strong formulation of the Rpbm, since
that formulation requires an algorithm to work for any univer-
sal specifications, and thus also for universal specifications
where |C| is large but width(D) small.

Tesar and Smolensky (1998) prove claim 1. This
claim is important because it shows that no harm
comes from switching to the strong formulation,
at least in the case of the Rpbm.
Claim 1 The Rpbm (9) is tractable.
Yet, the Rpbm (9) is way too simple to realisti-
cally model any aspect of acquisition. Here is a
way to appreciate this point. The two rankings
� and �′ in (2) are both solutions of the in-
stance of the Rpbm (9) corresponding to the uni-
versal specifications in (1) and to the data set in
(5). As noted in (4), the language correspond-
ing to � is a proper subset of the language cor-
responding to �′. A number of authors have
suggested that the ranking � that corresponds to
the subset language is a “better” solution than the
ranking �′ that corresponds to the superset lan-
guage (Berwick, 1985; Manzini and Wexler, 1987;
Prince and Tesar, 2004; Hayes, 2004). This intu-
ition is captured by problem (10): it asks not just
for any ranking OT-compatible with the data D;
rather, for one such ranking whose corresponding
language is as small as possible (w.r.t. set inclu-
sion). The latter condition requires the learner to
rule out as illicit any form which is not entailed by
the data. Problem (10) thus realistically models
the task of the acquisition of phonotactics, namely
the knowledge of licit vs. illicit forms.

given: univ. specs (X ,Y, Gen, C),
an OT-comp. data set D ⊆ X × Y;

find: a ranking � OT-comp. with D s.t.
there is no ranking �′ OT-comp.
with D too s.t. L(�′) $ L(�).

(10)

The Problem of the Acquisition of Phonotactics
(APpbm) in (10) involves the language L(�),
which in turn depends on the number of forms
in X and on the cardinality of the candidate set
Gen(x) for all underlying forms x∈X . Thus, (11)
lets the size of an instance of the APpbm depend
generously on |X | and width(X ), rather than on
|D| and width(D) as in the case of the Rpbm (9).2

given: univ. specs (X ,Y, Gen, C),
an OT-comp. data set D ⊆ X × Y;

find: a ranking � OT-comp. with D s.t.
there is no ranking �′ OT-comp.
with D too s.t. L(�′) $ L(�);

size: max {|C|, |X |, width(X )}.

(11)

2Letting the size of an instance of the APpbm depend on
|C|, |X | and width(X ) ensures that the problem is in NP ,
namely that it admits an efficient verification algorithm.
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Prince and Tesar (2004) offer an alternative for-
mulation of the APpbm. They define a strictness
measure as a function µ that maps a ranking� to
a number µ(�) that provides a relative measure
of the cardinality of the corresponding language
L(�), in the sense that any solution of the prob-
lem (12) is a solution of the APpbm (10).3

given: univ. specs (X ,Y, Gen, C),
an OT-comp. data set D ⊆ X × Y;

find: a ranking with minimal measure µ
among those OT-comp. with D.

(12)

As usual, assume that the constraint set Con =
F ∪ M is split up into the subset F of faith-
fulness constraints and the subset M of marked-
ness constraints. Consider the function µPT de-
fined in (13): it pairs a ranking�with the number
µPT(�) of pairs of a faithfulness constraint and a
markedness constraint such that the former is�-
ranked above the latter. Prince and Tesar (2004)
conjecture that the function µPT in (13) is a strict-
ness measure. The intuition is that faithfulness
(markedness) constraints work toward (against)
preserving underlying contrasts and thus a small
language is likely to arise by having few pairs of a
faithfulness constraint ranked above a markedness
constraint.

µPT(�) def= |{(F,M)∈F×M|F �M}| (13)

Let me dub (12) with the mesure µPT in (13)
Prince and Tesar’s reformulation of the APpbm
(PTAPpbm), as in (14). The core idea of strictness
measures is to determine the relative strictness of
two rankings without reference to the entire set of
forms X . Thus, (14) lets the size of an instance
of PTAPpbm depend on |D| and width(D), rather
than on |X | and width(X ) as for the APpbm (11).

given: univ. specs (X ,Y, Gen, C),
an OT-comp. data set D ⊆ X × Y;

find: a ranking with minimal measure
µPT among those OT-comp.withD;

size: max{|C|, |D|, width(D)}.

(14)

The APpbm (11) and the PTAPpbm (14) have fig-
ured prominently in the recent computational OT
literature. The main result of this paper is claim

3The Rpbm (7) corresponds to Empirical Risk Minimiza-
tion in the Statistical Learning literature, while problem (12)
corresponds to a regularized version thereof, with regulariza-
tion function µ.

2. This claim says that there is no efficient al-
gorithm for the APpbm nor for the PTAPpbm. I
conjecture that the culprit lies in the switch to
the strong formulation. Comparing with claim
1, I thus conclude that the switch is harmless for
the easy Rpbm, but harmful for the more realistic
APpbm and PTAPpbm.

Claim 2 The APpbm (11) and the PTAPpbm (14)
are intractable.

In the next section, I prove NP-completeness of
PTAPpbm by showing that the Cyclic Ordering
problem can be reduced to PTAPpbm. I then prove
NP-completeness of APpbm by showing that
PTAPpbm can be reduced to it. NP-completeness
of APpbm holds despite the generous dependence
of its size on |X | and width(X ). Furthermore, the
proof actually shows that the PTAPpbm remains
NP-complete even when the data have the sim-
plest “disjunctive structure”, namely for each un-
derlying/winner/loser form there are at most two
winner-preferring constrains.4 And furthermore
even when the data have the property that the faith-
fulness constraints are never loser-preferring.

2 Proof of the main result

Given a data set D, for every pair (x, ŷ) ∈ D of
an underlying form x and a corresponding winner
form ŷ, for every loser candidate y ∈Gen(x) dif-
ferent from ŷ, construct a row a with |C| entries as
follows: the kth entry is an L if constraint Ck as-
signs more violations to the winner pair (x, ŷ) than
to the loser pair (x, y); it is a W if the opposite
holds; it is an E if the two numbers of violations
coincide. Organize these rows one underneath the
other into a tableau A(D), called the comparative
tableau corresponding toD. To illustrate, I give in
(15) the tableau corresponding to the data set (5).

A(D) =
[ F Fpos M

W W L

W E W

]
(15)

Generalizing a bit, let A ∈ {L, E, W}m×n be a
tableau withm rows, n columns, and entries taken
from the three symbols L, E or W, called a compar-
ative tableau. Let me say that A is OT-compatible
with a ranking � iff the tableau obtained by re-
ordering the columns of A from left-to-right in

4Of course, if there were a unique winner-preferring con-
straint per underlying/winner/loser form triplet, then the data
would be OT-compatible with a unique ranking, and thus the
PTAPpbm would reduce to the Rpbm.
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decreasing order according to� has the property
that the left-most entry different from E is a W in
every row. Tesar and Smolensky (1998) note that
a data set D is OT-compatible with a ranking �
iff the corresponding comparative tableau A(D)
is OT-compatible with it. Thus, the PTAPpbm
(14) is tractable iff the problem (16) is tractable.
Note that this equivalence crucially depends on
two facts. First, that the size of an instance of the
PTAPpbm depends not only on |C| and |D|, but
also on width(D). Second, that we are consider-
ing the strong formulation of the PTAPpbm, and
thus no assumptions need to be imposed on the
given comparative tableau in (16), besides it being
OT-compatible. The set F provided with an in-
stance of (16) says which one of the n columns of
the comparative tableau A correspond to faithful-
ness constraints. The size of an instance of prob-
lem (16) of course depends on the numbers m and
n of rows and columns of A.

given: a OT-comp. tabl.A∈{L, E,W}m×n,
a set F ⊆ {1, . . . , n};

find: a ranking � with minimal measure
µPT among those OT-comp. with A;

size: max{m, n}.

(16)

The decision problem corresponding to (16) is
stated in (17). As it is well known, intractability
of the decision problem (17) entails intractability
of the original problem (16). In fact, if the original
problem (16) can be solved in polynomial time,
then the corresponding decision problem (17) can
be solved in polynomial time too: given an in-
stance of the decision problem (17), find a solution
� of the corresponding instance of (16) and then
just check whether µPT(�) ≤ k. From now on, I
will refer to (17) as the PTAPpbm.

given: a OT-comp. tabl. A∈{L, E,W}m×n,
a set F ⊆ {1, . . . , n},
an integer k;

output: “yes” iff there is a ranking� OT-
comp. with A s.t. µPT(�) ≤ k;

size: max{m, n}.

(17)

Let me now introduce the problem I will reduce
to PTAPpbm. Given a finite set A = {a, b, . . .}
with cardinality |A|, consider a set S ⊆ A×A of
pairs of elements of A. The set S is called linearly
compatible iff there exists a one-to-one function
π : A → {1, 2, . . . , |A|} such that for every pair
(a, b) ∈ S we have π(a) < π(b). It is useful to

let S be not just a set but a multiset, namely to
allow S to contain multiple instances of the same
pair. The notion of cardinality and the subset re-
lation are trivially extended from sets to multisets.
Consider the problem (18), that I will call the Max-
ordering problem (MOpbm).

given: a finite set A,
a multiset P ⊆ A×A,
an integer k ≤ |P |;

output: “yes” iff there is a linearly compat-
ible multiset S ⊆ P with |S| ≥ k;

size: max {|A|, |P |}.

(18)

The PTAPpbm (17) is clearly in NP , namely it
admits a verification algorithm. Claim 3 ensures
that MOpbm (18) is NP-complete. Claim 4 shows
that MOpbm can be reduced to PTAPpbm (17). I
can thus conclude that PTAPpbm is NP-complete.

Claim 3 The MOpbm (18) is NP-complete.5

Proof. The MOpbm is obviously in NP . To show
that it is NP-complete, I need to exhibit an NP-
complete problem that can be reduced to it. Given
a finite set A = {a, b, . . .} with cardinality |A|,
consider a set T ⊆ A × A × A of triplets of el-
ements of A. The set T is called linearly cycli-
cally compatible iff there exists a one-to-one func-
tion π : A → {1, 2, . . . , |A|} such that for ev-
ery triplet (a, b, c) ∈ T either π(a)< π(b)< π(c)
or π(b) < π(c) < π(a) or π(c) < π(a) < π(b).
Consider the Cyclic Ordering problem (COpbm)
in (19).6 Galil and Megiddo (1977) prove NP-
completeness of COpbm by reduction from the
3-Satisfability problem; the COpbm is problem
[MS2] in (Garey and Johnson, 1979, p. 279).

input: a finite set A;
a set T ⊆ A×A×A;

output: “yes” iff T is linearly cyclically
compatible;

size: |A|

(19)

Given an instance (A, T ) of the COpbm (19), con-
sider the corresponding instance (A,P, k) of the
MOpbm (18) defined as in (20). For every triplet

5A similar claim appears in (Cohen et al., 1999).
6It makes sense to let the size of an instance of the COpbm

(19) be just the cardinality of the setA. In fact, the cardinality
of the set T can be at most |A|3. On the other hand, it makes
sense to let the size of an instance of the MOpbm (18) depend
also on the cardinality of the multiset P rather than only on
the cardinality of the set A, since P is a multiset and thus its
cardinality cannot be bound by the cardinality of A.
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(a, b, c) in the set T , we put in the multiset P
the three pairs (a, b), (b, c) and (c, a). Further-
more, we set the threshold k to twice the number
of triplets in the set T . Note that P is a multiset
because it might contain two instances of the same
pair coming from two different triplets in T .

P =
{

(a, b), (b, c), (c, a)
∣∣∣ (a, b, c) ∈ T}

k = 2|T |
(20)

Assume that the instance (A, T ) of the COpbm
admits a positive answer. Thus, T is cyclically
compatible with a linear order π on A. Thus, for
every triplet (a, b, c) ∈ T , there are at least two
pairs in P compatible with π. Hence, there is a
multiset S of pairs of P with cardinality at least
k = 2|T | linearly compatible with π,7 namely the
instance of the MOpbm defined in (20) admits a
positive answer. Vice versa, assume that the in-
stance (A,P, k) of the MOpbm in (20) admits a
positive answer. Thus, there exists a linear order
π on A compatible with 2|T | pairs in P . Since
the three pairs that come from a given triplet are
inconsistent, then each triplet must contribute two
pairs to the total of 2|T | compatible pairs. Hence,
π is cyclically compatible with all triplets in T . �
Claim 4 The MOpbm (18) can be reduced to the
PTAPpbm (17).

Proof. Given an instance (A,P, k) of the MOpbm,
construct the corresponding instance (A,F ,K) of
the PTAPpbm as follows. Let n = |A|, ` = |P |;
pick an integer d as in (21).

d > (`− k)n (21)

Let the threshold K and the numbers N and M of
columns and rows of the tableau A be as in (22).

K = (`− k)(n+ d)
N = `+ n+ d
M = `+ nd

(22)

Let the sets F andM of faithfulness and marked-
ness constraints be as in (23). There is a faith-
fulness constraint F(i,j) for every pair (ai, aj)
in the multiset P in the given instance of the
MOpbm. Markedness constraints come in two
varieties. There are the markedness constraints

7Note that, in order for the latter claim to hold, it is cru-
cial that P be a multiset, namely that the same pair might be
counted twice. In fact, T might contain two different triplets
that share some elements, such as (a, b, c) and (a, b, d).

M1, . . . ,Mn, one for every element in the set A in
the given instance of the MOpbm; and then there
are d more markedness constraints M ′1, . . . ,M ′d,
that I’ll call the ballast markedness constraints.

F = {F(i,j) | (ai, aj) ∈ P}
M = {M1, . . . ,Mn} ∪ {M ′1, . . . ,M ′d}

(23)

The comparative tableau A is built by assembling
one underneath the other various blocks. To start,
let A be the block with ` rows and N = `+n+d
columns described in (24). It has a row for every
pair (ai, aj)∈P . This row has all E’s but for three
entries: the entry corresponding to the faithfulness
constraint F(i,j) corresponding to that pair, which
is a W; the entry corresponding to the markedness
constraintMi corresponding to the first element ai
in the pair, which is an L; the entry corresponding
to the markedness constraint Mj corresponding to
the second element aj in the pair, which is a W.


... F(i,j) ... ... Mi ... Mj ... M

′
1 ... M

′
d

...
...

...
...

...
(ai, aj)⇒ . . . W . . . . . . L . . .W . . . E . . . E

...
...

...
...

...

 (24)

Next, let Ai be the block with d rows and N =
` + n + d columns described in (25), for every
i = 1, . . . , n. All entries corresponding to the
faithfulness constraints are equal to E. All en-
tries corresponding to the the markedness con-
straints M1, . . . ,Mn are equal to E, but for those
in the column corresponding to Mi, that are in-
stead equal to W. All entries corresponding to the
ballast constraints M ′1, . . . ,M ′d are equal to E, but
for the diagonal entries that are instead equal to L.


F1 ... F` M1 ... Mi ... Mn M ′1 ... M ′d
E . . . E W L
...

... | �
E . . . E W L

 (25)

Finally, let the comparative tableau A be obtained
by ordering the n + 1 blocks A,A1, . . . ,An one
underneath the other, as in (26). Before I turn to
the details, let me present the intuition behind the
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definitions (21)-(26).



F1 ... F` M1 ... Mn M ′1 ... M
′
d

A

d E . . . E W L

A1

...
... | �

b E . . . E W L
...

...
...

d E . . . E W L

An

...
... | �

b E . . . E W L



(26)

Since the markedness constraints M1, . . . ,Mn

correspond to the elements a1, . . . , an of A, a lin-
ear order π over A defines a ranking � of the
markedness constraintM1, . . . ,Mn as in (27), and
viceversa. Thus, π is linearly compatible with a
pair (ai, aj) ∈ P iff the row of the block A in
(24) corresponding to that pair is accounted for
by ranking Mj above Mi, with no need for the
corresponding faithfulness constraint F(i,j) to do
any work. Suppose instead that Mj is not ranked
above Mi, so that the corresponding faithfulness
constraint F(i,j) needs to be ranked above Mi in
order to protect its L. What consequences does this
fact have for the measure µPT in (13)? Without
the ballast constraints M ′1, . . . ,M ′d, not much: all
I could conclude is that the faithfulness constraint
F(i,j) has at least the two markedness constraints
Mi and Mj ranked below it. The ballast marked-
ness constraints M ′1, . . . ,M ′d ensure a more dra-
matic effect. In fact, the block Ai forces each of
them to be ranked below Mi. Thus, if the faithful-
ness constraint F(i,j) needs to be ranked aboveMi,
then it also needs to be ranked above all the ballast
markedness constraints M ′1, . . . ,M ′d. If the num-
ber d of these ballast constraints is large enough,
as in (21), then the corresponding effect on the
measure µPT in (13) is rather dramatic.

Mj �Mi ⇐⇒ π(aj) > π(ai) (27)

Assume that the given instance (A,P, k) of
MOpbm admits a positive answer. Thus, there ex-
ists a multitset S of k pairs of P that is compatible
with a linear order π on A. Consider a ranking�
over the constraint set (23) that satisfies the con-
ditions in (28): � assigns the k faithfulness con-
straints F(i,j) that correspond to pairs in S to the k
bottom strata, in any order;� assigns the d ballast

markedness constraints M ′1, . . . ,M ′d to the next d
strata, in any order; � assigns the n markedness
constraints M1, . . . ,Mn to the next n strata, or-
dered according to π through (27); finally, � as-
signs the remaining ` − k faithfulness constraints
F(i,j) that correspond to pairs in P \ S to the top
`− k strata, in any order.

{F(i,j) | (ai, aj) 6∈ S}
Mπ−1(n)

. . .

Mπ−1(1)

{M ′1, . . . ,M ′d}
{F(i,j) | (ai, aj) ∈ S}

(28)

This ranking � is OT-compatible with the com-
parative tableau A in (26). In fact, it is OT-
compatible with the n blocks A1, . . . ,An in (25),
since the markedness constraints M1, . . . ,Mn

are �-ranked above the ballast markedness con-
straints M ′1, . . . ,M ′d. It is OT-compatible with
each row of the block A in (24) that corresponds
to a pair (ai, aj) 6∈ S, since the corresponding
faithfulness constraint F(i,j) is �-ranked above
the corresponding markedness constraints Mi. Fi-
nally, it is OT-compatible with each row of the
block A that corresponds to a pair (ai, aj) ∈ S,
since π(aj)> π(ai) and thus Mj � Mi by (27).
The measure µPT(�) of the ranking� is (29): in
fact, the faithfulness constraints F(i,j) correspond-
ing to pairs (ai, aj)∈S have no markedness con-
straints�-ranked below them; and each one of the
`− k faithfulness constraints F(i,j) corresponding
to pairs (ai, aj) 6∈S has all the n + d markedness
constraints�-ranked below it. In conclusion, the
instance (A,F ,K) of the PTAPpbm constructed
in (21)-(26) admits a positive answer.

µPT(�) = (`− k)(n+ d) = K (29)

Vice versa, assume that the instance (A, F , K)
of the PTAPpbm constructed in (21)-(26) admits
a positive answer. Thus, there exists a ranking�
over the constraint set (23) OT-compatible with the
tableau A in (26) such that µPT(�) ≤ K. Con-
sider the multiset S ⊆ P defined in (30). Clearly,
S is compatible with the linear order π univocally
defined on A = {a1, . . . , an} through (27).

S =
{

(ai, aj) ∈ P
∣∣∣Mj �Mi

}
(30)
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To prove that the given instance (A,P, k) of the
MOpbm has a positive answer, I thus only need
to show that |S| ≥ k. Assume by contradiction
that |S| < k. I can then compute as in (31). In
step (31a), I have used the definition (22) of the
threshold K. In step (31b), I have used the hy-
pothesis that the ranking � is a solution of the
instance (A, F , K) of the PTAPpbm and thus its
mesure µPT does not exceed K. By (13), µPT(�)
is the total number of pairs of a faithfulness con-
straint and a markedness constraint such that the
former is�-ranked above the latter. In step (31c),
I have thus lower bounded µPT(�) by only con-
sidering those faithfulness constraints F(i,j) cor-
responding to pairs (ai, aj) not in S. For each
such constraint F(i,j), we have Mi � Mj , by
the definition (30) of S. Thus, F(i,j) needs to
be �-ranked above Mi in order to ensure OT-
compatibility with the corresponding row of the
block A in (24). Since Mi needs to be�-ranked
above the d ballast constraints M ′1, . . . ,M ′d in or-
der to ensure OT-compatibility with the block Ai

in (25), then F(i,j) needs to be �-ranked above
those d ballast markedness constraints too. In con-
clusion, each faithfulness constraint F(i,j) corre-
sponding to a pair (ai, aj) not in S needs to be
�-ranked at least above dmarkedness constraints.
Since there are `−|S| such faithfulness constraint
F(i,j) corresponding to a pair (ai, aj) 6∈S, then we
get the inequality in (31d). In step (31e), I have
used the absurd hypothesis that |S| < k or equiv-
alently that |S| ≤ k − 1. The chain of inequalities
in (31) entails that d ≤ (` − k)n, which contra-
dicts the choice (21) of the number d of ballast
constraints.

(`− k)d+ (`− k)n
(a)
= K
(b)

≥ µPT(�)
(13)
= |{(F(i,j),M) |F(i,j)�M}|

(c)

≥ |{(F(i,j),M) |F(i,j)�M, (ai, aj) 6∈S}|
(d)
= (`− |S|)d
(e)

≥ (`− (k − 1))d
= (`− k)d+ d

(31)
The preceding considerations show that given
an arbitrary instance (A,P, k) of the MOpbm
(18), the corresponding instance (A,F ,K) of the
PTAPpbm (17) defined in (21)-(26) admits a pos-
itive solution iff the original instance (A,P, k) of

the MOpbm does. I conclude that the MOpbm can
be reduced to the PTAPpbm. �
Let me now turn to the APpbm (11). Once again,
in order to show that it is intractable, it is sufficient
to show that the corresponding decision problem
(32) is intractable. In fact, if problem (11) can be
solved, then (32) can be solved too: given an in-
stance of the latter, find a solution � of the cor-
responding instance of the problem (11) and then
just check whether |L(�)| ≤ k.8 From now on, I
will refer to (32) as the APpbm.

given: univ. specs (X ,Y, Gen, C),
an OT-comp. data set D ⊆ X × Y ,
an integer k;

output: “yes” iff there is a ranking � OT-
comp. with D s.t. the correspond-
ing language L(�) has cardinality
at most k;

size: max {|C|, |X |, width(X )}.

(32)

The APpbm (32) is clearly in NP , namely it
admits a verification algorithm. The following
claim 5 together with the NP-completeness of
PTAPpbm, entails that the APpbm is NP-complete
too, thus completing the proof of claim 2.

Claim 5 The PTAPpbm (17) can be reduced to the
APpbm (32).

Proof. Given an instance (A, F , k) of the
PTAPpbm (17), construct the corresponding in-
stance ((X , Y, Gen, C), D, K) of the APpbm
(32) as follows. Let m and n be the number of
rows and of columns of the comparative tableau
A; let ` be the cardinality of the set F ; let d =
`(n− `). Define the threshold K as in (33).

K = m+ k + d (33)

Define the sets X and Y of underlying and surface
forms as in (34).

X = {x1, . . . , xm} ∪ {x′1, . . . , x′d} ∪ {x′′1, . . . , x′′d}| | |
X1 X2 X3

Y =
{
y1, . . . , ym
z1, . . . , zm

}
∪
{
u1, . . . , ud
v1, . . . , vd

}
∪
{
u1, . . . , ud
w1, . . . , wd

}
| | |
Y1 Y2 Y3

(34)
8The generous dependence of the size of the APpbm (11)

on |X | andwidth(X ) provides us with sufficient time to triv-
ially compute the language L(�).
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Define the generating function Gen as in (35).

Gen(xi) = {yi, zi} ⊆ Y1 for xi ∈ X1

Gen(x′i) = {ui, vi} ⊆ Y2 for x′i ∈ X2

Gen(x′′i ) = {ui, wi} ⊆ Y3 for x′′i ∈ X3

(35)

Define the data set D as in (36).

D = {(x1, y1), . . . , (xm, ym)} (36)

Let the constraint set C contain a total of n con-
straints C1, . . . , Cn; let Ch be a faithfulness con-
straint iff h ∈ F , and a markedness constraint oth-
erwise. Since, Gen(Xi) ⊆ Yi, constraints need
only be defined on Xi × Yj with i = j. The set
X1 contains m underlying forms x1, . . . xm, one
for every row of the given comparative tableau A.
Each of these underlying forms xi comes with the
two candidates yi and zi. The data set D in (36)
is a subset of X1 × Y1. Define the constraints
C1, . . . , Cn overX1×Y1 as in (37). This definition
ensures that A is the comparative tableau corre-
sponding to D, so that (40) holds for any ranking.

� is OT-comp. with A iff� is OT-
comp. with D

(40)

The set X2 contains a total of d = `(n − `) un-
derlying forms x′1, . . . , x′2, one for every pair of
a faithfulness constraint and a markedness con-
straint. Pair up (in some arbitrary but fixed way)
each of these underlying forms with a unique pair
of a faithfulness constraint and a markedness con-
straint. Thus, I can speak of “the” markedness
constraint and “the” faithfulness constraint “cor-
responding” to a given underlying form x′i ∈X2.
Each of these underlying forms x′i comes with
two candidates ui and vi. Define the constraints
C1, . . . , Cn over X2 × Y2 as in (38). This defini-
tion ensures that the grammar OT� corresponding
to an arbitrary ranking�maps x′i to vi rather than
to ui iff the faithfulness constraint corresponding

to the underlying form x′i is �-ranked above the
markedness constraint corresponding to x′i. Since
µPT(�) is defined in (13) as the total number of
pairs of a faithfulness and a markedness constraint
such that the former is ranked above the latter, then
condition (41) holds for any ranking.

µPT(�) = |{x′i∈X2 |OT�(x′i) = vi}| (41)

Finally, define the constraints C1, . . . , Cn over
X3 × Y3 as in (38). This definition ensures that
the forms u1, . . . , ud are unmarked — as the forms
[ta] and [rat] in the typology in (1). Thus, they be-
long to the language corresponding to any ranking
�, as stated in (42).

{u1, . . . , ud} ⊆ L(�) (42)

Assume that the instance (A,F , k) of the
PTAPpbm admits a positive answer. Thus, there
exists a ranking � OT-compatible with the com-
parative tableau A such that µPT(�) ≤ k. Since
� is OT-compatible with A, then � is OT-
compatible with D, by (40). Furthermore, the lan-
guage L(�) corresponding to the ranking� con-
tains at most K = m + k + d surface forms,
namely: the m surface forms y1, . . . , ym ∈ Y1,
because� is OT-compatible withD; the d surface
forms u1, . . . , ud, by (42); and at most k of the sur-
face forms v1, . . . , vd, by (41) and the hypothesis
that µPT(�) ≤ k. Thus, � is a solution of the
instance ((X , Y, Gen, C), D, K) of the APpbm
(32) constructed in (33)-(39). The same reasoning
shows that the vice versa holds too. �
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Ch(xi, yi) < Ch(xi, zi) ⇐⇒ the kth entry in the ith row of A is a W

Ch(xi, yi) = Ch(xi, zi) ⇐⇒ the kth entry in the ith row of A is a E

Ch(xi, yi) > Ch(xi, zi) ⇐⇒ the kth entry in the ith row of A is a L

(37)

Ch(x′i, vi) < Ch(x′i, ui) if Ch is the faithfulness constraint corresponding to x′i
Ch(x′i, vi) > Ch(x′i, ui) if Ch is the markedness constraint corresponding to x′i
Ch(x′i, vi) = Ch(x′i, ui) otherwise

(38)

Ch(x′i, ui) ≤ Ch(x′i, wi) for every constraint Ch (39)
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Abstract

Motivated by recent work in phonotac-

tic learning (Hayes and Wilson 2008, Al-

bright 2009), this paper shows how to de-

fine feature-based probability distributions

whose parameters can be provably effi-

ciently estimated. The main idea is that

these distributions are defined as a prod-

uct of simpler distributions (cf. Ghahra-

mani and Jordan 1997). One advantage

of this framework is it draws attention to

what is minimally necessary to describe

and learn phonological feature interactions

in phonotactic patterns. The “bottom-up”

approach adopted here is contrasted with

the “top-down” approach in Hayes and

Wilson (2008), and it is argued that the

bottom-up approach is more analytically

transparent.

1 Introduction

The hypothesis that the atomic units of phonology

are phonological features, and not segments, is one

of the tenets of modern phonology (Jakobson et

al., 1952; Chomsky and Halle, 1968). Accord-

ing to this hypothesis, segments are essentially

epiphenomenal and exist only by virtue of being

a shorthand description of a collection of more

primitive units—the features. Incorporating this

hypothesis into phonological learning models has

been the focus of much influential work (Gildea

and Jurafsky, 1996; Wilson, 2006; Hayes and Wil-

son, 2008; Moreton, 2008; Albright, 2009).

This paper makes three contributions. The first

contribution is a framework within which:

1. researchers can choose which statistical in-

dependence assumptions to make regarding

phonological features;

2. feature systems can be fully integrated into

strictly local (McNaughton and Papert, 1971)

(i.e. n-gram models (Jurafsky and Martin,

2008)) and strictly piecewise models (Rogers

et al., 2009; Heinz and Rogers, 2010) in

order to define families of provably well-

formed, feature-based probability distribu-

tions that are provably efficiently estimable.

The main idea is to define a family of distribu-

tions as the normalized product of simpler distri-

butions. Each simpler distribution can be repre-

sented by a Probabilistic Deterministic Finite Ac-

ceptor (PDFA), and the product of these PDFAs

defines the actual distribution. When a family of

distributions F is defined in this way, F may have

many fewer parameters than if F is defined over

the product PDFA directly. This is because the pa-

rameters of the distributions are defined in terms

of the factors which combine in predictable ways

via the product. Fewer parameters means accurate

estimation occurs with less data and, relatedly, the

family contains fewer distributions.

This idea is not new. It is explicit in Facto-

rial Hidden Markov Models (FHMMs) (Ghahra-

mani and Jordan, 1997; Saul and Jordan, 1999),

and more recently underlies approaches to de-

scribing and inferring regular string transductions

(Dreyer et al., 2008; Dreyer and Eisner, 2009).

Although HMMs and probabilistic finite-state au-

tomata describe the same class of distributions

(Vidal et al., 2005a; Vidal et al., 2005b), this paper

presents these ideas in formal language-theoretic

and automata-theoretic terms because (1) there are

no hidden states and is thus simpler than FHMMs,

(2) determinstic automata have several desirable

properties crucially used here, and (3) PDFAs

add probabilities to structure whereas HMMs add

structure to probabilities and the authors are more

comfortable with the former perspective (for fur-

ther discussion, see Vidal et al. (2005a,b)).

The second contribution illustrates the main

idea with a feature-based bigram model with a
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strong statistical independence assumption: no

two features interact. This is shown to capture ex-

actly the intuition that sounds with like features

have like distributions. Also, the assumption of

non-interacting features is shown to be too strong

because like sounds do not have like distributions

in actual phonotactic patterns. Four kinds of fea-

tural interactions are identified and possible solu-

tions are discussed.

Finally, we compare this proposal with Hayes

and Wilson (2008). Essentially, the model here

represents a “bottom-up” approach whereas theirs

is “top-down.” “Top-down” models, which con-

sider every set of features as potentially interact-

ing in every allowable context, face the difficult

problem of searching a vast space and often re-

sort to heuristic-based methods, which are diffi-

cult to analyze. To illustrate, we suggest that the

role played by phonological features in the phono-

tactic learner in Hayes and Wilson (2008) is not

well-understood. We demonstrate that classes of

all segments but one (i.e. the complement classes

of single segments) play a significant role, which

diminishes the contribution provided by natural

classes themselves (i.e. ones made by phonologi-

cal features). In contrast, the proposed model here

is analytically transparent.

This paper is organized as follows. §2 reviews
some background. §3 discusses bigram models

and §4 defines feature systems and feature-based

distributions. §5 develops a model with a strong

independence assumption and §6 discusses feat-

ural interaction. §7 dicusses Hayes and Wilson

(2008) and §8 concludes.

2 Preliminaries

We start with mostly standard notation. P(A) is
the powerset of A. Σ denotes a finite set of sym-

bols and a string over Σ is a finite sequence of

these symbols. Σ+ and Σ∗ denote all strings over
this alphabet of nonzero but finite length, and of

any finite length, respectively. A function f with

domain A and codomain B is written f : A → B.

When discussing partial functions, the notation ↑
and ↓ indicate for particular arguments whether

the function is undefined and defined, respectively.

A language L is a subset of Σ∗. A stochastic

language D is a probability distribution over Σ∗.
The probability p of word w with respect to D is

written PrD(w) = p. Recall that all distributions
D must satisfy

∑
w∈Σ∗ PrD(w) = 1. If L is lan-

guage then PrD(L) =
∑

w∈L PrD(w). Since all
distributions in this paper are stochastic languages,

we use the two terms interchangeably.

A Probabilistic Deterministic Finite-

state Automaton (PDFA) is a tuple

M = 〈Q,Σ, q0, δ, F, T 〉 where Q is the state

set, Σ is the alphabet, q0 is the start state, δ is

a deterministic transition function, F and T are

the final-state and transition probabilities. In

particular, T : Q × Σ → R+ and F : Q → R+

such that

for all q ∈ Q, F (q) +
∑
σ∈Σ

T (q, σ) = 1. (1)

PDFAs are typically represented as labeled di-

rected graphs (e.g. M′ in Figure 1).
A PDFA M generates a stochastic language

DM. If it exists, the (unique) path for a word w =
a0 . . . ak belonging to Σ∗ through a PDFA is a

sequence 〈(q0, a0), (q1, a1), . . . , (qk, ak)〉, where
qi+1 = δ(qi, ai). The probability a PDFA assigns

tow is obtained by multiplying the transition prob-

abilities with the final probability along w’s path if
it exists, and zero otherwise.

PrDM(w) =

(
k∏

i=0

T (qi, ai)

)
·F (qk+1) (2)

if d̂(q0, w)↓ and 0 otherwise

A stochastic language is regular deterministic iff

there is a PDFA which generates it.

The structural components of a PDFAM is the

deterministic finite-state automata (DFA) given by

the states Q, alphabet Σ, transitions δ, and initial
state q0 of M. By the structure of a PDFA, we

mean its structural components.1 Each PDFAM
defines a family of distributions given by the pos-

sible instantiations of T and F satisfying Equa-

tion 1. These distributions have at most |Q|· (|Σ|+
1) parameters (since for each state there are |Σ|
possible transitions plus the possibility of finality.)

These are, for all q ∈ Q and σ ∈ Σ, the proba-
bilities T (q, σ) and F (q). To make the connection
to probability theory, we sometimes write these as

Pr(σ | q) and Pr(# | q), respectively.
We define the product of PDFAs in terms of

co-emission probabilities (Vidal et al., 2005a).

Let M1 = 〈Q1,Σ1, q01, δ1, F1, T1〉 and M2 =
1This is up to the renaming of states so PDFA with iso-

morphic structural components are said to have the same
structure.
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〈Q2,Σ2, q02, δ2, F2, T2〉 be PDFAs. The proba-

bility that σ1 is emitted from q1 ∈ Q1 at the

same moment σ2 is emitted from q2 ∈ Q2 is

CT (σ1, σ2, q1, q2) = T1(q1, σ1)·T2(q2, σ2). Sim-
ilarly, the probability that a word simultaneously

ends at q1 ∈ Q1 and at q2 ∈ Q2 is CF (q1, q2) =
F1(q1)·F2(q2).

Definition 1 The normalized co-emission product

of PDFAs M1 and M2 is M = M1 × M2 =
〈Q,Σ, q0, δ, F, T 〉 where

1. Q, q0, and F are defined in terms of the

standard DFA product over the state space

Q1 ×Q2 (Hopcroft et al., 2001).

2. Σ = Σ1 × Σ2

3. For all 〈q1, q2〉 ∈ Q and 〈σ1, σ2〉 ∈
Σ, δ(〈q1, q2〉, 〈σ1, σ2〉) = 〈q′1, q′2〉 iff

δ1(q1, σ1) = q′1 and δ2(q2, σ2) = q′2.2

4. For all 〈q1, q2〉 ∈ Q,

(a) let Z(〈q1, q2〉) = CF (〈q1, q2〉) +∑
〈σ1,σ2〉∈Σ CT (σ1, σ2, q1, q2) be the

normalization term; and

(b) F (〈q1, q2〉) = CF (q1,q2)
Z ; and

(c) for all 〈σ1, σ2〉 ∈ Σ,

T (〈q1, q2〉, 〈σ1, σ2〉) =
CT (〈σ1,σ2,q1,q2〉)

Z

In other words, the numerators of T and F are

defined to be the co-emission probabilities, and

division by Z ensures that M defines a well-

formed probability distribution.3 The normalized

co-emission product effectively adopts a statisti-

cal independence assumption between the states

ofM1 andM2. If S is a list of PDFAs, we write⊗
S for their product (note order of product is ir-

relevant up to renaming of the states).

The maximum likelihood (ML) estimation of

regular deterministic distributions is a solved

problem when the structure of the PDFA is known

(Vidal et al., 2005a; Vidal et al., 2005b; de la

Higuera, 2010). Let S be a finite sample of words

drawn from a regular deterministic distribution D.
The problem is to estimate parameters T and F of

2Note that restricting δ to cases when σ1 = σ2 obtains
the standard definition of δ = δ1× δ2 (Hopcroft et al., 2001).
The reason we maintain two alphabets becomes clear in §4.

3Z(〈q1, q2〉) is less than one whenever either F1(q1) or
F2(q2) are neither zero nor one.

M so that DM approaches D using the widely-

adopted ML criterion (Equation 3).

(T̂ , F̂ ) = argmax
T,F

(∏
w∈S

PrM(w)

)
(3)

It is well-known that if D is generated by some

PDFAM′ with the same structural components as
M, then the ML estimate of S with respect to M
guarantees that DM approaches D as the size of

S goes to infinity (Vidal et al., 2005a; Vidal et al.,

2005b; de la Higuera, 2010).

Finding the ML estimate of a finite sample S
with respect to M is simple provided M is de-

terministic with known structural components. In-

formally, the corpus is passed through the PDFA,

and the paths of each word through the corpus are

tracked to obtain counts, which are then normal-

ized by state. LetM = 〈Q,Σ, δ, q0, F, T 〉 be the
PDFA whose parameters F and T are to be esti-

mated. For all states q ∈ Q and symbols σ ∈ Σ,
The ML estimation of the probability of T (q, σ)
is obtained by dividing the number of times this

transition is used in parsing the sample S by the

number of times state q is encountered in the pars-
ing of S. Similarly, the ML estimation of F (q) is
obtained by calculating the relative frequency of

state q being final with state q being encountered

in the parsing of S. For both cases, the division is
normalizing; i.e. it guarantees that there is a well-

formed probability distribution at each state. Fig-

ure 1 illustrates the counts obtained for a machine

M with sample S = {abca}.4 Figure 1 shows

a DFA with counts and the PDFA obtained after

normalizing these counts.

3 Strictly local distributions

In formal language theory, strictly k-local lan-
guages occupy the bottom rung of a subregular

hierarchy which makes distinctions on the basis

of contiguous subsequences (McNaughton and Pa-

pert, 1971; Rogers and Pullum, to appear; Rogers

et al., 2009). They are also the categorical coun-

terpart to stochastic languages describable with n-
gram models (where n = k) (Garcia et al., 1990;
Jurafsky and Martin, 2008). Since stochastic lan-

guages are distributions, we refer to strictly k-
local stochastic languages as strictly k-local distri-

4Technically,M is neither a simple DFA or PDFA; rather,
it has been called a Frequency DFA. We do not formally de-
fine them here, see de la Higuera (2010).
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A:1

a :2

b:1

c:1

A:1/5

a:2/5

b:1/5

c:1/5

M M′

Figure 1:M shows the counts obtained by parsing

it with sample S = {abca}. M′ shows the proba-
bilities obtained after normalizing those counts.

butions (SLDk). We illustrate with SLD2 (bigram

models) for ease of exposition.

For an alphabet Σ, SL2 distributions have

(|Σ| + 1)2 parameters. These are, for all σ, τ ∈
Σ ∪ {#}, the probabilities Pr(σ | τ). The proba-
bility of w = σ1 . . . σn is given in Equation 4.

Pr(w) def= Pr(σ1 | #)× Pr(σ2 | σ1)
× . . .× Pr(# | σn)

(4)

PDFA representations of SL2 distributions have

the following structure: Q = Σ ∪ {#}, q0 = #,

and for all q ∈ Q and σ ∈ Σ, it is the case that
δ(q, σ) = σ.

As an example, the DFA in Figure 2 provides

the structure of PDFAs which recognize SL2 dis-

tributions with Σ = {a, b, c}. Plainly, the param-
eters of the model are given by assigning proba-

bilities to each transition and to the ending at each

state. In fact, for all σ ∈ Σ and τ ∈ Σ ∪ {#},
Pr(σ | τ) is T (τ, σ) and Pr(# | τ) is F (τ).
It follows that the probability of a particular path

through the model corresponds to Equation 4. The

structure of a SL2 distribution for alphabet Σ is

given byMSL2(Σ).
Additionally, given a finite sample S ⊂ Σ∗, the

ML estimate of S with respect to the family of

distributions describable with MSL2(Σ) is given

by counting the parse of S through MSL2(Σ) and
then normalizing as described in §2. This is equiv-
alent to the procedure described in Jurafsky and

Martin (2008, chap. 4).

4 Feature-based distributions

This section first introduces feature systems. Then

it defines feature-based SL2 distributions which

make the strong independence assumption that no

two features interact. It explains how to find

b

a

c

 b

a

 c

 b

a

c

 b

a
 c

#

a

b

c

Figure 2: MSL2({a, b, c}) represents the structure
of SL2 distributions when Σ = {a, b, c}.

F G

a + -

b + +

c - +

Table 1: An example of a feature system with Σ =
{a, b, c} and two features F and G.

the ML estimate of samples with respect to such

distributions. This section closes by identifying

kinds of featural interactions in phonotactic pat-

terns, and discusses how such interactions can be

addressed within this framework.

4.1 Feature systems

Assume the elements of the alphabet share prop-

erties, called features. For concreteness, let each

feature be a total function F : Σ → VF , where

the codomain VF is a finite set of values. A fi-

nite vector of features F = 〈F1, . . . , Fn〉 is called
a feature system. Table 1 provides an example

of a feature system with F = 〈F,G〉 and values

VF = VG = {+,−}.
We extend the domain of all features F ∈ F

to Σ+, so that F (σ1 . . . σn) = F (σ1) . . . F (σn).
For example, using the feature system in Table 1,

F (abc) = + + − and G(abc) = − + +. We

also extend the domain of F to all languages:

F (L) = ∪w∈Lf(w). We also extend the notation

so that F(σ) = 〈F1(σ), . . . , Fn(σ)〉. For example,
F(c) = 〈−F,+G〉 (feature indices are included

for readability).

For feature F : Σ → VF , let F
−1 be the inverse

function with domain VF and codomain P(Σ).
For example in Table 1, G−1(+) = {b, c}. F−1

is similarly defined, i.e. F−1(〈−F,+G〉) = {c}.
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If, for all arguments ~v, F−1(~v) is nonempty then

the feature system is exhaustive. If, for all argu-

ments ~v such that F−1(~v) is nonempty, it is the

case that |F−1(~v)| = 1 then the feature system is

distinctive. E.g. the feature system in Table 1 in

not exhaustive since F−1(〈−F,−G〉) = ∅, but it is
distinctive since where F−1 is nonempty, it picks

out exactly one element of the alphabet.

Generally, phonological feature systems for a

particular language are distinctive but not exhaus-

tive. Any feature system F can be made exhaustive

by adding finitely many symbols to the alphabet

(since F is finite). Let Σ′ denote an alphabet ob-
tained by adding to Σ the fewest symbols which

make F exhaustive.

Each feature system also defines a set of indi-

cator functions VF =
⋃

f∈F(Vf × {f}) with do-
main Σ such that 〈v, f〉(σ) = 1 iff f(σ) = v and

0 otherwise. In the example in Table 1, VF =
{+F,−F,+G,−G} (omitting angle braces for

readability). For all f ∈ F, the set VFf is the

VF restricted to f . So continuing our example,

VFF = {+F,−F}.
4.2 Feature-based distributions

We now define feature-based SL2 distributions un-

der the strong independence assumption that no

two features interact. For feature system F =
〈F1 . . . Fn〉, there are n PDFAs, one for each fea-

ture. The normalized co-emission product of these

PDFAs essentially defines the distribution. For

each Fi, the structure of its PDFA is given by

MSL2(VFi). For example, MF = MSL2(VF )
andMG = MSL2(VG) in figures 3 and 4 illustrate
the finite-state representation of feature-based SL2

distributions given the feature system in Table 1.5

The states of each machine make distinctions ac-

cording to features F and G, respectively. The pa-

rameters of these distributions are given by assign-

ing probabilities to each transition and to the end-

ing at each state (except for Pr(# | #)).6

Thus there are 2|VF| +∑F∈F |VFF |2 + 1 pa-

rameters for feature-based SL2 distributions. For

example, the feature system in Table 1 defines a

distribution with 2· 4 + 22 + 22 + 1 = 17 param-

5For readability, featural information in the states and
transitions is included in these figures. By definition, the
states and transitions are only labeled with elements of VF

and VG, respectively. In this case, that makes the structures
of the two machines identical.

6It is possible to replace Pr(# | #) with two parameters,
Pr(# | #F ) Pr(# | #G), but for ease of exposition we do
not pursue this further.

-F
-F

+F
+F

-F

+F

-F

+F

#

Figure 3: MF represents a SL2 distribution with

respect to feature F.

-G
-G

+G
+G

-G

+G

-G

+G

#

Figure 4: MG represents a SL2 distribution with

respect to feature G.

eters, which include Pr(# | +F ), Pr(+F | #),
Pr(+F | +F ), Pr(+F | −F ), . . . , the G equiva-

lents, and Pr(# | #). Let SLD2F be the family of

distributions given by all possible parameter set-

tings (i.e. all possible probability assignments for

eachMSL2(VFi) in accordance with Equation 1.)
The normalized co-emission product defines the

feature-based distribution. For example, the struc-

ture of the product of MF and MG is shown in

Figure 5.

As defined, the normalized co-emission product

can result in states and transitions that cannot be

interpreted by non-exhaustive feature systems. An

example of this is in Figure 5 since 〈−F,−G〉 is
not interpretable by the feature system in Table 1.

We make the system exhaustive by letting Σ′ =
Σ ∪ {d} and setting F(d) = 〈−F,−G〉.
What is the probability of a given b in the

feature-based model? According to the normal-

ized co-emission product (Defintion 1), it is

Pr(a | b) = Pr(〈+F,−G〉 | 〈+F,+G〉) =

Pr(+F | +F )·Pr(−G | +G)
Z

where Z = Z(〈+F,+G〉) equals∑
σ∈Σ′

Pr(F (σ) | +F )·Pr(G(σ) | +G)

+ (Pr(# | +F )·Pr(# | +G)

Generally, for an exhuastive distinctive feature

system F = 〈F1, . . . , Fn〉, and for all σ, τ ∈ Σ,
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+F,-G
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+F ,+G

-F,+G-F,-G

Figure 5: The structure of the product ofMF andMG.

the Pr(σ | τ) is given by Equation 5. First, the

normalization term is provided. Let

Z(τ) =
∑
σ∈Σ

 ∏
1≤i≤n

Pr(Fi(σ) | Fi(τ))


+

∏
1≤i≤n

Pr(# | Fi(τ))

Then

Pr(σ | τ) =

∏
1≤i≤n Pr(Fi(σ) | Fi(τ))

Z(τ)
(5)

The probabilities Pr(σ | #) and Pr(# | τ)
are similarly decomposed into featural parameters.

Finally, like SL2 distributions, the probability of a

word w ∈ Σ∗ is given by Equation 4. We have

thus proved the following.

Theorem 1 The parameters of a feature-based

SL2 distribution define a well-formed probability

distribution over Σ∗.

Proof It is sufficient to show for all τ ∈ Σ ∪ {#}
that

∑
σ∈Σ∪{#} Pr(σ | τ) = 1 since in this

case, Equation 4 yields a well-formed probability

distribution over Σ∗. This follows directly from

the definition of the normalized co-emission

product (Definition 1). ���

The normalized co-emission product adopts a

statistical independence assumption, which here is

between features since each machine represents a

single feature. For example, consider Pr(a | b) =
Pr(〈−F,+G〉 | 〈+F,+G〉). The probability

Pr(〈−F,+G〉 | 〈+F,+G〉) cannot be arbitrar-

ily different from the probabilities Pr(−F | +F )

and Pr(+G | +G); it is not an independent pa-

rameter. In fact, because Pr(a | b) is computed
directly as the normalized product of parameters

Pr(−F | +F ) and Pr(+G | +G), the assump-
tion is that the features F and G do not interact. In

other words, this model describes exactly the state

of affairs one expects if there is no statistical in-

teraction between phonological features. In terms

of inference, this means if one sound is observed

to occur in some context (at least contexts dis-

tinguishable by SL2 models), then similar sounds

(i.e. those that share many of its featural values)

are expected to occur in this context as well.

4.3 ML estimation

The ML estimate of feature-based SL2 distribu-

tions is obtained by counting the parse of a sample

through each feature machine, and normalizing the

results. This is because the parameters of the dis-

tribution are the probabilities on the feature ma-

chines, whose product determines the actual dis-

tribution. The following theorem follows imme-

diately from the PDFA representation of feature-

based SL2 distributions.

Theorem 2 Let F = 〈F1, . . . Fn〉 and let D be de-

scribed by M =
⊗

1≤i≤nMSL2(VF i). Consider
a finite sample S drawn from D. Then the ML es-

timate of S with respect to SLD2F is obtained by

finding, for each Fi ∈ F, the ML estimate of Fi(S)
with respect toMSL2(VF i).

Proof The ML estimate of S with respect to

SLD2F returns the parameter values that maxi-

mize the likelihood of S within the family SLD2F.

The parameters of D ∈SLD2F are found on the
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states of each MSL2(VFi). By definition, each

MSL2(VFi) describes a probability distribution

over Fi(Σ∗), as well as a family of distributions.

Therefore finding the MLE of S with respect to

SLD2F means finding the MLE estimate of Fi(S)
with respect to eachMSL2(VFi).
Optimizing the ML estimate of Fi(S) for

each Mi = MSL2(VFi) means that as |Fi(S)|
increases, the estimates T̂Mi and F̂Mi approach

the true values TMi and FMi . It follows that

as |S| increases, T̂M and F̂M approach the true

values of TM and FM and consequently DM
approaches D. ���

4.4 Discussion

Feature-based models can have significantly fewer

parameters than segment-based models. Con-

sider binary feature systems, where |VF| = 2|F|.
An exhaustive feature system with 10 binary fea-

tures describes an alphabet with 1024 symbols.

Segment-based bigram models have (1024+1)2 =
1, 050, 625 parameters, but the feature-based one

only has 40 + 40 + 1 = 81 parameters! Con-

sequently, much less training data is required to

accurately estimate the parameters of the model.

Another way of describing this is in terms of ex-

pressivity. For given feature system, feature-based

SL2 distributions are a proper subset of SL2 dis-

tributions since, as the the PDFA representations

make clear, every feature-based distribution can be

described by a segmental bigram model, but not

vice versa. The fact that feature-based distribu-

tions have potentially far fewer parameters is a re-

flection of the restrictive nature of the model. The

statistical independence assumption constrains the

system in predictable ways. The next section

shows exactly what feature-based generalization

looks like under these assumptions.

5 Examples

This section demonstrates feature-based gener-

alization by comparing it with segment-based

generalization, using a small corpus S =
{aaab, caca, acab, cbb} and the feature system

in Table 1. Tables 2 and 3 show the results of

ML estimation of S with respect to segment-based

SL2 distributions (unsmoothed bigram model)

and feature-based SL2 distributions, respectively.

Each table shows the Pr(σ | τ) for all σ, τ ∈
{a, b, c, d,#} (where F(d) = 〈−F,−G〉), for

σ
P(σ | τ )

a b c d #

a 0.29 0.29 0.29 0. 0.14

b 0. 0.25 0. 0. 0.75

τ c 0.75 0.25 0. 0. 0.

d 0. 0. 0. 0. 0.

# 0.5 0. 0.5 0. 0.

Table 2: ML estimates of parameters of segment-

based SL2 distributions.

σ
P(σ | τ )

a b c d #

a 0.22 0.43 0.17 0.09 0.09

b 0.32 0.21 0.09 0.13 0.26

τ c 0.60 0.40 0. 0 0.

d 0.33 0.67 0 0 0

# 0.25 0.25 0.25 0.25 0.

Table 3: ML estimates of parameters of feature-

based SL2 distributions.

ease of comparison.

Observe the sharp divergence between the two

models in certain cells. For example, no words be-

gin with b in the sample. Hence the segment-based
ML estimates of Pr(b | #) is zero. Conversely,
the feature-based ML estimate is nonzero because

b, like a, is +F, and b, like c, is +G, and both a
and c begin words. Also, notice nonzero probabil-
ities are assigned to d occuring after a and b. This
is because F(d) = 〈−F,−G〉 and the following

sequences all occur in the corpus: [+F][-F] (ac),
[+G][-G] (ca), and [-G][-G] (aa). On the other

hand, zero probabilities are assigned to d ocurring
after c and d because there are no cc sequences in
the corpus and hence the probability of [-F] occur-

ing after [-F] is zero.

This simple example demonstrates exactly how

the model works. Generalizations are made on the

basis of individual features, not individual sym-

bols. In fact, segments are truly epiphenomenal in

this model, as demonstrated by the nonzero prob-

abilties assigned to segments outside the original

feature system (here, this is d). To sum up, this

model captures exactly the idea that the distribu-

tion of segments is conditioned on the distribu-

tions of its features.
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6 Featural interaction

In many empirical cases of interest, features do

interact, which suggests the strong independence

assumption is incorrect for modeling phonotactic

learning.

There are at least four kinds of featural inter-

action. First, different features may be prohib-

ited from occuring simultaneously in certain con-

texts. As an example of the first type consider

the fact that both velars and nasal sounds occur

word-initially in English, but the velar nasal may

not. Second, specific languages may prohibit dif-

ferent features from simultaneously occuring in all

contexts. In English, for example, there are syl-

labic sounds and obstruents but no syllabic obstru-

ents. Third, different features may be universally

incompatible: e.g. no vowels are both [+high] and

[+low]. The last type of interaction is that different

features may be prohibited from occuring syntag-

matically. For example, some languages prohibit

voiceless sounds from occuring after nasals.

Although the independence assumption is too

strong, it is still useful. First, it allows researchers

to quantify the extent to which data can be ex-

plained without invoking featural interaction. For

example, following Hayes and Wilson (2008), we

may be interested in how well human acceptabil-

ity judgements collected by Scholes (1966) can be

explained if different features do not interact. Af-

ter training the feature-based SL2 model on a cor-

pus of word initial onsets adapted from the CMU

pronouncing dictionary (Hayes and Wilson, 2008,

395-396) and using a standard phonological fea-

ture system (Hayes, 2009, chap. 4), it achieves

a correlation (Spearman’s r) of 0.751.7 In other

words, roughly three quarters of the acceptability

judgements are explained without relying on feat-

ural interaction (or segments).

Secondly, the incorrect predictions of the model

are in principle detectable. For example, recall

that English has word-inital velars and nasals, but

no word-inital velar nasals. A one-cell chi-squared

test can determine whether the observed number

of [#N] is significantly below the expected number

according to the feature-based distribution, which

could lead to a new parameter being adopted to

describe the interaction of the [dorsal] and [nasal]

7We use the feature chart in Hayes (2009) because it con-
tains over 150 IPA symbols (and not just English phonemes).
Featural combinations not in the chart were assumed to be
impossible (e.g. [+high,+low]) and were zeroed out.

features word-initially. The details of these proce-

dures are left for future research and are likely to

draw from the rich literature on Bayesian networks

(Pearl, 1989; Ghahramani, 1998).

More important, however, is this framework al-

lows researchers to construct the independence as-

sumptions they want into the model in at least two

ways. First, universally incompatible features can

be excluded. For example, suppose [-F] and [-G]

in the feature system in Table 1 are anatomically

incompatible like [+low] and [+high]. If desired,

they can be excluded from the model essentially

by zeroing out any probability mass assigned to

such combinations and re-normalizing.

Second, models can be defined where multiple

features are permitted to interact. For example,

suppose features F and G from Table 1 are em-

bedded in a larger feature system. The machine

in Figure 5 can be defined to be a factor of the

model, and now interactions between F and G will

be learned, including syntagmatic ones. The flex-

ibility of the framework and the generality of the

normalized co-emission product allow researchers

to consider feature-based distributions which al-

low any two features to interact but which pro-

hibit three-feature interactions, or which allow any

three features to interact but which prohibit four-

feature interactions, or models where only certain

features are permitted to interact but not others

(perhaps because they belong to the same node in a

feature geometry (Clements, 1985; Clements and

Hume, 1995).8

7 Hayes and Wilson (2008)

This section introduces the Hayes and Wilson

(2008) (henceforth HW) phonotactic learner and

shows that the contribution features play in gener-

alization is not as clear as previously thought.

HW propose an inductive model which ac-

quires a maxent grammar defined by weighted

constraints. Each constraint is described as a se-

quence of natural classes using phonological fea-

tures. The constraint format also allows reference

to word boundaries and at most one complement

class. (The complement class of S ⊆ Σ is Σ/S.)
For example, the constraint

*#[ˆ -voice,+anterior,+strident][-approximant]

means that in word-initial C1C2 clusters, if C2 is a

nasal or obstruent, then C1 must be [s].

8Note if all features are permitted to interact, this yields
the segmental bigram model.
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Hayes and Wilson maxent models r

features & complement classes 0.946

no features & complement classes 0.937

features & no complement classes 0.914

no features & no complement classes 0.885

Table 4: Correlations of different settings versions

of HW maxent model with Scholes data.

HW report that the model obtains a correlation

(Spearman’s r) of 0.946 with blick test data from
Scholes (1966). HW and Albright (2009) attribute

this high correlation to the model’s use of natural

classes and phonological features. HW also report

that when the model is run without features, the

grammar obtained scores an r value of only 0.885,
implying that the gain in correlation is due specif-

ically to the use of phonological features.

However, there are two relevant issues. The first

is the use of complement classes. If features are

not used but complement classes are (in effect only

allowing the model to refer to single segments and

the complements of single segments, e.g. [t] and

[ˆt]) then in fact the grammar obtained scores an

r value of 0.936, a result comparable to the one

reported.9 Table 4 shows the r values obtained by
the HW learner under different conditions. Note

we replicate the main result of r = 0.946 when

using both features and complement classes.10

This exercise reveals that phonological features

play a smaller role in the HW phonotactic learner

than previously thought. Features are helpful, but

not as much as complement classes of single seg-

ments (though features with complement classes

yields the best result by this measure).

The second issue relates to the first: the question

of whether additional parameters are worth the

gain in empirical coverage. Wilson and Obdeyn

(2009) provide an excellent discussion of the

model comparison literature and provide a rigor-

ous comparative analysis of computational mod-

eleling of OCP restrictions. Here we only raise the

questions and leave the answers to future research.

Compare the HW learners in the first two rows

in Table 4. Is the ∼ 0.01 gain in r score worth

the additional parameters which refer to phono-

9Examination of the output grammar reveals heavy re-
liance on the complement class [ˆs], which is not surprising
given the discussion of [sC] clusters in HW.

10This software is available on Bruce Hayes’ webpage:
http://www.linguistics.ucla.edu/

people/hayes/Phonotactics/index.htm.

logically natural classes? Also, the feature-based

SL2 model in §4 only receives an r score of 0.751,
much lower than the results in Table 4. Yet this

model has far fewer parameters not only because

the maxent models in Table 4 keep track of tri-

grams, but also because of its strong independence

assumption. As mentioned, this result is infor-

mative because it reveals how much can be ex-

plained without featural interaction. In the con-

text of model comparison, this particular model

provides an inductive baseline against which the

utility of additional parameters invoking featural

interaction ought to be measured.

8 Conclusion

The current proposal explicitly embeds the Jakob-

sonian hypothesis that the primitive unit of

phonology is the phonological feature into a

phonotactic learning model. While this paper

specifically shows how to integrate features into

n-gram models to describe feature-based strictly

n-local distributions, these techniques can be ap-

plied to other regular deterministic distributions,

such as strictly k-piecewise models, which de-

scribe long-distance dependencies, like the ones

found in consonant and vowel harmony (Heinz, to

appear; Heinz and Rogers, 2010).

In contrast to models which assume that all

features potentially interact, a baseline model

was specifically introduced under the assumption

that no two features interact. In this way, the

“bottom-up” approach to feature-based general-

ization shifts the focus of inquiry to the featural

interactions necessary (and ultimately sufficient)

to describe and learn phonotactic patterns. The

framework introduced here shows how researchers

can study feature interaction in phonotactic mod-

els in a systematic, transparent way.
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Abstract 

A novel method is presented for compiling 

two-level rules which have multiple context 

parts. The same method can also be applied 

to the resolution of so-called right-arrow rule 

conflicts. The method makes use of the fact 

that one can efficiently compose sets of two-
level rules with a lexicon transducer. By in-

troducing variant characters and using simple 

pre-processing of multi-context rules, all 

rules can be reduced into single-context rules. 

After the modified rules have been combined 

with the lexicon transducer, the variant char-

acters may be reverted back to the original 

surface characters. The proposed method ap-

pears to be efficient but only partial evidence 

is presented yet.   

1 Introduction 

Two-level rules can be compiled into length-

preserving transducers whose intersection effec-

tively reflects the constraints and the correspon-

dences imposed by the two-level grammar. Two-
level rules relate input strings (lexical representa-

tions) with output strings (surface representa-

tions). The pairs of strings are treated as charac-

ter pairs x:z consisting of lexical (input) char-

acters x and surface (output) characters z, and 

regular expressions based on such pairs.  Two-

level rule transducers are made length-preserving 

(epsilon-free) by using a place holder zero (0) 

within the rules and in the representations.  The 
zero is then removed after the rules have been 

combined by (virtual) intersection, before the 

result is composed with the lexicon.  There are 
four kinds of two-level rules:  

1. right-arrow rules or restriction rules, 

(x:z => LC _ RC) saying that the 

correspondence pair is allowed only if 

immediately preceded by left context LC 

and followed by right context RC, 

2. left-arrow rules or surface coercion 

rules,  (x:z <= LC _ RC) which say 

that in this context, the lexical character 

x may  only  correspond  to  the  surface  

character z, 

3. double-arrow rules (<=>), a shorthand 

combining these two requirements, and 

4. exclusion rules (x:z /<= LC _ RC) 

which forbid the pair x:z  to occur in 

this context. 

All types of rules may have more than one 
context part. In particular, the right-arrow rule  

x:z => LC1 _ RC1; LC2 _ RC2 would 

say that the pair x:z (which we call the centre 

of the rule) may occur in either one of these two 

contexts.  For various formulations of two-level 

rules, see e.g. (Koskenniemi, 1983), (Grimley-
Evans et al., 1996), (Black et.al., 1987), (Ruess-

ink, 1989), (Ritchie, 1992), (Kiraz, 2001) and a 

comprehensive survey on their formal interpreta-
tions, see (Vaillette, 2004). 

Compiling two-level rules into transducers is 

easy in all other cases except for right-arrow 

rules with multiple context-parts; see e.g. 
Koskenniemi (1983). Compiling right-arrow 

rules with multiple context parts is more difficult 

because the compilation of the whole rule is not 
in a simple relation to the component expressions 

in the rule; see e.g. Karttunen et al. (1987).   

The method proposed here reduces multi-
context rules into a set of separate simple rules, 

one for each context, by introducing some auxil-

iary variant characters.  These auxiliary charac-

ters are then normalized back into the original 
surface characters after the intersecting composi-

tion of the lexicon and the modified rules. The 

method is presented in section 3. The compila-
tion of multiple contexts using the proposed 

scheme appears to be very simple and fast.  Pre-

liminary results and discussion about the compu-
tational complexity are presented in section 4. 
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1.1 The compilation task with an example 

We make use of a simplified linguistic example 

where a stop k is realized as v between identical 

rounded close vowels (u, y). The example re-

sembles one detail of Finnish consonant grada-

tion but it is grossly simplified. According to the 
rule in the example, the lexical representation 

pukun would be realized as the surface repre-

sentation puvun.  This correspondence is tradi-

tionally represented as: 

p u k u n 
p u v u n 

where the upper tier represents the lexical or 

morphophonemic representation which we inter-

pret as the input, and the lower one corresponds 
to the surface representation which we consider 

as the output. 1   This two-tier representation is 

usually represented on a single line as a sequence 
of input and output character pairs where pairs of 

identical characters, such as p:p are abbreviated 

as a single p.  E.g.  the above pair  of  strings  be-

comes a string of pairs:  

p u k:v u n 

In our example we require that the correspon-

dence k:v may occur only between two identi-

cal rounded close vowels, i.e. either between two 

letters u or between two letters y. Multiple con-

texts are needed in the right-arrow rule which 

expresses this constraint. As a two-level gram-

mar, this would be: 

Alphabet a b … k … u v w … 
 k:v; 
Rules 
k:v => u _ u; 
       y _ y;  

This grammar would permit sequences such as:  

p u k:v u n 
k y k:v y n 
p u k:v u k:v u n 
l u k:v u n k y k:v y n 
t u k k u 

but it would exclude sequences: 

p u k:v y n 
t u k:v a n 

                                                
1 In Xerox terminology, the input or lexical characters 

are called the upper characters, and the output or sur-

face characters are called the lower characters. Other 

orientations are used by some authors. 

Whereas one can always express  multi-

context left-arrow rules (<=) and exclusion rules 

(/<=)  equivalently  as  separate  rules,  this  does  

not  hold  for  right-arrow rules.  The  two  separate  

rules 

k:v => u _ u; 
k:v => y _ y;  

would be in conflict with each other permitting 

no occurrences of k:v at all, (unless we apply 

so-called conflict resolution which would effec-

tively combine the two rules back to a single rule 

with two context parts). 

2 Previous compilation methods 

The first compiler of two-level rules was imple-

mented by the first author in 1985 and it handled 
also multi-context rules (Koskenniemi, 1985). 

The compiler used a finite-state package written 

by Ronald Kaplan and Martin Kay at Xerox 
PARC, and a variant of a formula they used for 

compiling cascaded rewrite rules. Their own 

work was not published until 1994. Kosken-

niemi’s compiler was re-implemented in LISP by 
a student in her master’s thesis (Kinnunen, 

1987).  

Compilation of two-level rules in general re-
quires  some  care  because  the  centres  may  occur  

several times in pair strings, the contexts may 

overlap and the centres may act as part of a con-
text for another occurrence of the same centre.  

For other rules than right-arrow rules, each con-

text is yet another condition for excluding un-

grammatical  strings  of  pairs,  which  is  how  the  
rules are related to each other.  The context parts 

of a right-arrow rule are, however, permissions, 

one of which has to be satisfied.  Expressing un-
ions of context parts was initially a problem 

which required complicated algorithms. 

Some of the earlier compilation methods are 
mentioned below. They all produce a single 

transducer out of each multi-context right-arrow 

rule. 

2.1 Method based on Kaplan and Kay 

Kaplan and Kay (1994) developed a method 
around 1980 for compiling rewriting rules into 

finite-state transducers 2 . The method was 

adapted by Koskenniemi to the compilation of 
two-level rules by modifying the formula 

                                                
2 Douglas Johnson (1972) presented a similar tech-

nique earlier but his work was not well known in 

early 1980s. 
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slightly. In this method, auxiliary left and right 

bracket characters (<1, >1, <2, >2, ...) 

were freely added in order to facilitate the check-
ing of the context conditions.  A unique left and 

right bracket was dedicated for each context part 

of  the  rule.   For  each  context  part  of  a  rule,  se-
quences with freely added brackets were then 

filtered with the context expressions so that only 

such sequences remained where occurrences of 

the brackets were delimited with the particular 
left or right context (allowing free occurrence of 

brackets for other context parts). Thereafter, it 

was easy to check that all occurrences of the cen-
tre  (i.e.  the  left  hand  part  of  the  rule  before  the  

rule operator) were delimited by some matching 

pair of brackets. As all component transducers in 

this expression were length-preserving (epsilon-
free), the constraints could be intersected with 

each other resulting in a single rule transducer 

for the multi-context rule (and finally the brack-
ets could be removed). 

2.2 Method of Grimley-Evans, Kiraz and 

Pulman 

Grimley-Evans, Kiraz and Pulman presented a 
simpler compilation formula for two-level rules 

(1996).  The method is prepared to handle more 

than two levels of representation, and it does not 

need the freely added brackets in the intermedi-
ate  stages.   Instead,  it  uses  a  marker  for  the rule  

centre and can with it express disjunctions of 

contexts.  Subtracting such a disjunction from all 
strings where the centre occurs expresses all pair 

strings which violate the multi-context rule.  

Thus, the negation of such a transducer is the 

desired result. 

2.3 Yli-Jyrä’s method 

Yli-Jyrä (Yli-Jyrä et al., 2006) introduced a 

concept of Generalized Restriction (GR) where 

expressions with auxiliary boundary characters � 
made it possible to express context parts of rules 

in a natural way, e.g. as: 

Pi* LC � Pi � RC Pi*   

Here Pi is the set of feasible pairs of characters 

and LC and RC are the left and right contexts. 

The two context parts of our example would cor-

respond to the following two expressions: 

Pi* u � Pi � u Pi* 
Pi* y � Pi � y Pi*     

Using such expressions, it is easy to express dis-

junctions of contexts as unions of the above ex-
pressions. This makes it logically simple to com-

pile multi-context right-arrow rules. The rule 

centre x:z can be expressed simply as: 

Pi* � x:z � Pi* 

The right-arrow rule  can be expressed as  an im-

plication where the expression for the centre im-
plies the union of the context parts.  Thereafter, 

one may just remove the auxiliary boundary 

characters, and the result is the rule-transducer. 
(It is easy to see that only one auxiliary character 

is needed when the length of the centres is one.) 

The compilation of rules with centres whose 

length is one using the GR seems very similar to 
that  of  Grimley-Evans  et  al.   The  nice  thing  

about GR is that one can easily express various 

rule types, including but not limited to the four 
types listed above. 

2.4 Intersecting compose 

It was observed somewhere around 1990 at 

Xerox that the rule sets may be composed with 
the lexicon transducers in an efficient way and 

that the resulting transducer was roughly similar 

in size as the lexicon transducer itself (Karttunen 

et al., 1992). This observation gives room to the 
new approach presented below. 

At that time, it was not practical to intersect 

complete two-level grammars if they contained 
many elaborate rules (and this is still a fairly 

heavy operation).  Another useful observation 

was that the intersection of the rules could be 

done in a joint single operation with the compo-
sition (Karttunen, 1994).  Avoiding the separate 

intersection made the combining of the lexicon 

and rules feasible and faster.  In addition to 
Xerox LEXC program, e.g. the HFST finite-state 

software contains this operation and it is rou-

tinely used when lexicons and two-level gram-
mars are combined into lexicon transducers 

(Lindén et al., 2009). 

Måns Huldén has noted (2009) that the com-

posing of the lexicon and the rules is sometimes 
a heavy operation, but can be optimized if one 

first composes the output side of the lexicon 

transducer with the rules, and thereafter the 
original lexicon with this intermediate result. 

3 Proposed method for compilation 

The  idea  is  to  modify  the  two-level  grammar  so  
that the rules become simpler. The modified 

grammar will contain only simple rules with sin-

gle context parts. This is done at the cost that the 
grammar will transform lexical representations 

into slightly modified surface representations.  
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The surface representations are, however, fixed 

after the rules have been combined with the lexi-

con so that the resulting lexicon transducer is 

equivalent to the result produced using earlier 
methods. 

3.1 The method through the example 

Let us return to the example in the introduction. 

The modified surface representation differs from 
the ultimate representation by having a slightly 

extended alphabet where some surface characters 

are expressed as their variants, i.e. there might be 

v1 or v2 in addition to v.  In particular, the first 

variant v1 will  be  used  exactly  where  the  first  

context of the original multi-context rule for k:v 

is satisfied, and v2 where the second context is 

satisfied. After extending the alphabet and split-
ting  the  rule,  our  example  grammar  will  be  as  

follows: 

Alphabet a b … k … u v w x y … 
  k:v1 k:v2; 
Rules 
k:v1 => u _ u; 
k:v2 => y _ y;  

These rules would permit sequences such as:  

p u k:v1 u n 
k y k:v2 y n 
p u k:v1 u k:v1 u n  

but exclude a sequence  

p u k:v2 u n    

The output of the modified grammar is now as 

required, except that it includes these variants v1 

and v2 instead of v.   If  we first  perform the in-

tersecting composition of the rules and the lexi-
con, we then can compose the result with a trivial 

transducer which simply transforms both v1 and 

v2 into v. 

It  should  be  noted  that  here  the  context  ex-

pressions of these example rules do not contain v 

on the output side, and therefore the introduction 

of the variants v1 and v2 causes no further 

complications.   In  the  general  case,  the  variants  

should be added as alternatives of v in  the  con-

text expressions, see the explanation below. 

3.2 More general cases 

The strategy is to pre-process the two-level 
grammar in steps by splitting more complex con-

structions into simpler ones until we have units 

whose components are trivial to compile.  The 

intersection of the components will have the de-
sired effect when composed with a lexicon and a 

trivial correction module.   Assume, for the time 

being, that all centres (i.e. the left-hand parts) of 

the rules are of length one. 

(1) Split double-arrow (<=>) rules into one 

right-arrow (=>)  rule  and  one  left-arrow  (<=) 

rule with centres and context parts identical to 
those of the original double-arrow rule. 

(2) Unfold the iterative where clauses in left-

arrow rules by establishing a separate left-arrow 
rule for each value of the iterator variable, e.g. 

V:Vb <= [a | o | u] ?* _; 
 where V in (A O U) 
       Vb in (a o u) matched; 

becomes 

A:a <= [a | o | u] ?* _; 
O:o <= [a | o | u] ?* _; 
U:u <= [a | o | u] ?* _; 

Unfold the where clauses in right-arrow rules 

in  either  of  the  two  ways:  (a)  If  the  where 

clauses create disjoint centres (as above), then 

establish a separate right-arrow rule for each 
value  of  the  variable,  and  (b)  if  the  clause  does  

not affect the centre, then create a single multi-

context right-arrow rule whose contexts consist 

of the context parts of the original rule by replac-

ing the where clause variable by its values, one 

value at a time, e.g. 

k:v => Vu _ Vu; where Vu in (u y); 

becomes 

k:v => u _ u; 
       y _ y; 

If  there  are  set  symbols  or  disjunctions  in  the  

centres  of  a  right-arrow  rule,  then  split  the  rule  
into separate rules where each rule has just a sin-

gle pair as its centre, and the context part is iden-

tical to the context part (after the unfolding of the 

where clauses). 

Note that these two first steps would probably 

be common to any method of compiling multi-
context rules.  After these two steps, we have 

right-arrow, left-arrow and exclusion rules.  The 

right-arrow  rules  have  single  pairs  as  their  cen-
tres. 

(3) Identify the right-arrow rules which, after 

the unfolding, have multiple contexts, and record 

each  pair  which  is  the  centre  of  such  a  rule.   
Suppose that the output character (i.e. the surface 

character) of such a rule is z and there are n con-

text parts in the rule, then create n new auxiliary 
characters z1, z2, ..., zn  and denote the set consist-

ing of them by S(z).  
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Split the rule into n distinct single-context 

right-arrow rules by replacing the z of the centre 

by each zi in turn. 

Our simple example rule becomes now. 

k:v1 => u _ u; 
k:v2 => y _ y; 

(4) When all rules have been split according to 
the above steps, we need a post-processing phase 

for the whole grammar. We have to extend the 

alphabet by adding the new auxiliary characters 
in it. If original surface characters (which now 

have variants) were referred to in the rules, each 

such reference must be replaced with the union 

of the original character and its variants. This 
replacement has to be done throughout the  

grammar. For any existing pairs x:z listed in the 

alphabet, we add there also the pairs x:z1, ..., x:zn.  
The same is done for all declarations of sets 

where z occurs  (as  an output  character).  Insert  a  

declaration for a new character set corresponding 
to S(z).  In  all  define  clauses  and  in  all  rule-

context expressions where z occurs as an output 

character,  it  is  replaced  by  the  set  S(z).   In  all  

centres of left-arrow rules where z occurs  as  the 
output character, it is replaced by S(z).  

The  purpose  of  this  step  is  just  to  make  the  

modified two-level grammar consistent in terms 
of its alphabet, and to make the modified rules 

treat  the occurrence of  any of  the output  charac-

ters z1,  z2,  …, zn in the same way as the original 

rule treated z wherever it occurred in its contexts. 
 

After this pre-processing we only have right-

arrow, left-arrow and exclusion rules with a sin-
gle context part.  All rules are independent of 

each  other  in  such  a  way  that  their  intersection  

would have the effect we wish the grammar to 
have.  Thus, we may compile the rule set as such 

and  each  of  these  simple  rules  separately.   Any  

of the existing compilation formulas will do. 

After compiling the individual rules, they have 
to be intersected and composed with the lexicon 

transducer which transforms base forms and in-

flectional feature symbols into the morphopho-
nemic representation of the word-forms. The 

composing and intersecting is efficiently done as 

a single operation because it then avoids the pos-
sible explosion which can occur if intermediate 

result of the intersection is computed in full.   

The rules are mostly independent of each 

other, capable of recurring freely. Therefore 
something near the worst case complexity is 

likely  to  occur,  i.e.  the  size  of  the  intersection  

would have many states, roughly proportional to 

the  product  of  the  numbers  of  the  states  in  the  

individual rule transducers. 

The composition of the lexicon and the logical 

intersection of the modified rules is almost iden-
tical  to  the  composition  of  the  lexicon  and  the  

logical intersection of the original rules. The only 

difference is that the output (i.e. the surface) rep-
resentation contains some auxiliary characters zi 

instead of the original surface characters z. A 

simple transducer will correct this. (The trans-
ducer has just one (final) state and identity transi-

tions for all original surface characters and a re-

duction zi:z for  each of  the auxiliary characters.)   

This composition with the correcting transducer 
can be made only after the rules have been com-

bined with the lexicon.   

3.3 Right-arrow conflicts 

Right-arrow rules are often considered as per-
missions.   A  rule  could  be  interpreted  as  “this  

correspondence pair may occur if the following 

context condition is met”.  Further permissions 

might  be  stated  in  other  rules.  As  a  whole,  any  
occurrence must get at least one permission in 

order to be allowed.  

The right-arrow conflict resolution scheme 
presented by Karttunen implemented this 

through an extensive pre-processing where the 

conflicts were first detected and then resolved 
(Karttunen et al., 1987). The resolution was done 

by copying context parts among the rules in con-

flict.  Thus, what was compiled was a grammar 

with rules extended with copies of context parts 
from other rules.  

The scenario outlined above could be slightly 

modified in order to implement the simple right-
arrow rule  conflict  resolution  in  a  way  which  is  

equivalent to the solution presented by Kart-

tunen.   All  that  is  needed is  that  one would first  
split the right-arrow rules with multiple context 

parts into separate rules.  Only after that, one 

would consider all right-arrow rules and record 

rules  with identical  centres.   For  groups of  rules  
with identical centres, one would introduce the 

further variants of the surface characters, a sepa-

rate  variant  for  each  rule.   In  this  scheme,  the  
conflict resolution of right-arrow rules is imple-

mented fairly naturally in a way analogous to the 

handling of multi-context rules. 

3.4 Note on longer centres in rules 

In the above discussion, the left-hand parts of 
rules,  i.e.  their  centres,  were  always  of  length  

one.  In fact, one may define rules with longer 

centres by a scheme which reduces them into 
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rules with length one centres.  It appears that the 

basic rule types (the left and right-arrow rules) 

with longer centres can be expressed in terms of 

length one centres, if we apply conflict resolution 
for the right-arrow rules. 

We replace a right-arrow rule, e.g. 

x1:z1 x2:z2 ... xk:zk => LC _ RC; 

with k separate rules 

x1:z1 => LC _ x2:z2 ... xk:zk RC; 
x2:z2 => LC x1:z1 _ ... xk:zk RC; 

... 
xk:zk => LC x1:z1 x2:z2 ... _ RC; 

Effectively, each input character may be realized 

according  to  the  original  rule  only  if  the  rest  of  

the  centre  will  also  be  realized  according  to  the  
original rule.  

Respectively, we replace a left-arrow rule, e.g. 

x1:z1 x2:z2 ... xk:zk <= LC _ RC; 

with k separate rules 

x1:z1 <= LC _ x2: ... xk: RC; 
x2:z2 <= LC x1: _ ... xk: RC; 

... 
xk:zk <= LC x1: x2: ... _ RC; 

Here the realization of the surface string is forced 
for each of its character of the centre separately, 

without reference to what happens to other char-

acters  in  the  centre.   (Otherwise  the  contexts  of  
the separate rules would be too restrictive, and 

allow the default realization as well.) 

 

4 Complexity and implementation 

In order to implement the proposed method, one 

could write a pre-processor which just transforms 
the  grammar  into  the  simplified  form,  and  then  

use an existing two-level compiler. Alternatively, 

one could modify an existing compiler, or write a 

new compiler which would be somewhat simpler 
than the existing ones. We have not implemented 

the proposed method yet, but rather simulated the 

effects using existing two-level rule compilers. 
Because the pre-processing would be very fast 

anyway, we decided to estimate the efficiency of 

the proposed method through compiling hand-
modified rules with the existing HFST-TWOLC 

(Lindén et al., 2009) and Xerox TWOLC3 two-

                                                
3 We used an old version 3.4.10 (2.17.7) which we 

thought would make use of the Kaplan and Kay for-

mula.  We suspected that the most recent versions 

might have gone over to the GR formula. 

level rule compilers. The HFST tools are built on 

top of existing open source finite-state packages 

OpenFST (Allauzen et al., 2007) and Helmut 

Schmid’s SFST (2005).  
It appears that all normal morphographemic 

two-level grammars can be compiled with the 

methods of Kaplan and Kay, Grimley-Evans and 
Yli-Jyrä. 

Initial tests of the proposed scheme are prom-

ising.  The  compilation  speed  was  tested  with  a  
grammar of consisting of 12 rules including one 

multi-context rule for Finnish consonant grada-

tion with some 8 contexts and a full Finnish lexi-

con. When the multi-context rule was split into 
separate rules, the compilation was somewhat 

faster (12.4 sec) to than when the rule was com-

piled a multi-context rule using the GR formula 
(13.9 sec).  The gain in the speed by splitting was 

lost at the additional work needed in the inter-

secting compose of the rules and the full lexicon 
and the final fixing of the variants. On the whole, 

the proposed method had no advantage over the 

GR method. 

In  order  to  see  how  the  number  of  context  
parts affects the compilation speed, we made 

tests with an extreme grammar simulating Dutch 

hyphenation rules. The hyphenation logic was 
taken out of TeX hyphenation patterns which had 

been converted into two-level rules. The first 

grammar consisted of a single two-level rule 

which had some 3700 context parts. This gram-
mar could not be compiled using Xerox TWOLC 

which applies the Kaplan and Kay method be-

cause more than 5 days on a dedicated Linux 
machine with 64 GB core memory was not 

enough for completing the computation.  When 

using  of  GR  method  of  HFST-TWOLC,  the  
compilation time was not a problem (34 min-

utes).  The method of Grimley-Evans et al. 

would probably have been equally feasible.  

Compiling the grammar after splitting it into 
separate rules as proposed above was also feasi-

ble: about one hour with Xerox TWOLC and 

about 20 hours with HFST-TWOLC. The differ-
ence between these two implementations de-

pends most likely on the way they handle alpha-

bets.  The Xerox tool makes use of a so-called 
'other' symbol which stands for characters not 

mentioned in the rule. It also optimizes the com-

putation by using equivalence classes of charac-

ter pairs.  These make the compilation less sensi-
tive to the 3700 new symbols added to the alpha-

bet than what happens in the HFST routines.    

Another test was made using a 50 pattern sub-
set of the above hyphenation grammar.  Using 

43



the  Xerox  TWOLC,  the  subset  compiled  as  a  

multi-context rule in 28.4 seconds, and when 

split according to the method proposed here, it 

compiled in 0.04 seconds. Using the HFST-
TWOLC, the timings were 3.1 seconds and 5.4 

seconds, respectively.   These results corroborate 

the intuition that the Kaplan and Kay formula is 
sensitive  to  the  number  of  context  parts  in  rules  

whereas  the  GR  formula  is  less  sensitive  to  the  

number of context parts in rules. 
There are factors which affect the speed of 

HFST-TWOLC, including the implementation 

detail including the way of treating characters or 

character pairs which are not specifically men-
tioned in a particular transducer. We anticipate 

that there is much room for improvement in 

treating larger alphabets in HFST internal rou-
tines and there is no inherent reason why it 

should be slower than the Xerox tool. The next 

release of HFST will use Huldén’s FOMA finite-
state package. FOMA implements the ‘other’ 

symbol and is expected to improve the process-

ing of larger alphabets. 

Our intuition and observation is that the pro-
posed compilation phase requires linear time 

with  respect  to  the  number  of  context  parts  in  a  

rule. Whether the proposed compilation method 
has an advantage over the compilation using the 

GR  or  Grimley-Evans  formula  remains  to  be  

seen. 
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Abstract
In this paper we apply the multi-way de-
composition method PARAFAC in order to
detect the most prominent sound changes
in dialect variation. We investigate various
phonetic patterns, both in stressed and un-
stressed syllables. We proceed from regu-
lar sound correspondences which are auto-
matically extracted from the aligned tran-
scriptions and analyzed using PARAFAC.
This enables us to analyze simultaneously
the co-occurrence patterns of all sound
correspondences found in the data set and
determine the most important factors of
the variation. The first ten dimensions are
examined in more detail by recovering the
geographical distribution of the extracted
correspondences. We also compare dia-
lect divisions based on the extracted cor-
respondences to the divisions based on the
whole data set and to the traditional schol-
arship as well. The results show that PAR-
AFAC can be successfully used to detect
the linguistic basis of the automatically
obtained dialect divisions.

1 Introduction

Dialectometry is a multidisciplinary field that uses
quantitative methods in the analysis of dialect
data. From the very beginning, most of the re-
search in dialectometry has been focused on the
identification of dialect groups and development
of methods that would tell us how similar (or dif-
ferent) one variety is when compared to the neigh-
boring varieties. Dialect data is usually analyzed
on the aggregate level by summing up the differ-
ences between various language varieties into a
single number. The main drawback of aggregate
analyses is that it does not expose the underlying
linguistic structure, i.e. the specific linguistic ele-
ments that contributed to the differences between

the dialects. In recent years there have been sev-
eral attempts to automatically extract linguistic
basis from the aggregate analysis, i.e. to determine
which linguistic features are responsible for which
dialect divisions. Although interesting for dialect-
ology itself, this kind of research is very important
in the investigation of sound variation and change,
both on the synchronic and diachronic level.

The paper is structured as follows. In the next
section, we discuss a number of earlier approaches
to the problem of identifying underlying linguistic
structure in dialect divisions. In section 3, we give
a description of the dialect data used in this re-
search. Section 4 then describes the methodology
of our method, explaining our data representation
using tensors, our three-way factorization method,
and the design of our data set. In section 5, the res-
ults of our method are discussed, examining the
values that come out of our factorization method
in a number of ways. Section 6, then, draws con-
clusions and gives some pointers for future work.

2 Previous work

In order to detect the linguistic basis of dialect
variation Nerbonne (2006) applied factor analysis
to the results of the dialectometric analysis of
southern American dialects. The analysis is based
on 1132 different vowels found in the data. 204
vowel positions are investigated, where a vowel
position is, e.g., the first vowel in the word ’Wash-
ington’ or the second vowel in the word ’thirty’.
Factor analysis has shown that 3 factors are most
important, explaining 35% of the total amount of
variation. However, this approach is based only on
vowel positions in specific words.

Prokić (2007) extracted the 10 most frequent
non-identical sound correspondences from the
aligned word transcriptions. Based on the relative
frequency of each of these correspondences each
site in the data set was assigned a correspondence
index. Higher value of this index indicates sites
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where the presence of a certain sound is domin-
ant with respect to some sound alternation. Al-
though successful in describing some important
sound alternations in the dialect variation, it ex-
amines only the 10 most frequent sound alterna-
tions without testing patterns of variation between
different sound correspondences.

Shackleton (2007) applies principal compon-
ent analysis (PCA) to a group of self constructed
articulation-based features. All segments found in
the data are translated into vectors of numerical
features and analyzed using PCA. Based on the
component scores for features, different groups
of varieties (in which a certain group of features
is present) are identified. We note that the main
drawback of this approach is the subjectivity of the
feature selection and segment quantification.

Wieling and Nerbonne (2009) used a bipart-
ite spectral graph partitioning method to simul-
taneously cluster dialect varieties and sound cor-
respondences. Although promising, this method
compares the pronunciation of every site only to
the reference site, rather than comparing it to all
other sites. Another drawback of this method is
that it does not use any information on the frequen-
cies of sound correspondences, but instead em-
ploys binary features to represent whether a cer-
tain correspondence is present at a certain site or
not.

In this paper we present an approach that tries
to overcome some of the problems described in
the previous approaches. It proceeds from auto-
matically aligned phonetic transcriptions, where
pronunciations of every site are compared to the
corresponding pronunciations for all other sites.
Extracted sound correspondences are analyzed us-
ing the multi-way decomposition method PARA-
FAC. The method allows us to make generaliza-
tions over multi-way co-occurrence data, and to
look simultaneously at the co-occurrence patterns
of all sound correspondences found in the data set.

3 Data description

The data set used in this paper consists of phon-
etic transcriptions of 152 words collected at 197
sites evenly distributed all over Bulgaria. It is part
of the project Buldialect – Measuring Linguistic
unity and diversity in Europe. Phonetic transcrip-
tions include various diacritics and suprasegment-
als, making the total number of unique phones in

the data set 95: 43 vowels and 52 consonants.1

The sign for primary stress is moved to a cor-
responding vowel, so that there is a distinction
between stressed and unstressed vowels. Vowels
are also marked for their length. Sonorants /r/ and
/l/ have a mark for syllabicity and for stress in case
they are syllabic. Here we list all phones present
in the data set:
"A, e, i, "e, @, "E, 7, "6, A, I, o, "o, u, "A:, U, "u:, "7, "@,
"a, "i, "I, "e:, E, "O, "2, "i:, "u, e:, 1, "1, "o:, "E:, "7:, u:, A:,
y, "a:, a, o:, 7:, "U, "y, "I:, j, g, n, nj, é, r, w, x, rj, h,
C, f, s, v, ç, F, p,

>
Ù, m, k,

>
ťC, pj, c, l, lj, t, tj, S, d, dj,

"r
"
, vj,

>
dz, Z, ý,

>
ţ, r

"
, cj, z, sj, b, gj, mj, l

"
, zj, "l

"
, kj, bj,

>
ćý,

>
dz, fj, î

Each of the 152 words in the data set shows
phonetic variation, with some words displaying
more than one change. There are in total 39 dif-
ferent dialectal features that are represented in the
data set, with each of the features being present in
a similar number of words. For example, the re-
flexes of Old Bulgarian vowels that show dialect
variation are represented with the same or nearly
the same number of words. A more detailed de-
scription of all features can be found in Prokić et
al. (2009). For all villages only one speaker was
recorded. In the data set, for some villages there
were multiple pronunciations of the same word. In
this reasearch we have randomly picked only one
per every village.

4 Methodology

4.1 Tensors

Co-occurrence data (such as the sound corres-
pondences used in this research) are usually rep-
resented in the form of a matrix. This form is per-
fectly suited to represent two-way co-occurrence
data, but for co-occurrence data beyond two
modes, we need a more general representation.
The generalization of a matrix is called a tensor.
A tensor is able to encode co-occurrence data of
any n modes. Figure 1 shows a graphical com-
parison of a matrix and a tensor with three modes
– although a tensor can easily be generalized to
more than three modes.

Tensor operations come with their own algeb-
raic machinery. We refer the interested reader to
Kolda and Bader (2009) for a thorough and in-
sightful introduction to the subject.

1The data is publicly available and can be down-
loaded from http://www.bultreebank.org/
BulDialects/index.html
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Figure 1: Matrix representation vs. tensor representation.

4.2 PARAFAC

In order to create a succinct and generalized
model, the co-occurrence data are often ana-
lyzed with dimensionality reduction techniques.
One of the best known dimensionality reduction
techniques is principal component analysis (PCA,
Pearson (1901)). PCA transforms the data into a
new coordinate system, yielding the best possible
fit in a least squares sense given a limited num-
ber of dimensions. Singular value decomposition
(SVD) is the generalization of the eigenvalue de-
composition used in PCA (Wall et al., 2003).

To be able to make generalizations among the
three-way co-occurrence data, we apply a statist-
ical dimensionality reduction technique called par-
allel factor analysis (PARAFAC, Harshman (1970);
Carroll and Chang (1970)), a technique that has
been sucessfully applied in areas such as psycho-
logy and bio-chemistry. PARAFAC is a multilinear
analogue of SVD. The key idea is to minimize the
sum of squares between the original tensor and the
factorized model of the tensor. For the three mode
case of a tensor T ∈ RD1×D2×D3 this gives the
objective function in 1, where k is the number of
dimensions in the factorized model and ◦ denotes
the outer product.

min
xi∈RD1,yi∈RD2,zi∈RD3

‖ T −
k∑

i=1

xi ◦ yi ◦ zi ‖2
F

(1)
The algorithm results in three matrices, indic-

ating the loadings of each mode on the factorized
dimensions. The model is represented graphically
in Figures 2 and 3. Figure 2 visualizes the fact
that the PARAFAC decomposition consists of the
summation over the outer products of n (in this
case three) vectors. Figure 3 represents the three
resulting matrices that come out of the factoriza-
tion, indicating the loadings of each mode on the

factorized dimensions. We will be using the latter
representation in our research.

Computationally, the PARAFAC model is fitted
by applying an alternating least-squares algorithm.
In each iteration, two of the modes are fixed and
the third one is fitted in a least squares sense. This
process is repeated until convergence.2

4.3 Sound correspondences
In order to detect the most important sound vari-
ation within Bulgarian dialects, we proceed from
extracting all sound correspondences from the
automatically aligned word transcriptions. All
transcriptions were pairwise aligned using the
Levenshtein algorithm (Levenshtein, 1965) as im-
plemented in the program L04.3 The Leven-
shtein algorithm is a dynamic programming al-
gorithm used to measure the differences between
two strings. The distance between two strings is
the smallest number of insertions, deletions, and
substitutions needed to transform one string to the
other. In this work all three operations were as-
signed the same value, namely 1. The algorithm is
also directly used to align two sequences. An ex-
ample showing two aligned pronunciations of the
word vъlna /v7lna/ ‘wool’ is given in Figure 4.4

v "7 - n A
v "A l n @

Figure 4: Example of two pairwise aligned word
transcriptions.

From the aligned transcriptions for all words
and all villages in the data set we first extracted

2The algorithm has been implemented in MATLAB, using
the Tensor Toolbox for sparse tensor calculations (Bader and
Kolda, 2009).

3http://www.let.rug.nl/kleiweg/L04
4For some pairs of transcriptions there are two or more

possible alignments, i.e. alignments that have the same cost.
In these cases we have randomly picked only one of them.
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Figure 2: Graphical representation of PARAFAC as the sum of outer products.
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Figure 3: Graphical representation of the PARAFAC as three loadings matrices.

all corresponding non-identical sounds. For ex-
ample, from the aligned transcriptions in Figure 4
we would extract the following sound pairs: ["7]-
["A], [-]-[l], [A]-[@]. The hyphen (‘-’) stands for a
missing (i.e. inserted or deleted) sound, and in fur-
ther analyses it is treated the same as any sound
in the data set. For each pair of corresponding
sounds from the data set we counted how often it
appeared in the aligned transcriptions for each pair
of villages separately. In total we extracted 907
sound correspondences and stored the information
on each of them in a separate matrix. Every matrix
records the distances between each two villages
in the data set, measured as the number of times
a certain phonetic alternation is recorded while
comparing pronunciations from these sites.

Since we are interested in analyzing all sound
correspondences simultaneously, we merged the
information from all 907 two-mode matrices into
a three-mode tensor n×n×v, where n represents
the sites in the data set, and v represents the sound
alternations. By arranging our data in a cube in-
stead of a matrix, we are able to look into several
sets of variables simultaneously. We are especially
interested in the loadings for the third mode, that
contains the values for the sound correspondences.

5 Results

In order to detect the most prominent sound cor-
respondences we analyzed the three-mode tensor
described in the previous section using a PARAFAC

factorization with k = 10 dimensions. In Table 5

we present only the first five dimensions extracted
by the algorithm. The final model fits 44% of the
original data. The contribution of the first extrac-
ted dimension (dim1) to the final fit of the model
is the largest – 23.81 per cent – while the next four
dimensions contribute to the final fit with similar
percentages: dim2 with 10.63 per cent, dim3 with
9.50 per cent, dim4 with 9.26 per cent, and dim5
with 9.09 per cent. Dimensions six to ten contrib-
ute in the range from 8.66 per cent to 6.98 per cent.

For every dimension we extracted the twenty
sound correspondences with the highest scores. In
the first dimension we find 11 pairs involving vow-
els and 9 involving consonant variation. The three
sound correspondences with the highest scores
are the [A]-[@], [o]-[u], and [e]-[i] alternations.
This finding corresponds well with the traditional
scholarly views on Bulgarian phonetics (Wood
and Pettersson, 1988; Barnes, 2006) where we find
that in unstressed syllables mid vowels [e] and [o]
raise to neutralize with the high vowels [i] and [u].
The low vowel [a] raises to merge with [@].

For every sound alternation we also check their
geographical distribution. We do so by applying
the following procedure. From the aligned pairs
of transcriptions we extract corresponding pairs of
sounds for every alternation. We count how many
times each of the two sounds appears in the tran-
scriptions for every village. Thus, for every pair of
sound correspondences, we can create two maps
that show the distribution of each of the sounds
separately. On the map of Bulgaria these values
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Table 1: First five dimensions for the sound cor-
respondences.

dim1 dim2 dim3 dim4 dim5
[A]-[@] [@]-[7] [u]-[o] [A]-[@] [e]-[i]
[u]-[o] [e]-[i] [A]-[7] [@]-[7] [i]-["e]
[e]-[i] ["e]-["E] [A]-[@] [U]-[o] [e]-[@]
[-]-[j] [-]-[j] [7]-[e] [e]-[@] [r]-[rj]

[e]-["e] [S]-[C] [e]-["e] [d]-[dj] [d]-[dj]
[S]-[C] [

>
Ù]-[

>
ťC] ["e]-["E] [v]-[vj] ["e]-["A]

[
>
Ù]-[

>
ťC] ["A]-["E] [-]-[j] [n]-[nj] [-]-[j]

["e]-["E] [r]-[rj] ["e]-["A] [-]-[j] ["o]-[u]
[n]-[nj] [l]-[lj] [e]-[i] ["e]-["E] [l]-[lj]
[A]-[7] [e]-[@] [n]-[nj] [l]-[lj] [v]-[vj]
[e]-[@] [d]-[dj] [r]-[rj] [t]-[tj] [u]-[o]
["A]-["E] [n]-[nj] [

>
Ù]-[

>
ťC] ["e]-["A] [n]-[nj]

["e]-["A] [u]-[U] ["7]-["A] [e]-["e] [-]-[v]
[d]-[dj] ["7]-["O] [-]-[r] [S]-[C] ["7]-[@]
[7]-[e] [@]-["A] [S]-[C] [

>
Ù]-[

>
ťC] [u]-[U]

[l]-[lj] [7]-[e] [l]-[lj] [r]-[rj] [
>
Ù]-[

>
ťC]

[v]-[vj] ["o]-[u] [u]-[e] [p]-[pj] ["A]-["E]
[r]-[rj] [Z]-[ý] [-]-["7] [Z]-[ý] [A]-["7]
[Z]-[ý] [i]-[@] [v]-[-] [@]-["A] [@]-["A]
["7]-["O] [v]-[vj] [A]-["7] [e]-[i] [b]-[bj]

are represented using a gradual color, which en-
ables us to see not only the geographic distribution
of a certain sound but also how regular it is in a
given sound alternation. The highest scoring sites
are coloured black and the lowest scoring sites are
coloured white.

In Figure 5 we see the geographical distribu-
tion of the first three extracted correspondences.
The first two alternations [A]-[@] and [o]-[u] have
almost the same geographical distribution and di-
vide the country into west and east. While in the
west there is a clear presence of vowels [A] and [o],
in the east those vowels would be pronounced as
[@] and [u]. The division into east and west corres-
ponds well with the so-called jat line, which is,
according to traditional dialectologists (Stojkov,
2002) the main dialect border in Bulgaria. On the
maps in Figure 5 we represent it with the black line
that roughly divides Bulgaria into east and west.
The third correspondence follows a slightly dif-
ferent pattern: mid vowel [e] is present not only
west of the jat line, but also in the southern part
of the country, in the region of Rodopi mountains.
In the central and northeastern areas this sound is

pronounced as high vowel [i]. For all three sound
correspondences we see a clear two-way division
of the country, with almost all sites being charac-
terized by one of the two pronunciations, which,
as we shall see later, is not always the case due
to multiple reflections of some sounds at certain
positions.

We also note that the distribution of the sound
correspondences that involve soft consonants and
their counterparts have the same east-west dis-
tribution (see Figure 6). In the first dimension
we find the following consonants and their pal-
atal counterparts [n], [d], [l], [v] and [r], but be-
cause of space limitations we show maps only
for three correspondences. The east-west division
also emerges with respect to the distribution of the
[A]-[7] and ["e]-["A] sounds.

Unlike the correspondences mentioned before,
the [S]-[C], [

>
Ù]-[

>
ťC], and [Z]-[ý] pairs are defining

the south part of the country as a separate zone.
As shown on the maps in Figure 7, the southern
part of the country (the region of Rodopi moun-
tains) is characterized by a soft pronunciation of
[S], [

>
Ù] and [Z]. In traditonal literature on Bul-

garain dialectology (Stojkov, 2002), we also find
that soft pronunciation of [S], [

>
Ù] and [Z] is one of

the most important phonetic features of the variet-
ies in the Rodopi zone. Based on the correspond-
ences extracted in the first dimension, this area
is also defined by the presence of the vowel ["E]
in stressed syllables (["e]-["E] and ["A]-["E] corres-
pondences).

In some extracted correspondences, only one of
the sounds has a geographically coherent distri-
bution, like in the case of the [7]-[e] pair where
[e] is found in the west and south, while the [7]
sound is only sporadically present in the central
region. This kind of asymmetrical distribution is
also found with respect to the pair [A]-[7].

Most of the sound correspondences in the first
dimension either divide the country along the jat
line or separate the Rodopi area from the rest of the
varieties. The only two exceptions are the [-]-[j]
and ["7]-["O] pairs. They both define the southwest
area as a separate zone, while the northwest shares
its pronunciation of the sound in question with the
eastern part of the country.

We use the first 20 correspondences from the
first dimension and perform k-means clustering in
order to check which dialect areas would emerge
based on this limited set of sound correspond-
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Figure 5: [A]-[@] (left), [o]-[u] (middle), [e]-[i] (right) sound correspondences.

Figure 6: [d]-[dj] (left), [v]-[vj] (middle), [r]-[rj] (right) sound correspondences.

ences. The results of the 2-way, 3-way and 4-way
clustering are given in Figure 8.

In two-way clustering the algorithm detects an
east-west split approximately along the jat line,
slightly moved to the east. This fully corres-
ponds to the traditional dialectology but also to
the results obtained using Levenshtein algorithm
on the whole data set where only east, west and
south varieties could be asserted with great con-
fidence (Prokić and Nerbonne, 2008). In Figure 9
we present the dialect divisions that we get if the
distances between the sites are calculated using
whole word transcriptions instead of only the 20
most prominent sound correspondences. We no-
tice a high correspondence between the two ana-
lyses at the two- and three-level division. On the
level of four and more groups, the two analyses
start detecting different groups. In the analysis
based on 20 sound correspondences, southern dia-

lects are divided into smaller and smaller groups,
while in the analysis based on the whole data set,
the area in the west – near the Serbian border –
emerges as the fourth group. This is no surprise, as
the first 20 extracted correspondences do not con-
tain any sounds typical only for this western area.

In order to compare two divisions of sites, we
calculated the adjusted Rand index (Hubert and
Arabie, 1985). The adjusted Rand index (ARI) is
used in classification for comparing two different
partitions of a finite set of objects. It is based on
the Rand index (Rand, 1971), one of the most pop-
ular measures for comparing the degree to which
partitions agree (in classification). Value 1 of the
ARI indicates that two classifications match per-
fectly, while value 0 means that two partitions do
not agree on any pair of points. For both two-
level and three-level divisions of the sites the ARI
for two classifications is 0.84. We also compared
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Figure 7: [S]-[C] (left), [
>
Ù]-[

>
ťC] (middle), [Z]-[ý] (right) sound correspondences.

Figure 8: Dialect varieties detected by k-means clustering algorithm based on the first 20 sound corres-
pondences in the first dimension.

Figure 9: Dialect varieties detected by k-means clustering algorithm based on all word transcriptions.

both of the classifications to the classification of
the sites done by Stojkov (2002). For the classi-
fication based on the first dimension extracted by
PARAFAC, ARI is 0.73 for two-way and 0.64 for
the three-way division. ARI score for the clas-
sification based on whole word transcriptions is
0.69 for two-way and 0.62 for three-way. As in-
dicated by ARI the two classifications correspond
with a high degree to each other, but to the tra-
ditional classification as well. We note that two-
way classification based on the extracted sound
correspondences corresponds higher to the tradi-
tional classification than classification that takes
all sounds into account.

We conclude that the sound correspondences
detected by PARAFAC form the linguistic basis
of the two-way and three-way divisions of Bul-
garian dialect area. Using the PARAFAC method
we are able to detect that the most important sound

changes on which two-way division is based are
[o]-[u], [A]-[@] and palatal pronunciation of con-
sonants. In the three-way division of sites done
by k-means, the area in the south of the country
appears as the third most important dialect zone.
In the twenty investigated sound correspondences
we find that the soft pronunciation of [S],[

>
Ù] and

[Z] sounds is typical only for the varieties in this
area. Apart from divisions that divide the country
into west and east, including the southern variet-
ies, we also detect sound correspondences whose
distribution groups together western and southern
areas.

We also analyzed in more depth sound corres-
pondences extracted in other dimensions by the
PARAFAC algorithm. Most of the correspondences
found in the first dimension, also reappear in the
following nine dimensions. Closer inspection of
the language groups obtained using information
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from these dimensions show that eastern, western
and southern varieties are the only three that are
identified. No other dialect areas were detected
based on the sound correspondences from these
nine dimensions.

6 Conclusion

In this paper we have applied PARAFAC in the task
of detecting the linguistic basis of dialect phonetic
variation. The distances between varieties were
expressed as a numerical vector that records in-
formation on all sound correspondences found in
the data set. Using PARAFAC we were able to ex-
tract the most important sound correspondences.
Based on the 20 most important sound correspond-
ences we performed clustering of all sites in the
data set and were able to detect three groups of
sites. As found in traditional literature on Bul-
garian dialects, these three dialects are the main
dialect groups in Bulgaria. Using the aggregate
approach on the same data set, the same three dia-
lects were the only groups in the data that could be
asserted with high confidence. We conclude that
this approach is successful in extracting underly-
ing linguistic structure in dialect variation, while
at the same time overcoming some of the problems
found in the earlier approaches to this problem.

In future work sounds in the data set could be
defined in a more sophisticated way, using some
kind of feature representation. Also, the role of
stress should be examined in more depth, since
there are different patterns of change in stressed
in unstressed syllables. We would also like to ex-
tend the method and examine more than just two
sound correspondences at a time.
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Abstract 

 

This paper develops computational tools for 

evaluating competing syllabic parses of a pho-

nological string on the basis of temporal pat-

terns in speech production data. This is done 

by constructing models linking syllable parses 

to patterns of coordination between articulato-

ry events. Data simulated from different syl-

labic parses are evaluated against experimental 

data from American English and Moroccan 

Arabic, two languages claimed to parse similar 

strings of segments into different syllabic 

structures. Results implicate a tautosyllabic 

parse of initial consonant clusters in English 

and a heterosyllabic parse of initial clusters in 

Arabic, in accordance with theoretical work on 

the syllable structure of these languages. It is 

further demonstrated that the model can cor-

rectly diagnose syllable structure even when 

previously proposed phonetic heuristics for 

such structure do not clearly point to the cor-

rect diagnosis. 

1 Introduction 

Languages are claimed to differ in how word-

initial consonant clusters are parsed into higher 

level phonological structures. For example, Eng-

lish (Kahn, 1976) and Georgian (Vogt, 1971) are 

claimed to parse initial clusters into complex syl-

lable onsets. In contrast, Berber and Moroccan 

Arabic are claimed to parse initial clusters hete-

rosyllabically, [#C.CV-], because the syllable 

structure of these languages allows at most one 

consonant (simplex onset) per syllable onset 

(Dell & Elmedlaoui, 2002). 

Of direct relevance to these claims are patterns 

of temporal stability in the production of initial 

clusters. In those cases where speech production 

data are available, languages that allow complex 

onsets exhibit patterns of temporal stability that 

differ from languages that allow only syllables 

with simplex syllable onsets.  

These observed temporal differences have 

been quantified in terms of the relative stability 

of intervals as calculated across words beginning 

with one, two and three initial consonants 

(Browman & Goldstein, 1988; Byrd, 1995; 

Honorof & Browman, 1995; Shaw, Gafos, 

Hoole, & Zeroual, 2009). Figure 1 schematizes 

temporal differences between simplex and com-

plex onsets. The figure shows three temporal in-

tervals left-delimited by landmarks in the conso-

nant cluster, the left edge of the cluster, the cen-

ter of the cluster and the right edge of the cluster, 

and right-delimited by a common anchor point. 

 

 
 

Figure 1. Schematic representation of three in-

tervals, left edge to anchor, center to anchor and 

right edge to anchor, delineated by points in an 

initial single consonant or consonant cluster and 

a common anchor (A). The alignment schema on 

the left/right represents experimentally observed 

temporal manifestations of the simplex/complex 

onset parse. Such patterns have been used as 

phonetic heuristics in diagnosing syllable struc-

ture in experimental data. 

 

When clusters are parsed into simplex syllable 

onsets (Figure 1: left), the duration of the right 

edge to anchor interval is unperturbed by the ad-

dition of consonants to the word. Consequently, 

this interval remains stable across #CVX and 
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#CCVX words. In contrast, when clusters are 

parsed into a complex onset (Figure 1: right), the 

duration of the right edge to anchor interval 

shrinks to make room for the addition of a con-

sonant to the syllable. Under this temporal 

alignment schema, the center to anchor interval 

remains more stable across #CVX and #CCVX 

words than both the right edge to anchor interval 

and the left edge to anchor interval.  

Experimental results showing temporal pat-

terns consistent with the schema on the right side 

of Figure 1 include Browman and Goldstein 

(1988), Honorof and Browman (1995), and Ma-

rin and Pouplier (2008) on American English, 

Goldstein, Chitoran, & Selkirk (2007) on Geor-

gian and Hermes, Grice, Muecke and Niemann  

(2008) on Italian. Results showing the temporal 

pattern on the left side of Figure 1 include 

Goldstein et al. (2007) on Berber, Shaw et al. 

(2009) on Moroccan Arabic and Hermes et al. 
(2008) on Italian. 

We briefly review representative quantitative 

results illustrating the different temporal organi-

zations in Figure 1. For a language with complex 

onsets, Browman and Goldstein (1988) show that 

the standard deviation calculated across English 

word sets such as pot~sot~spot~lot~plot~splot is 

smaller for the center to anchor interval, 15.8 ms, 

than for the left edge to anchor interval, 37.7 ms, 

and the right edge to anchor interval, 33.6 ms. In 

contrast, for a simplex onset language, Shaw et 
al. (2009) show that across similar Moroccan 

Arabic word sets, e.g., bati~sbati, the right edge 

to anchor interval has a lower standard deviation, 

14 ms, than the center to anchor interval, 27 ms, 

and the left edge to anchor interval, 77 ms.  

Although the experimental work reviewed 

above shows that stability comparisons among 

the right edge to anchor, center to anchor and left 

edge to anchor intervals can provide good heuris-

tics for testing syllabification hypotheses in ex-

perimental data, such heuristics stated in terms of 

inequalities are known to break down under 

some conditions. For example, simulations with 

a model reported in Shaw et al. (2009) demon-

strated that when the overall variability in the 

intervals is high, the simplex onset parse can 

generate intervals exhibiting stability reversals 

whereby the center to anchor interval is more 

stable than the right/left edge to anchor interval 

(contra the heuristic which states that the right 

edge to anchor interval should be the most stable; 

again, see Figure 1: left). This result indicates the 

frailty of phonetic heuristics in the form of in-

equalities, e.g. a simplex onset parse implies that 

the right edge to anchor interval is more stable 
than the center to anchor interval and the left 

edge to anchor interval. Such heuristics may be 

too coarse or even in some cases misleading in 

distinguishing competing syllabic parses using 

experimental data.  

This paper advances a quantitative method for 

evaluating competing syllable parses that aims to 

improve on previously proposed phonetic heuris-

tics and, by doing so, sharpen the interpretation 

of temporal stability patterns in terms of syllabic 

structure. In mediating between phonological 

theory and experimental data, the computational 

model makes it possible to discover syllabifica-

tion rules from phonetic patterns. The model 

provides a new understanding of languages with 

known syllable structure and the analytical tools 

to deduce syllabification rules in less-studied 

languages. 

2 Model 

The general plan is to simulate data from models 

encoding competing syllabic parses, to quantify 

in the simulated data the pattern of stability in 

the intervals shown in Figure 1, and to evaluate 

the goodness of fit between the pattern of stabili-

ty in the simulated data and the pattern of stabili-

ty in experimental data.  Our modeling paradigm 

capitalizes on structurally revealing temporal 

patterns in experimental data but improves on 

past work by modeling competing syllabic struc-

tures (both simplex and complex onset parses of 

initial clusters) and replacing hypotheses stated 

in the form of inequalities with quantitative in-

dices of goodness of fit between syllable parses 

and experimental data. 

Given a string of consonants and vowels, e.g. 

CCV, the models map the simplex and complex 

onset parse of that string to distinct coordination 

topologies. The coordination topologies reflect 

the temporal relations underlying the segmental 

sequence (Gafos, 2002: p. 316). Differences in 

temporal structure at this level yield the distinct 

temporal alignment patterns schematized in Fig-

ure 1. 

Figure 2 shows how the syllable parse, simp-

lex or complex, determines the relative temporal 

alignment of the segments involved. The boxes 

at the bottom of the figure (V rectangles) 

represent the temporal extent of the syllable nuc-

leus, the vowel, which depends on the syllable 

parse. On a simplex onset parse (Figure 2a) the 

vowel is aligned to the midpoint of the imme-

diately prevocalic consonant regardless of the 
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number of preceding consonants. On a complex 

onset parse (Figure 2b) the vowel is aligned to 

the midpoint of the entire cluster of prevocalic 

consonants. These temporal alignment schemas 

have been proposed to underlie the experimental 

results we reviewed in Section 1. 

The model simulates the temporal organiza-

tion of words with one, two, and sometimes three 

initial consonant clusters on the basis of a proba-

bilistic interpretation of the temporal structure 

encoded in the syllable parse (simplex or com-

plex). In addition, the model has three phonetic 

parameters, k
p
, k

ipi
, and V, which determine, re-

spectively, consonant plateau duration, the dura-

tion between consonant plateaus, and vowel du-

ration. These latter parameters can be set using 

estimates from the phonetic record. 

As summarized in Figure 2, word simulation 

proceeds from the immediately prevocalic con-

sonant, nC  . The timestamp of the release of 

this consonant, 
elR

nC , is drawn from a Gaussian 

distribution. The timestamp of the achievement 

of target of this consonant, 
Tar

nC , is determined 

by subtracting consonant plateau duration, kp
, 

from 
elR

nC and adding an error term. Additional 

prevocalic consonants, e.g. C1 in #C1C2V, are 

determined with reference to the immediately 

preceding consonant. For example, the time-

stamp of the release of 1-nC ,
elR

nC 1- , is deter-

mined by subtracting the inter-plateau interval, 

kipi
, from

Tar

nC and adding a noise term. As noted 

above, the alignment of the vowel relative to the 

prevocalic consonant(s) is dictated by the sylla-

ble parse. 

Once the temporal structure of the input seg-

mental strings was generated, the stability of 

each target interval, the left edge to anchor, cen-

ter to anchor and right edge to anchor interval 

was calculated across words in the simulated da-

ta. For these intervals, the offset of the vowel 

was used as the anchor point.  

In light of past work indicating that phonetic 

heuristics for syllable structure may change as 

the level of variability in the data increases 

(Shaw et al., 2009), we also manipulated the va-

riability of the simulated intervals. We did this 

by varying the standard deviation of the vowel 

offset (from 0 to 70 ms in 15 discrete 5 ms in-

crements such that anchors 1, 2, 3…15 have a 

standard deviation of 0 ms, 5 ms, 10 ms…70 ms, 

respectively). Since the vowel offset serves as an 

anchor in right-delimiting all of the measured 

intervals, increasing the standard deviation of 

this point is one way to increase the level of va-

riability in all of the simulated intervals uniform-

ly. This effectively allows the level of variability 

in simulated data to match the level of variability 

in experimental data. 

 

 
Figure 2: Summary of word simulation in the 

model. Consonant landmarks are generated from 

the release of the immediately prevocalic conso-

nant. The alignment of the vowel is determined 

by the syllable parse (simplex or complex). 

 

To sum up the central idea, the task of evaluat-

ing syllable parses with experimental data has 

been formulated here as the task of fitting ab-

stract coordination topologies to the experimen-

tal data. This fitting can be expressed using two 

types of variables, coordination topologies and 

anchor variability. In the study of biological 

coordination and complex systems more general-

ly, these two variables correspond respectively to 

the so-called essential and non-essential va-

riables describing the behavior of complex sys-

tems (Kugler, Kelso, & Turvey, 1980: p. 13).  

Essential variables specify the qualitative form 

of the system under study. For us, this corres-

ponds to the syllabic parse of the phonological 

string. The fundamental hypothesis entailed in 

positing an abstract phonological organization 

isomorphic to syllable structure is that a syllable 

parse is a macroscopic organization uniform 

across a variegated set of segmental identities, 

lexical statistics and rate conditions, e.g. ‘plea’, 

‘tree’, ‘glee’ are single syllables independent of 

speech rate, frequency or phonotactic probability 

(see Catford 1977: p. 13 on ‘phonological 

form’). 

All of the above factors, however, have left 

imprints on the articulatory patterns registered in 

the experimental data. Crucially, we do not know 

and it may not be possible to predict for any giv-

en stimulus how each such factor or combination 
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of factors has affected the intervals quantified. 

Taken together, then, these and other yet un-

known factors have introduced noise in the inter-

vals that will be measured. Therefore, in formu-

lating the modeling problem of diagnosing sylla-

ble structure in experimental data, we let varia-

bility be one of the non-essential variables mani-

pulated in the fitting process. The anchor offers a 

convenient location for introducing this variabili-

ty into the intervals. In the discussion that fol-

lows, the non-essential variable of anchor index 

will be used to refer to the amount of variability 

introduced into the intervals through the anchor. 

3 Syllable parse evaluation 

Our models allow syllabic parses of the same 

string to be compared directly and evaluated 

quantitatively by determining which parse results 

in a better fit to the data. 

As an index of interval stability, we employ 

the relative standard deviation of the three inter-

vals shown in Figure 1, calculated across sets of 

words with one, two, and sometimes three initial 

consonants. Relative standard deviation, hence-

forth RSD, is calculated by dividing the standard 

deviation of an interval by its mean duration. 

Substantive reasons for using RSD as a depen-

dent variable and not the standard deviation or 

mean duration of the intervals are described, re-

spectively, in Shaw et al. (2009: p. 203) and 

Shaw (2010: p. 111-112). 

Model performance was evaluated on the basis 

of two test statistics: the R2
 statistic and the F 

statistic. The R2
 statistic provides a measure of 

goodness of fit capable of detecting gradient im-

provement (or degradation) in model perfor-

mance as a function of parameter values. The F 

statistic, on the other hand, is used to evaluate 

model performance in the following way. Hits or 

misses for each pairing of simulated RSDs and 

data RSDs will be determined based upon p val-

ues generated from the F statistic. The criterion 

of p < .01 will be interpreted as successful rejec-

tion of the null hypothesis (that the RSD of all 

intervals is equal) and constitute a hit while fail-

ure to reject the null hypothesis constitutes a 

miss. This method of interpreting the F statistic 

provides a direct way to evaluate model perfor-

mance for each run of the simulation. Across 

multiple runs of the simulation, the ratio of hits 

to total runs (hits + misses) provides a hit rate 

which summarizes the performance of a syllable 

parse in matching the experimental data. 

This method of model evaluation has a con-

ceptual antecedent in other work in probabilistic 

grammar. The hit rate as described above plays a 

similar role in model evaluation as the confi-

dence scores employed in Albright and Hayes 

(2003). The probabilistic rules of English past 

tense formation developed in that paper are asso-

ciated with a reliability index. Albright and 

Hayes (2003) refer to this as a raw confidence 

score. The raw confidence score of a rule is the 

likelihood that the rule applies when its envi-

ronment is met. The score is the ratio of the 

number of times that a particular rule applies, 

hits, by the number of times in which the envi-

ronment for the rule is present in the data, the 

rule’s scope. For example, the rule for the Eng-

lish past tense [ɪ] à [ʌ]/ {l,r}___ŋ correctly de-

rives forms such as sprung from spring and flung 
from fling, but makes the wrong prediction, 

brung and not brought, for bring. Of the 4253 

verbs employed in the Albright and Hayes 

(2003) learning set, the environment of the 

spring-sprung rule occurs 9 times and the rule 

applies correctly in 6 of those cases yielding a 

raw confidence score of .667. In contrast, the 

most general rule for the English past tense Æ à 

d / X ____ has a scope identical to the size of the 

data set, 4253, and applies in 4034 cases yielding 

a raw confidence score of .949. In the case at 

hand, that of syllable structure, the hit rate pro-

posed above plays a similar role to that of the 

confidence score. It provides a simple statistic 

summarizing the fit of a syllable parse to data. 

The value of the non-essential variable (anc-

hor index) that maximizes the R2
 statistic is also 

informative in evaluating syllable structure. 

When the syllable parse is correct, then large 

amounts of noise added to the intervals may be 

harmful, pushing the model output away from 

patterns dictated by the essential variable. On the 

other hand, when the syllable parse is wrong, 

then increases in noise may improve model per-

formance by pushing the intervals in the direc-

tion of the correct syllable parse on some trials. 

Since noise is inserted into the intervals through 

the anchor, comparing the anchor indices that 

maximize R2
 may be informative in evaluating 

syllable parses. A lower anchor index indicates a 

better-fitting syllable parse. 

The F and R2
 statistics used to provide quan-

titative evaluation of syllabic structure as de-

scribed above are obtained by plotting RSDs 

measured in the data (x-axis) against correspond-

ing RSDs simulated by the model (y-axis), and 

57



fitting a regression line to these coordinates us-

ing the least squares method. A representative 

plot is shown in Figure 3. The x-axis shows the 

RSD of the three intervals of interest for the bul-
ha~sbulha~ksbulha triad as reported in Shaw et 

al. (2009). These are plotted against RSDs simu-

lated by the model given a simplex onset parse 

and different levels of anchor variability. For 

simplicity in presentation, just four of the fifteen 

anchors simulated are shown in the figure. The 

standard deviation of these representative anc-

hors is as follows: anchor 1 = 0 ms, anchor 7 = 

30 ms, anchor 11 = 50 ms, and anchor 14 = 65 

ms.  

Figure 3 shows that R
2
 is highest when the 

simplex onset parse is paired with anchor 7. At 

this level of anchor variability, the simplex onset 

parse provides a perfect fit to the data. At both 

lower (anchor 1) and higher (anchor 11) levels of 

anchor variability, the fit to the data is degraded. 

 

 
Figure 3. Fit between model and data. The RSD 

of three intervals in the data (x-axis) are plotted 

against the RSD of simulated intervals (y-axis) at 

different levels of anchor variability (anchor 1, 

anchor 7, anchor 11, anchor 14). 

 

As illustrated in Figure 3, model performance 

is assessed by calculating the regression line on 

the basis of all three measured intervals at once. 

In doing so, the regression line captures the rela-

tionship between different measured intervals, or 

the pattern of interval stability. Since it is not the 

absolute value of the RSD of an interval but ra-

ther the relations between the RSDs of different 

intervals that is of theoretical interest, this is an 

important aspect of the fitting procedure.  

For simulations reported below, the phonetic 

parameters discussed around Figure 2 are based 

on typical values for the languages under consid-

eration. For American English, the values of 

these parameters used in the simulations were: kp
 

= 45 ms; k
ipi

 = 0 ms, and V = 230 ms. The error 

term, e, associated with each consonantal land-

mark has a standard deviation of 14 ms. For Mo-

roccan Arabic, the parameter values were:  kp
 = 

42 ms; kipi
 = 66 ms, V = 196 ms. The error term 

was set to 20 ms. The results below are based on 

1000 runs of the simulation for each word set. 

4 Results 

The simpex and complex onset parses were eva-

luated against three corpora using the procedure 

described above. The first two corpora are re-

ported in Browman and Goldstein (1988) and 

Shaw et al. (2009) and provide relevant data on 

American English and Moroccan Arabic, respec-

tively. Each of these studies reports articulatory 

data on just one speaker. The third corpus is a 

subset of the Wisconsin X-ray Microbeam 

Speech Production Database (Westbury, 1994). 

The sample analyzed here contains data from 

thirty-three speakers of American English. 

4.1 American English (single speaker) 

Our first American English data set draws from 

work of Browman and Goldstein (1988) which 

provides measurements of the stability of three 

relevant temporal intervals, left edge to anchor, 

right edge to anchor, and center to anchor, calcu-

lated over the following word set: [pɔt], [sɔt], 

[lɔt], [spɔt], [splɔt], [plɔt]. Interval stability was 

reported in terms of the standard deviation of 

each interval calculated across the word set. 

In order to make these results directly compa-

rable to those for Moroccan Arabic to be dis-

cussed in the next section, the relative standard 

deviation (RSD) of the English productions was 

calculated by dividing the standard deviation of 

each interval by the mean of that interval. Al-

though Browman and Goldstein (1988) do not 

report the mean duration of the intervals, they 

provide a figure for each word and a scale (1 cm 

= 135 ms) for the figures allowing the relevant 

intervals to be measured. For each word, the du-

ration of the three intervals of interest was meas-

ured from the figure and the standard deviation 

of the intervals was calculated across words. The 

resulting RSD values are shown in Table 1.  

The RSDs from the data were compared to 

values output from model simulations based on a 

simplex onset parse, e.g., [sp.lɔt]~[p.lɔt]~[lɔt], 
and a complex onset parse, e.g., 

[splɔt]~[plɔt]~[lɔt], of the target strings. One run 

of the simulation generates ten repetitions of 
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each of three word types, i.e., words beginning 

with one, two and three initial consonants. These 

words are generated based on a value for the es-

sential variable (syllable structure) and a range of 

values of the non-essential variable (anchor in-

dex).  

 

pot~sot~spot 
lot~plot~splot 

Interval statistics 

LE-A CC-A RE-A 

mean 267 197 146 

SD 37.7 15.8 33.6 

RSD 14.0% 8.0% 23.0% 

 

Table 1: The mean, standard deviation, and rela-

tive standard deviation of three intervals, left 

edge to anchor (LE-A), center to anchor (CC-A), 

right edge to anchor (RE-A), calculated across 

productions of pot, sot, spot, lot, plot, and splot 

by one speaker of American English. 

 

The hit rate for the complex onset parse was 

95.5% compared to just 57.7% for the simplex 

onset parse. This indicates that the complex onset 

parse provides a better fit to this data than the 

simplex onset parse. Moreover, the anchor index 

that maximizes R2
 for the complex onset parse is 

lower (anchor 3) than for the simplex parse (anc-

hor 12). This further indicates that the complex 

onset parse outperforms the simplex onset parse 

on this data.  

4.2 Moroccan Arabic (single speaker) 

The results above indicate that the complex onset 

parse provides a better fit to the English data 

than the simplex onset parse. This section eva-

luates Moroccan Arabic data against these same 

syllabic parses. The data come from Shaw et al. 

(2009) which reports the RSD of the intervals of 

interest for seven word sets containing dyads or 

triads differing only in the number of initial con-

sonants, e.g. bulha~sbulha~ksbulha. The word 

sets and the reported RSD of the intervals are 

summarized in Table 2. 

For each word set, the model simulated cor-

responding word types. That is, for triads, e.g., 

bulha~sbulha~ksbulha, the model simulated 10 

repetitions of words beginning with one, two, 

and three initial consonants, and, for dyads, e.g. 

tab~ktab, 10 repetitions of words beginning with 

one and two consonants. The model simulated 

word sets under each of the competing syllabic 

parses and evaluated the fit of each syllabic parse 

to the experimental data. 

The resulting hit rates are summarized in Ta-

ble 3. For each of the target word sets, the simp-

lex onset parse shows a clear advantage in fitting 

the data. Hit rates for the simplex parse are above 

75.4% in all cases and the hit rate for the com-

plex onset parse never rises above 00.0%. More-

over, the anchor indices that maximize R2 for the 

simplex onset parse are low, ranging from anchor 

1 to anchor 7. For the complex onset parse, the 

highest variability anchor (anchor 15) provides 

the best fit to the data in all cases. 

 

Word set Interval RSD 

LE-A CC-A RE-A 

bulha~sbulha~ksbulha 24.6% 15.9% 11.2% 

dulha~kdulha~bkdulha 22.2% 17.7% 10.7% 

bal~dbal 20.5 9.7% 5.1% 

tab~ktab 6.8% 5.7% 5.5% 

bati~sbati 20.9% 9.1% 5.8% 

bula~sbula 22.0% 11.1% 7.3% 

lih~glih 18.5% 10.7% 2.7% 

 

Table 2. Relative standard deviation of three in-

tervals, left edge to anchor (LE-A), center to 

anchor (CC-A), right edge to anchor (RE-A) cal-

culated across productions of word sets by one 

native speaker of Moroccan Arabic. 

 

Word set Hit rate 

Simplex Complex 

bulha~sbulha~ksbulha 99.2% 00.0% 

 
dulha~kdulha~bkdulha 

 
bal~dbal 
 

tab~ktab 
 

bati~sbati 
 
bula~sbula 

 

(7) 

99.9% 

(1) 

92.4% 

(3) 

75.4% 

(4) 

84.7% 

(4) 

88.5% 

(4) 

(15) 

00.0% 

(15) 

00.0% 

(15) 

00.0% 

(15) 

00.0% 

(15) 

00.0% 

(15) 

lih~glih 98.3.0% 

(1) 

00.0% 

(15) 

 

Table 3. Hit rate for each syllable parse when 

evaluated against various Moroccan Arabic word 

sets. The anchor index that maximized R2
 for 

each syllable parse is given in parenthesis. 

 

In sum, the simplex onset parse outperforms 

the complex onset parse on Moroccan Arabic 

data. The opposite result was obtained for Amer-

ican English. For English, it was the complex 

onset parse that achieved a higher hit rate with a 

lower anchor index.  
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Each of the data sets evaluated thus far were 

contributed by a single speaker. In these data the 

patterns of interval stability clearly reveal tem-

poral organization in terms of syllables. To eva-

luate whether the model continues to distinguish 

syllabic parses when phonetic heuristics break 

down, we now turn to a corpus of less controlled 

stimuli from multiple speakers with a high de-

gree of inter-speaker variability. 

4.3 American English (multi-speaker data) 

Under some conditions, stability-based phonetic 

heuristics break down as reliable indicators of 

syllable structure. This is known to occur, for 

example, when the level of overall variability in 

the intervals is high (Shaw et al., 2009).  

In controlled experimental studies, as can be 

seen in Figure 1, neither of the two syllabic 

parses, simplex or complex, has been observed to 

show the left edge to anchor interval as more 

stable than the center to anchor and right edge to 

anchor intervals. At high levels of variability, 

however, the probabilistic model developed in 

our work can produce patterns whereby the left 

edge to anchor interval is more stable than the 

other two intervals. This occurs regardless of the 

syllable parse when the anchor index is high (e.g. 

15), which represents a high degree of variability 

in the intervals (the reason why high interval va-

riability results in this pattern is explained in 

Shaw et al. 2009). Under these conditions of 

high variability, both values of the essential vari-

able (simplex and complex onset parses) gener-

ate a pattern whereby the left edge to anchor in-

terval has a lower RSD than the center to anchor 

interval and the right edge to anchor interval. 

Thus, at this level of variability, stability-based 

phonetic heuristics, i.e., center to anchor stability 

implies a complex onset parse, are rendered inef-

fective in distinguishing syllabic parses. 

When variability leads competing syllable 

parses to the same predictions in terms of inequa-

lities (both models show left edge to anchor sta-

bility), is our modeling paradigm still capable of 

distinguishing syllabic parses? To address this 

question, we need a corpus with the requisite 

level of variability.  

The Wisconsin X-ray Microbeam Speech Pro-

duction Database provides  recordings of a varie-

ty of tasks including production of sentences, 

passages and word lists from fifty-seven speakers 

of American English (Westbury, 1994). Al-

though not all speakers completed all tasks and 

some tokens have missing data which make them 

unusable for this analysis, it remains an archive 

of articulatory data that is extremely impressive 

in size. Within this archive there are various 

near-minimal pairs that can be used to evaluate 

syllable structure using the methods employed 

above. Here we report on thirty-three speakers’ 

productions of the dyad row~grows. Calculating 

interval stability across multiple speaker samples 

of this word dyad is one way to introduce varia-

bility into the intervals and, by doing so, provide 

an interesting test case for our proposed methods.  

The target word row was produced in the sen-

tence Things in a row provide a sense of order. 

This sentence is one of several unrelated sen-

tences included in Task #60 within the X-ray 

microbeam corpus. The word grows was pro-

duced in the sentence That noise problem grows 
more annoying each day, which is included in 

Task #56. Although these target words were pro-

duced in different syntactic frames and occur in 

different phrasal positions, we assume, following 

standard phonological assumptions, that all in-

stances of /gr/ and /r/ were syllabified identically, 

namely, that they are parsed into complex sylla-

ble onsets. To test this assumption, we ask 

whether the models converge on the same result. 

In all respects except for the determination of 

the anchor point, the quantification of the X-ray 

microbeam data followed the same procedure 

described for Electromagnetic Articulometry da-

ta in Shaw et al. (2009). To determine the anchor 

point, we followed past work on English (Brow-

man and Goldstein 1988, Honorof and Browman 

1995) by using an acoustic landmark, the offset 

of voicing in the vowel, as the anchor point right-

delimiting the intervals of interest. This was done 

for the following reason. The target words in this 

case are not matched at the right edge of the syl-

lable (grows ends in s while row ends in a vowel) 

and this makes it difficult to determine a com-

mon articulatory anchor across words. The arti-

culatory landmarks that left-delimit the intervals 

of interest were the same as for the English and 

Arabic data discussed above.  

The duration of the three intervals, left edge to 

anchor, center to anchor and right edge to anc-

hor, were measured for one repetition of each 

word, row and grows, for thirty-three speakers. 

The variation across speakers in the duration of 

these intervals was substantial. As an example, 

the left edge to anchor interval of row ranges 

from 193 ms (Subject 44) to 518 ms (Subject 

53). The mean, standard deviation and relative 

standard deviation of the intervals calculated 

across row and grows are provided in Table 4.  
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 In this data the RSD of the left edge to anchor 

interval is lower than the RSD of both the center 

to anchor and right edge to anchor intervals. 

From the perspective of phonetic heuristics of 

syllable structure, this fact by itself is not par-

ticularly revealing. Both syllabic parses predict-

this should be the case at very high levels of va-

riability. This data set therefore provides a chal-

lenge to phonetic heuristics stated in the form of 

directional inequalities and an appropriate test of 

the quantitative methods developed here. 

 

row~grows 
Interval statistics 

LE-A CC-A RE-A 

mean 302 269 233 

SD 55.3 49.9 52.3 

RSD 18.3% 18.6% 22.5% 

 

Table 4. Mean, standard deviation, and relative 

standard deviation of three intervals, left edge to 

anchor (LE-A), center to anchor (CC-A), right 

edge to anchor (RE-A), calculated across produc-

tions of row and grows by thirty-three speakers 

of American English 

 

Simulations with the simplex and complex on-

set models generated RSD values that were fitted 

to the RSD values of the three intervals of inter-

est in the English row~grows data. On each run, 

the model simulated 10 repetitions of words be-

ginning with one and two consonants. The same 

values of the constants used for the other English 

simulations were employed here as well, and the 

same range of anchor variability was produced 

for each parse. Anchor 1 has a standard deviation 

of zero and the standard deviation of each subse-

quent anchor increases by 5 ms so that anchor 15 

has a standard deviation of 70 ms. Table 5 re-

ports the results of 1000 runs of the simulation.  

 

Word set Hit rate 

Simplex Complex 

row~grows 91.8% 99.0% 

 (11) (6) 

 

Table 5: Hit rate for each syllable parse when 

evaluated against the English dyad row~grows. 

The anchor index that maximized R2
 for each 

syllable parse is given in parenthesis. 

 

The results of the model fitting reveal that the 

complex onset parse provides a superior fit to the 

data. The complex onset parse achieves a higher 

hit rate (99.0% vs. 91.8%) with a less variable 

anchor (anchor 6 vs. anchor 11) than the simplex 

onset parse. This result demonstrates that the 

model can distinguish syllabic parses even in 

noisy data contributed by multiple speakers. 

Since the target words, row and grows, were 

produced in different environments, there are 

potentially a number of interacting factors in-

fluencing the pattern of temporal stability in the 

data. A model incorporating, for example, pro-

sodic structure above the level of the syllable 

may identify interactions between syllable and 

higher levels of prosodic structure. We plan to 

explore models of this sort in future work. It re-

mains an important result of the current model 

that competing parses of a given string can be 

distinguished in the data even at levels of varia-

bility that obscure phonetic heuristics for syllable 

structure. 

5 Conclusion 

There is a growing body of evidence indicating 

that the temporal dimension provides a rich 

source of information revealing phonological 

structure. In the domain syllables, the relation 

between temporal patterns in experimental data 

and qualitative aspects of phonological structure 

has often taken the form of statements expressing 

inequalities, e.g., a complex onset parse implies 

that the center to anchor interval is more stable 
than the right/left edge to anchor intervals. Pho-

netic heuristics of this sort are valid only under 

certain conditions. The models developed in this 

paper generate finer-grained quantitative predic-

tions of syllabic structure based on a probabilis-

tic interpretation of temporal organization. Our 

models make predictions not just about stability 

inequalities but also about the permissible degree 

to which interval stabilities may differ from one 

another under a given syllable parse. Crucially, 

these predictions allow for evaluation of compet-

ing syllable parses even when statements in the 

form of inequalities do not.  

As the phonological literature is replete with 

debates regarding the syllabification of conso-

nant clusters, the tools developed here have im-

mediate application. They allow rigorous evalua-

tion of syllable structure on the basis of experi-

mental data. 
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Abstract

Unsupervised algorithms for the induction
of linguistic knowledge should at best re-
quire as few basic assumptions as pos-
sible and at the same time in principle
yield good results for any language. How-
ever, most of the time such algorithms are
only tested on a few (closely related) lan-
guages. In this paper, an approach is pre-
sented that takes into account typological
knowledge in order to induce syllabic di-
visions in a fully automatic manner based
on reasonably-sized written texts. Our ap-
proach is able to account for syllable struc-
tures of languages where other approaches
would fail, thereby raising the question
whether computational methods can really
be claimed to be language-universal when
they are not tested on the variety of struc-
tures that are found in the languages of the
world.

1 Introduction

Many approaches developed in the field of com-
putational linguistics are only tested and optimized
for one language (mostly English) or a small set of
closely related languages, but at the same time are
often claimed to be applicable to any natural lan-
guage, cf. Bender (2009). Our aim is to stress the
importance of having a more varied sample of lan-
guages that include the different types that can be
found in the languages of the world in order to do
justice to the range of variation in linguistic struc-
tures across languages. Furthermore, we want to
point to the usefulness of using typological knowl-
edge for a language-universal approach.
In this paper, we present an unsupervised,

language-independent syllabification method
based on raw unannotated texts in a phonemic
transcription. The methods and procedures

presented in this work rest upon insights from
typological work and do not need any additional
language-dependent information. The main pur-
pose of this paper is not to present an improvement
on already established statistical approaches to
the problem of syllabification of an individual
language, but to introduce data from languages
that might constitute a problem for many syl-
labification methods that have been optimized
on languages like English and therefore make it
necessary to integrate an additional component
that is able to handle such cases.
The remainder of the paper is organized as fol-

lows. First, it is argued in Section 2 that ortho-
graphic texts (in any alphabetic script) can be used
for the induction of phonological patterns if the
spelling system is reasonably close to a phonemic
transcription. The syllabification process can be
divided into two steps. In Section 3, we present
and evaluate an algorithm for an unsupervised
classification of all symbols in the input texts into
vowels and consonants. Based on this classifica-
tion, a syllabification procedure is discussed that
makes use of distributional information of clus-
ters in order to break up vowel and consonant se-
quences into syllables (Section 4). Finally, we
conclude with a discussion of the advantages and
disadvantages of the present approach and its im-
plications for future research.

2 Learning phonological patterns on the
basis of written texts?

Most studies that are based on original texts are
concerned with research questions that do not
make use of phonological knowledge that has
been extracted from the texts. The reason for
this is obvious. The orthographies of many well-
studied modern languages contain many idiosyn-
cratic rules and exceptions that would make it dif-
ficult to use them for dealing with phonological
aspects of the languages under consideration. On
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the other hand, in order to be able to use distribu-
tional information for phonological problems there
are not enough reasonably-sized phonetically tran-
scribed corpora, especially for a wider range of
languages.
However, many spelling systems do not suffer

from these shortcomings and thus can be used for
these purposes. When looking at languages whose
orthographies have been conceived or standard-
ized only recently it can be noted thatmany of them
are pretty close to a phonemic transcription. Pro-
vided the size of the corpus is big enough, smaller
inconsistencies in the spelling system can be con-
sidered to be noise in the data.
Phonemic orthographies as they are usually de-

vised for a new spelling system also show an ad-
vantage that phonetic transcriptions lack, namely
that they already group together those symbols
that represent the same phoneme in the language.1
Moreover, obligatory phonological processes such
as final devoicing are mostly not represented in the
written form (Turkish being a notable exception),
thereby providing a sort of underlying representa-
tion that is useful to induce which sequences can
be grouped together to morphemes.
For these reasons written texts can in our view

also be used for the induction of phonological
knowledge for languages with phonemic spelling
systems, even though their results have to be ana-
lyzed with great care.

3 Sukhotin’s algorithm

Sukhotin’s algorithm (Sukhotin, 1962, 1973) is a
totally unsupervised method to discriminate vow-
els from consonants on the basis of a phonemic
transcription. The approach relies on two fun-
damental assumptions that are grounded on typo-
logical insights. First, vowels and consonants in
words tend to alternate rather than being grouped
together. Second, the most frequent symbol in the
corpus is a vowel. The latter assumption is used
to initialize the classification step by claiming that
the most frequent symbol is the first member of
the vowel class, with the rest of the symbols ini-
tially all classified as consonants. With the help of
the first assumption the other vowels are then clas-
sified by iteratively checking which symbol is less

1In the remainder of this paper we will use the term ’sym-
bol’ as a more neutral expression for all letters in the written
texts in order not to be explicit whether the spelling system
really lives up to the goal of representing phonemes by let-
ters.

frequently adjacent to the already detected vowels.

3.1 Typological basis
It has been noticed in the typological literature at
least since Jakobson and Halle (1956) that there is
a tendency in the languages of the world for hav-
ing CV as the basic syllable structure. Of course,
languages differ as to the number and types of syl-
lables; there are languages that allow a huge vari-
ety of consonant (or vowel) clusters whereas others
are stricter in their phonotactic possibilities. How-
ever, all languages seem to obey the universal law
that CV is more basic than other syllable types and
that ”CV is the only universal model of the sylla-
ble.” Evidence for this comes from different ar-
eas of linguistics, including the observation that
no matter how small the number of syllable types
in a language is, it always includes CV. This is
also reflected in the Onset Maximization Princi-
ple (OMP), which states that an intervocalic con-
sonant is attributed to the following syllable and is
assumed to be a language-universal principle for
syllabification.
We are not aware of any cross-linguistic study

that investigated the token frequency of phonemes
in larger samples of texts. Hence, the second as-
sumption that the most frequent symbol in a text
is always a vowel cannot be backed up by typo-
logical knowledge. However, this claim can be
supported indirectly. In his study on consonant-
vowel ratios in 563 languages, Maddieson (2008)
states that the ratio ranges between 1.11 and 29.
The lowest value has been calculated for the isolate
language Andoke, which has 10 consonants and
9 vowels. The mean value is 4.25, though. Pro-
vided that it is always the case that languages have
more consonants than vowel types, it can be argued
that the fewer vowels have higher token frequen-
cies in order to be able to contribute their share to
the make-up of syllables.2 Yet this generalization
is untested and could be wrong for some languages
(or rather corpora of those languages). In our sam-
ple of texts in different languages, nevertheless the
most frequent symbol is always a vowel.

3.2 Description of the algorithm
Sukhotin’s algorithm is computationally simple
and can even be illustrated with a small toy cor-

2In the French corpus that Goldsmith and Xanthos (2009)
used in their studies, the most frequent phoneme turned out to
be a consonant. However, the rest of the classification was not
affected and all remaining phonemes were labelled correctly.
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pus.3 Given a corpus with the inventory of n sym-
bols S := {s1, . . . , sn} we construct an n×nma-
trix M where the rows represent the first and the
columns the second symbol in a bigram sequence
and which indicates the number of times the se-
quences occur in the corpus.

M =

 m11 . . . m1n

. . . . . . . . .
mn1 . . . mnn


The main diagonal, i.e., the self-succession of

symbols, is ignored by setting all its values to
zero. For instance, given a sample corpus C =
{saat, salat, tal, last, stall, lese, seele} we ob-
tain the following 5 × 5 matrix (for ease of un-
derstanding the symbols have been put in front of
the cells of the matrix and the row sums in the last
column):

M =



s a t l e Sum
s 0 3 2 0 3 8
a 3 0 3 4 0 10
t 2 3 0 0 2 7
l 0 4 0 0 3 7
e 3 0 2 3 0 8


Sukhotin’s algorithm initially considers all sym-

bols to be consonants before it enters an interative
phase. In each cycle of the phase, the symbol with
the highest row sum greater than zero is detected
and classified as a vowel. The row sum for any
symbol sa is calculated by adding up all occur-
rences of the symbol sa as a first or second mem-
ber in a sequence

∑n
i=1 mai. After a new vowel

has been detected, its row sum is set to zero and
all other row sums are updated by subtracting from
the sum of the row of each remaining symbol twice
the number of times it occurs next to the new-found
vowel. This process is repeated until nomore sym-
bols with positive row sums are left. In our exam-
ple, the vectors of row sums (RSum) for all sym-
bols in the individual steps of the iteration phase
look as follows:

RSum1 =
(

s a t l e
8 10 7 7 8

)

RSum2 =
(

s a t l e
2 0 1 −1 8

)
3More detailed descriptions can be found in Guy (1991)

and Goldsmith and Xanthos (2009).

RSum3 =
(

s a t l e
−4 0 −3 −7 0

)
The rationale behind this algorithm with respect

to its basic assumptions is as follows. The fact that
initially the symbol with the highest sum is consid-
ered to be a vowel reflects the idea that the most
frequent symbol in the corpus has to be a vowel.
What the row sums after each step actually con-
tain is the difference between the number of times
a symbol is found next to a consonant and the num-
ber of times it is found next to a vowel. When-
ever a new vowel has been detected all occurrences
of this vowel have to be subtracted from the other
symbols because this symbol is no longer consid-
ered to be a consonant.

3.3 Evaluation

To the best of our knowledge, the algorithm has
never been tested on a larger cross-linguistic sam-
ple. There are results for a number of languages
in Sukhotin’s original papers, in Sassoon (1992)
and in Goldsmith and Xanthos (2009), yet almost
all languages in those samples belong to the Indo-
European family (except for Georgian, Hungar-
ian and Finnish) or do not fulfill the criterion of
a phonemic transcription (Hebrew). It therefore
still needs to be tested on a more cross-linguistic
sample of languages. In particular, it is an inter-
esting question to see if the algorithm works even
for those languages that are notorious for having
many consonant clusters. On the basis of his sam-
ple of five languages, Sassoon (1992) comes to
the conclusion that it works very well on those
languages that have only few consonant clusters
but has problems when more complex clusters are
involved. However, he also notices that this ef-
fect disappears with larger text samples. Table 1
provides an evaluation of Sukhotin’s algorithm on
the basis of Bible texts (NT) in our sample of 39
languages. The size of the corpora in Sassoon’s
sample range from 1641 to 3781 characters while
the Bible texts contain more than 100,000 char-
acters (e.g., English has 716,301 characters). On
average, Sukhotin’s algorithm classifies 95.66%
of the symbols correctly. However, this percent-
age also includes those languages which do not
fulfill the criterion of having a suitable phonemic
writing system (e.g., Russian, English, German,
French). When looking only at those languages
whose spelling systems are close to a phonemic
transcription (or where the digraphs have been sub-
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stituted by single symbols), the results are even
better.

Misclassified symbols are either very infrequent
and happen to occur next to symbols of the same
class or are part of one of the digraphs used in the
spelling system of the language. In the Maltese
case, the symbol î is classified as a consonant be-
cause it only occurs twice in the corpus in the word
eloî where it stands next to a symbol that is clearly
a vowel. For some languages, minor modifications
to the original texts have been made in order to re-
place the most frequent digraphs. In Swahili, for
instance, with the official orthography the symbol
c is classified as a vowel because it only occurs
in the digraph ch. After the digraph has been re-
placed by a single symbol, the classification is cor-
rect in all cases. Sometimes a symbol (e.g., h in
Warlpiri) is misclassified because it does not occur
in the writing system of the language but is part of
a digraph in foreign words (mostly proper names
of people or locations in the Bible texts). Another
problem of the approach is with orthographies that
use the same symbol for both vowels and conso-
nants. Since the classification is global, symbols
like English y, which is a consonant in yoghurt
and a vowel in lady, are always treated as either a
vowel or a consonant for the whole language inde-
pendent of the context where they occur. There-
fore symbols in the input text should always be
able to be classified to one or the other category.

As the discussion of misclassified symbols
shows, the main errors in the results are not due to
the algorithm itself, but a problem of the spelling
systems of the texts at hand. Our results confirm
the findings of Sassoon (1992) that the algorithm
is sensitive to the corpus size and the frequency of
occurrence of individual symbols. Larger corpora,
such as Bible texts, yield much better results for
these languages. Even those languages with many
and very complex consonant clusters (e.g., Geor-
gian, Croatian and Czech) get an almost perfect
classification. It is remarkable that the overall dis-
tribution of the symbols makes up for those cases
where consonants frequently occur in clusters. Ex-
periments with smaller corpus sizes also revealed
that one of the first symbols that get wrongly clas-
sified is the sibilant s. This might be another indi-
cator for the exceptional status of sibilants with re-
spect to syllabification and their occurrence in con-
sonant sequences where they can violate the sonor-
ity principle (e.g., in the sequence str in words like

string the consonant s is to the left of the consonant
t although higher in sonority).

4 Unsupervised syllabification

Based the classification of input symbols into vow-
els and consonants, the syllabification procedure
can then be applied. Knowledge of syllable struc-
ture is not only relevant for a better understand-
ing of the procedures and representations that are
involved in both computer and human language
learning but also interesting from an engineering
standpoint, e.g., for the correct pronunciation of
unknown words in text-to-speech systems or as an
intermediate step for morphology induction.
Several methods have been proposed in the lit-

erature for an unsupervised language-independent
syllabification (see Vogel, 1977 for an overview
and Goldsmith and Larson, 1990 for an imple-
mentation of a more recent approach based on
the sonority hierarchy). Some methods that have
been suggested in the literature (going back to
Herodotus, who observed this for Ancient Greek;
cf. Kuryłowicz, 1948) rely on the observation
that word-medial tautosyllabic consonant clusters
mostly constitute a subset of word-peripheral clus-
ters. Intervocalic consonant clusters can therefore
be divided up into a word-final and word-initial
cluster. Theoretically, two types of problems can
be encountered. First, those where more than one
division is possible and second, those in which no
division is possible.
Several approaches have been suggested to re-

solve the first problem, i.e., word-medial conso-
nant sequences where there are several possible di-
visions based on the occurrence of word-initial and
word-final clusters. O’Connor and Trim (1953)
and Arnold (1956) suggest that in cases of ambigu-
ous word-medial clusters the preference for one
syllable division over another can be determined
by the frequency of occurrence of different types of
word-initial and word-final clusters. For this pur-
pose, they determine the frequency of occurrence
of word-initial and word-final CV, VC, etc. sylla-
ble patterns. Based on these frequencies they cal-
culate the probabilities of dividing a word-medial
sequence by summing up the values established for
the different word-peripheral syllable types. The
candidate syllabification with the highest sum is
then chosen as the optimal division.
The approach taken here is a slight modification

of the proposal in O’Connor and Trim (1953) and
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Language Vowels Consonants
Afrikaans a c* e i o u y á é ê í ò ó ô ú b d f g h j k l m n p q r s t v w x ä* ë* ï* ü*
Albanian a e g* h* i o u y ç* é ë b c d f j k l m n p q r s t v x z
Armenian (transl.) a e e’ y’ i o ch* o’ b g d z t’ jh l x c’ k h d’ gh tw m y n sh p j r’

s v t r c w p’ q f
Basque a e i o u v* á æ é í ó ö b c d f g h k l m n p q r s t x y z à* ä* ç è* ü*
Breton a c* e i o u ê b d f g h j k l m n p r s t v w y z ñ ù* ü*
Chamorro a e i o u á â é í ó ú b c d f g h j l m n p q r s t v x y ã* ñ ü*
Croatian a e i o u b c d f g h j k l m n p r s t v z ä* ð ó* ć č đ š ž
Czech a e i o u y á é í ó ú ý ě ů b c d f g h j k l m n p q r s t v x z č ď ň ř š ť ž
Danish a e i o u y å æ ø b c d f g h j k l m n p r s t v x z
Dutch a c* e i o u y b d f g h j k l m n p q r s t v w x z
English a e g* i o t* u b c d f h j k l m n p q r s v w x y z
Finnish a e i o u y ä ö b c d f g h j k l m n p q r s t v x z
French a e i o u à â è é ê î ô û b c d f g h j k l m n p q r s t v x y z ç ë* ï* ù*

ü* œ*
Georgian (transl.) a e i o u h* b g d v z t k’ l m n p’ zh r s t’ p k gh q sh ch ts

dz ts’ ch’ kh j
German a e h* i o p* u y ä ö ü b c d f g j k l m n q r s t v w x z ß
Gothic a e i o u v* x* û b d f g h j k l m n p q r s t w z ï* þ
Greek α ε η ι ο υ ω β γ δ ζ θ κ λ μ ν ξ π ρ ς σ τ φ χ ψ
Hungarian a c* e i o u y á é í ó õ ö ú û ü b d f g h j k l m n p r s t v x z
Icelandic a e i o u y á æ é í ó ö ú ý b d f g h j k l m n p r s t v x ð þ
Italian a e h* i o u à è ì ò ù b c d f g j k l m n p q r s t v z é*
Latin a e i o u y b c d f g h l m n p q r s t v x z
Maltese (rev.) a e g* i o u à â è ì í ò ù b d f h j k l m n p q r s t v w x z î* ċ ġ ħ ż
Mandarin (toneless) a e i o u ng zh ch b c d f g h j k l m n p q r s t w x y z sh
Maori (rev.) a e i o u g h k m n p r t ng w wh
Norwegian (Bokmål) a e i o u y å æ é ó ø b c d f g h j k l m n p r s t v z ë*
Potawatomi (rev.) a e i o u c d g k l m n p s t w sh y
Romanian a e i o u î ă b c d f g h j l m n p r s t v x z ş ţ
Russian а е и о у ы (ь*) э я б в г д ж з й к л м н п р с т ф х ц ч ш щ (ъ*)

(ю*)
Scots Gaelic a h* i o u b c d e* f g l m n p r s t
Spanish a e i o u á â é ê í î ó ô ù ú b c d f g h j l m n p q r s t v x y z ñ ü*
Swahili (rev.) a e i o u b d f g h j k l m n p r s t v w x y z
Swedish a e i o u y ä å é ö b c d f g h j k l m n p r s t v x
Tagalog (rev.) a e i o u ng b c d f g h j k l m n p q r s t v w x y z
Turkish a e i o u â å î ö û ü ı b c d f g h j k l m n p r s t v y z ç ğ ş
Ukrainian i а е и о у ь ю я є і ї c y б в г д ж з й к л м н п р с т ф х ц ч ш щ ґ
Uma a e g* i o u b c d f h j k l m n p r s t w y z ï*
Warlpiri (rev.) a e h* i o u c f j k l m n p q r s t v w x y z
Wolof a e i o u à é ë ó b c d f g j k l m n p q r s t w x y ñ ŋ
Xhosa a e g* i o t* u â b c d f h j k l m n p q r s v w x y z

Table 1: Results for Sukhotin’s algorithm on Bible texts in 39 languages. All symbols of the input
Bible texts for the respective languages are listed even if they are very infrequent. For those languages
marked as revised the most frequent digraphs have been replaced by a single symbol. Wrongly classified
symbols are marked with an asterisk. Languages with spelling systems which notoriously contain many
idiosyncratic rules are shaded. We decided to include them as a reference where the problems occur with
these systems.
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Arnold (1956). Instead of counting the frequency
of occurrence of syllable types, the actual sylla-
bles are counted in order to determine the best split
of word-medial consonant sequences. An example
calculation for the German word fasten ’to abstain
from food’ is given in Table 2.

a) fa st142] en [fast.en] sum: 142
b) fa s528] [216t en [fas.ten] sum: 744
c) fa [176st en [fa.sten] sum: 176

Table 2: Example calculations for the word-medial
cluster in the German word fasten.

The example calculations in Table 2 show that
the candidate syllabification in b) yields the high-
est sum and is therefore chosen as the correct syl-
labification of the word. One of the advantages
of this approach (as well as the one proposed by
O’Connor and Trim and Arnold) is that OMP fol-
lows from the fact that word-initial CV sequences
are more frequent than word-final VC sequences
and does not have to be stipulated independently.
The claim that CV is the unmarked syllable

structure for all languages of the world (andOMP a
universal principle) has been challenged by some
Australian languages that seem to behave differ-
ently with respect to syllabification of VCV se-
quences (Breen and Pensalfini, 1999). In those
languages VCV sequences are syllabified as VC.V
instead of V.CV, as OMP would predict. The
authors provide evidence from a number of pro-
cesses in these languages (reduplication, language
games) as well as historical and comparative evi-
dence that support the analysis that VC seems to be
more accurate as the basic syllable type for those
languages.4

For cases where word-medial clusters cannot be
broken up by sequences that are found at word
edges (bad clusters), we decided to go back to the
original method used by O’Connor and Trim and
Arnold and calculate the frequency of occurrence
of syllable types. However, bad clusters are not
very frequent compared to the overall data in our
experiments.
One additional problem when working with

written texts5 rather than transcribed corpora is the
4Note that this does not invalidate one of the basic assump-

tions of Sukhotin’s algorithm, since C and V still alternate
even though in the reverse order.

5Some linguists also believe that stress can lead to a vio-
lation of OMP by attracting an intervocalic consonant to the
coda of the previous stressed syllable. Since stress is usually

Dutch aa (772), oo (510), ie (440), ui (301),
ou (155), eu (110), uu (27)

German ei (1373), au (641), eu (216)
English ea (336), ou (280), io (231), oo (79)
French ai (863), ou (686), eu (397), io

(339), ui (272), au (232), oi (232)
Greek ου (1687), ει (1684), ευ (650), οι

(616), αυ (287)
Wolof aa (1027), ee (821), oo (656), ée

(181), ii (158), óo (118)

Table 3: ”Diphthongs” for a subset of the lan-
guages in the sample (in brackets the frequency of
adjacent occurrence).

fact that diphthongs are not clearly distinguished
from sequences of monophthongs. Yet this is vi-
tal for a correct syllabification procedure since the
number of syllables of the word is different de-
pending on this choice. In order to retrieve the
diphthongs of the language from the distribution
of vowel sequences in the corpus the following ap-
proach has been used.6 For each bigram vowel se-
quence the number of times the first vowel v1 is
directly followed by the second vowel v2 is com-
pared with the number of times both vowels are
separated by one consonant. If the frequency of
direct adjacency is higher than the frequency of
v1cv2 the sequence is considered to be a ”diph-
thong”; if not, the sequence is considered to be a
case of hiatus and both vowels are attributed to dif-
ferent syllables. Similar to Sukhotin’s algorithm
the present syllabification algorithm is also global
in the sense that the diphthong/monophthong dis-
tinction is always used in the same way no matter
in which environment the sequence occurs.7 Ta-
ble 3 gives a list of the diphthongs extracted from
the corpus for a number of languages in our sample
based on this method.

4.1 The problem of evaluating syllabification
methods

There are several reasons why a gold standard
for syllabification, with which the syllabification
methods are compared, is difficult to establish.

not reflected in most orthographies, we do not consider this
option here.

6We thank Bernhard Wälchli (p.c.) for drawing our atten-
tion to this idea.

7In German, for instance, the vowel sequence eu can either
be tautosyllabic and in that case constitute a diphthong as in
heute ’today’; or it can be a case of hiatus and therefore be
broken up by a syllable boundary as in Museum ’museum’.
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Duanmu (2009) states that even for well-described
languages like English linguists do not agree on the
correct syllabification of comparatively straight-
forward cases. For the English word happy, for in-
stance, four different analyses have been proposed:

[hæ.pi] Hayes (1995), Halle (1998), Guss-
mann (2002)

[hæp.i] Selkirk (1982), Hammond (1999)
[hæpi] Kahn (1976), Giegerich (1992),

Kreidler (2004)
[hæp.pi] Burzio (1994)

Table 4: Analyses of happy (cited from Duanmu,
2009). Underlined consonants are ambisyllabic.

The correct syllabification of a word can best
be established when there is some operation in the
language that takes recourse on the syllable struc-
ture of the word. In the case of the Australian
languages with no syllable onsets, Breen and Pen-
salfini (1999:6f) provide evidence from reduplica-
tion processes in Arrernte to support their analysis.
If the Arrernte syllable shape is VC(C), rather than
(C)CV, reduplication is most straightforwardly de-
scribed in terms of syllables. The attenuative pre-
fix is formed by /-elp/ preceded by the first syl-
lable of the base if VC(C) syllabification is as-
sumed. The attenuative form of the base empwaṛ
’to make’ is therefore empwelpempwaṛ.8 A simi-
lar argumentation can be put forward for languages
that show phonological operations that are based
on the structure of syllables, e.g., syllable-final de-
voicing. If a voiced obstruent is realized unvoiced,
the syllabification might suggest its position to be
in the coda.
Besides disagreement on the correct syllabifi-

cation of words, another crucial aspect of eval-
uating syllabification methods is the question of
whether the test set should consist of a random
sample of words of the language or whether there
should be any constraints on the composition of
the evaluation data. If the evaluation consists of
a huge number of monosyllabic words, the results
are much better than with polysyllabic words be-
cause no consonant clusters have to be broken up.

8As one reviewer remarked, reduplication patterns are
usually described in terms of a CV-template rather than sylla-
ble structures. However, in the case of Arrernte, a description
in terms of syllables rather than VC(C) shapes would be more
elegant and at the same time account for other operations as
well.

For the evaluation of their syllabification methods,
Goldwater and Johnson (2005) distinguish words
with any number of syllables from words with at
least two syllables. Depending on the method that
they test the differences in the percentage of cor-
rectly syllabified words range from a few to almost
30%. It is therefore easier to get better results when
applying the syllabification methods to languages
with a large number of monosyllabic words and
fewer consonant clusters, like Mandarin Chinese,
for instance.

4.2 Discussion and evaluation
One of the problems of a cross-linguistic inves-
tigation is the availability of gold standards for
evaluation. Thus, instead of providing a compara-
tive evaluation, we want to discuss the advantages
and disadvantages of the procedure with respect
to the more common sonority-based syllabifica-
tion method. We tested our method on a manually
created gold standard of 1,000 randomly selected
words in Latin. The precision is 92.50% and the re-
call 94.96% (F-Score 0.94) for each transition from
one symbol to another. Most misplaced syllable
boundaries are due to the vowel cluster io, which
has been treated as a diphthong by our method.
The most interesting aspect of our approach is

that it is able to account for those languages where
intervocalic consonants are better be analyzed as
belonging to the previous syllable, thereby violat-
ing OMP. Approaches relying on the Onset Max-
imization Principle would get all of these syllable
boundaries wrong. Breen and Pensalfini (1999)
note that Arrernte also has only VC in word-initial
position. Consequently, an approach that is based
on word-peripheral clusters can predict the lack of
word-medial onsets correctly. The importance of
word-peripheral clusters is also supported by find-
ings in Goldwater and Johnson (2005) where a bi-
gram model improves after training with Expec-
tation Maximization whereas a positional model
does not, which might be due to the fact that a bi-
gram model (unlike the positional model) can gen-
eralize whatever it learns about clusters no matter
if they occur at word edges or word-medially.
Moreover, the influence of word-peripheral

clusters on the syllabification of word-medial con-
sonant sequences is not restricted to syllable types
only, but sometimes also holds solely for individ-
ual consonants. In Chamorro, for instance, Top-
ping (1973) describes the syllabification of inter-
vocalic consonants as observing OMP. However,
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this does not apply if the consonant is the glottal
stop /’/, in which case the syllable division occurs
after the consonant, leading to the syllabification
/na’.i/ ’to give’. The interesting observation in this
respect is that the glottal stop phonologically never
occurs at the beginning of a word in Chamorro
whereas all other consonants (with the exception
of /w/) do occur word-initially,9 which leads to the
correct syllabification results with our approach.
Another advantage of the present method is that

clusters with sibilant consonants that do not con-
form to the sonority principle (see the example of
str in Section 3.3) do not have to be treated dif-
ferently. They merely follow from the fact that
these clusters are particularly frequent in word-
peripheral position. The biggest disadvantage is
the fact that the method is sensitive to frequen-
cies of individual clusters and thereby sometimes
breaks up clusters that should be tautosyllabic
(one of the few examples in our Latin corpus was
teneb.rae).

5 Conclusions and future work

A complete model of syllabification involves more
than what has been presented in this paper. The
method proposed here is restricted to single words
and does not take into account resyllabification
across word boundaries as well as some other crite-
ria thatmight influence the actual syllable structure
of words such as stress and morphological bound-
aries. Nevertheless, the discussion of our approach
shows that expanding the range of languages to
other families and areas of the world can challenge
some of the well-established findings that are used
for inferring linguistic knowledge.
The results of Sukhotin’s algorithm show that

the distinction between vowels and consonants,
which is vital for any syllabification method, can
be induced from raw texts on the basis of the sim-
ple assumptions that vowels and consonants tend
to alternate and that a vowel is the most frequent
symbol in a corpus. In contrast to previous stud-
ies of the algorithm (Sassoon, 1992), our results
do not suffer from the fact that the input text is too
short and therefore yield better results.
Based on the classifications of symbols into

vowels and consonants with Sukhotin’s algorithm
our unsupervised syllabification method deter-

9Topping notes that phonetically there is a glottal stop pre-
ceding every word-initial vowel, yet this is totally predictable
in this position and therefore not phonemic.

mines syllable boundaries on distributional infor-
mation. In contrast to other unsupervised ap-
proaches to syllabification that are grounded on at-
tributing a sonority value to each consonant and
OMP, our procedure breaks up word-medial con-
sonant sequences by considering the frequencies
of all possible word-peripheral clusters in order to
get the most probable division. We did not pro-
vide a comparative evaluation of our procedure but
only discussed the problems that can be encoun-
tered when looking at a wider variety of languages
and how they can be solved by our approach. The
question that this paper wants to raise is therefore
if it is more important to optimize a procedure on
a single language (mostly English or related Euro-
pean languages) or whether it should be capable of
dealing with the variety of structures that can be
found in the languages of the world.
For future work we want to apply the present

methods on phonetically transcribed corpora in
order to be able to compare the results for the
well-studied European languages to other meth-
ods. There are still some challenges remaining for
a universal syllabification procedure, one of them
being the detection of syllabic consonants. Ulti-
mately, we also want to integrate a sonority hier-
archy of the input symbols to combine the advan-
tages of both approaches and to create a gradual
value for syllabification that is able to account for
the difference between clear-cut syllable bound-
aries and ambisyllabic consonants or other cases
where a syllable boundary is harder to establish.
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Abstract

Historical text presents numerous chal-
lenges for contemporary natural language
processing techniques. In particular, the
absence of consistent orthographic con-
ventions in historical text presents difficul-
ties for any system requiring reference to
a static lexicon accessed by orthographic
form. In this paper, we present three
methods for associating unknown histori-
cal word forms with synchronically active
canonical cognates and evaluate their per-
formance on an information retrieval task
over a manually annotated corpus of his-
torical German verse.

1 Introduction

Historical text presents numerous challenges for
contemporary natural language processing tech-
niques. In particular, the absence of consistent or-
thographic conventions in historical text presents
difficulties for any system requiring reference to a
fixed lexicon accessed by orthographic form, such
as document indexing systems (Sokirko, 2003;
Cafarella and Cutting, 2004), part-of-speech tag-
gers (DeRose, 1988; Brill, 1992; Schmid, 1994),
simple word stemmers (Lovins, 1968; Porter,
1980), or more sophisticated morphological ana-
lyzers (Geyken and Hanneforth, 2006; Clematide,
2008).

When adopting historical text into such a sys-
tem, one of the most crucial tasks is the associa-
tion of one or moreextant equivalentswith each
word of the input text: synchronically active types
which best represent the relevant features of the
input word. Which features are considered “rel-
evant” here depends on the application in ques-
tion: for a lemmatization task only the root lex-
eme is relevant, whereas syntactic parsing may
require additional morphosyntactic features. For

current purposes, extant equivalents are to be un-
derstood ascanonical cognates, preserving both
the root(s) and morphosyntactic features of the as-
sociated historical form(s), which should suffice
(modulo major grammatical and/or lexical seman-
tic shifts) for most natural language processing
tasks.

In this paper, we present three methods for au-
tomatic discovery of extant canonical cognates
for historical German text, and evaluate their per-
formance on an information retrieval task over a
small gold-standard corpus.

2 Canonicalization Methods

In this section, we present three methods for au-
tomatic discovery of extant canonical cognates
for historical German input:phonetic conflation
(Pho), Levenshtein edit distance(Lev), and a
heuristic rewrite transducer(rw). The various
methods are presented individually below, and
characterized in terms of the linguistic resources
required for their application. Formally, each
canonicalization methodR is defined by a char-
acteristicconflation relation∼R, a binary rela-
tion on the setA∗ of all strings over the finite
grapheme alphabetA. Prototypically,∼R will be
a true equivalence relation, inducing a partitioning
of A∗ into equivalence classes or “conflation sets”
[w]R = {v ∈ A∗ : v ∼R w}.

2.1 Phonetic Conflation

If we assume despite the lack of consistent or-
thographic conventions that historical graphemic
forms were constructed to reflect phonetic forms,
and if the phonetic system of the target language
is diachronically more stable than the graphematic
system, then the phonetic form of a word should
provide a better clue to its extant cognates (if any)
than a historical graphemic form alone. Taken to-
gether, these assumptions lead to the canonicaliza-
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tion technique referred to here asphonetic confla-
tion.

In order to map graphemic forms to phonetic
forms, we may avail ourselves of previous work
in the realm of text-to-speech synthesis, a domain
in which the discovery of phonetic forms for ar-
bitrary text is an often-studied problem (Allen et
al., 1987; Dutoit, 1997), the so-called “letter-to-
sound” (LTS) conversion problem. The phonetic
conversion module used here was adapted from
the LTS rule-set distributed with the IMS German
Festival package (M̈ohler et al., 2001), and com-
piled as a finite-state transducer (Jurish, 2008).

In general, the phonetic conflation strategy
maps each (historical or extant) input wordw ∈
A∗ to a unique phonetic formpho(w) by means of
a computable functionpho : A∗ → P∗,1 conflat-
ing those strings which share a common phonetic
form:

w ∼Pho v :⇔ pho(w) = pho(v) (1)

2.2 Levenshtein Edit Distance

Although the phonetic conflation technique de-
scribed in the previous section is capable of suc-
cessfully identifying a number of common histor-
ical graphematic variation patterns such asey/ei,
œ/̈o, th/t, and tz/z, it fails to conflate historical
forms with any extant equivalent whenever the
graphematic variation leads to non-identity of the
respective phonetic forms, as determined by the
LTS rule-set employed. In particular, whenever
a historical variation would effect a pronuncia-
tion difference in synchronic forms, that varia-
tion will remain uncaptured by a phonetic con-
flation technique. Examples of such phonetically
salient variations with respect to the simplified
IMS German Festival rule-set includeguot/gut
“good”, liecht/licht “light”, tiuvel/teufel“devil”,
andwolln/wollen“want”.

In order to accommodate graphematic variation
phenomena beyond those for which strict pho-
netic identity of the variant forms obtains, we may
employ an approximate search strategy based on
the simpleLevenshtein edit distance(Levenshtein,
1966; Navarro, 2001). Formally, letLex ⊆ A∗

be the lexicon of all extant forms, and letdLev :
A∗ ×A∗ → N represent the Levenshtein distance
over grapheme strings, then define for every input
word w ∈ A∗ the “best” synchronic equivalent

1P is a finite phonetic alphabet.

bestLev(w) as the unique extant wordv ∈ Lex
with minimal edit-distance to the input word:2

bestLev(w) = arg min
v∈Lex

dLev(w, v) (2)

Ideally, the image of a wordw underbestLev will
itself be the canonical cognate sought,3 leading to
conflation of all strings which share a common im-
age underbestLev:

w ∼Lev v :⇔ bestLev(w) = bestLev(v) (3)

The functionbestLev(w) : A∗ → Lex can be
computed using a variant of the Dijkstra algorithm
(Dijkstra, 1959) even when the lexicon is infinite
(as in the case of productive nominal composition
in German) whenever the setLex can be repre-
sented by a finite-state acceptor (Mohri, 2002; Al-
lauzen and Mohri, 2009; Jurish, 2010). For current
purposes, we used the (infinite) input language
of the TAGH morphology transducer (Geyken and
Hanneforth, 2006) stripped of proper names, ab-
breviations, and foreign-language material to ap-
proximateLex.

2.3 Rewrite Transducer

While the simple edit distance conflation tech-
nique from the previous section is quite powerful
and requires for its implementation only a lexicon
of extant forms, the Levenshtein distance itself ap-
pears in many cases too coarse to function as a
reliable predictor of etymological relations, since
each edit operation (deletion, insertion, or substi-
tution) is assigned a cost independent of the char-
acters operated on and of the immediate context
in the strings under consideration. This operand-
independence of the traditional Levenshtein dis-
tance results in a number of spurious conflations
such as those given in Table 1.

In order to achieve a finer-grained and thus
more precise mapping from historical forms to ex-
tant canonical cognates while preserving some de-
gree of the robustness provided by the relaxation
of the strict identity criterion implicit in the edit-
distance conflation technique, a non-deterministic
weighted finite-state “rewrite” transducer was de-
veloped to replace the simple Levenshtein met-
ric. The rewrite transducer was compiled from a

2We assume that whenever multiple extant minimal-
distance candidate forms exist, one is chosen randomly.

3Note here that every extant form is its own “best”
equivalent: w ∈ Lex implies bestLev(w) = w, since
dLev(w, w) = 0 < dLev(w, v) for all v 6= w.
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w bestLev(w) Extant Equivalent

aug aus “out” auge “eye”
faszt fast “almost” fasst “grabs”
ouch buch “book” auch “also”
ram rat “advice” rahm “cream”
vol volk “people” voll “full”

Table 1: Example spurious Levenshtein distance
conflations

heuristic two-level rule-set (Karttunen et al., 1987;
Kaplan and Kay, 1994; Laporte, 1997) whose 306
rules were manually constructed to reflect linguis-
tically plausible patterns of diachronic variation
as observed in the lemma-instance pairs automat-
ically extracted from the full 5.5 million word
DWB verse corpus (Jurish, 2008). In particu-
lar, phonetic phenomena such asschwa deletion,
vowel shift, voicing alternation, andarticulatory
location shiftare easily captured by such rules.

Of the 306 heuristic rewrite rules, 131 manipu-
late consonant-like strings, 115 deal with vowel-
like strings, and 14 operate directly on syllable-
like units. The remaining 46 rules define expan-
sions for explicitly marked elisions and unrecog-
nized input. Some examples of rules used by the
rewrite transducer are given in Table 2.

Formally, the rewrite transducer∆rw defines
a pseudo-metricJ∆rwK : A∗ × A∗ → R∞ on
all string pairs (Mohri, 2009). Assuming the
non-negative tropical semiring (Simon, 1987) is
used to represent transducer weights, analagous to
the transducer representation of the Levenshtein
metric (Allauzen and Mohri, 2009), the rewrite
pseudo-metric can be used as a drop-in replace-
ment for the Levenshtein distance in Equations (2)
and (3), yielding Equations (4) and (5):

bestrw(w) = arg min
v∈Lex

J∆rwK(w, v) (4)

w ∼rw v :⇔ bestrw(w) = bestrw(v) (5)

3 Evaluation

3.1 Test Corpus

The conflation techniques described above were
tested on a corpus of historical German verse
extracted from the quotation evidence in a sin-
gle volume of the digital first edition of the dic-
tionary Deutsches Ẅorterbuch “DWB” (Bartz et
al., 2004). The test corpus contained 11,242 to-
kens of 4157 distinct word types, discounting non-

alphabetic types such as punctuation. Each cor-
pus type was manually assigned one or more ex-
tant equivalents based on inspection of its occur-
rences in the whole 5.5 million word DWB verse
corpus in addition to secondary sources. Only ex-
tinct roots, proper names, foreign and other non-
lexical material were not explicitly assigned any
extant equivalent at all; such types were flagged
and treated as their own canonical cognates,i.e.
identical to their respective “extant” equivalents.
In all other cases, equivalence was determined by
direct etymological relation of the root in addition
to matching morphosyntactic features. Problem-
atic types were marked as such and subjected to
expert review. 296 test corpus types represent-
ing 585 tokens were ambiguously associated with
more than one canonical cognate. In a second an-
notation pass, these remaining ambiguities were
resolved on a per-token basis.

3.2 Evaluation Measures

The three conflation strategies from Section 2
were evaluated using the gold-standard test corpus
to simulate a document indexing and query sce-
nario. Formally, letG ⊂ A∗ × A∗ represent the
finite set of all gold-standard pairs(w, w̃) with w̃
the manually determined canonical cognate for the
corpus typew, and letQ = {w̃ : ∃(w, w̃) ∈ G}
be the set of all canonical cognates represented in
the corpus. Then define for a binary conflation re-
lation∼R onA∗ and a query stringq ∈ Q the sets
relevant(q), retrievedR(q) ⊆ G of relevantand
retrievedgold-standard pairs as:

relevant(q) = {(w, w̃) ∈ G : w̃ = q}
retrievedR(q) = {(w, w̃) ∈ G : w ∼R q}

Type-wise precision and recall can then be de-
fined directly as:

prG =

∣∣∣⋃q∈Q retrievedR(q) ∩ relevant(q)
∣∣∣∣∣∣⋃q∈Q retrievedR(q)

∣∣∣
rcG =

∣∣∣⋃q∈Q retrievedR(q) ∩ relevant(q)
∣∣∣∣∣∣⋃q∈Q relevant(q)

∣∣∣
If tpR(q) = retrievedR(q) ∩ relevant(q) rep-

resents the set oftrue positivesfor a query q,
then token-wise precision and recall are defined
in terms of the gold-standard frequency function

74



From → To / Left Right 〈Cost〉 Example(s)

ε → e / (A\{e}) # 〈 5 〉 aug; auge “eye”
z → s / s 〈 1 〉 faszt; fasst “grabs”
o → a / u 〈 1 〉 ouch; auch “also”
ε → h / V C 〈 5 〉 ram; rahm “cream”
l → ll / 〈 8 〉 vol ; voll “full”

Table 2: Some example heuristics used by the rewrite transducer. Here,ε represents the empty string,
# represents a word boundary, andV, C ⊂ A are sets of vowel-like and consonant-like characters,
respectively.

fG : G → N as:

prfG
=

∑
q∈Q,g∈tpR(q) fG(g)∑

q∈Q,g∈retrievedR(q) fG(g)

rcfG
=

∑
q∈Q,g∈tpR(q) fG(g)∑

q∈Q,g∈relevant(q) fG(g)

We use the unweighted harmonic precision-
recall averageF (van Rijsbergen, 1979) as a com-
posite measure for both type- and token-wise eval-
uation modes:

F(pr, rc) =
2 · pr · rc
pr + rc

3.3 Results

The elementary canonicalization function for each
of the conflation techniques4 was applied to the
entire test corpus to simulate a corpus indexing
run. Running times for the various methods on
a 1.8GHz Linux workstation using thegfsmxl
C library are given in Table 3. The Levenshtein
edit-distance technique is at a clear disadvantage
here, roughly 150 times slower than the phonetic
technique and 40 times slower than the special-
ized heuristic rewrite transducer. This effect is
assumedly due to the density of the search space
(which is maximal for an unrestricted Levenshtein
editor), since thegfsmxl greedyk-best search
of a Levenshtein transducer cascade generates at
least|A| configurations per character, and a sin-
gle backtracking step requires an additional3|A|
heap extractions (Jurish, 2010). Use of specialized
lookup algorithms (Oflazer, 1996) might amelio-
rate such problems.

Qualitative results for several conflation tech-
niques with respect to the DWB verse test corpus
are given in Table 4. An additional conflation rela-
tion “Id” using strict identity of grapheme strings

4pho, bestLev andbestrw for the phonetic, Levenshtein,
and heuristic rewrite transducer methods respectively

Method Time Throughput

Pho 1.82 sec 7322 tok/sec
Lev 278.03 sec 48 tok/sec
rw 7.02 sec 1898 tok/sec

Table 3: Processing time for elementary canoni-
calization functions

(w ∼Id v :⇔ w = v) was tested to provide a
baseline for the methods described in Section 2.

As expected, the strict identity baseline relation
was the most precise of all methods tested, achiev-
ing 99.9% type-wise and 99.1% token-wise pre-
cision. This is unsurprising, since theId method
yields false positives only when a historical form
is indistinguishable from a non-equivalent extant
form, as in the case of the mappingwider ;

wieder (“again”) and the non-equivalent extant
form wider (“against”). Despite its excellent pre-
cision, the baseline method’s recall was the low-
est of any tested method, which supports the claim
that a synchronically-oriented lexicon cannot ad-
equately account for a corpus of historical text.
Type-wise recall was particularly low (70.8%), in-
dicating that diachronic variation was more com-
mon in low-frequency types.

Surprisingly, the phonetic and Levenshtein
edit-distance methods performed similarly for
all measures except token-wise precision, in
which Lev incurred 61.6% fewer errors than
Pho. Given their near-identical type-wise
precision, this difference can be attributed
to a small number of phonetic misconfla-
tions involving high-frequency types, such as
wider∼wieder (“against”∼“again”), statt∼stadt,
(“instead”∼“city”), and in∼ihn (“in”∼“him”).
Contrary to expectations,Lev did not yield
any recall improvements overPho, although the
union of the two underlying conflation relations
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Type-wise % Token-wise %
R prG rcG FG prfG

rcfG FfG

Id 99.9 70.8 82.9 99.1 83.7 90.7
Pho 96.7 80.1 87.6 92.7 89.6 91.1
Lev 96.6 78.9 86.9 97.2 87.8 92.2
rw 98.5 88.4 93.2 98.2 93.4 95.8

Pho |Lev 94.1 84.3 88.9 91.3 91.6 91.5
Pho | rw 96.1 89.8 92.8 92.5 94.5 93.5

Table 4: Qualitative evaluation of various conflation techniques

(∼Pho |Lev = ∼Pho ∪ ∼Lev) achieved a type-wise
recall of 84.3% (token-wise recall 91.6%), which
suggests that these two methods complement one
another when both an LTS module and a high-
coverage lexicon of extant types are available.

Of the methods described in Section 2, the
heuristic rewrite transducer∆rw performed best
overall, with a type-wise harmonic mean F of
93.2% and a token-wise F of 95.8%. While∆rw

incurred some additional precision errors com-
pared to the näıve graphemic identity methodId,
these were not as devastating as those incurred
by the phonetic or Levenshtein distance meth-
ods, which supports the claim from Section 2.3
that a fine-grained context-sensitive pseudo-metric
incorporating linguistic knowledge can more ac-
curately model diachronic processes than an all-
purpose metric like the Levenshtein distance.

Recall was highest for the composite phonetic-
rewrite relation∼Pho | rw=∼Pho ∪ ∼rw, although
the precision errors induced by the phonetic com-
ponent outweighed the comparatively small gain
in recall. The best overall performance is achieved
by the heuristic rewrite transducer∆rw on its own,
yielding a reduction of 60.3% in type-wise recall
errors and of 59.5% in token-wise recall errors,
while minimizing the number of newly introduced
precision errors.

4 Conclusion & Outlook

We have presented three different methods for
associating unknown historical word forms with
synchronically active canonical cognates. The
heuristic mapping of unknown forms to extant
equivalents by means of linguistically motivated
context-sensitive rewrite rules yielded the best re-
sults in an information retrieval task on a corpus
of historical German verse, reducing type-wise
recall errors by over 60% compared to a naı̈ve
text-matching strategy. Depending on the avail-

ability of linguistic resources (e.g. phonetization
rule-sets, lexica), use of phonetic canonicalization
and/or Levenshtein edit distance may provide a
more immediately accessible route to improved re-
call for other languages or applications, at the ex-
pense of some additional loss of precision.

We are interested in verifying our results us-
ing larger corpora than the small test corpus used
here, as well as extending the techniques described
here to other languages and domains. In par-
ticular, we are interested in comparing the per-
formance of the domain-specific rewrite trans-
ducer used here to other linguistically motivated
language-independent metrics such as (Covington,
1996; Kondrak, 2000).
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Abstract

We consider morphology learning in a
semi-supervised setting, where a small
set of linguistic gold standard analyses is
available. We extend Morfessor Base-
line, which is a method for unsupervised
morphological segmentation, to this task.
We show that known linguistic segmenta-
tions can be exploited by adding them into
the data likelihood function and optimiz-
ing separate weights for unlabeled and la-
beled data. Experiments on English and
Finnish are presented with varying amount
of labeled data. Results of the linguis-
tic evaluation of Morpho Challenge im-
prove rapidly already with small amounts
of labeled data, surpassing the state-of-
the-art unsupervised methods at 1000 la-
beled words for English and at 100 labeled
words for Finnish.

1 Introduction

Morphological analysis is required in many natu-
ral language processing problems. Especially, in
agglutinative and compounding languages, where
each word form consists of a combination of stems
and affixes, the number of unique word forms in
a corpus is very large. This leads to problems in
word-based statistical language modeling: Even
with a large training corpus, many of the words en-
countered when applying the model did not occur
in the training corpus, and thus there is no infor-
mation available on how to process them. Using
morphological units, such as stems and affixes, in-
stead of complete word forms alleviates this prob-
lem. Unfortunately, for many languages morpho-
logical analysis tools either do not exist or they
are not freely available. In many cases, the prob-
lems of availability also apply to morphologically
annotated corpora, making supervised learning in-
feasible.

In consequence, there has been a need for ap-
proaches for morphological processing that would
require little language-dependent resources. Due
to this need, as well as the general interest in
language acquisition and unsupervised language
learning, the research on unsupervised learning
of morphology has been active during the past
ten years. Especially, methods that perform mor-
phological segmentation have been studied exten-
sively (Goldsmith, 2001; Creutz and Lagus, 2002;
Monson et al., 2004; Bernhard, 2006; Dasgupta
and Ng, 2007; Snyder and Barzilay, 2008b; Poon
et al., 2009). These methods have shown to pro-
duce results that improve performance in several
applications, such as speech recognition and in-
formation retrieval (Creutz et al., 2007; Kurimo et
al., 2008).

While unsupervised methods often work quite
well across different languages, it is difficult to
avoid biases toward certain kinds of languages and
analyses. For example, in isolating languages, the
average amount of morphemes per word is low,
whereas in synthetic languages the amount may be
very high. Also, different applications may need
a particular bias, for example, not analyzing fre-
quent compound words as consisting of smaller
parts could be beneficial in information retrieval.
In many cases, even a small amount of labeled data
can be used to adapt a method to a particular lan-
guage and task. Methodologically, this is referred
to as semi-supervised learning.

In semi-supervised learning, the learning sys-
tem has access to both labeled and unlabeled data.
Typically, the labeled data set is too small for su-
pervised methods to be effective, but there is a
large amount of unlabeled data available. There
are many different approaches to this class of
problems, as presented by Zhu (2005). One ap-
proach is to use generative models, which spec-
ify a join distribution over all variables in the
model. They can be utilized both in unsupervised
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and supervised learning. In contrast, discrimina-
tive models only specify the conditional distribu-
tion between input data and labels, and therefore
require labeled data. Both, however, can be ex-
tended to the semi-supervised case. For generative
models, it is, in principle, very easy to use both la-
beled and unlabeled data. For unsupervised learn-
ing one can consider the labels as missing data and
estimate their values using the Expectation Maxi-
mization (EM) algorithm (Dempster et al., 1977).
In the semi-supervised case, some labels are avail-
able, and the rest are considered missing and esti-
mated with EM.

In this paper, we extend the Morfessor Base-
line method for the semi-supervised case. Morfes-
sor (Creutz and Lagus, 2002; Creutz and Lagus,
2005; Creutz and Lagus, 2007, etc.) is one of the
well-established methods for morphological seg-
mentation. It applies a simple generative model.
The basic idea, inspired by the Minimum Descrip-
tion Length principle (Rissanen, 1989), is to en-
code the words in the training data with a lexicon
of morphs, that are segments of the words. The
number of bits needed to encode both the morph
lexicon and the data using the lexicon should be
minimized. Morfessor does not limit the num-
ber of morphemes per word form, making it suit-
able for modeling a large variety of agglutinative
languages irrespective of them being more isolat-
ing or synthetic. We show that the model can be
trained in a similar fashion in the semi-supervised
case as in the unsupervised case. However, with
a large set of unlabeled data, the effect of the su-
pervision on the results tends to be small. Thus,
we add a discriminative weighting scheme, where
a small set of word forms with gold standard ana-
lyzes are used for tuning the respective weights of
the labeled and unlabeled data.

The paper is organized as follows: First, we
discuss related work on semi-supervised learning.
Then we describe the Morfessor Baseline model
and the unsupervised algorithm, followed by our
semi-supervised extension. Finally, we present ex-
perimental results for English and Finnish using
the Morpho Challenge data sets (Kurimo et al.,
2009).

1.1 Related work

There is surprisingly little work that consider im-
proving the unsupervised models of morphology
with small amounts of annotated data. In the

related tasks that deal with sequential labeling
(word segmentation, POS tagging, shallow pars-
ing, named-entity recognition), semi-supervised
learning is more common.

Snyder and Barzilay (2008a; 2008b) consider
learning morphological segmentation with non-
parametric Bayesian model from multilingual
data. For multilingual settings, they extract 6 139
parallel short phrases from the Hebrew, Arabic,
Aramaic and English bible. Using the aligned
phrase pairs, the model can learn the segmen-
tations for two languages at the same time. In
one of the papers (2008a), they consider also
semi-supervised scenarios, where annotated data
is available either in only one language or both of
the languages. However, the amount of annotated
data is fixed to the half of the full data. This differs
from our experimental setting, where the amount
of unlabeled data is very large and the amount of
labeled data relatively small.

Poon et al. (2009) apply a log-linear, undi-
rected generative model for learning the morphol-
ogy of Arabic and Hebrew. They report results
for the same small data set as Snyder and Barzilay
(2008a) in both unsupervised and semi-supervised
settings. For the latter, they use somewhat smaller
proportions of annotated data, varying from 25%
to 100% of the total data, but the amount of unla-
beled data is still very small. Results are reported
also for a larger 120 000 word Arabic data set, but
only for unsupervised learning.

A problem similar to morphological segmen-
tation is word segmentation for the languages
where orthography does not specify word bound-
aries. However, the amount of labeled data is
usually large, and unlabeled data is just an addi-
tional source of information. Li and McCallum
(2005) apply a semi-supervised approach to Chi-
nese word segmentation where unlabeled data is
utilized for forming word clusters, which are then
used as features for a supervised classifier. Xu
et al. (2008) adapt a Chinese word segmentation
specifically to a machine translation task, by using
the indirect supervision from a parallel corpus.

2 Method

We present an extension of the Morfessor Baseline
method to the semi-supervised setting. Morfes-
sor Baseline is based on a generative probabilis-
tic model. It is a method for modeling concatena-
tive morphology, where the morphs—i.e., the sur-
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face forms of morphemes—of a word are its non-
overlapping segments. The model parametersθ
encode a morph lexicon, which includes the prop-
erties of the morphs, such as their string represen-
tations. Each morphm in the lexicon has a proba-
bility of occurring in a word,P (M = m |θ).1 The
probabilities are assumed to be independent. The
model uses a priorP (θ), derived using the Min-
imum Description Length (MDL) principle, that
controls the complexity of the model. Intuitively,
the prior assigns higher probability to models that
store fewer morphs, where a morph is considered
stored ifP (M = m |θ) > 0. During model learn-
ing,θ is optimized to maximize the posterior prob-
ability:

θMAP = arg max
θ

P (θ|DW )

= arg max
θ

{
P (θ)P (DW |θ)

}
, (1)

where DW includes the words in the training
data. In this section, we first consider sepa-
rately the likelihoodP (DW |θ) and the priorP (θ)
used in Morfessor Baseline. Then we describe
the algorithms, first unsupervised and then semi-
supervised, for finding optimal model parameters.
Last, we shortly discuss the algorithm for seg-
menting new words after the model training.

2.1 Likelihood

The latent variable of the model,Z =
(Z1, . . . , Z|DW |), contains the analyses of the
words in the training dataDW . An instance of
a single analysis for thej:th word is a sequence of
morphs,zj = (mj1, . . . , mj|zj |). During training,
each wordwj is assumed to have only one possible
analysis. Thus, instead of using the joint distribu-
tion P (DW , Z |θ), we need to use the likelihood
function only conditioned on the analyses of the
observed words,P (DW |Z, θ). The conditional
likelihood is

P (DW |Z = z, θ)

=
|DW |∏
j=1

P (W = wj |Z = z, θ)

=
|DW |∏
j=1

|zj |∏
i=1

P (M = mji |θ), (2)

wheremij is thei:th morph in wordwj .

1We denote variables with uppercase letters and their in-
stances with lowercase letters.

2.2 Priors

Morfessor applies Maximum A Posteriori (MAP)
estimation, so priors for the model parameters
need to be defined. The parametersθ of the model
are:

• Morph type count, or the size of the morph
lexicon,µ ∈ Z+

• Morph token count, or the number of morphs
tokens in the observed data,ν ∈ Z+

• Morph strings(σ1, . . . , σµ), σi ∈ Σ∗

• Morph counts(τ1, . . . , τµ), τi ∈ {1, . . . , ν},∑
i τi = ν. Normalized withν, these give

the probabilities of the morphs.

MDL-inspired and non-informative priors have
been preferred. When using such priors, morph
type count and morph token counts can be ne-
glected when optimizing the model. The morph
string prior is based on length distributionP (L)
and distributionP (C) of characters over the char-
acter setΣ, both assumed to be known:

P (σi) = P (L = |σi|)
|σi|∏
j=1

P (C = σij) (3)

We use the implicit length prior (Creutz and La-
gus, 2005), which is obtained by removingP (L)
and using end-of-word mark as an additional char-
acter in P (C). For morph counts, the non-
informative prior

P (τ1, . . . , τµ) = 1/

(
ν − 1
µ− 1

)
(4)

gives equal probability to each possible combina-
tion of the counts whenµ and ν are known, as
there are

(
ν−1
µ−1

)
possible ways to chooseµ positive

integers that sum up toν.

2.3 Unsupervised learning

In principle, unsupervised learning can be per-
formed by looking for the MAP estimate with the
EM-algorithm. In the case of Morfessor Baseline,
this is problematic, because the prior only assigns
higher probability to lexicons where fewer morphs
have nonzero probabilities. The EM-algorithm has
the property that it will not assign a zero probabil-
ity to any morph, that has a nonzero likelihood in
the previous step, and this will hold for all morphs
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that initially have a nonzero probability. In con-
sequence, Morfessor Baseline instead uses a local
search algorithm, which will assign zero probabil-
ity to a large part of the potential morphs. This
is memory-efficient, since only the morphs with
nonzero probabilities need to be stored in mem-
ory. The training algorithm of Morfessor Base-
line, described by Creutz and Lagus (2005), tries
to minimize the cost function

L(θ, z, DW ) = − lnP (θ)− lnP (DW | z, θ)
(5)

by testing local changes toz, modifying the pa-
rameters according to each change, and selecting
the best one. More specifically, one word is pro-
cessed at a time, and the segmentation that min-
imizes the cost function with the optimal model
parameters is selected:

z
(t+1)
j = arg min

zj

{
min

θ
L(θ, z(t), DW )

}
. (6)

Next, the parameters are updated:

θ(t+1) = arg min
θ

{
L(θ, z(t+1), DW )

}
. (7)

As neither of the steps can increase the cost func-
tion, this will converge to a local optimum. The
initial parameters are obtained by adding all the
words into the morph lexicon. Due to the context
independence of the morphs within a word, the op-
timal analysis for a segment does not depend on
in which context the segment appears. Thus, it is
possible to encodez as a binary tree-like graph,
where the words are the top nodes and morphs the
leaf nodes. For each word, every possible split into
two morphs is tested in addition to no split. If the
word is split, the same test is applied recursively
to its parts. See, e.g., Creutz and Lagus (2005) for
more details and pseudo-code.

2.4 Semi-supervised learning

A straightforward way to do semi-supervised
learning is to fix the analysesz for the labeled ex-
amples. Early experiments indicated that this has
little effect on the results. The Morfessor Baseline
model only contains local parameters for morphs,
and relies on the bias given by its prior to guide
the amount of segmentation. Therefore, it may not
be well suited for semi-supervised learning. The
labeled data affects only the morphs that are found
in the labeled data, and even their analyses can be

overwhelmed by a large amount of unsupervised
data and the bias of the prior.

We suggest a fairly simple solution to this by
introducing extra parameters that guide the more
general behavior of the model. The amount of
segmentation is mostly affected by the balance
between the prior and the model. The Morfes-
sor Baseline model has been developed to ensure
this balance is sensible. However, the labeled
data gives a strong source of information regarding
the amount of segmentation preferred by the gold
standard. We can utilize this information by intro-
ducing the weightα on the likelihood. To address
the problem of labeled data being overwhelmed by
the large amount of unlabeled data we introduce a
second weightβ on the likelihood for the labeled
data. These weights are optimized on a separate
held-out set. Thus, instead of optimizing the MAP
estimate, we minimize the following function:

L(θ, z, DW , DW 7→A) =
− lnP (θ)
− α× lnP (DW | z, θ)
− β × lnP (DW 7→A | z, θ) (8)

The labeled training setDW 7→A may include al-
ternative analyses for some of the words. Let
A(wj) = {aj1, . . . , ajk} be the set of known anal-
yses for wordwj . Assuming the training samples
are independent, and giving equal weight for each
analysis, the likelihood of the labeled data would
be

P (DW 7→A |θ)

=
|DW 7→A|∏

j=1

∏
ajk∈A(wj)

|ajk|∏
i=1

P (M = mjki |θ). (9)

However, when the analyses of the words are
fixed, the product over alternative analyses inA
is problematic, because the model cannot select
several of them at the same time. A sum over
A(wj):s would avoid this problem, but then the
logarithm of the likelihood function becomes non-
trivial (i.e., logarithm of sum of products) and too
slow to calculate during the training. Instead, we
use the hidden variableZ to select only one anal-
ysis also for the labeled samples, but now with the
restriction thatZj ∈ A(wj). The likelihood func-
tion for DW 7→A is then equivalent to Equation 2.
Because the recursive algorithm search assumes
that a string is segmented in the same way irre-
spective of its context, the labeled data can still
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get zero probabilities. In practice, zero probabil-
ities in the labeled data likelihood are treated as
very large, but not infinite, costs.

2.5 Segmenting new words

After training the model, a Viterbi-like algorithm
can be applied to find the optimal segmentation
of each word. As proposed by Virpioja and Ko-
honen (2009), also new morph types can be al-
lowed by utilizing an approximate cost of adding
them to the lexicon. As this enables reasonable re-
sults also when the training data is small, we use a
similar technique. The cost is calculated from the
decrease in the probabilities given in Equations 3
and 4 when a new morph is assumed to be in the
lexicon.

3 Experiments

In the experiments, we compare six different vari-
ants of the Morfessor Baseline algorithm:

• Unsupervised: The classic, unsupervised
Morfessor baseline.

• Unsupervised + weighting: A held-out set
is used for adjusting the weight of the likeli-
hoodα. Whenα = 1 the method is equiva-
lent to the unsupervised baseline. The main
effect of adjustingα is to control how many
segments per word the algorithm prefers.
Higherα leads to fewer and lowerα to more
segments per word.

• Supervised: The semi-supervised method
trained with only the labeled data.

• Supervised + weighting: As above, but the
weight of the likelihoodβ is optimized on
the held-out set. The weight can only af-
fect which segmentations are selected from
the possible alternative segmentations in the
labeled data.

• Semi-supervised: The semi-supervised
method trained with both labeled and
unlabeled data.

• Semi-supervised + weighting: As above,
but the parametersα andβ are optimized us-
ing the the held-out set.

All variations are evaluated using the linguistic
gold standard evaluation of Morpho Challenge

2009. For supervised and semi-supervised meth-
ods, the amount of labeled data is varied be-
tween 100 and 10 000 words, whereas the held-
out set has 500 gold standard analyzes. To obtain
precision-recall curves, we calculated weighted
F0.5 and F2 scores in addition to the normal F1
score. The parametersα and β were optimized
also for those.

3.1 Data and evaluation

We used the English and Finnish data sets from
Competition 1 of Morpho Challenge 2009 (Ku-
rimo et al., 2009). Both are extracted from a
three million sentence corpora. For English, there
were 62 185 728 word tokens and384 903 word
types. For Finnish, there were36 207 308 word
tokens and2 206 719 word types. The complexity
of Finnish morphology is indicated by the almost
ten times larger number of word types than in En-
glish, while the number of word tokens is smaller.

We applied also the evaluation method of the
Morpho Challenge 2009: The results of the mor-
phological segmentation were compared to a lin-
guistic gold standard analysis. Precision measures
whether the words that share morphemes in the
proposed analysis have common morphemes also
in the gold standard, and recall measures the op-
posite. The final score to optimize was F-measure,
i.e, the harmonic mean of the precision and re-
call.2 In addition to the unweighted F1 score, we
have applied F2 and F0.5 scores, which give more
weight to recall and precision, respectively.

Finnish gold standards are based on FINT-
WOL morphological analyzer from Lingsoft, Inc.,
that applies the two-level model by Koskenniemi
(1983). English gold standards are from the
CELEX English database. The final test sets are
the same as in Morpho Challenge, based on10 000
English word forms and200 000 Finnish word
forms. The test sets are divided into ten parts for
calculating deviations and statistical significances.
For parameter tuning, we applied a small held-out
set containing500 word forms that were not in-
cluded in the test set.

For supervised and semi-supervised training,
we created sets of five different sizes:100, 300,
1 000, 3 000, and10 000. They did not contain any
of the word forms in the final test set, but were
otherwise randomly selected from the words for

2Both the data sets and evaluation scripts are available
from the Morpho Challenge 2009 web page:http://www.
cis.hut.fi/morphochallenge2009/
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Figure 1: The F-measure for English as a function
of the number of labeled training samples.

which the gold standard analyses were available.
In order to use them for training Morfessor, the
morpheme analyses were converted to segmenta-
tions using the Hutmegs package by Creutz and
Lindén (2004).

3.2 Results

Figure 1 shows a comparison of the unsupervised,
supervised and semi-supervised Morfessor Base-
line for English. It can be seen that optimiz-
ing the likelihood weightα alone does not im-
prove much over the unsupervised case, imply-
ing that the Morfessor Baseline is well suited for
English morphology. Without weighting of the
likelihood function, semi-supervised training im-
proves the results somewhat, but it outperforms
weighted unsupervised model only barely. With
weighting, however, semi-supervised training im-
proves the results significantly already for only
100 labeled training samples. For comparison,
in Morpho Challenges (Kurimo et al., 2009), the
unsupervised Morfessor Baseline and Morfessor
Categories-MAP by Creutz and Lagus (2007) have
achieved F-measures of 59.84% and 50.50%, re-
spectively, and the all time best unsupervised re-
sult by a method that does not provide alternative
analyses for words is 66.24%, obtained by Bern-
hard (2008).3 This best unsupervised result is sur-
passed by the semi-supervised algorithm at 1000
labeled samples.

As shown in Figure 1, the supervised method
obtains inconsistent scores for English with the

3Better results (68.71%) have been achieved by Monson
et al. (2008), but as they were obtained by combining of
two systems as alternative analyses, the comparison is not as
meaningful.

Figure 2: The F-measure for Finnish as a function
of the number of labeled training samples. The
semi-supervisedandunsupervisedlines overlap.

smallest training data sizes. The supervised al-
gorithm only knows the morphs in the training
set, and therefore is crucially dependent on the
Viterbi segmentation algorithm for analyzing new
data. Thus, overfitting to some small data sets is
not surprising. At 10 000 labeled training samples
it clearly outperforms the unsupervised algorithm.
The improvement obtained from tuning the weight
β in the supervised case is small.

Figure 2 shows the corresponding results for
Finnish. The optimization of the likelihood weight
gives a large improvement to the F-measure al-
ready in the unsupervised case. This is mainly be-
cause the standard unsupervised Morfessor Base-
line method does not, on average, segment words
into as many segments as would be appropriate for
Finnish. Without weighting, the semi-supervised
method does not improve over the unsupervised
one: The unlabeled training data is so much larger
that the labeled data has no real effect.

For Finnish, the unsupervised Morfessor Base-
line and Categories-MAP obtain F-measures of
26.75% and 44.61%, respectively (Kurimo et al.,
2009). The all time best for an unsupervised
method is 52.45% by Bernhard (2008). With op-
timized likelihood weights, the semi-supervised
Morfessor Baseline achieves higher F-measures
with only 100 labeled training samples. Fur-
thermore, the largest improvement for the semi-
supervised method is achieved already from 1000
labeled training samples. Unlike English, the su-
pervised method is quite a lot worse than the un-
supervised one for small training data. This is
natural because of the more complex morphology
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Figure 3: Precision-recall graph for English with
varying amount of labeled training data. Parame-
tersα andβ have been optimized for three differ-
ent measures: F0.5, F1 and F2 on the held-out set.
Precision and recall values are from the final test
set, error bars indicate one standard deviation.

in Finnish; good results are not achieved just by
knowing the few most common suffixes.

Figures 3 and 4 show precision-recall graphs
of the performance of the semi-supervised method
for English and Finnish. The parametersα andβ
have been optimized for three differently weighted
F-measures (F0.5, F1, and F2) on the held-out set.
The weight tells how much recall is emphasized;
F1 is the symmetric F-measure that emphasizes
precision and recall alike. The graphs show that
the more there are labeled training data, the more
constrained the model parameters are: With many
labeled examples, the model cannot be forced to
achieve high precision or recall only. The phe-
nomenon is more evident in the Finnish data (Fig-
ure 3), where the same amount of words contains
more information (morphemes) than in the En-
glish data. Table 1 shows the F0.5, F1 and F2
measures numerically.

Table 2 shows the values for the F1-optimal
weightsα and β that were chosen for different
amounts of labeled data using the held-out set. As
even the largest labeled sets are much smaller than
the unlabeled training set, it is natural thatβ ≫ α.
The small optimalα for Finnish explains why the
difference between unsupervised unweighted and
weighted versions in Figure 2 was so large. Gener-
ally, the more there is labeled data, the smallerβ is
needed. A possible increase in overall likelihood
cost is compensated by a smallerα. Finnish with
100 labeled words is an exception; probably a very

Figure 4: Precision-recall graph for Finnish with
varying amount of labeled training data. Param-
etersα andβ have been optimized for three dif-
ferent measures: F0.5, F1 and F2 on the held-out
set. Precision and recall values are from the final
test set, error bars indicate one standard deviation,
which here is very small.

high β would end in overlearning of the small set
words at the cost of overall performance.

4 Discussion

The method developed in this paper is a straight-
forward extension of Morfessor Baseline. In the
semi-supervised setting, it should be possible to
develop a generative model that would not require
any discriminative reweighting, but could learn,
e.g., the amount of segmentation from the labeled
data. Moreover, it would be possible to learn the
morpheme labels instead of just the segmentation
into morphs, either within the current model or as
a separate step after the segmentation. We made
initial experiment with a trivial context-free label-
ing: A mapping between the segments and mor-
pheme labels was extracted from the labeled train-
ing data. If some label did not have a correspond-
ing segment, it was appended to the previous la-
bel. E.g., if the labels for “found” are “findV
+PAST”, “found” was mapped to both labels. Af-
ter segmentation, each segment in the test data was
replaced by the most common label or label se-
quence whenever such was available. The results
using training data with 1 000 and 10 000 labeled
samples are shown in Table 3. Although preci-
sions decrease somewhat, recalls improve consid-
erably, and significant gains in F-measure are ob-
tained. A more advanced, context-sensitive label-
ing should perform much better.
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English
labeled data F0.5 F1 F2

0 69.16 61.05 62.70
100 73.23 65.18 68.30
300 72.98 65.63 68.81

1000 71.86 68.29 69.68
3000 74.34 69.13 72.01

10000 76.04 72.85 73.89
Finnish

labeled data F0.5 F1 F2
0 56.81 49.07 53.95

100 58.96 52.66 57.01
300 59.33 54.92 57.16

1000 61.75 56.38 58.24
3000 63.72 58.21 58.90

10000 66.58 60.26 57.24

Table 1: The F0.5, F1 and F2 measures for the
semi-supervised + weightingmethod.

English Finnish
labeled data α β α β

0 0.75 - 0.01 -
100 0.75 750 0.01 500
300 1 500 0.005 5000

1000 1 500 0.05 2500
3000 1.75 350 0.1 1000

10000 1.75 175 0.1 500

Table 2: The values for the weightsα and β
that the semisupervised algorithm chose for differ-
ent amounts of labeled data when optimizing F1-
measure.

The semi-supervised extension could easily be
applied to the other versions and extensions of
Morfessor, such as Morfessor Categories-MAP
(Creutz and Lagus, 2007) and Allomorfessor (Vir-
pioja and Kohonen, 2009). Especially the model-
ing of allomorphy might benefit from even small
amounts of labeled data, because those allomorphs
that are hardest to find (affixes, stems with irregu-
lar orthographic changes) are often more common
than the easy cases, and thus likely to be found
even from a small labeled data set.

Even without labeling, it will be interesting
to see how well the semi-supervised morphology
learning works in applications such as information
retrieval. Compared to unsupervised learning, we
obtained much higher recall for reasonably good
levels of precision, which should be beneficial to
most applications.

Segmented Labeled
English, D = 1 000
Precision 69.72% 69.30%
Recall 66.92% 72.21%
F-measure 68.29% 70.72%
English, D = 10 000
Precision 77.35% 77.07%
Recall 68.85% 77.78%
F-measure 72.86% 77.42%
Finnish, D = 1 000
Precision 61.03% 58.96%
Recall 52.38% 66.55%
F-measure 56.38% 62.53%
Finnish, D = 10 000
Precision 69.14% 66.90%
Recall 53.40% 74.08%
F-measure 60.26% 70.31%

Table 3: Results of a simple morph labeling after
segmentation with semi-supervised Morfessor.

5 Conclusions

We have evaluated an extension of the Morfessor
Baseline method to semi-supervised morphologi-
cal segmentation. Even with our simple method,
the scores improve far beyond the best unsuper-
vised results. Moreover, already one hundred
known segmentations give significant gain over
the unsupervised method even with the optimized
data likelihood weight.
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Abstract

Morpho Challenge is an annual evalu-

ation campaign for unsupervised mor-

pheme analysis. In morpheme analysis,

words are segmented into smaller mean-

ingful units. This is an essential part in

processing complex word forms in many

large-scale natural language processing

applications, such as speech recognition,

information retrieval, and machine trans-

lation. The discovery of morphemes is

particularly important for morphologically

rich languages where inflection, deriva-

tion and composition can produce a huge

amount of different word forms. Morpho

Challenge aims at language-independent

unsupervised learning algorithms that can

discover useful morpheme-like units from

raw text material. In this paper we de-

fine the challenge, review proposed algo-

rithms, evaluations and results so far, and

point out the questions that are still open.

1 Introduction

Many large-scale natural language processing

(NLP) applications, such as speech recognition,

information retrieval and machine translation, re-

quire that complex word forms are analyzed into

smaller, meaningful units. The discovery of these

units called morphemes is particularly important

for morphologically rich languages where the in-

flection, derivation and composition makes it im-

possible to even list all the word forms that are

used. Various tools have been developed for mor-

pheme analysis of word forms, but they are mostly

based on language-specific rules that are not eas-

ily ported to other languages. Recently, the per-

formance of tools based on language-independent

unsupervised learning from raw text material has

improved significantly and rivaled the language-

specific tools in many applications.

The unsupervised algorithms proposed so far in

Morpho Challenge typically first generate various

alternative morphemes for each word and then se-

lect the best ones based on relevant criteria. The

statistical letter successor variation (LSV) analy-

sis (Harris, 1955) and its variations are quite com-

monly used as generation methods. LSV is based

on the observation that the segment borders be-

tween the sub-word units often co-occur with the

peaks of variation for the next letter. One popu-

lar selection approach is to minimize a cost func-

tion that balances between the size of the corpus

when coded by the morphemes and the size of

the morpheme codebook needed. Selection cri-

teria that produce results resembling the linguis-

tic morpheme segmentation include, for example,

the Minimum Description Length (MDL) princi-

ple and maximum a posteriori (MAP) probability

optimization (de Marcken, 1996; Creutz and La-

gus, 2005).

The Morpho Challenge competition was

launched in 2005 to encourage the machine

learning people, linguists and specialists in NLP

applications to study this field and come together

to compare their best algorithms against each

other. The organizers selected evaluation tasks,

data and metric and performed all the evaluations.

Thus, participation was made easy for people

who were not specialists in the chosen NLP

applications. Participation was open to everybody

with no charge. The competition became popular

right from the beginning and has gained new

participants every year.

Although not all the authors of relevant mor-

pheme analysis algorithms have yet submitted

their algorithms for this evaluation campaign,

more than 50 algorithms have already been eval-

uated. After the first five years of Morpho Chal-

lenge, a lot has been learned on the various pos-

sible ways to solve the problem and how the dif-

ferent methods work in various NLP tasks. How-
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ever, there are still open questions such as: how to

find meaning for the obtained unsupervised mor-

phemes, how to disambiguate among the alterna-

tive analyses of one word, and how to use context

in the analysis. Another recently emerged ques-

tion that is the special topic in 2010 competition

is how to utilize small amounts of labeled data

and semi-supervised learning to further improve

the analysis.

2 Definition of the challenge

2.1 Morphemes and their evaluation

Generally, the morphemes are defined as the

smallest meaningful units of language. Rather

than trying to directly specify which units are

meaningful, the Morpho Challenge aims at find-

ing units that would be useful for various practical

NLP applications. The goal is to find automatic

methods that can discover suitable units using un-

supervised learning directly on raw text data. The

methods should also not be restricted to certain

languages or include many language and applica-

tion dependent parameters that needed to be hand

tuned for each task separately. The following three

goals have been defined as the main scientific ob-

jectives for the challenge: (1) To learn of the phe-

nomena underlying word construction in natural

languages. (2) To discover approaches suitable for

a wide range of languages. (3) To advance ma-

chine learning methodology.

The evaluation tasks, metrics and languages

have been designed based on the scientific objec-

tives of the challenge. It can not be directly ver-

ified how well an obtained analysis reflects the

word construction in natural languages, but intu-

itively, the methods that split everything into let-

ters or pre-specified letter n-grams, or leave the

word forms unanalyzed, would not be very in-

teresting solutions. An interesting thing that can

be evaluated, however, is how close the obtained

analysis is to the linguistic gold standard mor-

phemes that can be obtained from CELEX or

various language-dependent rule-based analyzers.

The exact definition of the morphemes, tags, or

features available in the gold standard to be uti-

lized in the comparison should be decided and

fixed for each language separately.

To verify that a proposed algorithm works in

various languages would, ideally, require running

the evaluations on a large number of languages

that would be somehow representative of various

important language families. However, the re-

sources available for both computing and evalu-

ating the analysis in various applications and lan-

guages are limited. The suggested and applicable

compromise is to select morphologically rich lan-

guages where the morpheme analysis is most use-

ful and those languages where interesting state-of-

the-art evaluation tasks are available. By including

German, Turkish, Finnish and Arabic, many inter-

esting aspects of concatenative morphology have

already been covered.

While the comparison against the linguistic

gold standard morphemes is an interesting sub-

goal, the main interest in running the Morpho

Challenge is to find out how useful the proposed

morpheme analyses are for various practical NLP

applications. Naturally, this is best evaluated

by performing evaluations in several state-of-the-

art application tasks. Due to the limitations of

the resources, the applications have been selected

based on the importance of the morpheme analy-

sis for the application, on the availability of open

state-of-the-art evaluation tasks, and on the effort

needed to run the actual evaluations.

2.2 Unsupervised and semi-supervised

learning

Unsupervised learning is the task of learning with-

out labeled data. In the context of morphology dis-

covery, it means learning without knowing where

morpheme borders are, or which morphemes exist

in which words. Unsupervised learning methods

have many attractive features for morphological

modeling, such as language-independence, inde-

pendence of any particular linguistic theory, and

easy portability to a new language.

Semi-supervised learning can be approached

from two research directions, namely unsuper-

vised and supervised learning. In an essentially

unsupervised learning task there may exist some

labeled (classified) data, or some known links be-

tween data items, which might be utilized by the

(typically generative) learning algorithms. Turned

around, an essentially supervised learning task,

such as classification or prediction, may benefit

also from unlabeled data which is typically more

abundantly available.

In morphology modeling one might consider

the former setup to be the case: the learning task

is essentially that of unsupervised modeling, and

morpheme labels can be thought of as known links
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between various inflected word forms.

Until 2010 the Morpho Challenge has been de-

fined only as an unsupervised learning task. How-

ever, since small samples of morphologically la-

beled data can be provided already for quite many

languages, also the semi-supervised learning task

has become of interest.

Moreover, while there exists a fair amount of

research and now even books on semi-supervised

learning (Zhu, 2005; Abney, 2007; Zhu, 2010),

it has not been as widely studied for structured

classification problems like sequence segmenta-

tion and labeling (cf. e.g. (Jiao et al., 2006)). The

semi-supervised learning challenge introduced for

Morpho Challenge 2010 can thus be viewed as an

opportunity to strengthen research in both mor-

phology modeling as well as in semi-supervised

learning for sequence segmentation and labeling

in general.

3 Review of Morpho Challenge

competitions so far

3.1 Evaluation tasks, metrics, and languages

The evaluation tasks and languages selected for

Morpho Challenge evaluations are shown in Fig-

ure 1. The languages where evaluations have been

prepared are Finnish (FIN), Turkish (TUR), En-

glish (ENG), German (GER), and Arabic (ARA).

First the morphemes are compared to linguis-

tic gold standards in direct morpheme segmen-

tation (2005) and full morpheme analysis (since

2007). The practical NLP application based eval-

uations are automatic speech recognition (ASR),

information retrieval (IR) and statistical machine

translation (SMT). Morphemes obtained by semi-

supervised learning can be evaluated in parallel

with the unsupervised morphemes. For IR, eval-

uation has also been extended for full sentences,

where the morpheme analysis can based on con-

text. The various suggested and tested evaluations

are defined in this section.

year new languages new tasks

2005 FIN, TUR, ENG segmentation, ASR

2007 GER full analysis, IR

2008 ARA context IR

2009 - SMT

2010 - semi-supervised

Table 1: The evolution of the evaluations. The

acronyms are explained in section 3.1.

3.1.1 Comparisons to linguistic gold standard

The first Morpho Challenge in 2005 (Kurimo et

al., 2006) considered unsupervised segmentation

of words into morphemes. The evaluation was

based on comparing the segmentation boundaries

given by the competitor’s algorithm to the bound-

aries obtained from a gold standard analysis.

From 2007 onwards, the task was changed to

full morpheme analysis, that is, the algorithm

should not only locate the surface forms (i.e., word

segments) of the morphemes, but find also which

surface forms are realizations (allomorphs) of the

same underlying morpheme. This generalizes the

task for finding more meaningful units than just

the realizations of morphemes that may be just in-

dividual letters or even empty strings. In applica-

tions this is useful when it is important to identify

which units carry the same meaning even if they

have different realizations in different words.

As an unsupervised algorithm cannot find the

morpheme labels that would equal to the labels in

the gold standard, the evaluation has to be based

on what word forms share the same morphemes.

The evaluation procedure samples a large num-

ber of word pairs, such that both words in the

pair have at least one morpheme in common, from

both the proposed analysis and the gold standard.

The first version of the method was applied in

2007 (Kurimo et al., 2008) and 2008 (Kurimo et

al., 2009a), and minor modifications were done in

2009 (Kurimo et al., 2009b). However, the orga-

nizers have reported the evaluation results of the

2007 and 2008 submissions also with the new ver-

sion, thus allowing a direct comparison between

them. A summary of these results for English,

Finnish, German and Turkish for the best algo-

rithms is presented in Table 2. The evaluations

in 2008 and 2009 were also performed on Arabic,

but these results and not comparable, because the

database and the gold standard was changed be-

tween the years. The exact annual results for all

participants as well as the details of the evaluation

in each year can be reviewed in the annual evalu-

ation reports (Kurimo et al., 2006; Kurimo et al.,

2008; Kurimo et al., 2009a; Kurimo et al., 2009b).

Already the linguistic evaluation of Morpho

Challenge 2005 applied some principles that have

been used thereafter: (1) The evaluation is based

on a subset of the word forms given as training

data. This not only makes the evaluation proce-

dure lighter, but also allows changing the set when
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English Finnish

Method P R F Method P R F

2009 2009

Allomorfessor 68.98 56.82 62.31 Monson PMU 47.89 50.98 49.39

Monson PMU 55.68 62.33 58.82 Monson PMM 51.75 45.42 48.38

Lignos 83.49 45.00 58.48 Spiegler PROMODES C 41.20 48.22 44.44

2008 2008

Monson P+M 69.59 65.57 67.52 Monson P+M 65.21 50.43 56.87

Monson ParaMor 63.32 51.96 57.08 Monson ParaMor 49.97 37.64 42.93

Zeman 1 67.13 46.67 55.06 Monson Morfessor 79.76 24.95 38.02

2007 2007

Monson P+M 70.09 67.38 68.71 Bernhard 2 63.92 44.48 52.45

Bernhard 2 67.42 65.11 66.24 Bernhard 1 78.11 29.39 42.71

Bernhard 1 75.61 57.87 65.56 Bordag 5a 72.45 27.21 39.56

German Turkish

Method P R F Method P R F

2009 2009

Monson PMU 52.53 60.27 56.14 Monson PMM 48.07 60.39 53.53

Monson PMM 51.07 57.79 54.22 Monson PMU 47.25 60.01 52.88

Monson PM 50.81 47.68 49.20 Monson PM 49.54 54.77 52.02

2008 2008

Monson P+M 64.06 61.52 62.76 Monson P+M 66.78 57.97 62.07

Monson Morfessor 70.73 38.82 50.13 Monson ParaMor 57.35 45.75 50.90

Monson ParaMor 56.98 42.10 48.42 Monson Morfessor 77.36 33.47 46.73

2007 2007

Monson P+M 69.96 55.42 61.85 Bordag 5a 81.06 23.51 36.45

Bernhard 2 54.02 60.77 57.20 Bordag 5 81.19 23.44 36.38

Bernhard 1 66.82 42.48 51.94 Zeman 77.48 22.71 35.13

Table 2: The summary of the best three submitted methods for years 2009, 2008 and 2007 using the

linguistic evaluation of Morpho Challenge 2009. The complete results tables by the organizers are avail-

able from http://www.cis.hut.fi/morphochallenge2009/. The three columns numbers

are precision (P), recall (R), and F-measure (F). The best F-measure for each language is in boldface,

and the best result that is not based on a direct combination of two other methods is underlined.

the old one is considered to be “overlearned”. (2)

The frequency of the word form plays no role in

evaluation; rare and common forms are equally

likely to be selected, and have equal weight to

the score. (3) The evaluation score is balanced F-

measure, the harmonic mean of precision and re-

call. Precision measures how many of the choices

made by the algorithm are matched in gold stan-

dard; recall measures how many of the choices

in the gold standard are matched in the proposed

analysis. (4) If the linguistic gold standard has

several alternative analysis for one word, for full

precision, it is enough that one of the alternatives

is equivalent to the proposed analysis. The same

holds the other way around for recall.

All of the principles can be also criticized. For

example, evaluation based on the full set would

provide more trustworthy estimates, and common

word forms are more significant in any practical

application. However, the third and the fourth

principle have problems that can be considered to

be more serious.

Balanced F-measure favors methods that are

able to get near-to-equal precision and recall. As

many algorithms can be tuned to give either more

or less morphemes per word than in the default

case, this encourages using developments sets to

optimize the respective parameters. The winning

methods in Challenge 2009—Monson’s ParaMor-

Morfessor Union (PMU) and ParaMor-Morfessor
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Mimic (PMM) (Monson et al., 2009), and Al-

lomorfessor (Virpioja and Kohonen, 2009)—did

this, more or less explicitly.1 Moreover, it can

be argued that the precision would be more im-

portant than recall in many applications, or, more

generally, that the optimal balance between preci-

sion and recall is application dependent. We see

two solutions for this: Either the optimization for

F-measure should be allowed with a public devel-

opment set, which means moving towards semi-

supervised direction, or precision-recall curves

should be compared, which means more complex

evaluations.

The fourth principle causes problems, if the

evaluated algorithms are allowed to have alterna-

tive analyses for each word. If several alternative

analyses are provided, the obtained precision is

about the average over the individual analyses, but

the recall is based on the best of the alternatives.

This property have been exploited in Challenges

2007 and 2008 by combining the results of two

algorithms as alternative analyses. The method,

Monson’s ParaMor+Morfessor (P+M) holds still

the best position measured in F-measures in all

languages. Combining even better-performing

methods in a similar manner would increase the

scores further. To fix this problem, either the eval-

uation metric should require matching number of

alternative analyses to get the full points, or the

symmetry of the precision and recall measures has

to be removed.

Excluding the methods that combine the anal-

yses of two other methods as alternative ones, we

see that the best F-measure (underlined in Table 2)

is held by Monson’s ParaMor-Morfessor Mimic

from 2009 (Monson et al., 2009) in Turkish and

Bernhard’s method 2 from 2007 (Bernhard, 2006)

in all the other three languages. This means that

except for Turkish, there is no improvement in the

results over the three years. Furthermore, both

of the methods are based purely on segmentation,

and so are all the other top methods presented

in Table 2 except for Bordag’s methods (Bordag,

2006) and Allomorfessor (Virpioja and Kohonen,

2009).

3.1.2 Speech recognition

A key factor in the success of large-vocabulary

continuous speech recognition is the system’s abil-

1Allomorfessor was trained with a pruned data to obtain
a higher recall, whereas ParaMor-Morfessor is explicitly op-
timized for F-measure with a separate Hungarian data set.

ity to limit the search space using a statistical lan-

guage model. The language model provides the

probability of different recognition hypothesis by

using a model of the co-occurence of its words

and morphemes. A properly smoothed n-gram is

the most conventional model. The n-gram should

consist of modeling units that are suitable for the

language, typically words or morphemes.

In Morpho Challenge state-of-the-art large-

vocabulary speech recognizers have been built for

evaluations in Finnish and Turkish (Kurimo et al.,

2006). The various morpheme analysis algorithms

have been compared by measuring the recogni-

tion accuracy with different language models each

trained and optimized based on units from one of

the algorithms. The best results were quite near

to each other, but Bernhard (Bernhard, 2006) and

Morfessor Categories MAP were at the top for

both languages.

3.1.3 Information retrieval

In the information retrieval task, the algorithms

were tested by using the morpheme segmentations

for text retrieval. To return all relevant documents,

it is important to match the words in the queries to

the words in the documents irrespective of which

word forms are used. Typically, a stemming al-

gorithm or a morphological analyzer is used to re-

duce the inflected forms to their stem or base form.

The problem with these methods is that specific

rules need to be crafted for each language. How-

ever, these approaches were also tested for com-

parison purposes. The IR experiments were car-

ried out by replacing the words in the corpora and

queries by the suggested morpheme segmenta-

tions. Test corpora, queries and relevance assess-

ments were provided by Cross-Language Evalua-

tion Forum (CLEF) (Agirre et al., 2008).

To test the effect of the morpheme segmen-

tation, the number of other variables will have

to be minimized, which poses some challenges.

For example, the term weighting method will af-

fect the results and different morpheme analyz-

ers may perform optimally with different weight-

ing approaches. TFIDF and Okapi BM25 term

weighting methods have been tested. In the 2007

Challenge, it was noted that Okapi BM25 suffers

greatly if the corpus contains a lot of frequent

terms. These terms are often introduced when the

algorithms segment suffixes from stems. To over-

come this problem, a method for automatically

generating stop lists of frequent terms was intro-
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duced. Any term that occurs more times in the cor-

pus than a certain threshold is added to the stop list

and excluded from indexing. The method is quite

simple, but it treats all morpheme analysis meth-

ods equally as it does not require the algorithm

to tag which morphemes are stems and which are

suffixes. The generated stoplists are also reason-

able sized and the results are robust with respect

to the stop list cutoff parameter. With a stop list,

Okapi BM25 clearly outperformed TFIDF rank-

ing method for all algorithms. However, the prob-

lem of choosing the term weighting approach that

treats all algorithms in an optimal way remains

open.

Another challenge is analyzing the results as it

is hard to achieve statistically significant results

with the limited number of queries (50-60) that

were available. In fact, in each language 11-17 of

the best algorithms belonged to the “top group”,

that is, had no statistically different result to the

top performer of the language. To improve the

significance of the results, the number of queries

should be increased. This is a known problem in

the field of IR. However, it is important to test the

methods in a real life application and if an algo-

rithm gives good results across languages, there is

evidence that it is doing something useful.

Some conclusions can be drawn from the re-

sults. The language specific reference methods

(Porter stemming for English, two-layer morpho-

logical analysis for Finnish and German) give the

best results, but the best unsupervised algorithms

are almost at par and the differences are not signif-

icant. For German and Finnish, the best unsuper-

vised methods can also beat in a statistically sig-

nificant way the baseline of not doing any segmen-

tation or stemming. The best algorithms that per-

formed well across languages are ParaMor (Mon-

son et al., 2008), Bernhard (Bernhard, 2006), Mor-

fessor Baseline, andMcNamee (McNamee, 2008).

Comparing the results to the linguistic evalua-

tion (section 3.1.1), it seems that methods that per-

form well at the IR task tend to have good preci-

sion in the linguistic task, with exceptions. Thus,

in the IR task it seems important not to overseg-

ment words. One exception is the method (Mc-

Namee, 2008) which simply splits the words into

equal length letter n-grams. The method gives sur-

prisingly good results in the IR task, given the sim-

plicity, but suffers from low precision in the lin-

guistic task.

3.1.4 Machine translation

In phrase-based statistical machine translation

process there are two stages where morpheme

analysis and segmentation of the words into mean-

ingful sub-word units is needed. The first stage

is the alignment of the parallel sentences in the

source and target language for training the transla-

tion model. The second one is training a statistical

language model for the production of fluent sen-

tences in a morphologically rich target language.

In the machine translation tasks used in the

Morpho Challenge, the focus has so far been in

the alignment problem. In the evaluation tasks in-

troduced in 2009 the language-pairs were Finnish-

English and German-English. To obtain state-of-

the-art results, the evaluation consists of minimum

Bayes risk (MBR) combination of two transla-

tion systems trained on the same data, one us-

ing words and the other morphemes as the ba-

sic modeling units (de Gispert et al., 2009). The

various morpheme analysis algorithms are com-

pared by measuring the translation performance

for different two-model combinations where the

word-based model is always the same, but the

morpheme-based model is trained based on units

from each of the algorithms in turns.

Because the machine translation evaluation has

yet been tried only in 2009, it is difficult to draw

conclusions about the results yet. However, the

Morfessor Baseline algorithm seems to be partic-

ularly difficult to beat both in Finnish-German and

German-English task. The differences between

the best results are small, but the ranking in both

tasks was the same: 1. Morfessor Baseline, 2. Al-

lomorfessor, 3. The linguistic gold standard mor-

phemes (Kurimo et al., 2009b).

3.2 Evaluated algorithms

This section attempts to describe very briefly some

of the individual morpheme analysis algorithms

that have been most successful in the evaluations.

Morfessor Baseline (Creutz and Lagus, 2002):

This is a public baseline algorithm based on jointly

minimizing the size of the morph codebook and

the encoded size of the all the word forms using

the minimum description length MDL cost func-

tion. The performance is above average for all

evaluated tasks in most languages.

Allomorfessor (Kohonen et al., 2009; Virpi-

oja and Kohonen, 2009): The development of

this method was based on the observation that the
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Figure 1: Mean Average Precision (MAP) values for some of the best algorithms over the years in the IR

task. The upper horizontal line shows the “goal level” for each language, i.e. the performance of the best

language specific reference method. The lower line shows the baseline reference of doing no stemming

or analysis.

morph level surface forms of one morpheme are

often very similar and the differences occur close

to the morpheme boundary. Thus, the allomor-

phemes could be modeled by simple mutations.

It has been implemented on top of the Morfessor

Baseline using maximum a posteriori (MAP) opti-

mization. This model slightly improves the perfor-

mance in the linguistic evaluation in all languages

(Kurimo et al., 2009b), but in IR and SMT there is

no improvement yet.

Morfessor Categories MAP (Creutz and La-

gus, 2005): In this method hidden Markov models

are used to incorporate morphotactic categories for

theMorfessor Baseline. The structure is optimized

by MAP and yields slight improvements in the lin-

guistic evaluation for most languages, but not for

IR or SMT tasks.

Bernhard (Bernhard, 2006): This has been one

of the best performing algorithms in Finnish, En-

glish and German linguistic evaluation and in IR

(Kurimo et al., 2008). First a list of the most likely

prefixes and suffixes is extracted and alternative

segmentations are generated for the word forms.

Then the best ones are selected based on cost func-

tions that favour most frequent analysis and some

basic morphotactics.

Bordag (Bordag, 2006): This method applies

iterative LSV and clustering of morphs into mor-

phemes. The performance in the linguistic eval-

uation is quite well for Turkish and decent for

Finnish (Kurimo et al., 2008).

ParaMor (Monson et al., 2008): This method

applies an unsupervised model for inflection rules

and suffixation for the stems by building linguisti-

cally motivated paradigms. It has obtained one of

the top performances for all languages when com-

bined with the Morfessor Baseline (Kurimo et al.,

2009a). Various combination methods have been

tested: union, weighted probabilistic average and

proposing both the analyses (Monson et al., 2009).

Lignos (Lignos et al., 2009): This method is

based on the observation that the derivation of

the inflected forms can be modeled as transfor-

mations. The best transformations can be found

by optimizing the simplicity and frequency. This

method performs much better in English than in

the other languages (Kurimo et al., 2009b).

Promodes (Spiegler et al., 2009): This method

presents a probabilistic generative model that ap-

plies LSV and combines multiple analysis using a

committee. It seems to generate a large amount

of short morphemes, which is difficult for many

of the practical applications. However, it obtained

the best performance for the linguistic evaluation

in Arabic 2009 (Kurimo et al., 2009b), but did not

survive as well in other languages, and particularly

not in the IR application.

4 Open questions and challenges

Although more than 50 algorithms have already

been tested in the Morpho Challenge evaluations

and many lessons have been learned from the re-

sults and discussions, many challenges are still

open and untouched. In fact, the attempts to solve

the problem have perhaps produced even more

open questions than there were in the beginning.
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The main new and open challenges are described

in this section.

What is the best analysis algorithm? Some

of the suggested algorithms have produced good

test results and some even in several tasks and lan-

guages, such as Bernhard (Bernhard, 2006), Mon-

son ParaMor+Morfessor (Monson et al., 2008)

and Allomorfessor (Virpioja and Kohonen, 2009).

However, none of the methods perform really well

in all the evaluation tasks and languages and their

mutual performance differences are often rather

small, even though the morphemes and the al-

gorithmic principles are totally different. Thus,

no dominant morpheme analysis algorithm have

been found. Furthermore, reaching the perfor-

mance level that rivals, or even sometimes domi-

nates, the rule-based and language-dependent ref-

erence methods does not mean that the solutions

are sufficient. Often the limited coverage or un-

suitable level of details in the analysis for the task

in the reference methods just indicates that they

are not sufficient either and better solutions are

needed. Another observation which complicates

the finding and determination of the best algorithm

is that in some tasks, such as statistical language

models for speech recognition, very different al-

gorithms can reach the same performance, because

advanced modelling methods can compensate for

unsuitable morpheme analysis.

What is the meaning of the morphemes? In

some of the fundamental applications of mor-

pheme analysis, such as text understanding, mor-

pheme segmentation alone is only part of the solu-

tion. Even more important is to find the meaning

for the obtained morphemes. The extension of the

segmentation of words into smaller units to iden-

tification of the units that correspond to the same

morpheme is a step taken to this direction, but the

question of the meaning of the morpheme is still

open. However, in the unsupervised way of learn-

ing, solutions to this may be so tightly tied to the

applications that much more complex evaluations

would be needed.

How to evaluate the alternative analyses? It

is clear that when a word form is separated from

the sentence context where it was used, the mor-

pheme analysis easily becomes ambiguous. In the

Morpho Challenge evaluations this has been taken

into account by allowing multiple alternative anal-

yses. However, in some evaluations, for exam-

ple, in the measurement of the recall of the gold

standard morphemes, this leads to unwanted re-

sults and may favour methods that always provide

a large number of alternative analysis.

How to improve the analysis using context?

A natural way to disambiguate the analysis in-

volves taking the sentence context into account.

Some of the Morpho Challenge evaluations, for

example, the information retrieval, allow this op-

tion when the source texts and queries are given.

However, this has not been widely tried yet by

the participants, probably because of the increased

computational complexity of the modelling task.

How to effectively apply semi-supervised

learning? In semi-supervised learning, a small set

of labeled data in the form of gold standard anal-

ysis for the word forms are provided. This data

can be used for improving the unsupervised solu-

tions based on unlabeled data in several ways: (1)

The labeled data is used for tuning some learning

parameters, followed by an unsupervised learning

process for the unlabeled data. (2) The labeled

morphemes are used as an ideal starting point

to bootstrap the learning on the unlabeled words

(self-training). (3) Using the EM algorithm for es-

timating a generative model, the unlabeled cases

can be treated as missing data.

The best and most practical way of using the

partly labeled data will be determined in future

when the semi-supervised task has been evaluated

in the future Morpho Challenge evaluations. For

the first time this task will be evaluated in the on-

going Morpho Challenge 2010.
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