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Abstract

Hierarchical Hidden Markov Model

(HHMM) parsers have been proposed as

psycholinguistic models due to their broad

coverage within human-like working

memory limits (Schuler et al., 2008) and

ability to model human reading time

behavior according to various complexity

metrics (Wu et al., 2010). But HHMMs

have been evaluated previously only with

very wide beams of several thousand

parallel hypotheses, weakening claims to

the model’s efficiency and psychological

relevance. This paper examines the effects

of varying beam width on parsing accu-

racy and speed in this model, showing that

parsing accuracy degrades gracefully as

beam width decreases dramatically (to 2%
of the width used to achieve previous top

results), without sacrificing gains over a

baseline CKY parser.

1 Introduction

Probabilistic parsers have been successful at ac-

curately estimating syntactic structure from free

text. Typically, these systems work by consider-

ing entire sentences (or utterances) at once, using

dynamic programming to obtain globally optimal

solutions from locally optimal sub-parses.

However, these methods usually do not attempt

to conform to human-like processing constraints,

e.g. leading to center embedding and garden path

effects (Chomsky and Miller, 1963; Bever, 1970).

For systems prioritizing accurate parsing perfor-

mance, there is little need to produce human-like

errors. But from a human modeling perspective,

the success of globally optimized whole-utterance

models raises the question of how humans can ac-

curately parse linguistic input without access to

this same global optimization. This question cre-

ates a niche in computational research for models

that are able to parse accurately while adhering as

closely as possible to human-like psycholinguistic

constraints.

Recent work on incremental parsers includes

work on Hierarchical Hidden Markov Model

(HHMM) parsers that operate in linear time by

maintaining a bounded store of incomplete con-

stituents (Schuler et al., 2008). Despite this seem-

ing limitation, corpus studies have shown that

through the use of grammar transforms, this parser

is able to cover nearly all sentences contained in

the Penn Treebank (Marcus et al., 1993) using a

small number of unconnected memory elements.

But this bounded-memory parsing comes at a

price. The HHMM parser obtains good coverage

within human-like memory bounds only by pur-

suing an ‘optionally arc-eager’ parsing strategy,

nondeterministically guessing which constituents

can be kept open for attachment (occupying an ac-

tive memory element), or closed for attachment

(freeing a memory element for subsequent con-

stituents). Although empirically determining the

number of parallel competing hypotheses used in

human sentence processing is difficult, previous

results in computational models have shown that

human-like behavior can be elicited at very low

levels of parallelism (Boston et al., 2008b; Brants

and Crocker, 2000), suggesting that large num-

bers of active hypotheses are not needed. Previ-

ously, the HHMM parser has only been evaluated

on large beam widths, leaving this aspect of its

psycholinguistic plausibility untested.

In this paper, the performance of an HHMM

parser will be evaluated in two experiments that
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vary the amount of parallelism allowed during

parsing, measuring the degree to which this de-

grades the system’s accuracy. In addition, the

evaluation will compare the HHMM parser to an

off-the-shelf probabilistic CKY parser to evaluate

the actual run time performance at various beam

widths. This serves two purposes, evaluating one

aspect of the plausibility of this parsing frame-

work as a psycholinguistic model, and evaluating

its potential utility as a tool for operating on un-

segmented text or speech.

2 Related Work

There are several criteria a parser must meet

in order to be plausible as a psycholinguistic

model of the human sentence-processing mecha-

nism (HSPM).

Incremental operation is perhaps the most obvi-

ous. The HSPM is able to process sentences in-

crementally, meaning that at each point in time of

processing input, it has some hypothesis of the in-

terpretation of that input, and each subsequent unit

of input serves to update that hypothesis.

The next criterion for psycholinguistic plausi-

bility is processing efficiency. The HSPM not

only operates incrementally, but in standard op-

eration it does not lag behind a speaker, even if,

for example, the speaker continues speaking at ex-

tended length without pause. Standard machine

approaches, such as chart parsers based on the

CKY algorithm, operate in worst-case cubic run

time on the length of input. Without knowing

where an utterance or sentence might end, such an

algorithm will take more time with each succes-

sive word and will eventually fall behind.

The third criterion is a reasonable limiting of

memory resources. This constraint means that the

HSPM, while possibly considering multiple hy-

potheses in parallel, is not limitlessly so, as evi-

denced by the existence of garden path sentences

(Bever, 1970; Lewis, 2000). If this were not the

case, garden-path sentences would not cause prob-

lems, as reaching the disambiguating word would

simply result in a change in the favored hypothe-

sis. In fact, garden path sentences typically cannot

be understood on a first pass and must be reread,

indicating that the correct analysis is attainable

and yet not present in the set of parallel hypotheses

of the first pass.

While parsers meeting these three criteria can

claim to not violate any psycholinguistic con-

straints, there has been much recent work in

testing psycholinguistically-motivated parsers to

make forward predictions about human sentence

processing, in order to provide positive evidence

for certain probabilistic parsing models as valid

psycholinguistic models of sentence processing.

This work has largely focused on correlating mea-

sures of parsing difficulty in computational models

with delays in reading time in human subjects.

Hale (2001) introduced the surprisal metric for

probabilistic parsers, which measures the log ra-

tio of the total probability mass at word t− 1
and word t. In other words, it measures how

much probability was lost in incorporating the

next word into the current hypotheses. Boston et

al. (2008a) show that surprisal is a significant pre-

dictor of reading time (as measured in self-paced

reading experiments) using a probabilistic depen-

dency parser. Roark et al. (2009) dissected parsing

difficulty metrics (including surprisal and entropy)

to separate out the effects of syntactic and lexical

difficulties, and showed that these new metrics are

strong predictors of reading difficulty.

Wu et al. (2010) evaluate the same Hierarchical

Hidden Markov Model parser used in this work in

terms of its ability to reproduce human-like results

for various complexity metrics, including some of

those mentioned above, and introduce a new met-

ric called embedding difference. This metric is

based on the idea of embedding depth, which is

the number of elements in the memory store re-

quired to hold a given hypothesis. Using more

memory elements corresponds to center embed-

ding in phrase structure trees, and presumably cor-

relates to some degree with complexity. Average

embedding for a time step is computed by com-

puting the weighted average number of required

memory elements (weighted by probability) for all

hypotheses on the beam. Embedding difference is

simply the change in this value when the next word

is encountered.

Outside of Wu et al., the most similar work

from a modeling perspective is an incremen-

tal parser implemented using Cascaded Hidden

Markov Models (CHMMs) (Crocker and Brants,

2000). This model is superficially similar to the

Hierarchical Hidden Markov Models described

below in that it relies on multiple levels of interde-

pendent HMMs to account for hierarchical struc-

ture in an incremental model. Crocker and Brants

use the system to parse ambiguous sentences (such
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as the athlete realized his goals were out of reach)

and examine the relative probabilities of two plau-

sible analyses at each time step. They then show

that the shifting of these two probabilities is con-

sistent with empirical evidence about how humans

perceive these sentences word by word.

However, as will be described below, the

HHMM has advantages over the CHMM from

a psycholinguistic modeling perspective. The

HHMM uses a limited memory store contain-

ing only four elements which is consistent with

many estimates of human short term memory lim-

its (Cowan, 2001; Miller, 1956). In addition to

modeling memory limits, the limited store acts as

a fixed-depth stack that ensures linear asymptotic

parsing time, and a grammar transform allows for

wide coverage of speech and newspaper corpora

within that limited memory store (Schuler et al.,

2010).

3 Hierarchical Hidden Markov Model

Parser

Hidden Markov Models (HMMs) have long been

used to successfully model sequence data in which

there is a latent (hidden) variable at each time step

that generates the observed evidence at that time

step. These models are used for such applications

as part-of-speech tagging, and speech recognition.

Hierarchical Hidden Markov Models (HH-

MMs) are an extension of HMMs which can rep-

resent sequential data containing hierarchical rela-

tions. In HHMMs, complex hidden variables may

output evidence for several time steps in sequence.

This process may recurse, though a finite depth

is required to make any guarantees about perfor-

mance. Murphy and Paskin (2001) showed that

this model could be framed as a Dynamic Bayes

Network (DBN), so that inference is linear on the

length of the input sequence.

In the HHMM parser used here, the complex

hidden variables are syntactic states that gener-

ate sub-sequences of other syntactic states, even-

tually generating pre-terminals and words. This

section will describe how the trees must be trans-

formed, and then mapped to HHMM states. This

section will then continue with a formal definition

of an HHMM, followed by a description of how

this model can parse natural language, and finally

a discussion of what different aspects of the model

represent in terms of psycholinguistic modeling.

3.1 Right-Corner Transform

In order to parse with an HHMM, phrase struc-

ture trees need to be mapped to a hierarchical se-

quence of states of nested HMMs. Since Mur-

phy and Paskin showed that the run time complex-

ity of the HHMM is exponential on the depth of

the nested HMMs, it is important to minimize the

depth of the model for optimal performance. In

order to do this, a tree transformation known as

a right-corner transform is applied to the phrase

structure trees comprising the training data, to

transform right-expanding sequences of complete

constituents into left-expanding sequences of in-

complete constituents Aη/Aµ, consisting of an in-

stance of an active constituent Aη lacking an in-

stance of an awaited constituent Aµ yet to be rec-

ognized. This transform can be defined as a syn-

chronous grammar that maps every context-free

rule expansion in a source tree (in Chomsky Nor-

mal Form) to a corresponding expansion in a right-

corner transformed tree:1

• Beginning case: the top of a right-expanding

sequence in an ordinary phrase structure tree

is mapped to the bottom of a left-expanding

sequence in a right-corner transformed tree:

Aη

Aη·0

α

Aη·1

β

⇒

Aη

Aη/Aη·1

Aη·0

α

β

(1)

• Middle case: each subsequent branch in

a right-expanding sequence of an ordinary

phrase structure tree is mapped to a branch in

a left-expanding sequence of the transformed

tree:

Aη

α Aη·µ

Aη·µ·0

β

Aη·µ·1

γ

⇒

Aη

Aη/Aη·µ·1

Aη/Aη·µ

α

Aη·µ·0

β

γ

(2)

• Ending case: the bottom of a right-expanding

sequence in an ordinary phrase structure tree

1Here, η and µ are tree node addresses, consisting of se-
quences of zeros, representing left branches, and ones, repre-
senting right branches, on a path from the root of the tree to
any given node.
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Figure 1: Sample right-corner transform of

schematized tree before (a) and after (b) applica-

tion of transform.

is mapped to the top of a left-expanding se-

quence in a right-corner transformed tree:

Aη

α Aη·µ

aη·µ

⇒

Aη

Aη/Aη·µ

α

Aη·µ

aη·µ

(3)

The application of this transform is exemplified in

Figure 1.

3.2 Hierarchical Hidden Markov Models

Right-corner transformed trees are mapped to ran-

dom variables in a Hierarchical Hidden Markov

Model (Murphy and Paskin, 2001).

A Hierarchical Hidden Markov Model

(HHMM) is essentially a factored version of

a Hidden Markov Model (HMM), configured to

recognize bounded recursive structures (i.e. trees).

Like HMMs, HHMMs use Viterbi decoding to

obtain sequences of hidden states ŝ1..T given

sequences of observations o1..T (words or audio

features), through independence assumptions

in a transition model ΘA and an observation

model ΘB (Baker, 1975; Jelinek et al., 1975):

ŝ1..T
def
= argmax

s1..T

T
∏

t=1

PΘA
(st | st−1) · PΘB

(ot | st)

(4)

HHMMs then factor the hidden state transitionΘA

into a reduce and shift phase (Equation 5), then

into a bounded set of depth-specific operations

(Equation 6):

PΘA
(st|st–1) =

∑

rt

PΘR
(rt|st–1)·PΘS

(st|rt st–1)

(5)

def
=

∑

r1..D
t

D
∏

d=1

PΘR,d
(rd

t | r
d+1
t sd

t–1s
d–1
t–1 )·

PΘS,d
(sd

t |r
d+1
t rd

t sd
t–1s

d–1
t )

(6)

which allow depth-specific variables to reduce

(through ΘR-Rdn,d), transition (ΘS-Trn,d), and ex-

pand (ΘS-Exp,d) like tape symbols in a pushdown

automaton with a bounded memory store, depend-

ing on whether the variable below has reduced

(rd
t ∈RG) or not (r

d
t 6∈RG):

2

PΘR,d
(rd

t | r
d+1
t sd

t−1s
d−1
t−1 )

def
=

{

if rd+1
t 6∈RG : Jrd

t =r⊤K

if rd+1
t ∈RG : PΘR-Rdn,d

(rd
t | r

d+1
t sd

t−1 sd−1
t−1 )

(7)

PΘS,d
(sd

t | r
d+1
t rd

t sd
t−1s

d−1
t )

def
=







if rd+1
t 6∈RG, rd

t 6∈RG : Jsd
t =sd

t−1K

if rd+1
t ∈RG, rd

t 6∈RG : PΘS-Trn,d
(sd

t | r
d+1
t rd

t sd
t−1s

d−1
t )

if rd+1
t ∈RG, rd

t ∈RG : PΘS-Exp,d
(sd

t | s
d−1
t )

(8)

where s0
t = s⊤ and rD+1

t = r⊥ for constants s⊤

(an incomplete root constituent), r⊥ (a complete

lexical constituent) and r⊤ (a null state resulting

from reduction failure) s.t. r⊥∈RG and r⊤ 6∈RG.

Right-corner transformed trees, as exemplified

in Figure 1(b), can then be aligned to HHMM

states as shown in Figure 2, and used to train an

HHMM as a parser.

Parsing with an HHMM simply involves pro-

cessing the input sequence, and estimating a most

likely hidden state sequence given this observed

input. Since the output is to be the best possible

parse, the Viterbi algorithm is used, which keeps

track of the highest probability state at each time

step, where the state is the store of incomplete syn-

tactic constituents being processed. State transi-

tions are computed using the models above, and

each state at each time step keeps a back pointer to

the state it most probably came from. Extracting

the highest probability parse requires extracting

2Here, J·K is an indicator function: JφK = 1 if φ is true, 0
otherwise.
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Figure 2: Mapping of schematized right-corner

tree into HHMM memory elements.

the most likely sequence, deterministically map-

ping that sequence back to a right-corner tree, and

reversing the right-corner transform to produce an

ordinary phrase structure tree.

Unfortunately exact inference is not tractable

with this model and dataset. The state space is

too large to manage for both space and time rea-

sons, and thus approximate inference is carried

out, through the use of a beam search. At each

time step, only the top N most probable hypoth-

esized states are maintained. Experiments de-

scribed in (Schuler, 2009) suggest that there does

not seem to be much lost in going from exact in-

ference using the CKY algorithm to a beam search

with a relatively large width. However, the op-

posite experiment, examining the effect of going

from a relatively wide beam to a very narrow beam

has not been thoroughly studied in this parsing ar-

chitecture.

4 Optionally Arc-eager Parsing

The right-corner transform described in Sec-

tion 3.1 saves memory because it transforms any

right-expanding sequence with left-child subtrees

into a left-expanding sequence of incomplete con-

stituents, with the same sequence of subtrees as

right children. The left-branching sequences of

siblings resulting from this transform can then be

composed bottom-up through time by replacing

each left child category with the category of the

resulting parent, within the same memory element

(or depth level). For example, in Figure 3(a) a

left-child category NP/NP at time t=4 is composed

with a noun new of category NP/NNP (a noun

phrase lacking a proper noun yet to come), result-

ing in a new parent category NP/NNP at time t=5
replacing the left child category NP/NP in the top-

most d=1 memory element.

This in-element composition preserves ele-

ments of the bounded memory store for use in pro-

cessing descendants of this composed constituent,

yielding the human-like memory demands re-

ported in (Schuler et al., 2008). But whenever

an in-element composition like this is hypothe-

sized, it isolates an intermediate constituent (in

this example, the noun phrase ‘new york city’)

from subsequent composition. Allowing access

to this intermediate constituent — for example,

to allow ‘new york city’ to become a modifier

of ‘bonds’, which itself becomes an argument of

‘for’ — requires an analysis in which the interme-

diate constituent is stored in a separate memory

element, shown in Figure 3(b). This creates a lo-

cal ambiguity in the parser (in this case, from time

step t=4) that may have to be propagated across

several words before it can be resolved (in this

case, at time step t=7). This is essentially an am-

biguity between arc-eager (in-element) and arc-

standard (cross-element) composition strategies,

as described by Abney and Johnson (1991). In

contrast, an ordinary (purely arc-standard) parser

with an unbounded stack would only hypothesize

analysis (b), avoiding this ambiguity.3

The right-corner HHMM approach described

in this paper relies on a learned statistical model

to predict when in-element (arc-eager) compo-

sitions will occur, in addition to hypothesizing

parse trees. The model encodes a mixed strategy:

with some probability arc-eager or arc-standard

for each possible expansion. Accuracy results on

a right-corner HHMM model trained on the Penn

Wall Street Journal Treebank suggest that this kind

of optionally arc-eager strategy can be reliably sta-

tistically learned.

By placing firm limits on the number of open

incomplete constituents in working memory, the

Hierarchical HMM parser maintains parallel hy-

potheses on the beam which predict whether each

constituent will host a subsequent attachment or

not. Empirical results described in the next section

3It is important to note that neither the right-corner nor
left-corner parsing strategy by itself creates this ambiguity.
The ambiguity arises from the decision to use this option-
ally arc-eager strategy to reduce memory store allocation in
a bounded memory parser. Implementations of left-corner
parsers such as that of Henderson (2004) adopt a arc-standard
strategy, essentially always choosing analysis (b) above, and
thus do not introduce this kind of local ambiguity. But in
adopting this strategy, such parsers must maintain a stack
memory of unbounded size, and thus are not attractive as
models of human parsing in short-term memory (Resnik,
1992).
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Figure 3: Alternative analyses of ‘strong demand for new york city ...’: a) using in-element composition,

compatible with ‘strong demand for new york city is ...’ (in which the demand is for the city); and b)

using cross-element (or delayed) composition, compatible with either ‘strong demand for new york city

is ...’ (in which the demand is for the city) or ‘strong demand for new york city bonds is ...’ (in which a

forthcoming referent — in this case, bonds — is associated with the city, and is in demand). In-element

composition (a) saves memory but closes off access to the noun phrase headed by ‘city’, and so is not

incompatible with the ‘...bonds’ completion. Cross-element composition (b) requires more memory,

but allows access to the noun phrase headed by ‘city’, so is compatible with either completion. This

ambiguity is introduced at t=4 and propagated until at least t=7. An ordinary, non-right-corner stack

machine would exclusively use analysis (b), avoiding ambiguity.

show that this added demand on parallelism does

not substantially degrade parsing accuracy, even at

very narrow beam widths.

5 Experimental Evaluation

The parsing model described in Section 3 has

previously been evaluated on the standard task

of parsing the Wall Street Journal section of the

Penn Treebank. This evaluation was optimized

for accuracy results, and reported a relatively wide

beam width of 2000 to achieve its best results.

However, most psycholinguistic models of the hu-

man sentence processing mechanism suggest that

if the HSPM does work in parallel, it does so with

a much lower number of concurrent hypotheses

(Boston et al., 2008b). Viewing the HHMM pars-

ing framework as a psycholinguistic model, a nec-

essary (though not sufficient) condition for it being

a valid model is that it be able to maintain rela-

tively accurate parsing capabilities even at much

lower beam widths.

Thus, the first experiments in this paper evalu-

ate the degradation of parsing accuracy depending

on beam width of the HHMM parser. Experiments

were conducted again on the WSJ Penn Treebank,

using sections 02-21 to train, and section 23 as the

test set. Punctuation was included in both train-

ing and testing. A set of varied beam widths were

considered, from a high of 2000 to a low of 15.

This range was meant to roughly correspond to

the range of parallelism used in other similar ex-

periments, using 2000 as a high end due to its us-

age in previous parsing experiments. However, it

should be noted that in fact the highest value of

2000 is already an approximate search – prelim-

inary experiments showed that exhaustive search

with the HHMM would require more than 100000

elements per time step (exact values may be much

higher but could not be collected because they ex-

hausted system memory).

The HHMM parser was compared to a custom

built (though standard) probabilistic CKY parser

implementation trained on the CNF trees used as

input to the right-corner transform, so that the

CKY parser was able to compete on a fair foot-

ing. The accuracy results of these experiments are

shown in Figure 4.

These results show fairly graceful decline in

parsing accuracy with a beam width starting at

2000 elements down to about 50 beam elements.

This beam width is much less than 1% of the ex-

haustive search, though it is around 1% of what

might be considered the highest reasonable beam

width for efficient parsing. The lowest beam

widths attempted, 15, 20, and 25, result in ac-

curacy below that of the CKY parser. The low-

est beam width attempted, 15, shows the sharpest

decline in accuracy, putting the HHMM system

nearly 8 points below the CKY parser in terms of

accuracy.

This compares reasonably well to results by
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Figure 4: Plot of parsing accuracy (labeled F-

score) vs. beam widths for an HHMM parser

(curved line). Top line is HHMM accuracy with

beam width of 2000 (upper bound). The bottom

line is CKY parser results. Points correspond to

beam widths of 15, 20, 25, 50, 100, 250, and 500.

Brants and Crocker (2000) showing that an in-

cremental chart-parsing algorithm can parse accu-

rately with pruning down to 1% of normal memory

usage. While that parsing algorithm is difficult to

compare directly to this HHMM parser, the reduc-

tion in beam width in this system to 50 beam el-

ements from an already approximated 2000 beam

elements shows similar robustness to approxima-

tion. Accuracy comparisons should be taken with

a grain of salt due to additional annotations per-

formed to the Treebank before training, but the

HHMM parser with a beam width of 50 obtains

approximately the same accuracy as the Brants

and Crocker incremental CKY parser pruning to

3% of chart size. At 1% pruning, Brants and

Crocker achieved around 75% accuracy, which

falls between the HHMM parser at beam widths

of 20 and 25.

Results by Boston et al. (2008b) are also dif-

ficult to compare directly due to a difference in

parsing algorithm and different research priority

(that paper was attempting to correlate parsing dif-

ficulty with reading difficulty). However, that pa-

per showed that a dependency parser using less

than ten beam elements (and as few as one) was

just as capable of predicting reading difficulty as

the parser using 100 beam elements.

A second experiment was conducted to eval-

uate the HHMM for its time efficiency in pars-

ing. This experiment is intended to address two

questions: Whether this framework is efficient
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Figure 5: Plot of parsing time vs. sentence length

for HHMM and CKY parsers.

enough to be considered a viable psycholinguis-

tic model, and whether its parsing time and accu-

racy remain competitive with more standard cu-

bic time parsing technologies at low beam widths.

To evaluate this aspect, the HHMM parser was

run at low beam widths on sentences of varying

lengths. The baseline was the widely-used Stan-

ford parser (Klein and Manning, 2003), run in

‘vanilla PCFG’ mode. This parser was used rather

than the custom-built CKY parser from the pre-

vious experiment, to avoid the possibility that its

implementation was not efficient enough to pro-

vide a realistic test. The HHMMparser was imple-

mented as described in the previous section. These

experiments were run on a machine with a single

2.40 GHz Celeron CPU, with 512 MB of RAM. In

both implementations the parser timing includes

only time spent actually parsing sentences, ignor-

ing the overhead incurred by reading in model files

or training.

Figure 5 shows a plot of parsing time versus

sentence length for the HHMM parser for a beam

width of 20. Sentences shorter than 10 words were

not included for visual clarity (both parsers are ex-

tremely fast at that length). At this beam width,

the performance of the HHMM parser (labeled F-

score) was 74.03%, compared to 71% for a plain

CKY parser. As expected, the HHMM parsing

time increases linearly with sentence length, while

the CKY parsing time increases super-linearly.

(However, due to high constants in the run time

complexity of the HHMM, it was not a priori clear

that the HHMM would be faster for any sentence

of reasonable length.)
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The results of this experiment show that the

HHMM parser is indeed competitive with a proba-

bilistic CKY parser, in terms of parsing efficiency,

even while parsing with higher accuracy. At sen-

tences longer that 26 words (including punctua-

tion), the HHMM parser is faster than the CKY

parser. This advantage is clear for segmented text

such as the Wall Street Journal corpus. However,

this advantage is compounded when considering

unsegmented or ambiguously segmented text such

as transcribed speech or less formal written text, as

the HHMM parser can also make decisions about

where to put sentence breaks, and do so in linear

time.4

6 Conclusion and Future Work

This paper furthers the case for the HHMM as a

viable psycholinguistic model of the human pars-

ing mechanism by showing that performance de-

grades gracefully as parallelism decreases, provid-

ing reasonably accurate parsing even at very low

beam widths. In addition, this work shows that

an HHMM parser run at low beam widths is com-

petitive in speed with parsers that don’t work in-

crementally, because of its asymptotically linear

runtime.

This is especially surprising given that the

HHMM uses parallel hypotheses on the beam to

predict whether constituents will remain open for

attachment or not. Success at low beam widths

suggests that this optionally arc-eager prediction

is something that is indeed relatively predictable

during parsing, lending credence to claims of psy-

cholinguistic relevance of HHMM parsing.

Future work should explore further directions

in improving parsing performance at low beam

widths. The lowest beam value experiments

presented here generally parsed fairly accurately

when they completed, but were already encounter-

ing problems with unparseable sentences that neg-

atively affected parser accuracy. The large accu-

racy decrease between beam sizes of 20 and 15 is

likely to be mostly due to the lack of any correct

analysis on the beam when the sentence is com-

pleted.

It should be noted, however, that no adjustments

were made to the parser’s syntactic model with

these beam variations. This syntactic model was

optimized for accuracy at the standard beam width

4It does this probabilistically as a side effect of the pars-
ing, by choosing an analysis in which r0

t ∈ RG (for any t).

of 2000, and thus contains some state splittings

that are beneficial at wide beam widths, but at

low beam widths are redundant and prevent oth-

erwise valid hypotheses from being maintained on

the beam. For applications in which speed is a

priority, future research can evaluate tradeoffs in

accuracy that occur at different beam widths with

a coarser-grained syntactic representation that al-

lows for more variation of hypotheses even on

very small beams.
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