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Fürstengraben 30, 07743 Jena, Germany

http://www.julielab.de

Abstract

Among the many proposals to promote al-
ternatives to costly to create gold stan-
dards, just recently the idea of a fully au-
tomatically, and thus cheaply, to set up sil-
ver standard has been launched. However,
the current construction policy for such a
silver standard requires crucial parameters
(such as similarity thresholds and agree-
ment cut-offs) to be seta priori, based on
extensive testing though, at corpus com-
pile time. Accordingly, such a corpus is
static, once it is released. We here propose
an alternative policy where silver stan-
dards can be dynamically optimized and
customized on demand (given a specific
goal function) using a gold standard as an
oracle.

1 Introduction

Training natural language systems which rely on
(semi-)supervised machine learning algorithms,
or measuring the systems’ performance requires
some standardized ground truth from which one
can learn or against which one evaluate, respec-
tively. Usually, a manually craftedgold stan-
dard is provided that is generated by human lan-
guage or domain experts after lots of iterative,
guideline-based training rounds. This procedure is
expensive, slow and yields only small, yet highly
trustable, amounts of meta data – because human
experts are in the loop.

In the CALBC project,1 an alternative ap-
proach is currently under investigation (Rebholz-
Schuhmann et al., 2010a). The basic idea is to
generate the much needed ground truth automati-
cally. This is achieved by letting a flock of named
entity taggers run on a corpus, without impos-
ing any restriction on the type(s) being annotated.

1http://www.calbc.eu

The (most likely) heterogeneous results are auto-
matically homogenized subsequently, thus yield-
ing a consensus-based, machine-generated ground
truth. Considering the possible benefits (e.g., the
positive experience from boosting-style machine
learners (Freund, 1990)), but also being aware of
the possible drawbacks (varying quality of the dif-
ferent systems, skewed coverage of entity types,
different types of guidelines on which they were
trained, etc.), the CALBC consortium refers to
the outcome of this process as asilver standard
(Rebholz-Schuhmann et al., 2010a). This proce-
dure is inexpensive, fast, yields huge amounts of
meta data – because computers are in the loop –
but after all its applicability and validity has yet to
be determined experimentally.

The first silver standard corpus (SSC) that came
out of the CALBC project was generated by the
four main partners’ named entity taggers.2 The
various contributions covered, among others, an-
notations for genes and proteins, chemicals, dis-
eases, etc (Rebholz-Schuhmann et al., 2010b). Af-
ter the submission of their runs, the SSC was gen-
erated by, first, harmonizing stretches of text in
terms of entity mention identification and, second,
by mapping these normalized mentions to agreed-
upon type systems (such as the MESH Semantic
Groups as described by Bodenreider and McCray
(2003) for entity type normalization). Basically,
the harmonization steps included rules when en-
tity mentions were considered to match or overlap
(using a cosine-based similarity criterion) and en-
tity types referred to the same class. For consensus
generation, finally, simple rules for majority votes
were established.

The CALBC consortium is fully aware of the
fact that the value of an SSC can only be assessed

2The CALBC consortium consists the Rebholz Group
from EBI (Hinxton, U.K.), the Biosemantics Group from
Erasmus (Rotterdam, The Netherlands), the JULIE Lab (Jena,
Germany), and LINGUAMATICS (Cambridge, U.K.).
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by comparing, e.g., systems trained on such a sil-
ver standard with systems trained on a gold stan-
dard (preferably, though not necessarily, one that
is a subset of the document set which makes up the
SSC).

In the absence of such a gold standard, the
CALBC consortium has spent enormous efforts to
find out the most reasonable parameter settings
for, e.g., the cosine threshold (setting similar men-
tions apart from dissimilar ones) or the consen-
sus constraint (where a certain number of entity
types equally assigned by different taggers makes
one type the consensual silver one and discards all
alternative annotations). Once these criteria are
made effective, the SSC is completely fixed.

As an alternative, we are looking for a more
flexible solution. Our investigation was fuelled by
the following observations:

• The idiosyncrasies of guidelines (on which
(some) taggers were trained) do not necessar-
ily lead to semantically totally different enti-
ties although they differ literally to some de-
gree. Some guidelines prefer, e.g.,“human
IL-7 protein”, others favor“human IL-7” ,
and some lean towards“IL-7” . As the cosine
measure tends to penalize a pair such as“hu-
man IL-7 protein” and “IL-7” , we intended
to avoid such a prescriptive mode and just
look at the type assignment for single tokens
as (parts of) entity mentions. thus avoiding
inconclusive mention boundary discussions.

• While we were counting, for all tokens of
the document set, the votes a single token re-
ceived from different taggers in terms of an-
notating this token with respect to some type,
we generated confidence data for meta data
assignments. Incorporating the distribution
of confidence values into the configuration
process, this allows us to get rid ofa pri-
ori fixed majority criteria (e.g., two or three
out of five systems must agree on this token)
which are hard to justify in an absolute way.

Summarizing, we believe that the nature of di-
verging tasks to be solved, the levels of entity type
specificity to be reached, the sort of guidelines be-
ing preferred, etc. should allow prospective users
of a silver standard tocustomizeone on their own
and not stick to one that is already prefabricated
without concrete application in mind.3

3There may be tasks where a “long” entity such as“hu-

As such an enterprise would be quite arbitrary
without a reference standard, we even go one step
further. We determine the suitability of, say, dif-
ferent voting scores and varying lexical extensions
of mentions by comparison to a gold standard so
that the ‘optimal’ configuration of a silver stan-
dard, given a set of goal-derived requirements,
can be automatically learned. In real-world ap-
plications, such gold standard annotations would
be delivered only for a fraction of the documents
contained in the entire corpus being tagged by a
flock of taggers. The gold standard is used to op-
timize parameters which are subsequently applied
to the aggregation of automatically annotated data.
Note that the gold standard is used for optimiza-
tion only, not for training. We call such a flexible,
dynamically adjustable silver standard aconfig-
urable Silver Standard Corpus(conSSC). In a sec-
ond step, we split the various conSSCs, re-trained
our NER tagger on these data sets and, by compar-
ison with the gold standard, were able to identify
the optimal conSSC for this task (which is not the
one (SSC I) made available by the CALBC consor-
tium for the first challenge round).4

2 Optimizing Silver Standards

In this section, we describe the constituent param-
eters of a wide spectrum of SSCs. Mostly, these
parameters were taken over from the design of the
SSC as developed by the CALBC project members.
Differing from that fixed SSC, we investigate the
impact of different parameter settings on the con-
struction of a collection of SSCs, and, first, eval-
uate their direct usefulness on a gold standard for
protein-gene annotations. Second, we also assess
their indirect usefulness by training NER classi-
fiers on these SSCs and evaluate the NERs’ perfor-
mance on the gold standard. Thus, our approach
is entirely data-driven without the need for human
intervention in terms of choosing suitable param-
eter settings.

Technically, we first aggregate the votes from
the flock of taggers (in our experiments, we used
the four taggers from the CALBC project members
plus a second tagger of one of the members) for
each text token (for confidence-based decisions)
or at the entity level (for cosine-based decisions),
then we determine the confidence values of these

man IL-7 protein”may be appropriate, while for another task
a short one such as“IL-7” is entirely sufficient.

4http://www.ebi.ac.uk/Rebholz-srv/
CALBC/challenge.html
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aggregated votes, and, finally, we compute the
similarity of the various SSCs with the gold stan-
dard data in terms of F-scores (both exact and open
boundaries) and accuracy on the token level.

2.1 Calibrating Consensus

The metrical interpretation of consensus will be
based on thresholded votes for semantic groups at
the token level (cf. Section 2.1.1) and a cosine-
based measure to determine contiguous stretches
of entity mentions in the text (cf. Section 2.1.2).

2.1.1 Type Confidence and Type Voting

For each text token, we determine the entity type
assignment as generated by each NER tagger
which is part of the flock of CALBC taggers.5 We
count and aggregate these votes such that each en-
tity type has an associated type count value.

We then compute the ratio of systems agree-
ing on the same single type assignment and call
this theconfidenceattributed to a particular type
for some token. The confidence value will sub-
sequently be interpreted against theconfidence
threshold[0, 1] that defines a measure of certainty
a type assignment should have in order to be ac-
cepted as consensual.

2.1.2 Cosine-based Similarity of Phrasal
Entity Mentions

As the above policy of token-wise annotation de-
couples contiguous entity mentions spanning over
more than one token, we also want to restitute this
phrasal structure. This is achieved by constructing
contiguous sequences of tokens that characterize a
phrasal entity mention at the text level to which the
same type label has been assigned. Since differ-
ent taggers tend to identify different spans of text
for the same entity type (as shown in the exam-
ple from Section 1) we have to account for similar
phrasal forms of named entity mentions.

This is achieved by constructing vectors which
represent entity mentions and by computing the
cosine between the different entity mention vec-
tors. LetE1 = T1T2T3 be an entity mention com-
prised of three tokensT1 to T3. Let E2 = T2T3 be

5Due to time constraints when we performed our experi-
ments, we make an extremely simplifying assumption: From
the whole range of possible entity types NER taggers may as-
sign to some token (cf. (Bodenreider and McCray, 2003)) we
have chosen the PRotein/GEne group for testing. Still, this
assumption does not do harm to the core of our hypotheses.
See also our discussion in Section 5.

an entity mention overlapping withE1 in the to-
kensT2 andT3. To decide whetherE1 andE2 are
considered similar, we first construct two vectors
representing the entity mentions:

v(E1) = (f1, f2, f3)
T

with fi = IDF (Ti) being the inverse document
frequency of the tokenTi. We compute the in-
verse document frequency of tokens based on the
corpus which is subject to analysis. Analogously,
we construct the vector forE2

v(E2) = (0, f2, f3)
T

filling in a zero for the IDF ofT1 since it is not
covered byE2. The entity mentionsE1 andE2

are considered equal or similar, if the cosine of
the two vectors is greater or equal a given thresh-
old, cos(v(E1), v(E2)) ≥ threshold.6 We then
compute the number of systems considering an en-
tity annotation as similar in the manner described
above. The annotation is accepted and thus en-
tered into the SSC, if a particular number of sys-
tems agree on one annotation. This approach was
previously developed by the CALBC project part-
ners (Rebholz-Schuhmann et al., 2010a).

The number of agreeing systems and the thresh-
old are the free parameters of this method and thus
subject to optimization.

2.2 Optimization of Silver Standard Corpora

In the experiments described in the next section,
we will consider alternative parametrizations for
Silver Standard Corpora, i.e., the required confi-
dence threshold or cosine threshold and the num-
ber of agreeing systems. We will then discuss two
variants for optimizing this collection of SSCs.
The first one directly uses the gold standard for op-
timization. The task will be to find that particular
parameter setting for an SSC which best fits the
data contained in the gold standard. Once these
parameters are determined they can be applied to
the complete CALBC document set (composed of
100,000 documents) to produce the final, quasi-
optimal SSC.

In another variant, we insert a classifier into this
loop. First, we train a classifier on a particular

6For final corpus creation, it must be decided which of the
matching entity mentions is entered into the reference SSC,
e.g. the longest or shortest entity annotation. In our exper-
iments, we always chose the shortest entity mention. How-
ever, preliminary experiments showed that the differences to
taking the longest entity mention were marginal.

237



SSC that is built from a particular parameter com-
bination. Next, this classifier is tested against the
gold standard. This is iterated through all parame-
ter combinations. Obviously, the best performing
classifier relative to the gold standard selects the
optimal SSC.

3 Experimental Setting

3.1 Gold Standard

We generated a new broad-coverage corpus com-
posed of 3,236 MEDLINE abstracts (35,519 sen-
tences or 941,890 tokens) dealing with gene
and protein mentions. Altogether, it comprises
57,889 named entity type annotations annotated
by one expert biologist. We created this new re-
source to have a consistent and (as far as pos-
sible) subdomain-independent protein-annotated
corpus.7

MEDLINE abstracts were annotated with (pro-
tein coding) genes, mRNAs and proteins. A
distinction was made between dedicated proteins
as they are recorded in the protein database
UNIPROT,8 protein complexes consisting of sev-
eral protein subunits (e.g., IL-2 receptor consist-
ing of α, β, andγ chain), and protein families or
groups (e.g., “transcription factors”). Also enu-
merations of proteins and protein variants were an-
notated. Discontinuous annotations were avoided
as well as nested annotations (annotations embed-
ded in other annotations). However, gene/protein
mentions nested in terms other than gene/protein
mentions were annotated (e.g., protein mentions
nested in protein function descriptions such as
“ligase” in “ligase activity” ). Modifiers such as
species designators were excluded from annota-
tions whenever possible. Gene segments or pro-
tein fragments were also not annotated.

For our experiments, we did not distinguish be-
tween the different annotation classes (see Table
1) but merged all available annotations into one
class,viz.PRotein/GEne (PRGE).

3.2 Automatic Annotation of the Gold Standard

We then asked all four sites participating in the
CALBC project to automatically annotate the given
gold standard (made available without gold data,

7We are aware of other gene/protein-annotated corpora
such as PENNBIOIE (http://bioie.ldc.upenn.
edu/) or GENIA (http://www-tsujii.is.s.
u-tokyo.ac.jp/GENIA/home/wiki.cgi) that will
have to be taken into account in future studies as well.

8http://www.uniprot.org/

semantic type description
T028 Gene or Genome
T086 Nucleotide Sequence
T087 Amino Acid Sequence,

Amino Acid, Peptide
T116 Protein
T126 Enzyme
T192 Receptor

Table 1: Semantic types defining the PRGE group
(semantic type codes refer to the UMLS).

of course) using the same type of named entity tag-
ging machinery as was used to annotate CALBC ’s
canonical SSC. The performance results of each
group’s system evaluated against the gold standard
are reported in Table 2. The data of each system
constitute the reference data sets and raw data for
all subsequent experiments on the configuration
and optimization of the silver standard.

The resulting raw material does thus not only
contain gene/protein annotations but also any
other entity types as supplied by the partners.
For our experiments on the gold standard, how-
ever, only the entity types subsumed by the PRGE
group (see Table 1) were considered and annota-
tions of all other types were discarded. The def-
inition of the PRGE group is identical to the one
proposed by Rebholz-Schuhmann et al. (2010a).
For the experiments, the specific semantic types
(e.g., the UMLS concepts)9 were not considered,
only the semantic group PRGE was.

3.3 Evaluation Metrics

The following metrics were used to evaluate how
good the silver standard(s) fit(s) the provided gold
standard:

• segment-level recall, precision, and F-score
values with exact boundaries, the standard
way to evaluate NER taggers,

• segment-level recall, precision, and F-score,
but with relaxed boundary constraints. This
means that two entity mentions are consid-
ered to match when they overlap with at least
one token and have the same entity type as-
signed to them,

• accuracy measured on the token level.

These metrics can be considered as optimization
criteria.

9http://www.nlm.nih.gov/research/umls/
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3.4 Tokenization

The CALBC partners’ data do not necessarily
come with tokenization information and, more-
over, different partners/systems might have differ-
ent tokenizations. Since a common ground for
comparison is thus lacking we added a new, con-
sistent tokenization based on the JULIE Lab tok-
enizer (Tomanek et al., 2007b). This tokenizer is
optimized for biomedical documents with intrinsic
focus to keep complex biological terminological
units (such as“IL-2” ) unsegmented, but to split
up tokens that are not terminologically connected
(such as dividing“IL-2-related” up into “IL-2” ,
“-” and “related” ). As a matter of fact, entity
boundaries do not necessarily coincide with token
boundaries. Our solution to this problem is as fol-
lows: Whenever a token partially overlaps with an
entity name, the full form of that token is consid-
ered to be associated with this entity. All data on
which we report here (silver and gold standards)
obey to this tokenization scheme.

3.5 Parameters Being Tested

The following parameter settings were considered
in our experiments:

• Four different values for confidence thresh-
olds indicating that20% (0.2), 40% (0.4),
60% (0.6) or80% (0.8) of all taggers agreed
on the same type annotation,viz.PRGE,

• Five different values for cosine thresholds
to identify overlapping entity mentions,viz.
(0.7, 0.8, 0.9, 0.95, 0.975), and two different
values for the numbern of agreeing taggers,
viz.n ≥ 2 andn ≥ 3,

• Two tagger crowd scenarios,viz. one where
all five systems were involved, the other
where subsets of cardinality2 of these
crowds were re-combined.10

4 Results

As already described in Section 2.2, we performed
two types of experiments. In the first experiment
(Section 4.1), we intend to find proper calibrations
of parameters for an optimal SSC as described in
Section 3.5. In the second experiment (Section
4.2), we incorporate an extrinsic task, training an
NER classifier on different parameter settings, as
a selector for the optimal SSC.

10We refrained from also testing combinations of3 and4
systems due to time constraints.

4.1 Intrinsic Calibration of Parameters

Full Merger of All Taggers. In this scenario,
we tested the merged results of the entire crowd of
CALBC taggers when compared to the gold stan-
dard and determined their performance scores (see
Table 3). We will discuss the results with respect
to the overlapping F-score, if not explicitly stated
otherwise.

Looking at the results of the runs involving dif-
ferentcosinethresholds, we witness a systematic
drawback when more than two systems are re-
quired to agree. Although precision is boosted in
this setting, recall is decreasing strongly which re-
sults in overall lower F-scores. When only two
systems are required to agree a comparatively
higher recall comes at the cost of lower preci-
sion. Yet, the F-score (both under exact as well
as overlap conditions) is always superior (ranging
between75% and73%) when compared to the 3-
agreement scenario. Note that the 2-agreement
condition for the highest threshold being tested
yields, without exception, better scores than the
best single system (cf. Table 2).

The best performing run in terms of F-score for
theconfidencemethod results from a threshold of
0.2 with an F-score of76%. Note that this F-
score lies4 percentage points above the best per-
formance of a single system (cf. Table 2).

A threshold of0.2 with five contributing sys-
tems results in a union of all annotations. Conse-
quently, this run benefits from a high recall com-
pared with the other runs. However, the run ex-
hibits the lowest precision rating (both for the ex-
act and overlap condition), which is due to the low
threshold being chosen. As can also be seen with
the confidence method at a threshold of0.80, a
very high precision can be reached (99%) but at
the cost of extremely low recall.11 The methods
performing best in terms of overlapping F-score
also perform best in terms of exact F-score.

Selected Tagger Combinations: Twin Taggers.
In this scenario, we evaluated all twin combina-
tions of taggers against the gold standard regard-
ing the confidence criterion. In Table 4 we contrast
the two best performing and the two worst per-
forming tagger pairs for the confidence method.
The table reveals that there are some cases where
the taggers seem to complement each other, e.g.,
the twins SYS-1 and SYS-3, as well as SYS-3 and

11Exactly these kinds of alternatives offer flexibility for
choosing the most appropriate SSC given a specific task.
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exactR exactP exactF overlapR overlapP overlapF systems
0.55 0.74 0.63 0.63 0.84 0.72 SYS-1
0.36 0.53 0.43 0.46 0.68 0.55 SYS-2
0.48 0.77 0.59 0.59 0.95 0.72 SYS-3
0.44 0.83 0.58 0.49 0.91 0.64 SYS-4
0.34 0.61 0.44 0.41 0.74 0.53 SYS-5

Table 2: Performance of single systems (SYS-1 to SYS-5) as evaluated against the gold standard (best
performance scores in bold face). Measurements are taken both for exact as well as overlapping recall
(R), precision (P) and F-score (F).

method ACC exactR exactP exactF overlapR overlapP overlapF threshold agr. systems
cosine 0.94 0.53 0.71 0.61 0.66 0.87 0.75 0.70 2.00
cosine 0.93 0.40 0.79 0.53 0.49 0.96 0.65 0.70 3.00
cosine 0.94 0.54 0.71 0.61 0.65 0.87 0.74 0.80 2.00
cosine 0.93 0.41 0.80 0.54 0.48 0.95 0.64 0.80 3.00
cosine 0.94 0.54 0.72 0.62 0.65 0.86 0.74 0.90 2.00
cosine 0.93 0.41 0.81 0.54 0.48 0.95 0.64 0.90 3.00
cosine 0.94 0.54 0.73 0.62 0.64 0.86 0.74 0.95 2.00
cosine 0.93 0.41 0.83 0.55 0.47 0.95 0.63 0.95 3.00
cosine 0.94 0.55 0.75 0.64 0.64 0.86 0.73 0.97 2.00
cosine 0.93 0.42 0.85 0.56 0.47 0.95 0.63 0.97 3.00

confidence 0.95 0.58 0.73 0.65 0.68 0.85 0.76 0.20
confidence 0.94 0.44 0.83 0.58 0.50 0.94 0.66 0.40
confidence 0.93 0.32 0.88 0.47 0.35 0.97 0.52 0.60
confidence 0.91 0.16 0.91 0.27 0.17 0.99 0.30 0.80

Table 3: Merged annotations of the entire crowd of CALBC taggers (best performance scores per param-
eter setting in bold face). Parameters: threshold (confidence or cosine)and number of agreeing systems
(agr. systems).

SYS-4. In both cases, a confidence threshold of
0.2 yields the best F-score. Additionally, these F-
scores (81% and 78%) are even higher than the
single system’s F-scores (+9% up to+14%). This
comes with a significant increase in recall over
both systems (+13% to +28%) though at the cost
of lowered precision relative to the system with
the higher precision (−1% to −10%). These re-
sults also outperform the best results of the exper-
imental runs where all systems were involved (see
Table 3). This indicates that a subset of all systems
might yield a better SSC than a combination of all
systems’ outputs.

4.2 Extrinsic Calibration of Parameters

We employed a standard named entity tagger to as-
sess the impact of the different merging strategies
on a scenario near to a real-world application.12

12This tagger is based on Conditional Random Fields (Laf-
ferty et al., 2001) and employs a standard feature set used for

Each SSC variant (and thus each parameter com-
bination) was evaluated with this tagger in a 10-
fold cross validation. The SSC and the gold corpus
were split into ten parts of equal size. Nine parts of
the SSC constituted the training data of one cross
validation round, the corresponding tenth part of
the gold standard was used for evaluation. This
way, we tested how adequate a merged corpus was
with respect to the training of a classifier. Because
the cross validation has been very time consum-
ing, we did not consider specific combinations of
systems but always merged the annotations of all
five systems. The results are displayed in Table 5.

Interestingly, the highest recall, precision, and
F-score values (both for the exact and overlap con-
dition) are shared by the same parameter combi-
nations which also performed best in Section 4.1.
Hence, the use of a named entity tagger supports
the evaluation results when comparing the various

biomedical entity recognition (Settles, 2004).
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ACC exactR exactP exactF overlapR overlapP overlapF systems threshold
0.95 0.62 0.69 0.65 0.76 0.85 0.81 SYS-1 + SYS-3 0.20
0.92 0.22 0.69 0.34 0.26 0.81 0.39 SYS-2 + SYS-5 0.60
0.95 0.55 0.75 0.63 0.67 0.91 0.78 SYS-3 + SYS-4 0.20
0.92 0.30 0.85 0.45 0.34 0.94 0.50 SYS-4 + SYS-5 0.60

Table 4: Twin pairs of taggers, contrasting the two best (in bold face) andthe two worst performing pairs
obtained by the confidence method.

method ACC exactR exactP exactF overlapR overlapP overlapF threshold agr. systems
cosine 0.94 0.46 0.69 0.56 0.58 0.86 0.69 0.70 2.00
cosine 0.93 0.32 0.77 0.45 0.39 0.94 0.55 0.70 3.00
cosine 0.94 0.46 0.69 0.56 0.57 0.86 0.69 0.80 2.00
cosine 0.93 0.32 0.78 0.46 0.39 0.94 0.55 0.80 3.00
cosine 0.94 0.46 0.70 0.56 0.57 0.85 0.68 0.90 2.00
cosine 0.93 0.32 0.79 0.46 0.38 0.93 0.54 0.90 3.00
cosine 0.94 0.47 0.71 0.56 0.56 0.85 0.68 0.95 2.00
cosine 0.93 0.33 0.80 0.47 0.38 0.93 0.54 0.95 3.00
cosine 0.94 0.47 0.73 0.57 0.56 0.85 0.67 0.97 2.00
cosine 0.93 0.33 0.82 0.47 0.38 0.93 0.54 0.97 3.00

confidence 0.94 0.50 0.72 0.59 0.60 0.85 0.70 0.20
confidence 0.93 0.36 0.82 0.50 0.41 0.93 0.56 0.40
confidence 0.92 0.25 0.87 0.39 0.28 0.95 0.43 0.60
confidence 0.91 0.12 0.89 0.20 0.12 0.96 0.22 0.80

Table 5: Performance of an NER tagger trained on an SSC, 10-fold cross validation, and all systems.
Parameters: threshold (confidence or cosine) and number of agreeingsystems (agr. systems).

SSCs directly to the gold standard corpus. How-
ever, this result may be due to our particular exper-
imental setting and should not be taken as a gen-
eral rule. Instead, this issue should be studied on
additional gold standard corpora (cf. Section 5).

5 Discussion and Conclusions

The experiments reported in this paper strengthen
the empirical basis of the novel idea of a silver
standard corpus (SSC). While the originators of
the SSC have come up with a fixed SSC, our ex-
periments show that different parametrizations of
SSCs allow to dynamically configure or select an
optimal one given a gold standard for comparison
during this optimization.

Our experimental data reveals that the boosting
hypothesis (the combination of several classifiers
outperforms weaker single ones in terms of perfor-
mance) is confirmed for complete mergers as well
as selected twin pairs of taggers. We also have
evidence that boosting within the SSC paradigm
tends to increase precision whereas it seems to de-
crease recall. This general observation becomes

stronger and stronger when the size of the commit-
tees (i.e., the number of submitting classifiers) in-
creases. It is also particularly interesting that both
the intrinsic evaluation (groups of classifiersvs.
gold standard), as well as the extrinsic evaluation
of SSCs (groups of classifiers trained and tested on
mutually exclusive partitions of the gold standard)
reveal parallel patterns in terms of performance –
this indicates a surprising level of stability of the
entire SSC approach.

In our view, the strongest finding from our ex-
periments is the possibility to calibrate an SSC ac-
cording to requirements derived from the goal of
annotation campaigns. In particular, one can adapt
parameters to a specific use case, e.g., building a
corpus with high precision when compared to the
gold standard. Through the evaluation of the pa-
rameter space, one can assess the costs of reach-
ing a specific goal. For instance, a precision of
99% can be reached, yet at the cost of the F-score
plunging to 30%; only slightly lowering the preci-
sion to 97% boosts the F-score by 22 points (see
last two rows in Table 3).
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Also, when increasingly more annotation sets
become available (e.g., through the CALBC chal-
lenges) the problem of adversarial or extremely
bad performing systems is no longer a pressing is-
sue since with the optimization approach such sys-
tems are automatically sorted out when optimizing
over the set of possible system combinations.

While our experiments are but a first step to-
wards the consolidation of the SSC paradigm
some obvious limitations of our work have to be
overcome:

• experiments with different gold standards
have to be run as one might hypothesize that
different gold standards require different pa-
rameter settings for the optimal SSC,

• experiments with different NER taggers have
to be run (e.g., we plan to use an NER tag-
ger which prefers recall over precision, while
the one used for these experiments generally
yields higher precision than recall scores),

• test with crowds of taggers which generate
higher recall than precision.13

In our approach, a gold standard is needed to
find good parameters to build an SSC. A ques-
tion not addressed so far is how huge such a gold
standard must be to offer an appropriate size for
the optimization step. Finally, it might be particu-
larly rewarding to join efforts in reducing the de-
velopment costs for such a gold standards – Active
Learning (e.g., Tomanek et al. (2007a)) might be
one promising approach to break this bottleneck.
Since effective calibration of SSCs is in need of
reasonably sized and densely populated gold stan-
dards, by combining these lines of research we
claim that additional benefits for SSCs become vi-
able.
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