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Abstract

This paper introduces Web1T5-Easy, a sim-

ple indexing solution that allows interactive

searches of the Web 1T 5-gram database and

a derived database of quasi-collocations. The

latter is validated against co-occurrence data

from the BNC and ukWaC on the automatic

identification of non-compositional VPC.

1 Introduction

The Google Web 1T 5-gram (Web1T5) database

(Brants and Franz, 2006) consists of frequency

counts for bigram, trigrams, 4-grams and 5-grams

extracted from 1 trillion words of English Web text,

i.e. from a corpus 10,000 times the size of the British

National Corpus (Aston and Burnard, 1998). While

primarily designed as a resource to build better lan-

guage models for machine translation and other NLP

applications, its public release in 2006 was greeted

with great enthusiasm by many researchers in com-

putational linguistics. As one example, Mitchell et

al. (2008) used the Web1T5 data successfully to pre-

dict fMRI neural activation associated with concrete

noun concepts.

For linguistic applications, though, the Web1T5

database presents three major obstacles:

(i) The lack of linguistic annotation: Google’s to-

kenisation splits hyphenated compounds (e.g., part-

time is split into a three-token sequence part|-|time)

and differs in many other ways from the rules used

in liguistic corpora. The n-grams are neither anno-

tated with part-of-speech tags nor lemmatised, and

there are separate entries for sentence-initial upper-

case and the corresponding lowercase forms.

(ii) The application of frequency thresholds: De-

spite the enormous size of the database, its com-

pilers found it necessary to omit low-frequency n-

grams with fewer than 40 occurrences. This means

that non-adjacent word combinations are listed only

if the occur in a relatively frequent pattern. As a

consequence, it is impossible to obtain reliable fre-

quency estimates for latent phenomena by pooling

data (e.g. the co-occurrence frequency of a particu-

lar verb with nouns denoting animals).

(iii) The difficulty of interactive search: The com-

plete Web1T5 database consists of 24.4 GiB of

binary-sorted, compressed text files. While this for-

mat is suitable for building n-gram language models

and other offline processing, searching the database

is not efficient enough for interactive use. Except for

simple, case-sensitive prefix searches – which can

be restricted to a single file containing 50–90 MiB

of compressed text – every query requires a linear

scan of the full database.

This paper presents a simple open-source soft-

ware solution to the third problem, called Web1T5-

Easy. The n-gram data are encoded and indexed

in a relational database. Building on convenient

open-source tools such as SQLite and Perl, the

software aims to strike a good balance between

search efficiency and ease of use and implemen-

tation. With its focus on interactive, but accu-

rate search it complements the approximate index-

ing and batch processing approaches of Hawker et

al. (2007). Web1T5-Easy can be downloaded from

http://webascorpus.sf.net/Web1T5-Easy/.1

1An online demo of the complete Web1T5 database is avail-

able at http://cogsci.uos.de/~korpora/ws/Web1T5/.
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word 1 word 2 word 3 f

supplement depend on 193

supplement depending on 174

supplement depends entirely 94

supplement depends on 338

supplement derived from 2668

supplement des coups 77

supplement described in 200

Table 1: Example of Web1T5 3-gram frequency data (ex-

cerpt from file 3gm-0088.gz).

The rest of this paper is organised as follows. Sec-

tion 2 describes the general system architecture in

more detail. Section 3 explains how collocations

(with a maximal span size of four tokens) and dis-

tributional semantic models (DSM) can be approxi-

mated on the basis of Web1T5 frequency data. Some

technical aspects are summarised in Section 4. Sec-

tion 5 addresses the consequences of problems (i)

and (ii). The linguistic usefulness of Web1T5 col-

location data is validated on a multiword extraction

task from the MWE 2008 workshop.2 Section 6 con-

cludes with a brief outlook on the future develop-

ment of Web1T5-Easy.

2 System architecture

While designing the fastest possible indexing archi-

tecture for the Web1T5 database is an interesting

computer science problem, linguistic applications

typically do not require the millisecond response

times of a commercial search engine. It is sufficient

for interactive queries to be completed within a few

seconds, and many users will also be willing to wait

several minutes for the result of a complex search

operation. Given the tabular format of the Web1T5

n-gram frequency data (cf. Table 1), it was a natural

choice to make use of a standard relational database

(RDBMS). Database tables can be indexed on sin-

gle or multiple columns for fast access, and the SQL

query languge allows flexible analysis and aggrega-

tion of frequency data (see Section 2.2 for some ex-

amples). While the indexing procedure can be very

time-consuming, it is carried out offline and has to

run only once.

2http://multiword.sf.net/mwe2008/

Web1T5-Easy was designed to balance com-

putational efficiency against implementation effort

and ease of use. Its main ingredients are the

public-domain embedded relational database engine

SQLite and the open-source scripting language Perl

which are connected through the portable DBI/DBD

interface.3 The Web1T5-Easy package consists of

two sets of Perl scripts. The first set automates

pre-processing and indexing, detailed in Section 2.1.

The second set, which facilitates command-line ac-

cess to the database and provides a Web-based GUI,

is described in Section 2.2. Technical details of the

representation format and performance figures are

presented in Section 4.

The embedded database engine SQLite was pre-

ferred over a full-fledged RDBMS such as MySQL

or PostgreSQL for several reasons: (i) running the

database as a user-level process gives better con-

trol over huge database files and expensive indexing

operations, which might otherwise clog up a ded-

icated MySQL server computer; (ii) each SQLite

database is stored in a single, platform-independent

file, so it can easily be copied to other locations or

servers; (iii) an embedded database avoids the over-

head of exchanging large amounts of data between

client and server; (iv) tight integration with the ap-

plication program allows more flexible use of the

database than pure SQL queries (e.g., a Perl script

can define its own SQL functions, cf. Section 3).

It is quite possible that the sophisticated query op-

timisers of MySQL and commercial RDMBS im-

plementations would improve performance on com-

plex SQL queries. Since Web1T5-Easy uses the

generic DBI interface, it can easily be adapted to any

RDMBS back-end for which DBI/DBD drivers are

available.

2.1 The indexing procedure

Indexing of the Web1T5 n-gram data is carried out

in four stages:

1. In an optional pre-processing step, words are

filtered and normalised to lowercase.4 Each

3See the Web pages at http://www.sqlite.org/, http:

//www.perl.org/ and http://dbi.perl.org/.
4The default filter replaces numbers by the code NUM, var-

ious punctuation symbols by the code PUN, and all “messy”

strings by the code UNK. It can easily be replaced by a user-

defined normalisation mapping.
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word in an n-gram entry is then coded as a nu-

meric ID, which reduces database size and im-

proves both indexing and query performance

(see Section 4 for details on the representation

format). The resulting tuples of n + 1 integers

(n word IDs plus frequency count) are inserted

into a database table.

2. If normalisation was applied, the table will con-

tain multiple entries for many n-grams.5 In

Stage 2, their frequency counts are aggregated

with a suitable SQL query. This is one of the

most expensive and disk-intensive operations

of the entire indexing procedure.

3. A separate SQL index is created for each n-

gram position (e.g., word 1, word 2 and word 3

in Table 1). Multi-column indexes are currently

omitted, as they would drastically increase the

size of the database files.6 Moreover, the use of

an index only improves query execution speed

if it is highly selective, as explained in Sec-

tion 4. If desired, the Perl scripts can trivially

be extended to create additional indexes.

4. A statistical analysis of the database is per-

formed to improve query optimisation (i.e., ap-

propriate selection of indexes).

The indexing procedure is carried out separately for

bigrams, trigrams, 4-grams and 5-grams, using a

shared lexicon table to look up numeric IDs. Users

who do not need the larger n-grams can easily skip

them, resulting in a considerably smaller database

and much faster indexing.

2.2 Database queries and the Web GUI

After the SQLite database has been populated and

indexed, it can be searched with standard SQL

queries (typically a join between one of the n-gram

tables and the lexicon table), e.g. using the sqlite3

5For example, with the default normalisation, bought 2 bot-

tles, bought 5 bottles, Bought 3 bottles, BOUGHT 2 BOT-

TLES and many other trigrams are mapped to the representation

bought NUM bottles. The database table thus contains multiple

entries of the trigram bought NUM bottles, whose frequency

counts have to be added up.
6For the 5-gram table, 10 different two-column indexes

would be required to cover a wide range of queries, more than

doubling the size of the database file.

command-line utility. Since this requires detailed

knowledge of SQL syntax as well as the database

layout and normalisation rules, the Web1T5-Easy

package offers a simpler, user-friendly query lan-

guage, which is internally translated into appropriate

SQL code.

A Web1T5-Easy query consists of 2–5 search

terms separated by blanks. Each search term is ei-

ther a literal word (e.g. sit), a set of words in square

brackets (e.g. [sit,sits,sat,sitting]), a prefix

(under%) or suffix (%ation) expression, * for an ar-

bitrary word, or ? to skip a word. The difference be-

tween the latter two is that positions marked by * are

included in the query result, while those marked by ?

are not. If a query term cannot match because of nor-

malisation, an informative error message is shown.

Matches can be ranked by frequency or by associa-

tion scores, according to one of the measures recom-

mended by Evert (2008): t-score (t), log-likelihood

(G2), chi-squared with Yates’ correction (X2), point-

wise MI, or a version of the Dice coefficient.

For example, the query web as corpus shows

that the trigram Web as Corpus occurs 1,104

times in the Google corpus (case-insensitive).

%ly good fun lists ways of having fun such

as really good fun (12,223×), jolly good fun

(3,730×) and extremely good fun (2,788×). The

query [sit,sits,sat,sitting] * ? chair re-

turns the patterns SIT in . . . chair (201,084×), SIT

on . . . chair (61,901×), SIT at . . . chair (1,173×),

etc. Corpus frequencies are automatically summed

over all fillers in the third slot.

The query implementation is available as a

command-line version and as a CGI script that

provides a Web-based GUI to the Web1T5-Easy

database. The CGI version also offers CSV and

XML output formats for use as a Web service.

3 Quasi-collocations and DSM

Many corpus linguists and lexicographers will par-

ticularly be interested in using the Web1T5 database

as a source of collocations (in the sense of Sinclair

(1991)). While the British National Corpus at best

provides sufficient data for a collocational analysis

of some 50,000 words (taking f ≥ 50 to be the min-

imum corpus frequency necessary), Web1T5 offers

comprehensive collocation data for almost 500,000
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Figure 1: Quasi-collocations for the node word corpus in the Web GUI of Web1T5-Easy.

words (which have at least 50 different collocates in

the database, and f ≥ 10,000 in the original Google

corpus).

Unfortunately, the Web1T5 distribution does not

include co-occurrence frequencies of word pairs,

except for data on immediately adjacent bigrams.

It is possible, though, to derive approximate co-

occurrence frequencies within a collocational span

of up to 4 tokens. In this approach, each n-gram ta-

ble yields information about a specific collocate po-

sition relative to the node. For instance, one can

use the 4-gram table to identify collocates of the

node word corpus at position +3 (i.e., 3 tokens to

the right of the node) with the Web1T5-Easy query

corpus ? ? *, and collocates at position −3 (i.e.,

3 tokens to the left of the node) with the query

* ? ? corpus. Co-occurrence frequencies within

a collocational span, e.g. (−3,+3), are obtained by

summation over all collocate positions in this win-

dow, collecting data from multiple n-gram tables.

It has to be kept in mind that such quasi-

collocations do not represent the true co-occurrence

frequencies, since an instance of co-occurrence of

two words is counted only if it forms part of an n-

gram with f ≥ 40 that has been included in Web1T5.

Especially for larger distances of 3 or 4 tokens, this

limitation is likely to discard most of the evidence

for co-occurrence and put a focus on collocations

that form part of a rigid multiword unit or insti-

tutionalised phrase. Thus, cars becomes the most

salient collocate of collectibles merely because the

two words appear in the slogan from collectibles to

cars (9,443,572×). Section 5 validates the linguistic

usefulness of Web1T5 quasi-collocations in a multi-

word extraction task.

Web1T5-Easy compiles frequency data for quasi-

collocations in an additional step after the complete

n-gram data have been indexed. For each pair of co-

occurring words, the number of co-occurrences in

each collocational position (−4,−3, . . . ,+3,+4) is

recorded. If the user has chosen to skip the largest

n-gram tables, only a shorter collocational span will

be available.

The Web GUI generates SQL code to determine

co-occurrence frequencies within a user-defined col-

locational span on the fly, by summation over the

appropriate columns of the quasi-collocations table.

Collocates can be ranked by a range of association

measures (t, G2, X2, MI, Dice, or frequency f ),

which are implemented as user-defined SQL func-

tions in the Perl code. In this way, sophisticated

statistical analyses can be performed even if they

are not directly supported by the RDBMS back-end.

Figure 1 shows an example of quasi-collocations in

the Web GUI, ranked according to the t-score mea-

sure. On the right-hand side of the table, the distri-

bution across collocate positions is visualised.

In computational linguistics, collocations play

an important role as the term-term co-occurrence

matrix underlying distributional semantic models
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size (GiB) database file no. of rows

0.23 vocabulary 5,787,556

7.24 2-grams 153,634,491

32.81 3-grams 594,453,302

64.32 4-grams 933,385,623

75.09 5-grams 909,734,581

31.73 collocations 494,138,116

211.42 total 3,091,133,669

Table 2: Size of the fully indexed Web1T5 database, in-

cluding quasi-collocations.

(DSM), with association scores used as feature

weights (see e.g. Curran (2004, Sec. 4.3)). The

Web1T5-Easy quasi-collocations table provides a

sparse representation of such a term-term matrix,

where only 494×106 or 0.0015% of the 5.8×106 ·
5.8×106 = 33.5×1012 cells of a full co-occurrence

matrix are populated with nonzero entries.

4 Technical aspects

An essential feature of Web1T5-Easy is the numeric

coding of words in the n-gram tables, which allows

for compact storage and more efficient indexing of

the data than a full character string representation. A

separate lexicon table lists every (normalised) word

form together with its corpus frequency and an in-

teger ID. The lexicon is sorted by decreasing fre-

quency: since SQLite encodes integers in a variable-

length format, it is advantageous to assign low ID

numbers to the most frequent terms.

Every table is stored in its own SQLite database

file, e.g. vocabulary for the lexicon table and

collocations for quasi-collocations (cf. Sec-

tion 3). The database files for different n-gram sizes

(2-grams, 3-grams, 4-grams, 5-grams) share

the same layout and differ only in the number of

columns. Table 2 lists the disk size and number of

rows of each database file, with default normalisa-

tion applied. While the total size of 211 GiB by far

exceeds the original Web1T5 distribution, it can eas-

ily be handled by modern commodity hardware and

is efficient enough for interactive queries.

Performance measurements were made on a

midrange 64-bit Linux server with 2.6 GHz AMD

Opteron CPUs (4 cores) and 16 GiB RAM. SQLite

database files and temporary data were stored on a

fast, locally mounted hard disk. Similar or better

hardware will be available at most academic institu-

tions, and even in recent personal desktop PCs.

Indexing the n-gram tables in SQLite took about

two weeks. Since the server was also used for mul-

tiple other memory- and disk-intensive tasks during

this period, the timings reported here should only

be understood as rough indications. The indexing

process might be considerably faster on a dedicated

server. Roughly equal amounts of time were spent

on each of the four stages listed in Section 2.1.

Database analysis in Stage 4 turned out to be of

limited value because the SQLite query optimiser

was not able to make good use of this information.

Therefore, a heuristic optimiser based on individual

term frequencies was added to the Perl query scripts.

This optimiser chooses the n-gram slot that is most

likely to speed up the query, and explicitly disables

the use of indexes for all other slots. Unless another

constraint is much more selective, preference is al-

ways given to the first slot, which represents a clus-

tered index (i.e. database rows are stored in index

order) and can be scanned very efficiently.

With these explicit optimisations, Stage 4 of the

indexing process can be omitted. If normalisation is

not required, Stage 2 can also be skipped, reducing

the total indexing time by half.

At first sight, it seems to be easy to compile the

database of quasi-collocations one node at a time,

based on the fully indexed n-gram tables. However,

the overhead of random disk access during index

lookups made this approach intractable.7 A brute-

force Perl script that performs multiple linear scans

of the complete n-gram tables, holding as much data

in RAM as possible, completed the compilation of

co-occurrence frequencies in about three days.

Table 3 shows execution times for a selection of

Web1T5-Easy queries entered in the Web GUI. In

general, prefix queries that start with a reasonably

specific term (such as time of *) are very fast,

even on a cold cache. The query %ly good fun

is a pathological case: none of the terms is selec-

tive enough to make good use of the corresponding

7In particular, queries like * ? ? corpus that scan for col-

locates to the left of the node word are extremely inefficient,

since the index on the last n-gram slot is not clustered and ac-

cesses matching database rows in random order.

36



Web1T5-Easy query cold cache warm cache

corpus linguistics 0.11s 0.01s

web as corpus 1.29s 0.44s

time of * 2.71s 1.09s

%ly good fun 181.03s 24.37s

[sit,sits,sat,sitting] * ? chair 1.16s 0.31s

* linguistics (association ranking) 11.42s 0.05s

university of * (association ranking) 1.48s 0.48s

collocations of linguistics 0.21s 0.13s

collocations of web 6.19s 3.89s

Table 3: Performance of interactive queries in the Web GUI of Web1T5-Easy. Separate timings are given for a cold

disk cache (first query) and warm disk cache (repeated query). Re-running a query with modified display or ranking

settings will only take the time listed in the last column.

index, and entries matching the wildcard expression

%ly in the first slot are scattered across the entire

trigram table.

5 Validation on a MWE extraction task

In order to validate the linguistic usefulness

of Web1T5 quasi-collocations, they were evalu-

ated on the English VPC shared task from the

MWE 2008 workshop.8 This data set consists of

3,078 verb-particle constructions (VPC), which have

been manually annotated as compositional or non-

compositional (Baldwin, 2008). The task is to iden-

tify non-compositional VPC as true positives (TP)

and re-rank the data set accordingly. Evaluation is

carried out in terms of precision-recall graphs, using

average precision (AP, corresponding to the area un-

der a precision-recall curve) as a global measure of

accuracy.

Frequency data from the Web1T5 quasi-

collocations table was used to calculate association

scores and rankings. Since previous studies suggest

that no single association measure works equally

well for all tasks and data sets, several popular mea-

sures were included in the evaluation: t-score (t),

chi-squared with Yates’ continuity correction (X2),

Dice coefficient (Dice), co-occurrence frequency

( f ), log-likelihood (G2) and Mutual Information

(MI); see e.g. Evert (2008) for full equations and

references. The results are compared against rank-

ings obtained from more traditional, linguistically

8http://multiword.sf.net/mwe2008/

annotated corpora of British English: the balanced,

100-million-word British National Corpus (Aston

and Burnard, 1998) and the 2-billion-word Web

corpus ukWaC (Baroni et al., 2009).

For BNC and ukWaC, three different extraction

methods were used: (i) adjacent bigrams of verb +

particle/preposition; (ii) shallow syntactic patterns

based on POS tags (allowing pronouns and simple

noun phrases between verb and particle); and (iii)

surface co-occurrence within a collocational span of

3 tokens to the right of the node (+1,+3), filtered

by POS tag. Association scores were calculated us-

ing the same measures as for the Web1T5 quasi-

collocations. Preliminary experiments with different

collocational spans showed consistently lower accu-

racy than for (+1,+3). In each case, the same asso-

ciation measures were applied as for Web1T5.

Evaluation results are shown in Figure 3 (graphs)

and Table 4 (AP). The latter also describes the cover-

age of the corpus data by listing the number of can-

didates for which no frequency information is avail-

able (second column). These candidates are always

ranked at the end of the list. While the BNC has

a coverage of 92%–94% (depending on extraction

method), scaling up to Web1T5 completely elimi-

nates the missing data problem.

However, identification of non-compositional

VPC with the Web1T5 quasi-collocations is consid-

erably less accurate than with linguistically anno-

tated data from the much smaller BNC. For recall

values above 50%, the precision of statistical associ-

ation measures such as t and X2 is particularly poor
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coverage average precision (%)

(missing) t X2 Dice f G2 MI

BNC (bigrams) 242 30.04 29.75 27.12 26.55 29.86 22.79

BNC (syntactic patterns) 201 30.42 30.49 27.48 25.87 30.64 22.48

BNC (span +1 . . .+3) 185 29.15 32.12 30.13 24.33 31.06 22.58

ukWaC (bigrams) 171 29.28 30.32 27.79 25.37 29.63 25.13

ukWaC (syntactic patterns) 162 29.20 31.19 27.90 24.19 30.06 25.08

ukWaC (span +1 . . .+3) 157 27.82 32.66 30.54 23.03 30.01 25.76

Web1T5 (span +1 . . .+3) 3 25.83 25.27 25.33 20.88 25.77 20.81

BNC untagged (+1 . . .+3) 39 27.22 27.85 28.98 22.51 28.13 19.60

Table 4: Evaluation results for English non-compositional VPC (Baldwin, 2008): average precision (AP) as a global

indicator. The baseline AP for random candidate ranking is 14.29%. The best result in each row is highlighted in bold.

(Figure 3.h). On the annotated corpora, where nodes

and collocates are filtered by POS tags, best results

are obtained with the least constrained extraction

method and the chi-squared (X2) measure. Scal-

ing up to the 2-billion-word ukWaC corpus gives

slightly better coverage and precision than on the

BNC. Moreover, X2 is now almost uniformly better

than (or equal to) any other measure (Figure 3.f).
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Figure 2: Comparison of X2 association scores on ukWaC

and Web1T5. Axes are rescaled logarithmically, preserv-

ing sign to indicate positive vs. negative association.

In order to determine whether the poor perfor-

mance of Web1T5 is simply due to the lack of lin-

guistic annotation or whether it points to an intrin-

sic problem of the n-gram database, co-occurrence

data were extracted from an untagged version of the

BNC using the same method as for the Web1T5 data.

While there is a significant decrease in precision (cf.

Figure 3.g and the last row of Table 4), the results

are still considerably better than on Web1T5. In the

MWE 2008 competition, Ramisch et al. (2008) were

also unable to improve on the BNC results using a

phrase entropy measure based on search engine data.

The direct comparison of X2 association scores on

ukWaC and Web1T5 in Figure 2 reveals that the lat-

ter are divided into strongly positive and strongly

negative association, while scores on ukWaC are

spread evenly across the entire range. It is re-

markable that many true positives (TP) exhibit neg-

ative association in Web1T5, while all but a few

show the expected positive association in ukWaC.

This unusual pattern, which may well explain the

poor VPC evaluation results, can also be observed

for adjacent bigrams extracted from the 2-grams ta-

ble (not shown). It suggests a general problem of

the Web1T5 data that is compounded by the quasi-

collocations approach.

6 Future work

A new release of Web1T5-Easy is currently in

preparation. It will refactor the Perl code into

reusable and customisable modules that can easily

be embedded in user scripts and adapted to other

databases such as Brants and Franz (2009). We are

looking forward to Web1T5 v2, which promises eas-

ier indexing and much richer interactive queries.
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Figure 3: Evaluation results for English non-compositional VPC (Baldwin, 2008): precision-recall graphs. Rankings

according to the Web1T5 quasi-collocations are shown in the bottom right panel (h). The baseline precision is 14.29%.
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