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Abstract 

This paper analyzes the relative importance of 

different linguistic features for data-driven 

dependency parsing of Hindi, using a feature 

pool derived from two state-of-the-art parsers.  

The analysis shows that the greatest gain in 

accuracy comes from the addition of morpho-

syntactic features related to case, tense, aspect 

and modality. Combining features from the 

two parsers, we achieve a labeled attachment 

score of 76.5%, which is 2 percentage points 

better than the previous state of the art. We fi-

nally provide a detailed error analysis and 

suggest possible improvements to the parsing 

scheme. 

1 Introduction 

The dependency parsing community has since a 

few years shown considerable interest in parsing 

morphologically rich languages with flexible word 

order. This is partly due to the increasing availabil-

ity of dependency treebanks for such languages, 

but it is also motivated by the observation that the 

performance obtained for these languages has not 

been very high (Nivre et al., 2007a). Attempts at 

handling various non-configurational aspects in 

these languages have pointed towards shortcom-

ings in traditional parsing methodologies (Tsarfaty 

and Sima'an, 2008; Eryigit et al., 2008; Seddah et 

al., 2009; Husain et al., 2009; Gadde et al., 2010). 

Among other things, it has been pointed out that 

the use of language specific features may play a 

crucial role in improving the overall parsing per-

formance. Different languages tend to encode syn-

tactically relevant information in different ways, 

and it has been hypothesized that the integration of 

morphological and syntactic information could be 

a key to better accuracy. However, it has also been 

noted that incorporating these language specific 

features in parsing is not always straightforward 

and many intuitive features do not always work in 

expected ways. 

In this paper, we are concerned with Hindi, an 

Indian language with moderately rich morphology 

and relatively free word order.  There have been 

several previous attempts at parsing Hindi as well 

as other Indian languages (Bharati et al., 1995, 

Bharati et al., 2009b). Many techniques were tried 

out recently at the ICON09 dependency parsing 

tools contest (Husain, 2009). Both the best per-

forming system (Ambati et al., 2009a) and the sys-

tem in second place (Nivre, 2009b) used a 

transition-based approach to dependency parsing, 

as implemented in MaltParser (Nivre et al., 2007b). 

Other data driven parsing efforts for Indian lan-

guages in the past have been Bharati et al. (2008), 

Husain et al. (2009), Mannem et al. (2009b) and 

Gadde et al. (2010). 

In this paper, we continue to explore the transi-

tion-based approach to Hindi dependency parsing, 

building on the state-of-the-art results of Ambati et 

al. (2009a) and Nivre (2009b) and exploring the 

common pool of features used by those systems. 

Through a series of experiments we select features 

incrementally to arrive at the best parser features. 

The primary purpose of this investigation is to 

study the role of different morphosyntactic features 

in Hindi dependency parsing, but we also want to 

improve the overall parsing accuracy. Our final 

results are 76.5% labeled and 91.1% unlabeled at-

tachment score, improving previous results by 2 

and 1 percent absolute, respectively. In addition to 

this, we also provide an error analysis, isolating 

specific linguistic phenomena and/or other factors 

that impede the overall parsing performance, and 

suggest possible remedies for these problems. 
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2 The Hindi Dependency Treebank 

Hindi is a free word order language with SOV as 

the default order. This can be seen in (1), where 

(1a) shows the constituents in the default order, 

and the remaining examples show some of the 

word order variants of (1a). 

 

(1) a. malaya  ne     sameer      ko     kitaba   dii.  

          Malay   ERG  Sameer    DAT   book    gave 

        “Malay gave the book to Sameer” (S-IO-DO-V)
1
 

       b. malaya ne kitaba sameer ko dii. (S-DO-IO-V) 

       c. sameer ko malaya ne kitaba dii. (IO-S-DO-V) 

       d. sameer ko kitaba malaya ne dii. (IO-DO-S-V) 

       e. kitaba malaya ne sameer ko dii. (DO-S-IO-V) 

        f. kitaba sameer ko malaya ne dii.  (DO-IO-S-V) 

 

Hindi also has a rich case marking system, al-

though case marking is not obligatory. For exam-

ple, in (1), while the subject and indirect object are 

explicitly marked for the ergative (ERG) and da-

tive (DAT) cases, the direct object is unmarked for 

the accusative.  

The Hindi dependency treebank (Begum et al., 

2008) used for the experiment was released as part 

of the ICON09 dependency parsing tools contest 

(Husain, 2009). The dependency framework (Bha-

rati et al., 1995) used in the treebank is inspired by 

Panini’s grammar of Sanskrit. The core labels, 

called karakas, are syntactico-semantic relations 

that identify the participant in the action denoted 

by the verb. For example, in (1), ‘Malay’ is the 

agent, ‘book’ is the theme, and ‘Sameer’ is the be-

neficiary in the activity of ‘give’. In the treebank, 

these three labels are marked as k1, k2, and k4 re-

spectively. Note, however, that the notion of kara-
ka does not capture the ‘global’ semantics of 

thematic roles; rather it captures the elements of 

the ‘local semantics’ of a verb, while also taking 

cues from the surface level morpho-syntactic in-

formation (Vaidya et al., 2009).  The syntactic re-

lational cues (such as case markers) help identify 

many of the karakas. In general, the highest availa-

ble karaka,
2
 if not case-marked, agrees with the 

verb in an active sentence.  In addition, the tense, 

                                                           
1 S=Subject; IO=Indirect Object; DO=Direct Object; 

V=Verb; ERG=Ergative; DAT=Dative 
2 These are the karta karaka (k1) and karma karaka (k2). k1 

and k2 can be roughly translated as ‘agent’ and ‘theme’ re-

spectively. For a complete description of the tagset and the 

dependency scheme, see Begum et al. (2008) and Bharati et al. 

(2009a).  

aspect and modality (TAM) marker can many a 

times control the case markers that appear on k1. 

For example, in (1) ‘Malay’ takes an ergative case 

because of the past perfective TAM marker (that 

appears as a suffix in this case) of the main verb 

‘gave’. Many dependency relations other than ka-

rakas are purely syntactic. These include relations 

such as noun modifier (nmod), verb modifier 

(vmod), conjunct relation (ccof), etc. 

Each sentence is manually chunked and then an-

notated for dependency relations. A chunk is a mi-

nimal, non-recursive structure consisting of 

correlated groups of words (Bharati et al., 2006). A 

node in a dependency tree represents a chunk head. 

Each lexical item in a sentence is also annotated 

with its part-of-speech (POS).  For all the experi-

ments described in this paper we use gold POS and 

chunk tags. Together, a group of lexical items with 

some POS tags within a chunk can be utilized to 

automatically compute coarse grained morphosyn-

tactic information. For example, such information 

can represent the postposition/case-marking in the 

case of noun chunks, or it may represent the TAM 

information in the case of verb chunks. In the ex-

periments conducted for this paper this local in-

formation is automatically computed and 

incorporated as a feature of the head of a chunk. 

As we will see later, such information proves to be 

extremely crucial during dependency parsing. 

For all the experiments discussed in section 4, 

the training and development data size was 1500 

and 150 sentences respectively. The training and 

development data consisted of ~22k and ~1.7k 

words respectively. The test data consisted of 150 

sentences (~1.6k words). The average sentence 

length is 19.85. 

3 Transition-Based Dependency Parsing 

A transition-based dependency parser is built of 

two essential components (Nivre, 2008): 

 

· A transition system for mapping sentences to 

dependency trees 

· A classifier for predicting the next transition for 

every possible system configuration 
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 PTAG CTAG FORM LEMMA DEPREL CTAM OTHERS 

Stack:        top 1 5 1 7  9  

Input:        next 1 5 1 7  9  

Input:        next+1 2 5 6 7    

Input:        next+2 2       

Input:        next+3 2       

Stack:       top-1 3       

String:      predecessor of top 3       

Tree:        head of top 4       

Tree:        leftmost dep of next 4 5 6     

Tree:        rightmost dep of top     8   

Tree:        left sibling of rightmost dep of top     8   

Merge:     PTAG of top and next       10 

Merge:     CTAM and DEPREL of top       10 

 

Table 1. Feature pool based on selection from Ambati et al. (2009a) and Nivre (2009b). 

 

Given these two components, dependency parsing 

can be realized as deterministic search  through the 

transition system, guided by the classifier. With 

this technique, parsing can be performed in linear 

time for projective dependency trees. Like Ambati 

et al. (2009a) and Nivre (2009b), we use MaltPars-

er, an open-source implementation of transition-

based dependency parsing with a variety of transi-

tion systems and customizable classifiers.
3
 

3.1 Transition System 

Previous work has shown that the arc-eager projec-

tive transition system first described in Nivre 

(2003) works well for Hindi (Ambati et al., 2009a; 

Nivre, 2009b). A parser configuration in this sys-

tem contains a stack holding partially processed 

tokens, an input buffer containing the remaining 

tokens, and a set of arcs representing the partially 

built dependency tree. There are four possible tran-

sitions (where top is the token on top of the stack 

and next is the next token in the input buffer): 
 

· Left-Arc(r): Add an arc labeled r from next to 

top; pop the stack. 

· Right-Arc(r): Add an arc labeled r from top to 

next; push next onto the stack. 

· Reduce: Pop the stack. 

· Shift: Push next onto the stack. 
 

Although this system can only derive projective 

dependency trees, the fact that the trees are labeled 

                                                           
3 MaltParser is available at http://maltparser.org. 

allows non-projective dependencies to be captured 

using the pseudo-projective parsing technique pro-

posed in Nivre and Nilsson (2005). 

3.2 Classifiers 

Classifiers can be induced from treebank data us-

ing a wide variety of different machine learning 

methods, but all experiments reported below use 

support vector machines with a polynomial kernel, 

as implemented in the LIBSVM package (Chang 

and Lin, 2001) included in MaltParser. The task of 

the classifier is to map a high-dimensional feature 

vector representation of a parser configuration to 

the optimal transition out of that configuration. The 

features used in our experiments represent the fol-

lowing attributes of input tokens: 
 

· PTAG: POS tag of chunk head. 

· CTAG: Chunk tag. 

· FORM: Word form of chunk head. 

· LEMMA: Lemma of chunk head. 

· DEPREL: Dependency relation of chunk. 

· CTAM: Case and TAM markers of chunk.  
 

The PTAG corresponds to the POS tag associated 

with the head of the chunk, whereas the CTAG 

represent the chunk tag. The FORM is the word 

form of the chunk head, and the LEMMA is auto-

matically computed with the help of a morphologi-

cal analyzer. CTAM gives the local 

morphosyntactic features such as case markers 

(postpositions/suffixes) for nominals and TAM 

markers for verbs (cf. Section 2). 
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The pool of features used in the experiments are 

shown in Table 1, where rows denote tokens in a 

parser configuration – defined relative to the stack, 

the input buffer, the partially built dependency tree 

and the input string – and columns correspond to 

attributes. Each non-empty cell represents a fea-

ture, and features are numbered for easy reference. 

4 Feature Selection Experiments 

Starting from the union of the feature sets used by 

Ambati et al. (2009a and by Nivre (2009b), we 

first used 5-fold cross-validation on the combined 

training and development sets from the ICON09 

tools contest to select the pool of features depicted 

in Table 1, keeping all features that had a positive 

effect on both labeled and unlabeled accuracy. We 

then grouped the features into 10 groups (indicated 

by numbers 1–10 in Table 1) and reran the cross-

validation, incrementally adding different feature 

groups in order to analyze their impact on parsing 

accuracy. The result is shown in Figure 1. 
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Figure 1. UAS and LAS of experiments 1-10; 5-fold 

cross-validation on training and development data of the 

ICON09 tools contest. 
 

Experiment 1: Experiment 1 uses a baseline 

model with only four basic features: PTAG and 

FORM of top and next. This results in a labeled 

attachment score (LAS) of 41.7% and an unlabeled 

attachment score (UAS) of 68.2%. 

Experiments 2–3: In experiments 2 and 3, the 

PTAG of contextual words of next and top are 

added. Of all the contextual words, next+1, 
next+2, next+3, top-1 and predecessor of top were 

found to be useful.
4
 Adding these contextual fea-

tures gave a modest improvement to 45.7% LAS 

and 72.7% UAS. 

Experiment 4: In experiment 4, we used the 

PTAG information of nodes in the partially built 

tree, more specifically the syntactic head of top 

and the leftmost dependent of next. Using these 

features gave a large jump in accuracy to 52% 

LAS and 76.8% UAS. This is because partial in-

formation is helpful in making future decisions. 

For example, a coordinating conjunction can have 

a node of any PTAG category as its child. But all 

the children should be of same category. Knowing 

the PTAG of one child therefore helps in identify-

ing other children as well. 

Experiments 5–7: In experiments 5, 6 and 7, 

we explored the usefulness of CTAG, FORM, and 

LEMMA attributes. These features gave small in-

cremental improvements in accuracy; increasing 

LAS to 56.4% and UAS to 78.5%. It is worth not-

ing in particular that the addition of LEMMA 

attributes only had a marginal effect on accuracy, 

given that it is generally believed that this type of 

information should be beneficial for richly in-

flected languages. 

Experiment 8: In experiment 8, the DEPREL of 

nodes in the partially formed tree is used. The 

rightmost child and the left sibling of the rightmost 

child of top were found to be useful. This is be-

cause, if we know the dependency label of one of 

the children, then the search space for other child-

ren gets reduced. For example, a verb cannot have 

more than one k1 or k2. If we know that the parser 

has assigned k1 to one of its children, then it 

should use different labels for the other children. 

The overall effect on parsing accuracy is neverthe-

less very marginal, bringing LAS to 56.5% and 

UAS to 78.6%. 

Experiment 9: In experiment 9, the CTAM 

attribute of top and next is used. This gave by far 

the greatest improvement in accuracy with a huge 

jump of around 10% in LAS (to 66.3%) and 

slightly less in UAS (to 84.7%). Recall that CTAM 

consists of two important morphosyntactic fea-

tures, namely, case markers (as suffixes or postpo-

sitions) and TAM markers. These feature help 

because (a) case markers are important surface  

                                                           
4 The predecessor of top is the word occurring immediately 

before top in the input string, as opposed to top-1, which is the 

word immediately below top in the current stack. 
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Figure 2. Precision and Recall of some important dependency labels. 

 

cues that help identify various dependency rela-

tions, and (b) there exists a direct mapping be-

tween many TAM labels and the nominal case 

markers because TAMs control the case markers of 

some nominals. As expected, our experiments 

show that the parsing decisions are certainly more 

accurate after using these features. In particular, (a) 

and (b) are incorporated easily in the parsing 

process.  

In a separate experiment we also added some 

other morphological features such as gender, num-

ber and person for each node. Through these fea-

tures we expected to capture the agreement in 

Hindi. The verb agrees in gender, number and per-

son with the highest available karaka. However, 

incorporating these features did not improve pars-

ing accuracy and hence these features were not 

used in the final setting. We will have more to say 

about agreement in section 5. 
Experiment 10: In experiment 10, finally, we 

added conjoined features, where the conjunction of 

POS of next and top and of CTAM and DEPREL 

of top gave slight improvements. This is because a 

child-parent pair type can only take certain labels. 

For example, if the child is a noun and the parent is 

a verb, then all the dependency labels reflecting 

noun, adverb and adjective modifications are not 

relevant. Similarly, as noted earlier, certain case-

TAM combinations demand a particular set of la-

bels only. This can be captured by the combination 

tried in this experiment. 

Experiment 10 gave the best results in the cross-

validation experiments. The settings from this ex-

periment were used to get the final performance on 

the test data. Table 2 shows the final results along 

with the results of the first and second best per-

forming systems in the ICON09 tools contest. We 

see that our system achieved an improvement of 2 

percentage points in LAS and 1 percentage point in 

UAS over the previous state of the art reported in 

Ambati et al. (2009a). 
 

System LAS UAS 

Ambati et al. (2009a) 74.5 90.1 

Nivre (2009b) 73.4 89.8 

Our system 76.5 91.1 

 

Table 2. Final results on the test data from the ICON09 

tools contest. 

5 Error Analysis 

In this section we provide a detailed error analysis 

on the test data and suggest possible remedies for 

problems noted. We note here that other than the 

reasons mentioned in this section, small treebank 

size could be another reason for low accuracy of 

the parser. The training data used for the experi-

ments only had ~28.5k words. With recent work on 

Hindi Treebanking (Bhatt et al., 2009) we expect 

to get more annotated data in the near future. 

Figure 2 shows the precision and recall of some 

important dependency labels in the test data. The 

labels in the treebank are syntacto-semantic in na-

ture. Morph-syntactic features such as case mark-

ers and/or TAM labels help in identifying these 

labels correctly. But lack of nominal postpositions 

can pose problems. Recall that many case mark-

ings in Hindi are optional. Also recall that the verb 

agrees with the highest available karaka. Since 

agreement features do not seem to help, if both k1 

and k2 lack case markers, k1-k2 disambiguation 

becomes difficult (considering that word order in-

formation cannot help in this disambiguation). In 

the case of k1 and k2, error rates for instances that 

lack post-position markers are 60.9% (14/23) and 

65.8% (25/38), respectively. 
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 Correct Incorrect 

  k1 k1s k2 pof k7p k7t k7 others 

k1 184 5 3 8 3  1  3 

k1s 12 6  1 6    1 

k2 126 14  1 7 5   11 

pof 54 1 8 4      

k7p 54 3  7   1 2 3 

k7t 27 3  3 3  1  10 

k7 3 2   2 4    

 

Table 3. Confusion matrix for important labels. The 

diagonal under ‘Incorrect’ represents attachment errors. 

 

Table 3 shows the confusion matrix for some 

important labels in the test data. As the present 

information available for disambiguation is not 

sufficient, we can make use of some semantics to 

resolve these ambiguities. Bharati et al. (2008) and 

Ambati et al. (2009b) have shown that this ambi-

guity can be reduced using minimal semantics. 

They used six semantic features: human, non-

human, in-animate, time, place and abstract. Using 

these features they showed that k1-k2 and k7p-k7t 

ambiguities can be resolved to a great extent. Of 

course, automatically extracting these semantic 

features is in itself a challenging task, although 

Øvrelid (2008) has shown that animacy features 

can be induced automatically from data. 

In section 4 we mentioned that a separate expe-

riment explored the effectiveness of morphological 

features like gender, number and person. Counter 

to our intuitions, these features did not improve the 

overall accuracy. Accuracies on cross-validated 

data while using these features were less than the 

best results with 66.2% LAS and 84.6% UAS. 

Agreement patterns in Hindi are not straightfor-

ward. For example, the verb agrees with k2 if the 

k1 has a post-position; it may also sometimes take 

the default features. In a passive sentence, the verb 

agrees only with k2. The agreement problem wor-

sens when there is coordination or when there is a 

complex verb. It is understandable then that the 

parser is unable to learn the selective agreement 

pattern which needs to be followed. Similar prob-

lems with agreement features have also been noted 

by Goldberg and Elhadad (2009). 

In the following sections, we analyze the errors 

due to different constructions and suggest possible 

remedies.  

 

 

5.1 Simple Sentences 

A simple sentence is one that has only one main 

verb. In these sentences, the root of the dependen-

cy tree is the main verb, which is easily identified 

by the parser. The main problem is the correct 

identification of the argument structure. Although 

the attachments are mostly correct, the dependency 

labels are error prone. Unlike in English and other 

more configurational languages, one of the main 

cues that help us identify the arguments is to be 

found in the nominal postpositions. Also, as noted 

earlier these postpositions are many times con-

trolled by the TAM labels that appear on the verb. 

There are four major reasons for label errors in 

simple sentences: (a) absence of postpositions, (b) 

ambiguous postpositions, (c) ambiguous TAMs, 

and (d) inability of the parser to exploit agreement 

features. For example in (2), raama and phala are 

arguments of the verb khaata. Neither of them has 

any explicit case marker. This makes it difficult for 

the parser to identify the correct label for these 

nodes. In (3a) and (3b) the case marker se is ambi-

guous. It signifies ‘instrument’ in (3b) and ‘agent’ 

in (3a). 

 

(2) raama    phala    khaata    hai 

     ‘Ram’    ‘fruit’    ‘eat’       ‘is’ 

     ‘Ram eats a fruit’ 

 

(3) a. raama   se     phala  khaayaa nahi    gaya 

         ‘Ram’ INST ‘fruit’  ‘eat’      ’not’  ‘PAST’ 

         ‘Ram could not eat the fruit’ 

     b. raama  chamach   se     phala    khaata  hai 

         ‘Ram’  ‘spoon’   INST ‘fruit’    ‘eat’     ‘is’ 

          ‘Ram eats fruit with spoon’ 

5.2 Embedded Clauses 

Two major types of embedded constructions in-

volve participles and relative clause constructions. 

Participles in Hindi are identified through a set of 

TAM markers. In the case of participle embed-

dings, a sentence will have more than one verb, 

i.e., at least one participle and the matrix verb. 

Both the matrix (finite) verb and the participle can 

take their own arguments that can be identified via 

the case-TAM mapping discussed earlier. Howev-

er, there are certain syntactic constraints that limit 

the type of arguments a participle can take.  There 
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are two sources of errors here: (a) argument shar-

ing, and (b) ambiguous attachment sites.  

Some arguments such as place/time nominals 

can be shared. Shared arguments are assigned to 

only one verb in the dependency tree. So the task 

of identifying the shared arguments, if any, and 

attaching them to the correct parent is a complex 

task. Note that the dependency labels can be identi-

fied based on the morphosyntactic features. The 

task becomes more complex if there is more than 

one participle in a sentence. 12 out of 130 in-

stances (9.23%) of shared arguments has an incor-

rect attachment.  

Many participles are ambiguous and making the 

correct attachment choice is difficult. Similar par-

ticiples, depending on the context, can behave as 

adverbials and attach to a verb, or can behave as 

adjectives and attach to a noun. Take (4) as a case 

in point.  

 

(4) maine     daurte   hue        kutte  ko   dekhaa 

     ‘I’-ERG  (while) running   dog   ACC ‘saw’             

 

In (4) based on how one interprets ‘daurte hue’, 

one gets either the reading that ‘I saw a running 

dog’ or that ‘I saw a dog while running’. In case of 

the adjectival participle construction (VJJ), 2 out of 

3 errors are due to wrong attachment. 

5.3 Coordination 

Coordination poses problems as it often gives rise 

to long-distance dependencies. Moreover, the tree-

bank annotation treats the coordinating conjunction 

as the head of the coordinated structure. Therefore, 

a coordinating conjunction can potentially become 

the root of the entire dependency tree. This is simi-

lar to Prague style dependency annotation (Hajico-

va, 1998). Coordinating conjunctions pose 

additional problems in such a scenario as they can 

appear as the child of different heads. A coordinat-

ing conjunction takes children of similar POS cat-

egory, but the parent of the conjunction depends on 

the type of the children.  

 

 

(5) a. raama  aur  shyaama   ne     khaana khaayaa                                    

        ‘Ram’ ‘and’ ‘Shyam’ ‘ERG’  ‘food’   ‘ate’          

        ‘Ram and Shyam ate the food.’ 

 

 

     b. raama   ne    khaanaa  khaayaa  aur  paanii    

          ‘Ram’  ‘ERG’ ‘food’     ‘ate’     ‘and’ ‘water’  

         piyaa 

         ‘drank’ 

         ‘Ram ate food and drank water.’ 

 

In (5a), raama and shyaama are children of the 

coordinating conjunction aur, which gets attached 

to the main verb khaayaa with the label k1. In ef-

fect, syntactically aur becomes the argument of the 

main verb. In (5b), however, the verbs khaayaa 

and piyaa are the children of aur. In this case, aur 

becomes the root of the sentence. Identifying the 

nature of the conjunction and its children becomes 

a challenging task for the parser. Note that the 

number of children that a coordinating conjunction 

can take is not fixed either. The parser could iden-

tify the correct head of the conjunctions with an 

accuracy of 75.7% and the correct children with an 

accuracy of 85.7%. 

The nature of the conjunction will also affect the 

dependency relation it has with its head. For ex-

ample, if the children are nouns, then the conjunc-

tion behaves as a noun and can potentially be an 

argument of a verb. By contrast, if the children are 

finite verbs, then it behaves as a finite verb and can 

become the root of the dependency tree. Unlike 

nouns and verbs, however, conjunctions do not 

have morphological features. So a child-to-head 

feature percolation should help make a coordinat-

ing node more transparent. For example, in (5a) the 

Ergative case ne is a strong cue for the dependency 

label k1. If we copy this information from one of 

its children (here shyaama) to the conjunct, then 

the parser can possibly make use of this informa-

tion. 

5.4 Complex Predicates 

Complex predicates are formed by combining a 

noun or an adjective with a verbalizer kar or ho. 

For instance, in taariif karanaa ‘to praise’, taariif 

‘praise’ is a noun and karanaa ‘to do’ is a verb. 

Together they form the main verb. Complex predi-

cates are highly productive in Hindi. Combination 

of the light verb and the noun/adjective is depen-

dent on not only syntax but also semantics and 

therefore its automatic identification is not always 

straightforward (Butt, 1995).  A noun-verb com-

plex predicate in the treebank is linked via the de-

pendency label pof. The parser makes mistakes in 

100



identifying pof or misclassifies other labels as pof. 

In particular, the confusion is with k2 and k1s 

which are object/theme and noun complements of 

k1, respectively. These labels share similar contex-

tual features like the nominal element in the verb 

complex. Table 3 includes the confusion matrix for 

pof errors.  

5.5 Non-Projectivity 

As noted earlier, MaltParser’s arc-eager parsing 

algorithm can be combined with the pseudo-

projective parsing techniques proposed in Nivre 

and Nilsson (2005), which potentially helps in 

identifying non-projective arcs. The Hindi treebank 

has ~14% non-projective arcs (Mannem et al., 

2009a). In the test set, there were a total of 11 non-

projective arcs, but the parser did not find any of 

them. This is consistent with earlier results show-

ing that pseudo-projective parsing has high preci-

sion but low recall, especially when the percentage 

of non-projective relations is small (Nilsson et al, 

2007). 

Non-projectivity has proven to be one of the ma-

jor problems in dependency parsing, especially for 

free word-order languages. In Hindi, the majority 

of non-projective arcs are inter-clausal (Mannem et 

al., 2009a), involving conjunctions and relative 

clauses. There have been some attempts at han-

dling inter-clausal non-projectivity in Hindi. Hu-

sain et al. (2009) proposed a two-stage approach 

that can handle some of the inter-clausal non-

projective structures. 

5.6 Long-Distance Dependencies  

Previous results on parsing other languages have 

shown that MaltParser has lower accuracy on long-

distance dependencies. Our results confirm this. 

Errors in the case of relative clauses and coordina-

tion can mainly be explained in this way. For ex-

ample, there are 8 instances of relative clauses in 

the test data. The system could identify only 2 of 

them correctly. These two are at a distance of 1 

from its parent. For the remaining 6 instances the 

distance to the parent of the relative clause ranges 

from 4 to 12. 

Figure 3 shows how parser performance de-

creases with increasing distance between the head 

and the dependent. Recently, Husain et al. (2009) 

have proposed a two-stage setup to parse inter-

clausal and intra-clausal dependencies separately. 

They have shown that most long distance relations 

are inter-clausal, and therefore, using such a clause 

motivated parsing setup helps in maximizing both 

short distance and long distance dependency accu-

racy. In a similar spirit, Gadde et al. (2010) showed 

that using clausal features helps in identifying long 

distance dependencies. They have shown that pro-

viding clause information in the form of clause 

boundaries and clausal heads can help a parser 

make better predictions about long distance depen-

dencies. 
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Figure 3. Dependency arc precision/recall relative to 

dependency length, where the length of a dependency 

from wi to wj is |i-j| and roots are assumed to have dis-

tance 0 to their head. 

6 Conclusion 

In this paper we have analyzed the importance of 

different linguistic features in data-driven parsing 

of Hindi and at the same time improved the state of 

the art. Our main finding is that the combination of 

case markers on nominals with TAM markers on 

verbs is crucially important for syntactic disambig-

uation, while the inclusion of features such as per-

son, number gender that help in agreement has not 

yet resulted in any improvement. We have also 

presented a detailed error analysis and discussed 

possible techniques targeting different error 

classes. We plan to use these techniques to im-

prove our results in the near future. 
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