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Abstract

This paper describes the results of our experi-
ments in building speaker-adaptive recogniz-
ers for talkers with spastic dysarthria. We
study two modifications – (a) MAP adapta-
tion of speaker-independent systems trained
on normal speech and, (b) using a transition
probability matrix that is a linear interpolation
between fully ergodic and (exclusively) left-
to-right structures, for both speaker-dependent
and speaker-adapted systems. The experi-
ments indicate that (1) for speaker-dependent
systems, left-to-right HMMs have lower word
error rate than transition-interpolated HMMs,
(2) adapting all parameters other than transi-
tion probabilities results in the highest recog-
nition accuracy compared to adapting any
subset of these parameters or adapting all
parameters including transition probabilities,
(3) performing both transition-interpolation
and adaptation gives higher word error rate
than performing adaptation alone and, (4)
dysarthria severity is not a sufficient indica-
tor of the relative performance of speaker-
dependent and speaker-adapted systems.

1 Introduction

After more than two decades of research, speech
recognition is a well-established and reliable
human-computer interaction technology. The accu-
racy of the newest generation of large vocabulary
speech recognizers, after adaptation to a user with-
out speech pathology, is high enough to provide a
useful human-computer interface especially for peo-
ple who find it difficult to type with a keyboard.

Automatic speech recognition (ASR) systems
generally assume that the speech signal is a realisa-
tion of some message encoded as a sequence of one
or more symbols. To effect the reverse operation of
recognising the underlying symbol sequence given a
spoken utterance, the continuous speech waveform
is first converted to a sequence of equally spaced
discrete parameter vectors. The role of the recog-
niser is to effect a mapping between sequences of
speech vectors and the wanted underlying symbol
sequences. Most speech recognizers today are based
on the hidden Markov model (HMM) paradigm: it is
assumed that the sequence of observed speech vec-
tors is generated by a Markov model as shown in
Fig. 1. A Markov model is a finite state machine
which changes state once every time unit and each
time t that a state j is entered, a speech vector ot is
generated from the probability density bj(ot) which
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Figure 1: The Markov generation model.
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is a mixture-Gaussian density for most standard sys-
tems. The transition from state i to state j is also
probabilistic and is governed by the discrete prob-
ability aij . Fig. 1 shows an example of this pro-
cess where the five state model moves through the
state sequence X = 1, 2, 2, 3, 3, 4, 4, 4, 5 in order to
generate the sequence o1 to o7. The entry and exit
states (1, 5) are non-emitting. This is to facilitate
the construction of composite models: most systems
use HMMs to perform modeling at the phone-level
rather than word-level; as such, word-level mod-
els are constructed by stringing together phone-level
HMMs for the constituent phones.

Fig. 2 shows how HMMs can be used for isolated
word recognition. Firstly, an HMM is trained for
each vocabulary word using a number of examples
of that word – given a set of training examples cor-
responding to a particular model, the parameters of
that model ({aij} and {bj(ot)}) are determined by a
robust and efficient re-estimation procedure. In this
example, the vocabulary consists of just three words:
“one”, “two” and “three”. Secondly, to recognise
some unknown word, the likelihood (probability) of
each model generating that word is calculated and
the most likely model identifies the word.

Estimate
Models
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Figure 2: Using HMMs for isolated word recognition.

For creating a speech recognizer for a particular
speaker, there are two approaches: one is to create

a speaker-dependent (SD) system by utlizing speech
of that speaker alone to train the HMMs; the other
is to create a speaker-adapted (SA) system by first
training the HMMs in a speaker-independent fashion
by utlizing speech of several speakers, and then cus-
tomising the HMMs to the characteristics of the par-
ticular speaker by using training examples of their
speech to modify the HMM parameters. The param-
eter values do not get overwritten; they are adjusted
using a regularized or constrained machine learning
algorithm. Regularization (e.g., using Maximum A
Posteriori learning) or constraints (e.g., using lin-
ear transformations) allow the SA model to use far
more trainable parameters per minute of training
data without over-training the system.

Despite the advances in speech technology, their
benefits have not been available to people with gross
motor impairments mainly because these impair-
ments include a component of dysarthria – a group
of motor speech disorders resulting from disturbed
muscular control of the speech mechanism due to
damage of the peripheral or central nervous system.
Dysarthria is often a symptom of a gross motor dis-
order, whose other symptoms usually make it hard
to use a keyboard and mouse. Published case stud-
ies have shown that some dysarthric users may find
it easier to use an ASR system instead of a key-
board (Carlson and Bernstein, 1987; Coleman and
Meyers, 1991; Deller et al., 1988; Deller et al.,
1991; Fried-Oken, 1985). Polur and Miller stud-
ied the development of HMM-based small vocabu-
lary (eight repetitions each of ten digits and fifteen
‘command’ words in English) SD systems for three
male subjects subjectively classified by a trained
clinician as moderately dysarthric (Polur and Miller,
2005a; Polur and Miller, 2005b). They found that
an ergodic HMM with a slight left-to-right character
(called a transition-interpolated HMM from hereon)
provides higher word recognition accuracy (WRA)
than a standard left-to-right HMM, apparently be-
cause the transition-interpolated HMM is able to
capture outlier events as a backward or nonlinear
progress through the intended word. The benefit
of using ergodic modeling over left-to-right mod-
eling in distorted speech applications with disrup-
tion events, pause events, and limited training data
has also been noted earlier by Deller, Hsu and Fer-
rier (Deller et al., 1991). Section 2.1.2 explains
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in more detail the difference between these HMM
topologies.

Speaking for long periods of time is tiring, espe-
cially for a person with dysarthria, therefore it is dif-
ficult for a person with dysarthria to train a speaker-
dependent ASR. Speaker adaptation then seems a
useful method to overcome this obstacle in devel-
oping dysarthric speech recognizers. Raghavendra
et al. (Raghavendra et al., 2001) have compared
recognition accuracies of an SA system and an SD
system. They found that the SA system adapted
well to the speech of talkers with mild or moder-
ate dysarthria, but the recognition scores were lower
than for an unimpaired speaker. The subject with
severe dysarthria was able to achieve better perfor-
mance with the SD system than with the SA sys-
tem. These findings were also supported by Rudz-
icz (Rudzicz, 2007) who compared the performance
of SD and “SA” systems on the Nemours database
(Menendez-Pidal et al., 1996) by varying indepen-
dently the amount of data for training and the num-
ber of Gaussian components used for modeling the
output probability distributions. The “SA” technique
implemented is not speaker-adaptation in the con-
ventional sense: it uses the parameter values for the
speaker-independent system as the starting point to
train HMMs for a particular dysarthric speaker. In
a training algorithm without regularization or con-
straint terms, it is possible for a system of this type
to over-train, resulting in loss of accuracy on test
data from the same speaker, and Rudzicz’s results
suggest that such over-training may have occurred
in some cases. He further concluded that there was
not enough data in the database to represent intra-
speaker variation.

The study described in this paper investigated the
development of medium vocabulary HMM recog-
nizers for dysarthric speech of various degrees of
severity with the following aims: (1) to test the per-
formance of SA systems relative to SD systems, for
various degrees of dysarthria severity, (2) to test the
performance of an SD system employing transition-
interpolated HMMs relative to an SD system using
strictly left-to-right HMMs, (3) to test the perfor-
mance of an SA system with transition-interpolated
HMMs relative to an SD system having strictly left-
to-right HMMs and, (4) to see if the results in the
above three cases are essentially a function of the

talker’s dysarthria severity.

2 Experimental Setup

2.1 Modifications investigated
The following modifications to the HMM structure
were studied in our experiments:

2.1.1 Adaptation
All SA systems were developed by adapting a

speaker-independent system in a Maximum A Pos-
teriori (MAP) manner, as outlined by Gauvain and
Lee (Gauvain and Lee, 1991; Gauvain and Lee,
1992). MAP adaptation involves the use of prior
knowledge about the model parameter distribution.
Hence, if we know what the parameters of the model
are likely to be (before observing any adaptation
data) using the prior knowledge, we might well be
able to make good use of the limited adaptation data,
to obtain a decent MAP estimate. For MAP adapta-
tion purposes, the informative priors that are gener-
ally used are the speaker independent model param-
eters (empirical Bayes approach). In (Gauvain and
Lee, 1991), they derive expressions of MAP esti-
mates for all HMM parameters except the transition
probabilities (Gaussian mixture-component means,
diagonal Gaussian mixture-component covariance
matrices and, mixture-component weights) and also
provide an initialization scheme for the prior den-
sity of these parameters. In (Gauvain and Lee,
1992), they derive expressions for MAP estimates of
transition probabilities in addition to those for full-
covariance Gaussian mixture-component parame-
ters, and provide a MAP variant of the Expectation-
Maximization (EM) re-estimation algorithm. All
systems developed in our study modeled the obser-
vations as mixture of Gaussians with diagonal co-
variance matrices.

2.1.2 Transition-Interpolation
Fig. 3 illustrates the topologies of strictly left-to-

right (LR) and transition-interpolated (TI) HMMs
with 3 emitting states. If A = {aij} be the N ×
N transition probability matrix for an N-state HMM,
then we have for an LR HMM: for each state i,
0 < aii , ai,i+1 < 1; aii + ai,i+1 = 1 and aij =
0 for j 6= i, i + 1. In other words, each emitting
state has only two possible state-transitions: given
the current state, the HMM either remains in the
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same state or moves into the succeeding state; it will
not jump over states or go to a preceding state.

Strictly
Left-to-Right

HMM

a22 a33 a44

a23 a34 a45a12

Transition-
Interpolated
HMM

a22 a33 a44

a23 a34 a45a12
ε32 ε43

ε24
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Figure 3: Difference between strictly left-to-right and
transition-interpolated HMM topologies.

The TI model is an LR model which has non-zero
transition probabilties for jumps and transitions to
preceding states from a particular state (for emit-
ting states). These probabilties are however small
compared to self-transition and next-state–transition
probabilties. A TI HMM is initialized as follows: for
each emitting state i, aij = ε for j 6= i, i+1 where
0 < ε << 1; aii , ai,i+1 >> ε and

∑N
j=1 aij =

1. After this initialization, the transition probabil-
ity matrix is re-estimated for speaker-dependent sys-
tems using the standard Maximum Likelihood EM
algorithm, and for speaker-adapted systems using
the MAP variant of the EM algorithm.

2.2 Data used

The experiments described in this paper utilized
speech of 7 speakers from the UA-Speech database
(Kim et al., 2008). This corpus was constructed with
the aim of developing large-vocabulary dysarthric
ASR systems which would allow users to enter un-
limited text into a computer. All speakers exhib-
ited symptoms of spastic dysarthria, according to an
informal evaluation by a certified speech-language
pathologist. Each speaker recorded 765 isolated
words in 3 blocks of 255 words each; (a) common
to all blocks: 10 digits (D), 19 computer commands
(C), 26 radio alphabet letters (L), and 100 common
words (CW) selected from the Brown corpus of writ-
ten English; and (b) unique to each block: 100 un-

common words (UW) selected from children’s nov-
els digitized by Project Gutenberg. Vocabularies D
and CW were primarily composed of monosylla-
bles, C and L of bisyllables, and UW of polysyl-
labic words. The speakers’ speech was affected by
dysarthria associated with cerebral palsy. Data ac-
quisition and intelligibility assessment is described
in more detail in (Kim et al., 2008). Two hundred
distinct words were selected from the recording of
the second block: 10 digits, 25 radio alphabet letters,
19 computer commands and, 73 words randomly se-
lected from each of the CW and UW categories. Five
naive listeners were recruited for each speaker and
were instructed to provide orthographic transcrip-
tions of each word that they thought the speaker
said. The percentage of correct responses was then
averaged across five listeners to obtain each speak-
ers intelligibility. Table 1 lists the speakers whose
speech materials from the UA-Speech database were
used, along with their human listener intelligibility
ratings. The first letter of the speaker code (‘M’ or
‘F’) indicates their gender.

Speaker Age Speech Intelligbility (%)
M09 18 high (86%)
M05 21 mid (58%)
M06 18 low (39%)
F02 30 low (29%)
M07 58 low (28%)
F03 51 very low (6%)
M04 >18 very low (2%)

Table 1: Summary of Speaker Information (in decreasing
order of human listener intelligibility rating).

For building the “MAP prior” speaker-
independent system, the unadapted HMMs were
trained on speech from the TIMIT corpus (Garofolo
et al., 1993).

2.3 System Configurations

Table 2 lists the characteristics of the various sys-
tem configurations that were studied: SD stands
for speaker-dependent, SA for speaker-adapted;
LR implies use of strictly left-to-right HMMs, TI
for transition-interpolated HMMs; ‘m’,‘v’,‘w’,‘t’
respectively denote means, variances, mixture-
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component weights and transition probabilities.
These systems were developed for each of the seven

System (Type) HMM Parameters adapted
C00 (SD) LR —
C01 (SD) TI —
C11 (SA) LR m
C12 (SA) LR m,v
C13 (SA) LR m,v,w
C14 (SA) LR m,v,w,t
C15 (SA) TI m,v,w,t

Table 2: Summary of ASR System Configurations

speakers listed in Table 1, and employed word-
internal, context-dependent triphone HMMs, with
three hidden states and observations modeled as
mixture-of-Gaussians. Configuration C00 was de-
veloped by Sharma and Hasegawa-Johnson (2009)
and is the baseline configuration for the present ex-
periments. For configurations C11 through C15,
the speaker-independent systems trained on TIMIT
employed left-to-right HMMs. For systems C15,
the transition-interpolation was performed after ob-
taining the speaker-independent TIMIT-trained left-
to-right HMMs and before adaptation to the UA-
Speech speaker’s data: the original non-zero entries
in the transition probability matrices were scaled
down so that the sum of each row was unity after
changing the zero-entries to ε. For each speaker, all
of blocks 1 and 3 were used as training data (sys-
tems C00, C01) or adaptation data (systems C11-
C15) and all of block 2 was used for testing. The
speaker-independent system was trained on all of
TIMIT’s training data and was tested on speech of
32 randomly chosen speakers from its test data.

The features extracted from the speech waveform
comprised of 12 Perceptual Linear Prediction co-
efficients (Hermansky, 1990) for 25 ms Hamming-
windowed segments obtained every 10 ms, plus the
energy of the windowed segment. ‘Velocity’ and
‘Acceleration’ components were also calculated for
this 13-dimensional feature, which finally resulted
in a 39-dimensional acoustic feature vector.

The measure used for assessing the performance
of the developed recognizers is the fraction of task–
vocabulary words correctly recognized (in percent),

defined in Equation 1.

PWC =
# words correctly recognized

# words attempted
× 100

(1)
For each configuration, the number of Gaussian

components in the state-specific observation proba-
bility densities was increased (in an iterative man-
ner) in powers of 2, from 1 to 32 components (for
C00 and C01) or 64 components (for C11-C15):
standard methods for choosing this number (using
development test data) could not be employed on
account of insufficient data. The results reported
in the next section should therefore be interpreted
as development test results. In order to avoid over-
tuning, the number of Gaussian components was
constrained to be the same across all speakers. For
the speaker-dependent systems (C00 and C01), re-
sults are for HMMs with 2 Gaussian components per
probability density. For the speaker-adapted systems
(C11-C15), results are for HMMs with 32 Gaussian
components per probability density: while train-
ing the speaker-independent TIMIT system, it was
found that the phone recognition accuracy increased
monotonically when going from 1 to 32 Gaussian
components but decreased when going from 32 to
64 components.

3 Results

Tables 3, 4 list the PWC scores for the various sys-
tem configurations developed. The speakers are
listed in decreasing order of intelligibility rating.
The scores for systems C00 are restated here from
Sharma and Hasegawa-Johnson (2009) (Table 6, un-
der the column ‘T10’).

We see that speaker-dependent systems with left-
to-right HMMs (C00) have higher recognition ac-
curacy than the speaker-dependent systems with
transition-interpolated HMMs (C01), for all speak-
ers except M06. System C11 for a particular
speaker, with adaptation of Gaussian means alone
performs either better or worse than both sys-
tems C00 and C01 for that speaker. System C12
with adaptation of Gaussian means and variances,
has better recognition accuracy than both speaker-
dependent systems, for all speakers except F02 and
M07 (worse than both speaker-dependent systems).
System C13 with adaptation of all parameters ex-
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System Configuration
Speaker C00 C01 C11 C12

M09 52.04 47.3 57.1 62.1
M05 35.52 33.7 31 39.4
M06 34.01 36.1 38.6 38.5
F02 35.06 32.8 20.8 26.9
M07 43.87 40.7 32 35.9
F03 12.61 11.3 17.4 22.2
M04 2.82 1.7 3.7 4.2

Table 3: PWC scores for each speaker’s configurations
C00-C12.

System Configuration
Speaker C00 C13 C14 C15

M09 52.04 66.4 65.8 64.2
M05 35.52 45.2 44 38.1
M06 34.01 40.7 40.1 39.2
F02 35.06 30.4 29.7 26.6
M07 43.87 43 41.8 35.9
F03 12.61 27.7 26.2 25.7
M04 2.82 4.2 3.8 3.1

Table 4: PWC scores for each speaker’s configurations
C00,C13-C15.

cept transition-probabilities has the highest recogni-
tion accuracy for all subjects except F02 and M07
(highest among speaker-adapted systems only). Sys-
tem C14 which adapts all parameters including tran-
sition probabilities, always performs worse than the
corresponding system C13, for all speakers. How-
ever, like system C13, it has better recognition ac-
curacy than both speaker-dependent systems for all
speakers except F02 and M07. Finally, perform-
ing transition-interpolation and adaptation of all pa-
rameters (system C15) worsens the performance to
below that of the corresponding system C14; addi-
tionally, C15 has better recognition accuracy than
both speaker-dependent systems whenever the cor-
responding C13 (and C14) system also performs bet-
ter than them.

These results are plotted in Fig. 4 along with
the human listeners’ intelligibility ratings of these
speakers (the black circles). For speakers M09 and
M05, system C13 with the best overall PWC score
is still far from doing as well as human listeners. For
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Figure 4: PWC scores for various system configurations
(the black circles indicate speakers’ human listener intel-
ligibility ratings).

the remaining subjects, it has however been able to
do as well or better than human listeners even when
it performed worse than the corresponding speaker-
dependent systems (C00,C01): in fact, for speaker
M06, it does better than human listeners when the
speaker-dependent systems don’t.

Fig. 5 plots, for all speakers, the percentage dif-
ference PWC(x)/PWC(C00)-1 between the PWC of
system x (x ∈ {C01− C15}) and the PWC of sys-
tem C00.
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Figure 5: Percentage change in PWC scores for vari-
ous system configurations relative to configuration C00’s
PWC score.

For speakers who have an intelligibility rating
above 35% or below 25%, the speaker-adapted
systems generally do better than their speaker-
dependent counterparts. System C01, with tran-
sition interpolation, performs worse than system
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C00 for all speakers except M06. The surpris-
ing result though is that for speakers with highly
severe dysarthria (F03 and M04), speaker-adapted
systems have substantially better recognition ac-
curacies than their speaker-dependent counterparts,
when previous studies have indicated that for such
subjects, speaker-dependent systems perform better
than speaker-adapted systems.

4 Conclusions

This study investigated adaptation and state-
transition interpolation techniques for medium vo-
cabulary HMM-based speech recognition of talkers
with spastic dysarthria. It was found that performing
transition-interpolation generally worsens recogni-
tion performance when compared to left-to-right
HMMs. Performing both adaptation and transition-
interpolation results in higher recognition accuracy
compared to the speaker-dependent system with left-
to-right HMMs but adaptation-only systems have
still better performance. This implies that state-
transitions not accounted for in left-to-right HMMs
do not capture (or capture rather poorly) the out-
lier events that differentiate dysarthric speech from
unimpaired speech at the sub-phone level.

The most interesting outcome of our experiments
is that for subjects that have very severe dysarthria,
speaker-adaptation was able to achieve substantial
improvement in recognition accuracy, compared to
the speaker-dependent systems. This finding is sig-
nificant in that it is contrary to the conclusions of
previously published studies. The results reported
in this paper therefore suggest that the severity of
dysarthria as quantified by the subject’s intelligibil-
ity rating is not a sufficient indicator of the rela-
tive performance of speaker-dependent and speaker-
adapted systems.
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