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Abstract 

Extracting medication information from 
clinical records has many potential appli-
cations and was the focus of the i2b2 
challenge in 2009. We present a hybrid 
system, comprised of machine learning 
and rule-based modules, for medication 
information extraction. With only a hand-
ful of template-filling rules, the system’s 
core is a cascade of statistical classifiers 
for field detection. It achieved good per-
formance that was comparable to the top 
systems in the i2b2 challenge, demon-
strating that a heavily statistical ap-
proach can perform as well or better than 
systems with many sophisticated rules. 
The system can easily incorporate addi-
tional resources such as medication name 
lists to further improve performance.   

1 Introduction   

Narrative clinical records store patient medical 
information, and extracting this information from 
these narratives supports data management and 
enables many applications (Levin et al., 2007). 
Informatics for Integrating the Biology and the 
Bedside (i2b2) is an NIH-funded National Center 
for Biomedical Computing based at Partners 
HealthCare System, and it has organized annual 
NLP shared tasks and challenges since 2006 
(https://www.i2b2.org/). The Third i2b2 Workshop 
on NLP Challenges for Clinical Records in 2009 
studied the extraction of medication information 
from hospital discharge summaries 

(https://www.i2b2.org/NLP/Medication/), a task 
we refer to as the i2b2 challenge in this paper.  
    In the past decade, there has been extensive re-
search on information extraction in both the gen-
eral and biomedical domains (Wellner et al., 2004; 
Grenager et al., 2005; Poon and Domingos, 2007; 
Meystre et al, 2008; Rozenfeld and Feldman, 
2008). Interestingly, despite the recent prevalence 
of statistical approaches in most NLP tasks (in-
cluding information extraction), most of the sys-
tems developed for the i2b2 challenge were rule-
based. In this paper we present our hybrid system, 
whose core is a cascade of statistical classifiers that 
identify medication fields such as medication 
names and dosages. The fields are then assembled 
to form medication entries. While our system did 
not participate in the i2b2 challenge (as we were 
part of the organizing team), it achieved good re-
sults that matched the top i2b2 systems.  

2 The i2b2 Challenge 

This section provides a brief introduction to the 
i2b2 challenge. 

2.1 The task 

The i2b2 challenge studied the automatic extrac-
tion of information corresponding to the following 
fields from hospital discharge summaries (Uzuner, 
et al., 2010a): names of medications (m) taken by 
the patient, dosages (do), modes (mo), frequencies 
(f), durations (du), and reasons (r) for taking these 
medications. We refer to the medication field as 
the name field and the other five fields as the non-
name fields. All non-name fields correspond to 
some name field mention; if they were specified 
within a two-line window of that name mention, 
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the i2b2 challenge required such fields to be linked 
to the name field to form an entry. For each entry, 
a system must determine whether the entry ap-
peared in a list of medications or in narrative text. 
Table 1 shows an excerpt from a discharge sum-
mary and the corresponding entries in the gold 
standard. The first entry appears in narrative text, 
and the second in a list of medication information. 
 

Excerpt  of  Discharge Summary 
55   the patient noted that he had a recurrence of this  
56   vague chest discomfort as he was sitting and  
57   talking to friends. He took a sublingual  
58   Nitroglycerin without relief. 
... 
65  Flomax ( Tamsulosin  )  0.4 mg,  po, qd,... 
Gold  standard: 
m=“Nitroglycerin” 58:0 58:0 ||do=“nm”||    
   mo=“sublingual” 57:6 57:6 ||f=“nm” ||du=“nm” ||   
   r=“vague chest discomfort” 56:0 56:2 ||  
   ln=”narrative” 
... 
m="flomax ( tamsulosin )" 65:0 65:3||do="0.4 mg" 
   65:4 65:5||mo="po" 65:6 65:6||f="qd" 65:7 
   65:7||du="nm"||r="nm"||ln="list" 
 

Table 1: A sample discharge summary excerpt and 
the corresponding entries in the gold standard. The 
fields inside an entry are separated by “||”. Each 
field is represented by the string and its position 
(i.e., “line number: token number” offsets). “nm” 
means the field value is not mentioned for this me-
dication name.  

2.2 Data Sets 

The i2b2 challenge used a total of 1243 discharge 
summaries: 
• 696 of these summaries were released to par-

ticipants for system development, and the i2b2 
organizing team provided the gold standard 
annotation for 17 of them.  
 

• Participating teams could choose to annotate 
more files themselves. The University of Syd-
ney team annotated 145 out of the 696 summa-
ries (including re-annotating 14 of the 17 files 
annotated by the i2b2 organizing team) and 
generously shared their annotations with i2b2 
after the challenge for future research. We ob-
tained and used 110 of their annotations as our 
training set and the remaining 35 summaries as 
our development set. 

 
• The participating teams produced system out-

puts for 547 discharge summaries set aside for 
testing. After the challenge, 251 of these sum-
maries were annotated by the challenge par-
ticipants, and these 251 summaries formed the 
final test set (Uzuner et al., 2010b).  

   The sizes of the data sets used in our experiments 
are shown in Table 2. The training and develop-
ment sets were created by the University of Syd-
ney, and the test data is the i2b2 official challenge 
test set. The average number of entries and fields 
vary among the three sets because the summaries 
in the test set were chosen randomly from the 547 
summaries, whereas the University of Sydney team 
annotated the longest summaries. 

2.3 Additional resources 

Besides the training data, the participating teams 
were allowed to use any additional tools and re-
sources that they had access to, including resources 
not available to the public. All challenge partici-
pants used additional resources such as UMLS 
(www.nlm.nih.gov/research/umls/), but the exact 
resources used varied from team to team. There-
fore, the challenge was similar to the so-called 
open-track challenge in the general NLP field, as 
opposed to a closed-track challenge that could re-
quire that all the participants use only the list of 
resources specified by the challenge organizers 
 
2.4 Evaluation metrics 
 
The i2b2 challenge used two sets of evaluation 
metrics:  horizontal and vertical metrics. Horizon-
tal metrics measured system performance at the 
entry level, whereas vertical metrics measured sys-
tem performance at the field level. Both sets of 
metrics compared the system output and the gold 
standard at the span level for exact match and at 
the token level for inexact match, using precision, 
recall, and F-score (Uzuner et al., 2010a). The pri-
mary metric for the challenge is exact horizontal F-
score, which is the metric we use to evaluate our 
system.  
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Table 2: The data sets used in our experiments. The numbers in parentheses are the average numbers 
of entries or fields per discharge summary.  
 

2.5 Participating systems 

Twenty teams participated in the challenge. Fifteen 
teams used rule-based approaches, and the rest 
used statistical or hybrid approaches. The perform-
ances of the top five systems are shown in Table 3. 
Among them, only the top system, developed by 
the University of Sydney, used a hybrid approach, 
whereas the rest were rule-based. 
 

Rank Precision Recall F-score 

1 89.6 82.0 85.7 

2 84.0 80.3 82.1 

3 86.4 76.6 81.2 

4 78.4 82.3 80.3 

5 84.1 75.8 79.7 
Table 3: The performance (exact horizontal preci-
sion/recall/F-score) of the top five i2b2 systems on 
the test set.  

3 System description   

We developed a hybrid system with three process-
ing steps: (1) a preprocessing step that finds sec-
tion boundaries, (2) a field detection step that 
identifies the six fields, and (3) a field linking step 
that links fields together to form entries. The sec-
ond step is a statistical system, whereas the other 
two steps are rule-based. The second step was the 
main focus of this study. 

3.1 Preprocessing  

In addition to common processing steps such as 
part-of-speech (POS) tagging, our preprocessing 

step includes a section segmenter that breaks dis-
charge summaries into sections. Discharge summa-
ries tend to consist of sections such as ‘ADMIT 
DIAGNOSIS’, ‘PAST MEDICAL HISTORY’, 
and ‘DISCHARGE MEDICATIONS’. Knowing 
section boundaries is important for the i2b2 chal-
lenge because, according to the annotation guide-
lines for creating the gold standard, medications 
occurring under certain sections (e.g., family his-
tory and allergic reaction) should be excluded from 
the system output. Furthermore, knowing the types 
of sections could be useful for field detection and 
field linking; for example, entries in the 
‘DISCHARGE MEDICATIONS’ section are more 
likely to appear in a list of medications than in nar-
rative text. 

The set of sections and the exact spelling of 
section headings vary across discharge summaries. 
The section segmenter uses regular expressions 
(e.g., ‘^\s*([A-Z\s]+):’ -- a line starting with a se-
quence of capitalized words followed by a colon) 
to collect potential section headings from the train-
ing data, and the headings whose frequencies are 
higher than a threshold are used to identify section 
boundaries in the discharge summaries.  

3.2 Field detection  

This step consists of three modules: the first mod-
ule, find_name, finds medication names in a dis-
charge summary; the second module, context_type, 
processes each medication name identified by 
find_name and determines whether the medication 
appears in narrative text or in a list of medications; 
the third module, find_others, detects the five non-
name field types.  
    For find_name and find_others, we follow the 
common practice of treating named-entity (NE) 
detection as a sequence labeling task with the BIO 

Data  
Sets 

# of  
Summaries 

# of 
Entries 

# of 
Fields 

# of 
Names 

# of 
Doses 

# of 
Freq 

# of 
Modes 

# of 
Duration 

# of 
Reason 

Training 
set 

110 
 

5970 
 (54.3) 

14886 
(135.3) 

5684 
(51.7) 

2929 
(26.6) 

2740 
(24.9) 

2146 
(19.5) 

302  
(2.7) 

1085 
(9.9) 

Dev 
set 

35 
 

2401  
(68.6) 

5988 
(171.1) 

2302 
(65.8) 

1163 
(33.2) 

1096 
(31.3) 

880 
(25.1) 

111  
(3.2) 

436 
(12.5) 

Test 
set 

251 
 

8936 
(35.6) 

22041 
(87.8) 

8495 
(33.8) 

4387 
(17.5) 

3999 
(15.9) 

3307 
(13.2) 

511  
(2.0) 

1342 
(5.3) 
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tagging scheme; that is, each token in the input is 
tagged with B-x (beginning an NE of type x), I-x 
(inside an NE of type x) and O (outside any NE).   

3.2.1 The find_name module 

As this module identifies medication names only, 
the tagset under the BIO scheme has three tags: B-
m for beginning of a name, I-m for inside a name, 
and O for outside. Various features are used for 
this module, which we group into four types:  
 
• (F1) includes word n-gram features (n=1,2,3). 

For instance, the bigram wi-1 wi looks at the 
current word and the previous word.  
 

• (F2) contains features that check properties of 
the current word and its neighbors (e.g., the 
POS tag, the affixes and the length of a word, 
the type of section that a word appears in, 
whether a word is capitalized, whether a word 
is a number, etc.)  
 

• (F3) checks the BIO tags of previous words 
 
• (F4) contains features that check whether n-

grams formed by neighboring words appear as 
part of medication names in given medication 
name lists. The name lists can come from la-
beled training data or additional resources such 
as UMLS. 

3.2.2 The context_type module 

This module is a binary classifier which deter-
mines whether a medication name occurs in a list 
or narrative context. Features used by this module 
include the section name as identified by the pre-
processing step, the number of commas and words 
on the current line, the position of the medication 
name on the current line, and the current and near-
by words.   

3.2.3 The find_others module 

This module complements the find_name module 
and uses eleven BIO tags to identify five non-name 
fields. The feature set used in this module is very 
similar to the one used in find_name except that 
some features in (F2) and (F4) are modified to suit 
the needs of the non-name fields. For instance, a 
feature will check whether a word fits a common 
pattern for dosage. In addition, some features in 

(F2) look at the output of previous modules: e.g., 
the location of nearby medication names as this 
information can be provided by the find_name 
module at test time.  

3.3 Field linking  

Once medication names and other fields have been 
found, the final step is to form entries by associat-
ing each medication name with its related fields. 
Our current implementation uses simple heuristics. 
First, we go over each non-name field and link it 
with the closest preceding medication name unless 
the distance between the non-name field and its 
closest following medication name is much shorter. 
Second, we assemble the (name, non-name) pairs 
to form medication entries with a few rules.  
  
   More information about the modules discussed in 
this section and features used by the modules is 
available in (Halgrim, 2009). 

4 Experimental results  

In this section, we report the performance of our 
system on the development set (Section 4.1-4.3) 
and the test set (Section 4.4). The data sets are de-
scribed in Table 2. For all the experiments in this 
section, unless specified otherwise, we report exact 
horizontal precision/recall/F-score, the primary 
metrics for the i2b2 challenge.  
   For the three modules in the field detection step, 
we use the Maximum Entropy (MaxEnt) learner in 
the Mallet package (McCallum, 2002) because, in 
general, MaxEnt produces good results without 
much parameter tuning and the training time for 
MaxEnt is much faster than more sophisticated 
algorithms such as CRF (Lafferty et al., 2001).  
   To determine whether the difference between 
two systems’ performances is statistically signifi-
cant, we use approximate randomization tests (No-
reen, 1989) as follows. Given two systems that we 
would like to compare, we first calculate the dif-
ference between exact horizontal F-scores. Then 
two pseudo-system outputs are generated by ran-
domly swapping (at 0.5 probability) the two sys-
tem outputs for each discharge summary. If the 
difference between F-scores of these pseudo-
outputs is no less than the original F-score differ-
ence, a counter, cnt, is increased by one. This 
process was repeated n=10,000 times, and the p-
value of the significance is equal to (cnt+1)/(n+1). 
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If the p-value is smaller than a predefined thresh-
old (e.g., 0.05), we conclude that the difference 
between the two systems is statistically significant. 
 
4.1 Performance of the whole system 
 
4.1.1 Effect of feature sets 
 
To test the effect of feature sets on system per-
formance, we trained find_name and find_others 
with different feature sets and tested the whole sys-
tem on the development set. For (F4), we used two 
medication name lists. The first list consists of 
medication names gathered from the training data. 
The second list includes drug names from the FDA 
database 
(www.accessdata.fda.gov/scripts/cder/ndc/). We 
use the second list to test whether adding features 
that check the information in an additional re-
source could improve the system performance. 
   The results are in Table 4. For the last two rows, 
F1-F4a uses the first medication name list, and F1-
F4b uses both lists. The F-score difference between 
all adjacent rows is statistically significant at 
p≤0.01, except for the pair F1-F3 vs. F1-F4a. It is 
not surprising that using the first medication name 
list on top of F1-F3 does not improve the perform-
ance, as the same kind of information has already 
been captured by F1 features. The improvement of 
F1-F4b over F1-F4a shows that the system can 
easily incorporate additional resources and achieve 
a statistically significant (at p≤0.01) gain.  
 

Features Precision Recall F-score 

F1 72.5 60.3 65.8 

F1-F2 82.5 78.2 80.3 

F1-F3 88.4 77.9 82.8 

F1-F4a 87.4 77.9 82.4 

F1-F4b 88.1 79.4 83.5 
 
Table 4: System performance on the development 
set with different feature sets 

4.1.2 Effect of training data size 

Figure 1 shows the system performance on the de-
velopment set when different portions of the train-

ing set are used for training. The curve with “+” 
signs represents the results for F1-F4b, and the 
curve with circles represents the results for F1-F4a. 
The figure illustrates that, as the training data size 
increases, the F-score with both feature sets im-
proves. In addition, the additional resource is most 
helpful when the training data size is small, as in-
dicated by the decreasing gap between the two sets 
of F-scores when the size of training data in-
creases.  
 

 
Figure 1: System performance on the development 

set with different training data sizes (Legend: ○ 
represents F-scores with features in F1-F4a; + rep-

resents F-scores with features in F1-F4b) 
 

4.1.3 Pipeline vs. find_all   

The current field detection step is a pipeline ap-
proach with three modules: find_name, con-
text_type, and find_others. Having three separate 
modules allows each module to choose the features 
that are most appropriate for it. In addition, later 
modules can use features that check the output of 
the previous modules. A potential downside of the 
pipeline system is that the errors in the early mod-
ule would propagate to later modules. An alterna-
tive is to use a single module to detect all six field 
types together. 
 

Figure 2 shows the result of find_all in compari-
son to the result for the three-module pipeline. 
Both use the F1-F4b feature sets, except that 
find_others uses some features that check the out-
put of previous modules which are not available to 
find_all. 

 

65



 
Figure 2: Pipeline vs. find_all for field detection 
(Legend: ○ represents F-scores with find_all; + 
represents F-scores with the three-module pipeline)  
 
   Interestingly, when 10% of the training set is 
used for training, find_all has a higher F-score than 
the pipeline approach, although the difference is 
not statistically significant at p≤0.05. As more data 
is used for training, the pipeline outperforms 
find_all, and when at least 50% of the training data 
is used, the difference between the two is statisti-
cally significant at p≤0.05. One possible explana-
tion for this phenomenon is that as more training 
data becomes available, the early modules in the 
pipeline make fewer errors; as a result, the disad-
vantage of the pipeline approach caused by error 
propagation is outweighed by the advantage that 
the later modules in the pipeline can use features 
that check the output of the earlier modules. 

4.2 Performance of the field detection step 

Table 5 shows the exact precision/recall/F-score on 
identifying the six field types, using all the training 
data, F1-F4b features, and the pipeline approach 
for field detection. A span in the system output 
exactly matches a span in the gold standard if the 
two spans are identical and have the same field 
type. Among the six fields, the results for duration 
and reason are the lowest. That is because duration 
and reason are longer phrases than the other four 
field types and there are fewer strong, reliable cues 
to signal their presence.  

When making the narrative/list distinction, the 
accuracy of our context_type module is 95.4%. In 
contrast, the accuracy of the baseline (which treats 
each medication name as in a list context) is only 
55.6%. 

 
 Precision Recall F-score 
Name 91.2 88.5 89.9 
Dosage 96.6 90.8 93.6 
Frequency 93.9 89.0 91.8 
Mode 95.7 90.3 92.9 
Duration 73.8 43.2 54.5 
Reason 72.2 31.0 43.3 
All fields 92.6 84.5 88.4 

Table 5: The performance (exact preci-
sion/recall/F-score) of field detection on the devel-
opment set. 
  

4.3 Performance of the field linking step 

In order to evaluate the field linking step, we gen-
erated a list of (name, non-name) pairs from the 
gold standard, where the name and non-name 
fields appear in the same entry in the gold stan-
dard. We then compared these pairs with the ones 
produced by the field linking step and calculated 
precision/recall/F-score. Table 6 shows the result 
of two experiments: in the cheating experiment, the 
input to the field linking step is the fields from the 
gold standard; in the non-cheating experiment, the 
input is the output of the field detection step. These 
experiments show that, while the heuristic rules 
used in this step work reasonably well when the 
input is accurate, the performance deteriorates con-
siderably when the input is noisy, an issue we plan 
to address in future work. 
 
 Precision Recall F-score 
Non-cheating 87.4 75.1 80.8 
Cheating 96.2 94.5 95.3 

Table 6: The performance of the field linking step 
on the development set (cheating: assuming perfect 
field input; non-cheating: using the output of the 
field detection step) 

4.4 Results on the test data 

Table 7 shows the system performance on the i2b2 
official test data. The system was trained on the 
union of the training and development data. Com-
pared with the top five i2b2 systems (see Table 3), 
our system was second only to the best i2b2 sys-
tem, which used more resources and more sophis-
ticated rules for field linking (Patrick and Li, 
2009).   
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 Precision Recall F-score 
Horizontal 88.6 80.2 84.1 
Name 92.6 87.1 89.8 
Dosage 96.3 90.2 93.1 
Frequency 95.6 90.8 93.2 
Mode 96.7 90.2 93.3 
Duration 70.6 40.5 51.5 
Reason 73.4 34.7 47.1 
All fields 91.6 82.7 86.9 

Table 7: System performance on the test set when 
trained on the union of the training and the devel-
opment sets with F1-F4b features. 

5 Conclusion  

We present a hybrid system for medication extrac-
tion. The system is built around a pipeline of cas-
cading statistical classifiers for field detection. It 
achieves good performance that is comparable to 
the top systems in the i2b2 challenge, and incorpo-
rating additional resources as features further im-
proves the performance. In the future, we plan to 
replace the current rule-based field linking module 
with a statistical module to improve accuracy.  
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