
Workshop Adaptation of Language Resources and Technology to New Domains 2009 - Borovets, Bulgaria, pages 19–26

LEXIE - an Experiment in Lexical Information
Extraction

John J. Camilleri
Dept. Intelligent Computer Systems

University of Malta
MSD2080 Msida, Malta
john@johnjcamilleri.com

Michael Rosner
Dept. Intelligent Computer Systems

University of Malta
MSD2080 Msida, Malta
mike.rosner@um.edu.mt

Abstract
This document investigates the possibility of ex-
tracting lexical information automatically from
the pages of a printed dictionary of Maltese. An
experiment was carried out on a small sample
of dictionary entries using hand-crafted rules to
parse the entries. Although the results obtained
were quite promising, a major problem turned
out to errors introduced by OCR and the incon-
sistent style adopted for writing dictionary en-
tries.

Keywords

lexicon extraction, lexical information, lexicon, semitic

1 Introduction

This paper describes an experiment carried out within
the general context of the Maltilex project [6], the ob-
jective of which is the development of a computational
lexicon for the Maltese language. The compilation of
such a body of lexical information for an entire lan-
guage in machine readable form is a formidible task.
Intuitively, we are aiming for a lexicon that comprises
a set of entries under which all the information relating
to a particular word is stored.

It is particularly difficult for Maltese because the
Semitic component of the language is morphologically
rich, so the set of valid, naturally occurring word forms
is, in principle, larger than the set of lexical entries.
Hence, certain issues about the role of morphological
analysis and lexical organisation must be resolved if
the set of entries is to be effectively delimited.

Fortunately, a lot of the of the work has already
been carried out by the compiler of what still remains
the most comprehensive printed Maltese-English dic-
tionary, Joseph Aquilina [2]. The question, therefore,
is whether the information, and to some extent, the
organisation already present in that dictionary can be
exploited.

The more general issue under investigation in the
context of the present workshop is the re-use of expen-
sively produced paper lexical resources by translation
into a more useable electronic form.

The approach is not entirely new. Some work along
these lines was carried out for the Longman Dictio-
nary of English by Boguraev et al [3] and we owe much

to the general approach adopted there. However, the
two main differences we see between their approach
and ours are that (a) Boguraev’s work was oriented
rather heavily towards the GPSG grammatical frame-
work and (b) they were able to access the original
source tapes of the dictionary. The input they used
was therefore faithful to the orginal.

In our case we had to rely upon OCR input as de-
scribed further in section 4. The inherent errors caused
certain problems.

One of the aims of this work is to establish a viable
method for extracting lexical entries for lesser-studied
languages lacking the usual battery of language re-
sources in machine readable form. Most languages of
the world fall into this category. The availability of a
paper dictionary, is, however, fairly widespread, even
for exotic languages so that the methods being pro-
posed could provide a robust alternative to dictionary
extraction for a relatively large number of languages.

In terms of the types of information to be extracted
from these pages, the aim of this experiment was to
produce, with a reasonable level of accuracy, the fol-
lowing: (i) a correct list of headwords appearing in the
dictionary, and (ii) associated lexical information for
each headword in this list.

Additionally, to facilitate the interoperability of the
extracted information with any other NLP applica-
tions which may make use of it, the format chosen for
the final output lexicon was to conform to the evolving
Lexical Markup Framework (LMF) [5] ISO standard.

This paper is structured as follows. Sections 2 and 3
respectively describe the formats of printed dictionary
and LMF output. Section 4 describes the data used
for the experiment. The main part the paper is in sec-
tion 5 which explains the pipeline architecture used to
process the input. The paper concludes with sections
6, 7, 8 and 9, describing results, limitations and future
work.

2 Aquilina’s Dictionary Entries

Figure 1 is a scan of part of a typical dictionary
page. We can discern two main entries, SKORĊ|A
and SKORD|ATURA where the vertical bar divides
the stem on the left from an affix on the right. In
subsequent parts of the entry, occurrences of tilde are
replaced with the stem. The reader should also note
the presence of an alternate spelling SKURDATURA

19



Fig. 1: Sample dictionary entries from Aquilina

for the second entry. In this case it is clear that the
two spellings are part of the same entry, but this is not
always the case. The numbered subentries refer to al-
ternate word senses. Items in square brackets give the
etymology of the word. We are mostly interested in the
morpho-syntactic information which is represented by
various abbreviated forms. A full list of such abbre-
viations is supplied with the dictionary, and the most
frequent ones are are shown in Table 1.

3 LMF

In order to fullfil out goal of creating a viable method
for the extraction of lexical information, the output
format has to be defined.

Paper lexicons contain quite a variety of informa-
tion, as revealed from a rudimentary glance at the
scanned entries of figure 1. Besides spelling and
morpho-syntactic information, there is also definition,
translation, and semantic field information. Aquilina’s
dictionary also contains references to other entries as
shown by the entry for skorfnott in figure 2 which refers
to the entry for SKORFNA.

Our choice of format has been heavily influenced
by a desire to have the potential to capture all these
different kinds of information and at the same time to
remain theory independent.

There are many potential formats that could be
adopted. However, many of these are to some extent
theory specific, or else overly biased towards particular
kinds of information.

Lexical Markup Framework (LMF) is an evolving
ISO1 standard now in its 16th revision whose main
goals are “to provide a common model for the creation
and use of lexical resources, to manage the exchange
of data between and among these resources, and to
enable the merging of large number of individual elec-
tronic resources to form extensive global electronic re-
sources” (see Francopoulo-et-al [4]).

1 ISO-24613:2008

PARTS OF SPEECH
a./adj adjective
a.ag. adjective of agent
adv. adverb
ap. active participle

conj. conjunction
interj interjection

n. noun
n.ag. noun of agent
nom. nominal
n.u. noun of unity
pp. past participle

pron. pronoun
pr.n. proper noun
v. verb
vn. verbal noun

vn.u. verbal noun of unity
TENSE/ASPECT/MOOD
fut. future
pres. present (tense)

imperat. imperative
imperf. imperfect
perf. perfect (tense)
pass. passive

VERB TYPE
intr. intransitive

t./trans. transitive
refl. reflexive

GENDER/CASE
c. common

f./fem feminine
m./masc. masculine

obj. object
voc. vocative

NUMBER
du. dual
pl. plural

s./sing. singular

Table 1: Common Abbreviations

Fig. 2: References to other entries

20



Fig. 3: LMF framework [4]

The model for lexical resources consists of a core
package, which specifies how a lexical entry fits into the
structure of a generalised lexical database, together
with a set of extensions for handling various types of
linguistic information such as morphology, syntax, se-
mantics etc.

The diagram of figure 3 shows the organisation of
the core package. Here we can see that a model is
a Database which comprises one or more entities of
type Lexicon, and a Lexicon comprises one or more
entities of type Lexical Entry. The main interest is in
the structure of the lexical entry.

4 Data

As part of a separate project being carried out at
the University of Arizona on lexical perception by Us-
sishkin and Twist [1], the entire Aquilina dictionary
has been scanned and run through Optical Character
Recognition (OCR) software and saved as RTF files.
Subsets of these files have been proof read and were
kindly provided for experimental use in LEXIE.

The experiment reported here was carried out on
two datasets. The first was used for development of
the system and comprised pages 1333-1347 of the dic-
tionary, containing approximately 360 entries. The
second dataset, pages 1480-1490, was “unseen”, and
used for subsequent validation as described further in
section 6

5 Processing

The different processing tasks required in this project
were split into four distinct stages as shown in figure 4.

5.1 Stage 0 Pre-Processing: RTF-
UTF8

The scanned dictionary pages provided for this task
were saved in rich text format (RTF), with one doc-
ument supplied per page. A part of the page for the
entry shown is illustrated in figure 5.

Fig. 4: Processing Overview

Fig. 5: RTF Format

Thus the first task was to convert these files in a
format which could be more easily read by subsequent
stages of the program. The initial task was correct
encoding of characters into Unicode (UTF8).

At first, the idea of manually parsing out all the
RTF controls from the sample pages was considered.
However it soon became clear that writing a separate
tool for converting RTF files into plaintext was beyond
the scope of this project.

A number of freeware third-party tools available
over the internet were tried but none of them were able
to to correctly translate the Maltese characters into
Unicode UTF8. For this reason a macro was recorded
for Microsoft word.

5.2 Stage 1: Separation of Entries

The result of conversion to UTF8 is shown in figure 6.
While the dictionary pages were now in plain text

form, they still contained a large number of irregular-
ities which needed to be cleaned up before the parsing
of the pages on a per-entry level could begin. The
purpose of this processing stage was to bring all of the
entries from the plain text pages together in a single
file, neatly separated by newline characters.

However, as a result of the OCR quality of the sam-

21



Fig. 6: UTF8 Format

ple pages, considerable work was required to get the
entries into this format. The major issues encountered
at this stage were the following:

• inclusion of extra page information such as page
numbers and first and last headwords. These can
clearly be seen in the first three lines of figure 6.

• Distribution of single entries over multiple lines.
The line starting “my piano is out of tune” is an
an example, being part of the entry for SKOR-
DAR, one of the senses of the entry whose stem
is SKORD.

• multiple entries combined together into single
line.
Clearly, a key issue is the individuation of dis-
tinct entries, and in particular how to determine
whether a given line represents the beginning of
a new entry.
The following criteria were employed. If all these
are met, then the line is deemed to be the start of
a new entry (this does not exclude the possibility
that other entries might be appended to it:

– The first character is a letter (euphonic i is
ignored).

– It is followed by a punctuation character.
– Last character of previous entry is not a hy-

phen.
– The first letters of the line are in ascending

alphabetic order with respect to the previous
entries.

The selection of these criteria proved to be quite
problematic, as for every feature which a group of
headwords seem to share, there were inevitably be
some which did not follow the pattern. The ob-
jective success of the criteria adopted is reflected
in the results reported in section 6.

• Finally, there are a number of OCR errors. Some
of these were common enough to warrant auto-
matic correction. For example, the string “l.” at
the beginning of a word sense should be replaced
with the string “1.”

Fig. 7: Separated Entries, one per line

The output of this phase, with one entry per line, is
shown in figure 7.

5.3 Stage 2: Parsing of Entries

Now that the text entries have been neatly separated,
the next step was to parse each of them and extract all
necessary pieces of information which would be needed
in the third and final output stage.

The basic order of operations is as follows:

For each line
- Get first word
- If uppercase:

- Set type = "ENTRY"
- Get number after headword
- Get headword, stem & root
- Get etymological info, eg "[< Eng./It. Stalattite]"
- Get & format alternate spellings
- List any subentries
- Get senses for each subentry

- If lowercase:
- Set type = "CROSS-REF"
- Get & format alternate spellings
- List cross-references with variation types

Add to entries list
Encode entries list using JSON and write to file.

While the output from stage one was a simply plain-
text file, the output for this stage needed to have a lot
more structure to it, now that each entry has been bro-
ken down into its sub-parts. As per the system design,
it is only in stage three where the entries are converted
into the final LMF output.

Thus the internal output from the current stage of
processing must be independent of the final LMF out-
put format. One option for encoding these entries was
to save them in a generalised XML format, indepen-
dent of the LMF output in stage three. While viable,
a faster and equally as robust method was to output
the structured entries in JSON format.

JSON (JavaScript Object Notation)2 is a very sim-
ple text-based data-interchange format that is com-
2 www.json.org

22



Fig. 8: Output after parsing entries

Fig. 9: Output after conversion to LMF

pletely language independent but uses conventions
that are familiar to programmers of the C-family of
languages. Essentially, JSON is built on two struc-
tures: (i) a collection of name/value pairs, and (ii) an
ordered list of values, realized in most languages as an
array, vector, list, or sequence.

The actual translation was done using the open
source demjson Python module (7). With just one
line of code, the entire entries list was converted into
JSON format and saved to file, to be fed as input into
the final stage of processing. Figure 8 shows the result
of this process.

5.4 Stage 3: Output LMF

With the entries now individually separated and bro-
ken down into their sub-parts, the final stage of the
process was to generate the output lexicon containing
the parsed entries in an LMF-compliant XML format
as diagrammed in figure 10.

To further separate the processing from the presen-
tation aspects of the code, it was decided to use a
number of templates in the generation of the final LMF
output. This is not to say that the code of stage three
is completely output-independent, however the use of
templates definitely helped to promote this separation.

Fig. 10: XML output format

The templates used are listed below:

• LexicalResource.xml Represents the entire lex-
icon and root element for the output XML.

• LexicalEntry.xml A single entry in the lexicon
(including cross-references).

• FormRepresentation.xml Used to represent al-
ternative spellings of the same word.

• WordForm.xml Used to represent different forms
of a word, e.g. through conjugation.

• Sense.xml Represents a single sense (definition
and usage) or a word/word form.

• RelatedForm.xml Used in cross-references to in-
dicate the referenced entry.

• feat.xml A simple attribute/value pair.

The output of stage 3 is the final LMF-compliant
lexicon XML file as shown in figure 9.

5.5 Format Validation

To ensure that the generated XML lexicon was well
structured and consistent with the LMF standard,
a final step of validation was performed on the file.
Firstly, by opening the newly created file with an
XML parser, the file contents was parsed and implic-
itly checked to be a valid XML document.

The successfully parsed XML was then validated
against the LMF DTD file to check conformity to the
LMF standard. Both these tasks are achieved using
the lxml Python library.3

6 Results and Evaluation

6.1 LMF Conformity

When validating against the official LMF Rev 16
DTD the generated lexicon did not pass because (i)

3 The lxml library is available at
http://codespeak.net/lxml/validation.html

23



the WordForm element had no attribute id, (ii) the
RelatedForm element had no attribute id and (iii)
in many cases the RelatedForm elements targets at-
tribute contains nonexistent IDs.

The first 2 points are genuine non-conformities to
the official LMF standard. However, the inclusion of a
simple id attribute is only a very minor infringement,
and for the purposes of the project was deemed a fair
one to make. In order to accommodate the addition
of these new attributes, a modified version of the orig-
inal LMF DTD was created and used for subsequent
validation.

In the third case, the issue is that as this lexicon
only covers a sample of pages from the entire dictio-
nary, some of the cross-referenced entries do not ap-
pear in the same file. This is quite understandable. To
get around this issue and continue validation, all cross-
referenced entries were temporarily removed from the
lexicon. Once this was done, the output successfully
passed DTD validation suggesting that if the file were
to contain the entire dictionary it should also comply
with the LMF standard.

6.2 Method of Evaluation

Once the output lexicon had been generated and val-
idated, the next important step was to evaluate its
accuracy against the original dictionary. This was
achieved by manually comparing the output of the pro-
gram with the original OCRd dictionary pages, and
enumerating the number of correct, partial, incorrect,
and missing entries.

First a more human-friendly version of the original
XML lexicon was generated for evaluation purposes us-
ing PHP. Two HTML documents were generated and
printed out for the evaluator to manually check and
mark against for each entry.

6.3 Evaluation Criteria

Each entry extracted and placed into the output lexi-
con was given one of the following designations:

• Correct: the entire entry was correctly ex-
tracted.

• Partial: the headword and some parts of the en-
try are correct; however some parts are in error.

• Incorrect: the headword is seriously corrupted
or not a headword at all.

In addition, for each extracted entry a count of any
missing entries not picked up by the parser was also
kept. This information was then used in the calcu-
lation of the programs accuracy, as explained in the
following section.

6.4 Equations Used

The equations used in the calculation of the accuracy
score are given below.

• Strict Score = Correct
Total+Missed

• Lax Score = Correct+Partial
Total+Missed

known unknown
Page Range 1333-1347 1480 - 1490
Total Entries 360 370
Correct 290 261
Partial 64 84
Incorrect 6 25
Missed 34 47
Strict Score % 73.6 62.59
Lax Score % 89.85 82.73

Table 2: Evaluation data

6.5 Known and Unknown Pages

In the development of this project, the same subset
of dictionary pages was used throughout. This would
certainly have introduced a certain bias of the program
to perform better on these pages than it would on the
dictionary as a whole. To test this, the programs accu-
racy was evaluated and analyzed on two subsets of dic-
tionary pages one which was used throughout develop-
ment (“known”), and one which has never been shown
to the program (or developer) before (“unknown”).
The results of both cases are presented in the next
section.

7 Discussion

7.1 Results

Although the 62.59% for unknown pages leaves plenty
of room for improvement, as discussed further below,
these results are quite promising. This percentage rep-
resents a sufficently high level of accurate results to
warrant further investigation of methods which can
further reduce the human effort required to filter out
incorrect results.

7.2 OCR Problems

The primary difficulty encountered in this project was
the quality and consistency of the sample dictionary
pages provided. Although passed through OCR soft-
ware and supposedly checked by hand, the accuracy of
the provided pages was far from ideal.

Apart from oft-mistaken character sequences such as
“]”for “J” and “|” for “I”, the major issue encountered
was that of inconsistent entry formatting. This in
particular included entries split across multiple para-
graphs, multiple entries collapsed into a single line,
and incorrect block indentation. While noticeable to
human readers, these issues presented a major hurdle
for the extraction process, and at least half of all the
effort put into this project was devoted to correcting
these OCR-related errors.

7.3 Variation of Notation in Dictionary

Another source of difficulty encountered was the nota-
tional variation present in the source dictionary. This
was especially true for multiple word forms or defini-
tions within an entry.

24



While in some entries they are listed in one format,
in others they may be listed in a different format. It
should be noted that these inconsistencies have been
created by the author of the dictionary. Though the
author may have had his reasons for such variations,
they are neither obvious nor fully documented. As a
result, a number of errors found in the output of this
program can be attributed to these inconsistencies.

Another case of inconsistency is the use of the tilde
character as a back-reference. Most of the time it
refers to the previously-established headword stem,
but sometimes it refers to the entire headword. Once
again, what it refers to in each case is not always obvi-
ous to the reader, let alone a computer, and this am-
biguity contributed to a substantial number of word
form errors generated by the program.

8 Limitations

8.1 Lossiness RTF Conversion

The first stage in this project involved converting the
RTF sample pages into plain text equivalents. While
this provided many benefits it terms of ease of de-
velopment, it also inevitably presented its own set of
limitations. One of these is the loss of all formatting
information, such as bold and italic text. As such for-
matting may contain additional information about the
entry (e.g. examples of use are written in italics), it
would have been preferred if these could have been
retained and used during the extraction process.

8.2 Cross-Reference IDs

In the submitted program, whenever a cross-reference
entry is processed, the existence of the main entries re-
ferred to are not explicitly checked. Instead, they are
simply transcribed from the source, which means that
cross-references may exist in the output lexicon with
invalid reference IDs. As only a handful of pages were
processed for the purposes of this project, the verifica-
tion of these IDs would be somewhat futile. However
in a complete version of the lexicon, these ID refer-
ences would need to be verified.

8.3 Entry Definitions

Most of the effort carried out in this project is devoted
to extracting headword variations and different word
forms. Less focus however was placed on the parsing
of the word definitions themselves, and in many cases
the information placed in each Sense element is simply
copied verbatim from the dictionary. In particular,the
following issues were not addressed:

• Non-textual characters are not removed.

• Word definitions are not separated from examples
of usage.

• Abbreviations and back-references are not re-
placed with their full equivalents.
We do not anticipate that addressing any of these
points would introduce major structural changes
to the program.

9 Future Work

9.1 Scaling Up

This experiment was carried out on a total of approx-
imately 700 lexical entries taken from 20 dictionary
pages. Although results are promising, the extent to
which they generalise is not clear and for this reason
an absolute priority is to repeat the experiment on a
much larger dataset.

9.2 More Thorough Error Correction

While a substantial amount of work in this project
was devoted to error correction, the techniques used
are far from complete. Many of the OCR errors found
in the sample pages are not easily correctable with ba-
sic pattern-matching techniques, and require deeper
analysis as to how they occur and can be removed.
With a more dedicated effort devoted to the correc-
tion of these errors, the accuracy of the system could
undoubtedly be pushed significantly higher.

9.3 Use of Statistical Methods

The level of accuracy achieved in this project was
achieved through the use of standard string pattern-
matching with regular expressions. Whilst these meth-
ods are highly effective when used in the correct con-
tect, one major limitation is that such methods do not
exploit the statistical regularities inherent in the lan-
guage of dictionary entries.

A possible way forward would be to develop statis-
tical models for language of dictionary entries, and to
use these models to error correct the dictionary entries
obtained by OCR. Inspection of dictionary entries re-
veals that a dictionary entry is composed of several
parts not all of which share the same language. Hence,
there is scope for investigating the sublanguages that
make up dictionary entries and developing statistical
models for each.

References

[1] U. A. and A. Twist. Auditory and visual lexical
decision in maltese. In C. B., R. Fabri, E. Hume,
M. Mifsud, T. Stolz, and M. Vanhove, editors, In-
troducing Maltese Linguistics, Selected papers from
the 1st International Conference on Maltese Lin-
guistics, pages 233–249. John Benjmins Publiching
Company, 2007.

[2] J. Aquilina. Concise Maltese Dictionary. Midsea
Books, Valletta, 2006.

[3] B. Boguraev, T. Briscoe, J. Carroll, D. Carter, and
C. Grover. The derivation of a grammatically in-
dexed lexicon from the longman dictionary of con-
temporary english. In Proceedings of the 25th An-
nual Meeting of the Association for Computational
Linguistics, pages 193–200, Stanford, California,
USA, July 1987. Association for Computational
Linguistics.

25



[4] G. Francopoulo, M. George, N. Calzolari,
M. Monachini, N. Bel, M. Pet, and C. Soria. Lexi-
cal markup framework (lmf). In Proc. LREC 2006,
pages 233–236. ELRA, 2006.

[5] ISO/TC37/SC4. Language Resource Management,
Lexical Markup Framework (LMF). International
Organisation for Standardisation, 24613:2006 edi-
tion, 2006.

[6] M. Rosner, J. Caruana, and R. Fabri. Maltilex: A
computational lexicon for maltese. In In Proceed-
ings of the Workshop on Computational Aspects of
Semitic Languages, ACL/COLING98, pages 97–
105, 1998.

26


