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Abstract 

We present an approach for deriving syntactic 
word clusters from parsed text, grouping 
words according to their unlexicalized syntac-
tic contexts.  We then explore the use of these 
syntactic clusters in leveraging a large corpus 
of trees generated by a high-accuracy parser to 
improve the accuracy of another parser based 
on a different formalism for representing a dif-
ferent level of sentence structure.  In our ex-
periments, we use phrase-structure trees to 
produce syntactic word clusters that are used 
by a predicate-argument dependency parser, 
significantly improving its accuracy. 

1 Introduction 

Syntactic parsing of natural language has ad-
vanced greatly in recent years, in large part due 
to data-driven techniques (Collins, 1999; 
Charniak, 2000; Miyao and Tsujii, 2005; 
McDonald et al., 2005; Nivre et al., 2007) cou-
pled with the availability of large treebanks. Sev-
eral recent efforts have started to look for ways 
to go beyond what individual annotated data sets 
and individual parser models can offer, looking 
to combine diverse parsing models, develop 
cross-framework interoperability and evaluation, 
and leverage the availability of large amounts of 
text available.  Two research directions that have 
produced promising improvements on the accu-
racy of data-driven parsing are: (1) combining 
different parsers using ensemble techniques, such 
as voting (Henderson and Brill, 1999; Sagae and 
Lavie, 2006; Hall et al., 2007) and stacking 
(Nivre and McDonald, 2008; Martins et al., 
2008), and (2) semi-supervised learning, where 
unlabeled data (plain text) is used in addition to a 

treebank (McClosky et al., 2006; Koo et al., 
2008). 

In this paper we explore a new way to obtain 
improved parsing accuracy by using a large 
amount of unlabeled text and two parsers that use 
different ways of representing syntactic structure.  
In contrast to previous work where automatically 
generated constituent trees were used directly to 
train a constituent parsing model (McClosky et 
al., 2006), or where word clusters were derived 
from a large corpus of plain text to improve a 
dependency parser (Koo et al., 2008), we use a 
large corpus of constituent trees (previously gen-
erated by an accurate constituent parser), which 
we use to produce syntactically derived clusters 
that are then used to improve a transition-based 
parser that outputs dependency graphs that re-
flect predicate-argument structure where words 
may be dependents of more than one parent.  
This type of representation is more general than 
dependency trees (Sagae and Tsujii, 2008; 
Henderson et al., 2008), and is suitable for repre-
senting both surface relations and long-distance 
dependencies (such as control, it-cleft and tough 
movement). 

The first contribution of this work is a novel 
approach for deriving syntactic word clusters 
from parsed text, grouping words by the general 
syntactic contexts where they appear, and not by 
n-gram word context (Brown et al., 1992) or by 
immediate dependency context (Lin, 1998).  Un-
like in clustering approaches that rely on lexical 
context (either linear or grammatical) to group 
words, resulting in a notion of word similarity 
that blurs syntactic and semantic characteristics 
of lexical items, we use unlexicalized syntactic 
context, so that words are clustered based only 
on their syntactic behavior.  This way, we at-
tempt to generate clusters that are more concep-
tually similar to part-of-speech tags or supertags 
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(Bangalore and Joshi, 1999), but organized hier-
archically to provide tagsets with varying levels 
of granularity. 

Our second contribution is a methodology for 
leveraging a high-accuracy parser to improve the 
accuracy of a parser that uses a different formal-
ism (that represents different structural informa-
tion), without the need to process the input with 
both parsers at run-time.  In our experiments, we 
show that we can improve the accuracy of a fast 
dependency parser for predicate-argument struc-
tures by using a corpus which was previously 
automatically annotated using a highly accurate 
but considerably slower phrase-structure tree 
parser.  This is accomplished by using the slower 
parser only to parse the data used to create the 
syntactic word clusters.  During run-time, the 
dependency parser uses these clusters, which 
encapsulate syntactic knowledge from the 
phrase-structure parser.  Although our experi-
ments focus on the use of phrase-structure and 
dependency parsers, the same framework can be 
easily applied to data-driven parsing using other 
syntactic formalisms, such as CCG or HPSG. 

2 Clustering by Syntactic Similarity 

We developed a new approach to clustering 
words according to their syntactic similarity. Our 
method involves the use of hierarchical agglom-
erate clustering techniques using the calculated 
syntactic distance between words. Syntactic dis-
tance between words is computed as the cosine 
distance between vector representations of the 
frequency of unique parse tree paths emanating 
from the word in a corpus of parse trees. In this 
research, we employ a novel encoding of syntac-
tic parse tree paths that includes direction infor-
mation and non-terminal node labels, but does 
not include lexical information or part-of-speech 
tags. Consequently, the resulting hierarchy 
groups words that appear in similar places in 
similar parse trees, regardless of its assigned 
part-of-speech tag.  In this section we describe 
our approach in detail. 

2.1 Parse tree path representation 

Gordon and Swanson (2007) first described a 
corpus-based method for calculating a measure 
of syntactic similarity between words, and dem-
onstrated its utility in improving the performance 
of a syntax-based Semantic Role Labeling sys-
tem. The central idea behind their approach was 
that parse tree paths could be used as features 
for describing a word’s grammatical behavior. 

Parse tree paths are descriptions of tree transi-
tions from a terminal (e.g. a verb) to a different 
node in a constituent parse tree of a sentence. 
Parse tree paths gained popularity in early Se-
mantic Role Labeling research (Gildea and Juraf-
sky, 2002), where they were used as features de-
scribing the relationship between a verb and a 
particular semantic role label. For example, Fig-
ure 1 illustrates a parse tree path between a verb 
and a semantically related noun phrase. 

Gordon and Swanson viewed parse tree paths 
as features that could be used to describe the syn-
tactic contexts of words in a corpus. In their ap-
proach, all of the possible parse tree paths that 
begin at a given word were identified in a large 
set of automatically generated constituent parse 
trees. The normalized frequency counts of 
unique parse tree paths were combined into a 
feature vector that describes the location that the 
given word appears in the set of parse trees. This 
syntactic profile was then compared with other 
profiles using a cosine distance function, produc-
ing a quantitative value of word similarity. In 
this manner, the syntactic similarity between the 
verb “pluck” and the verb “whisk” was calcu-
lated as 0.849. 

One drawback of the approach of Gordon and 
Swanson was the inclusion of part-of-speech tags 
in the encoding of the parse tree paths. As a con-
sequence, the cosine distance between words of 
different classes was always zero, regardless of 
their similarities in the remainder of the paths. 
To correct this problem in our current research, 
we removed part-of-speech tags from the encod-
ing of parse tree paths, deleting the tag that be-
gins each path and replacing tags when they ap-
pear at the end of a path with a generic terminal 
label.  

A second drawback of the approach of Gordon 
and Swanson is that the path directionality is un-
derspecified. Consider the parse tree paths that 

 
Figure 1: An example parse tree path from 
the verb ate to the argument NP He, repre-
sented as ↑VBD↑VP↑S↓NP. 
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emanate from each of the words “some” and 
“pancakes” in Figure 1. In the original encoding, 
the paths for each of these words would be iden-
tical (if the part of speech tags were removed), 
despite their unique locations in this parse tree. 
To correct this problem in our current research, 
we elaborated the original set of two path identi-
fiers (↑ and ↓) to a set of six tags that included 
information about the direction of the transition. 
Up-Right () and Down-Left () transition are 
used to and from nodes that are the first constitu-
ent of a non-terminal. Up-Left () and Down-
Right () transitions are used to and from nodes 
that are the last constituent of a non-terminal. 
Transitions to and from all other constituent 
nodes are labeled Up-Middle (↑) or Down-
Middle (↓), accordingly. For example, we repre-
sent the parse tree path depicted in Figure 1 as: 
VPSNP. 

2.2 Profiles for BLLIP WSJ Corpus words 

As in the previous work of Gordon and Swanson 
(2007), we characterize the syntactic properties 
of words as the normalized frequency of unique 
parse tree paths emanating from the word in a 
large corpus of syntactic parse trees.  

In our research, we used the Brown Labora-
tory for Linguistic Information Processing 
(BLLIP) 1987-89 WSJ Corpus Release 1 
(Charniak et al., 2000), which contains approxi-
mately 30 million words of Wall Street Journal 
news articles, parsed with Charniak (2000) 
parser.  Although the trees in the BLLIP corpus 
are enriched with function tags and empty nodes, 
we remove this information, leaving only the 
trees produced by the Charniak parser.  We iden-
tified the top five thousand most frequent words 
(or, more generally, types, since these also in-
clude other sequences of characters, such as 
numbers and punctuation) in this corpus, treating 
words that differed in capitalization or in as-
signed part-of-speech tag as separate types. 
These five thousand types correspond to ap-
proximately 85% of the tokens in the BLLIP 
corpus.  For each token instance of each of these 
five thousand types, we identified every occur-
ring parse tree path emanating from the token in 
each of the sentences in which it appeared. The 
most frequent type was the comma, which ap-
peared 2.2 million times and produced 118 mil-
lion parse tree paths. The least frequent token in 
this set was the singular noun “pollution,” with 
731 instances producing 35,185 parse tree paths. 

To generate syntactic profiles for a given type, 
the frequency of unique parse tree paths was ta-

tabulated, and then normalized by dividing this 
frequency by the number of tokens of that type in 
the corpus. To reduce the dimensionality of these 
normalized frequency vectors, parse tree paths 
that appeared in less than 0.2% of the instances 
were ignored. This threshold value produced 
vectors with dimensionality that was comparable 
across all five thousand types, and small enough 
to process given our available computational re-
sources.  The mean vector size was 2,228 dimen-
sions, with a standard deviation of 734. 

2.3 Distance calculation and clustering 

Pairwise distances between each of the five thou-
sand types were computed as the cosine distance 
between their profile vectors. We then grouped 
similar types using hierarchical agglomerate 
clustering techniques, where distance between 
clusters is calculated as mean distance between 
elements of each cluster (average link cluster-
ing).  

The three most similar types (the first 2 clus-
tering steps) consisted of the capitalized subordi-
nating conjunctions “Although,” “While,” and 
“Though.” The two most dissimilar types (the 
last to be included in any existing cluster) were 
the symbol “@” and the question mark. 

2.4 Cluster label selection 

Hierarchical agglomerate clustering produces a 
binary-branching tree structure, where each 
branch point is ordered according to a similarity 
value between 0 and 1. In our clustering of the 
top five thousand most frequent types in the 
BLLIP corpus, there are five thousand leaf nodes 
representing individual tokens, and 4999 branch 
points that cluster these types into a single tree. 
We label each of these 4999 branch points, and 
treat these cluster labels as features of the types 
that they dominate. For example, the singular 
noun “house” participates in 114 clusters of in-
creasing size. The syntactic features of this type 
can therefore be characterized by 114 cluster la-
bels, which overlap with varying degrees with 
other tokens in the set. 

We view these cluster labels as conceptually 
similar to traditional part-of-speech tags in that 
they are indicative of the syntactic contexts in 
which words are likely to appear.  Because 
words are clustered based on their unlexicalized 
syntactic contexts, the resulting clusters are more 
likely to reflect purely syntactic information than 
are clusters derived from lexical context, such as 
adjacent words (Brown et al., 1992) or immedi-
ate head-word (Lin, 1998).  However, the extent 
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to which these syntactic contexts are specified 
can vary from a more general to a more fine-
grained level than that of parts-of-speech.  As 
clusters become more fine-grained, they become 
more similar to supertags (Bangalore and Joshi, 
1999).  Clusters that represent more specific syn-
tactic contexts can encode information about, for 
example, subcategorization.  As these labels are 
derived empirically from a large corpus of syn-
tactic parse trees, they accurately represent syn-
tactic distinctions in real discourse at different 
granularities, in contrast to the single arbitrary 
granularity of theoretically derived part-of-
speech tags used in existing treebanks (Marcus et 
al., 1993).  

While it is sometimes useful to view types as 
having multiple part-of-speech tags at different 
levels of granularity (e.g. the 114 tags for the 
token “house”), it is often useful to select a sin-
gle level of granularity to use across all tokens. 
For example, it is useful to know which one of 
the 114 cluster labels for “house” to use if ex-
actly 100 part-of-speech distinctions are to be 
made among tokens in the set. These cluster la-
bels can be identified by slicing the tree at the 
level for which there are exactly 100 branches, 
then using the label of the first branch point in 
each branch as the label for all of its leaf-node 
types, or the leaf-node itself in the case where no 
further branching exists. Given our hierarchical 
clustering, there are five thousand different ways 
to slice the tree in this manner, yielding sets of 
cluster labels (and un-clustered types) that vary 
in size from 1 to 5000. We identified these sets 
for use in the experiments described in the next 
sections. 

Figure 2 shows a dendrogram representation 
of the cluster tree when it is sliced to produce 
exactly 60 clusters, 19 of which are individual 
types. For the other 41 clusters, we show only 
the most frequent word in the cluster and the 
number of additional words in the cluster.  The 
scale line in the lower left of Figure 2 indicates 
the horizontal length of a calculated similarity 
between clusters of 0.1. 

3 Transition-based dependency parsing 
with word clusters 

The clusters obtained with the approach de-
scribed in section 2 provide sets of syntactic tags 
with varying levels of granularity.  Previous 
work by Koo et al. (2008) and Miller et al. 
(2004) suggests that different levels of cluster 
granularity may be useful in natural language 

 
 
 
Figure 2: A hierarchical clustering of the top 
five thousand tokens in the BLLIP corpus, cut 
at 60 clusters. 
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processing tasks with discriminative training.  
We add the syntactic clusters as features in a 
transition-based parser that uses a classifier to 
decide among shift/reduce parser actions based 
on the local context of the decision.  This transi-
tion-based parsing approach has been found to be 
efficient and accurate in dependency parsing of 
surface syntactic dependencies (Yamada and 
Matsumoto, 2003; Nivre et al., 2004; Hall et al., 
2007) and predicate-argument parsing (Hender-
son et al., 2008; Sagae and Tsujii, 2008). 

Our experiments are based on an implementa-
tion of Sagae and Tsujii (2008)’s algorithm for 
basic shift-reduce parsing with multiple heads, 
which we use to identify predicate-argument de-
pendencies extracted from the HPSG Treebank 
developed by Miyao et al. (2004).  Using this 
data set allows for a comparison of our results 
with those obtained in previous work on data-
driven HPSG predicate-argument analysis, while 
demonstrating the use of our clustering approach 
for cross-framework parser improvement, since 
the clusters were derived from syntactic trees in 
Penn Treebank format (as produced by the Char-
niak parser, without empty nodes, co-indexation 
or function tags), and used in the identification of 
HPSG Treebank predicate-argument 
dependencies.  Figure 3 shows a predicate-
argument dependency structure following the 
annotation standard of the HPSG Treebank, 
where arrows point from head to modifier.  We 
note that unlike in the widely known PropBank 
(Palmer et al., 2005) predicate-argument struc-
tures, argument labels start from ARG1 (not 
ARG0), and predicate-argument relationships are 
annotated for all words.  One difference between 
in our implementation is that, instead of maxi-
mum entropy classification used by Sagae and 
Tsujii, we perform parser action classification 
using the averaged perceptron (Freund and 

Schapire, 1999; Collins, 2002), which allows for 
the inclusion of all of Sagae and Tsujii’s fea-
tures, in addition to a set of cluster-based fea-
tures, while retaining fast training times. 

We now describe the parsing approach, start-
ing with the dependency DAG parser that we use 
as a baseline, followed by how the syntactic clus-
ter features were added to the baseline parser. 

3.1 Arc-standard parsing for dependency 
DAGs 

Sagae and Tsujii (2008) describe two algorithms 
for dependency parsing with words that have 
multiple heads.  Each corresponds to extensions 
of Nivre (2004)’s arc-standard and arc-eager al-
gorithms for dependency (tree) parsing.  In our 
experiments, we used an implementation of the 
arc-standard extension.   

Nivre’s arc-standard dependency parsing algo-
rithm uses a stack to process the input string one 
word at a time, from left to right, using two gen-
eral types of parser action: shift (push the next 
input token onto the stack), and reduce (create a 
dependency arc between the top two items on the 
stack, and pop the item marked as the depend-
ent).  Reduce actions are subdivided into reduce-
right and reduce-left, indicating which of the two 
items on the top of the stack is the head, and 
which is the dependent in the newly formed de-
pendency arc.  These two reduce actions can be 
further subdivided to reflect what type of de-
pendency arc is created, in the case of labeled 
dependency parsing.  The extension for allowing 
multiple heads per word consists of the addition 
a new type of parser action: attach, which creates 
a dependency arc without removing anything 
from the stack.  As with reduce actions, there are 
two types of attach: attach-left which creates a 
dependency arc between the top two items on the 
stack such that the item on top is the head, and 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Predicate-argument dependency structure following the HPSG Treebank standard. 
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right-attach, which creates a dependency arc be-
tween the top two items on the stack such that 
the top item is the dependent, then pops it from 
the stack and unshifts it back into the input.  Fi-
nally, this algorithm for unlabeled graphs can be 
extended to produce labeled dependencies in the 
same way as Nivre’s algorithm, by replacing the 
reduce and attach actions with sets of actions that 
perform the reduce or attach operation and also 
name the label of the arc created.  Sagae and 
Tsujii (2008) provide a more detailed description 
of the algorithm, including an example that illus-
trates the new attach actions. 

This basic algorithm is only capable of pro-
ducing labeled directed acyclic graphs where, if 
the nodes (which correspond to words) are 
placed on a left to right sequence on a horizontal 
line in the order in which the words appear in the 
input sentence, all arcs can be drawn above the 
nodes without crossing.  This corresponds to the 
notion of projectivity that similarly limits the 
types of trees produced by Nivre’s algorithm.  
Just as in dependency parsing with tree struc-
tures, a way to effectively remove this limitation 
is the use of pseudo-projective transformations 
(Nivre and Nilsson, 2005), where arcs that cross 
have their heads moved towards the root and 
have their labels edited to reflect this change, 
often making it reversible.  Once crossing arcs 
have been “lifted” so that no crossing arcs re-
main, the “projectivized” structures are used to 
train a parsing model.  Projective structures pro-
duced by this model can be “deprojectivized” 
through the use of the edits in the arc labels, in 
an attempt to produce structures that conform to 
the scheme in the original data.  Sagae and Tsujii 
also propose a simple arc reversal transform, 
which simply reverses the direction of a depend-
ency arc (editing the arc label to note this 
change).  This transformation, which can be re-
versed trivially, makes it possible to remove cy-
cles in dependency graphs. 

3.2 Baseline features  

To create output graph structures for an input 
sentence, the algorithm described in section 3.1 
relies on an oracle that tells it what action to take 
at each parser state, where the state is the con-
tents of the stack, remaining words in the input, 
and the dependency arcs formed so far.  In 
grammar-based shift-reduce parsing, this oracle 
may take the form of a look-up table derived 
from grammar rules.  In our data-driven setting, 
where the parser learns to choose actions based 
on examples of correctly parsed data, the (likely 

imperfect) substitute for the oracle is a classifier 
that takes features that represent the parser state 
as input, and produces a matching parser action 
as output.  These features should represent as-
pects of the parser state that may be informative 
as to what the corresponding appropriate action 
is.  Our baseline model uses the averaged percep-
tron with a core set of features derived from the 
following templates, where S(n) denotes the n-th 
item from the top of the stack (for example, S(1) 
is the item on top of the stack), and I(n) denotes 
the next n-th input token: 

1. For the items S(1) and S(2): 

a. the total number of dependents; 

b. the number of dependents to the 
right of the item; 

c. the number of dependents to the left 
of the item; 

d. the part-of-speech tag of the right-
most dependent of the item; 

e. the part-of-speech tag of the leftmost 
dependent of the item; 

f. the arc label of the rightmost de-
pendent of the item; 

g. the arc label of the leftmost depend-
ent of the item; 

2. the words in items S(1), S(2), S(3), I(1) and 
I(2); 

3. the part-of-speech tags in items S(1), S(2), 
S(3), I(1), I(2) and I(3); 

4. the part-of-speech tag of the word i mmedi-
aely to the right of S(2); 

5. the part-of-speech tag of the word immedi-
ately to the left of S(1); 

6. whether an arc exists between S(1) and S(2); 

7. whether an arc exists between S(1) and I(1); 

8. the direction of the arc between S(1) and 
S(2), if any; 

9. the label of the arc between S(1) and S(2), if 
any; 

10. the label of the arc between S(1) and I(1), if 
any; 

11. the distance, in linear sequence of words, 
between S(1) and S(2); 

12. the distance, in linear sequence of words, 
between S(1) and I(1); 
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13. the previous parser action. 

In addition to the core set of features, we also 
use features obtained by concatenating the part-
of-speech tags in S(1), S(2) and I(1) with the fea-
tures derived from templates 1-6, and additional 
features derived from selected concatenation of 
two or three core features. 

3.3 Cluster-based features 

To take advantage of the clusters that reflect syn-
tactic similarity between words, we assign arbi-
trary unique labels to each of the hierarchical 
clusters obtained using the procedure described 
in section 2.  These cluster labels are used to 
generate additional features that help the parser 
make its decisions base on the syntactic profile 
of words.  As explained in section 2.4, each there 
may be several cluster labels (corresponding to 
clusters of different granularities) associated with 
each word.  To select the set of cluster labels to 
be used to generate features, we first select a de-
sired granularity for the clusters, and use the set 
of labels resulting from slicing the cluster tree at 
the appropriate level, as discussed in section 2.4.  
We experimented with several levels of cluster 
granularity using development data, and follow-
ing Koo et al. (2008), we also experimented with 
using two sets of cluster labels with different 
levels of granularity at the same time.  Given a 
specific level of granularity, the cluster-based 
features we used are: 

14. the cluster labels for the words in items S(1), 
S(2), S(3), I(1), I(2), I(3); 

15. the cluster labels for the words in the right-
most and leftmost dependents of S(1) and 
S(2); 

16. the concatenation of the cluster labels for the 
words in S(1), S(2) and I(1), and the features 
derived from feature templates 1-15. 

In experiments where we used two sets of 
cluster labels corresponding to different levels of 
granularity, we added all the cluster-based fea-
tures in 14 and 15 for both sets of labels, and the 
features in 16 only for the set corresponding to 
the coarser-grained clusters. 

4 Experiments 

Following previous experiments with Penn Tree-
bank WSJ data, or annotations derived from it, 
we used sections 02-21 of the HPSG Treebank as 
training material, section 22 for development, 
and section 23 for testing. Only the predicate-

argument dependencies were used, not the phrase 
structures or other information from the HPSG 
analyses. For all experiments described here, 
part-of-speech tagging was done separately using 
a CRF tagger with accuracy of 97.3% on sections 
22-24.  Our evaluation is based on labeled preci-
sion and recall of predicate-argument dependen-
cies.  Although accuracy is commonly used for 
evaluation of dependency parsers, in our task the 
parser is not restricted to output a fixed number 
of dependencies.  Labeled precision and recall of 
predicate-argument pairs are also the standard 
evaluation metrics for data-driven HPSG and 
CCG parsers (although the predicate-argument 
pairs extracted from the HPSG Treebank and the 
CCGBank are specific to their formalisms and 
not quantitatively comparable). 

We started by eliminating cycles from the de-
pendency graphs extracted from the HPSG Tree-
bank by using the arc reversal transform in the 
following way: for each cycle detected in the 
data, the shortest arc in the cycle was reversed 
until no cycles remained. We then applied 
pseudo-projective transformation to create data 
that can be used to train our parser, described in 
section 3.  By detransforming the projective 
graphs generated from gold-standard dependen-
cies, we obtain labeled precision of 98.1% and 
labeled recall of 97.7%, which is below the accu-
racy expected for detransformation of syntactic 
dependency trees.  This is expected, since arc 
crossing occurs more frequently in predicate-
argument graphs in the HPSG Treebank than in 
surface syntactic dependencies. 

We first trained a parsing model without clus-
ter-based features, using only the baseline set of 
features, which was the product of experimenta-
tion using the development set.  On the test set, 
this baseline model has labeled precision and 
recall of 88.7 and 88.2, respectively, slightly be-
low the precision and recall obtained by Sagae 
and Tsujii on the same data (89.0 precision and 
88.5 recall). 

We then used the development set to explore 
the effects of cluster sets with different levels of 
granularity.  The baseline model has precision 
and recall of 88.6 and 88.0 on the development 
set.  We found that by slicing the cluster tree 
relatively close to the root, resulting in a set of 
50 to 100 distinct cluster labels (corresponding to 
relatively coarse clusters), we obtain small (0.3 
to 0.4), but statistically significant (p < 0.005) 
improvements on precision and recall over the 
baseline model on the development set.  By in-
creasing the number of cluster labels (making the 
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distinctions among members of different clusters 
more fine-grained) in steps of 100, we observed 
improvements in precision and recall until the 
point where there were 600 distinct cluster la-
bels.  This set of 600 cluster labels produced the 
highest values of precision and recall (89.5 and 
89.0) that we obtained for the development set 
using only one set of cluster labels.  Figure 4 
shows how precision, recall and F-score on the 
development set varied with the number of clus-
ter labels used. 

Following Koo et al. (2008), we also experi-
mented with using two sets of cluster labels with 
different levels of granularity.  We found that 
using the set of 600 labels and an additional set 
with fewer than 600 labels did not improve or 
hurt precision and recall.  Finer grained clusters 
with more than 1,000 labels (combined with the 
set of 600 labels) improved results further.  The 
highest precision and recall figures of 90.1 and 
89.6 were obtained with the sets of 600 and 
1,400 labels. 

We parsed the test set using the best configu-
ration of cluster-based features as determined 
using the development set (the sets with 600 and 
1,400 cluster labels) and obtained 90.2 precision, 
89.8 recall and 90.0 f-score, a 13.8% reduction in 
error over a strong baseline.  Table 1 summarizes 
our results on the test set.  For comparison, we 
also shows results published by Sagae and Tsujii 
(2008), to our knowledge the highest f-score re-
ported for this test set, and Miyao and Tsujii 
(2005), who first reported results on this data set. 

4.1 Surface dependency parsing with clus-
ter-based features 

The parser used in our experiments with HPSG 
Treebank predicate-argument structures can as-
sign more than one head for a single word, but 
when the parser is trained using only dependency 
trees, it behaves in exactly the same way as a 
parser based on Nivre’s arc-standard algorithm, 
since it never sees examples of attach actions 
during training.  To see whether our clusters can 
improve surface dependency parsing, and to al-
low for comparison of our results to a larger 
body of research on surface dependency parsing, 
we used dependency trees extracted from the 
Penn Treebank using the Yamada and Matsu-
moto (2003) version of the Penn Treebank head-
percolation rules to train parsing models that 
produce dependency trees.  However, no tuning 
of the features or metaparameters was per-
formed; the parser was trained as-is on depend-
ency trees. 

We used the standard train, development and 
test sets splits to train two models, as in our ex-
periments with predicate-argument dependen-
cies: a baseline that uses no cluster information, 
and a model that uses two sets of clusters that 
were found to improve results in the develop-
ment set.  The unlabeled accuracy of our baseline 
model on the test set is 89.96%, which is consid-
erably lower than the best current results.  Koo et 
al. (2008) report 90.84% for a first-order edge-
factored model, and 92.02% for a second-order 
model (and as high as 93.16% with a second-
order model enriched with cluster features de-
rived from plain text).  Using two sets of clus-
ters, one with 600 and one with 1,200 labels, ac-
curacy improves by 1.32%, to reach 91.28% (a 
13.15% reduction in error compared to our base-
line).  While still below the level of the strongest 
results for this dataset, it is interesting to see that 

 Precision Recall F-score 
Baseline 88.7 88.2 88.4 
Clusters 90.2 89.8 90.0 
S & T 89.9 88.5 88.7 
Miyao et al. 85.0 84.3 84.6 
 
Table 1: Results obtained on the test set us-
ing our baseline model and our best cluster-
based features.  The results in the bottom two 
rows are from Sagae and Tsujii (2008) and 
Miyao and Tsujii (2005).  

Figure 4: Effect of cluster granularity on 
labeled the precision and recall of predicate-
argument pairs in the development set.  The 
improvement in precision and recall between 
the baseline (zero cluster labels, where no 
cluster information is added) and 600 cluster 
labels is statistically significant (p < 0.0005). 
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the improvement in accuracy over the baseline 
observed for surface dependency trees is similar 
to the improvement observed for predicate-
argument dependency graphs. 

5 Related work 

Many aspects of this research were inspired by 
the recent work of Koo et al. (2008), who re-
ported impressive results on improving depend-
ency parsing accuracy using a second order 
edge-factored model and word clusters derived 
from plain text using the Brown et al. (1992) al-
gorithm.  Our clustering approach is significantly 
different, focusing on the use of parsed data to 
produce strictly syntactic clusters.  It is possible 
that using both types of clusters may be benefi-
cial. 

McClosky et al. (2006) used a large corpus of 
parsed text to obtain improved parsing results 
through self-training.  A key difference in our 
general framework is that it allows for a parser 
with one type of syntactic representation to im-
prove the accuracy of a different parser with a 
different type of formalism.  In this regard, our 
work is related to that of Sagae et al. (2007), who 
used a stacking-like framework to allow a sur-
face dependency parser to improve an HPSG 
parser.  In that work, however, as in other work 
that combines different parsers through stacking 
(Martins et al., 2008; Nivre and McDonald, 
2008) or voting (Henderson and Brill, 1999), 
multiple parsers need to process new text at run-
time.  In our approach for leveraging diverse 
parsers, one of the parsers is used only to create a 
parsed corpus from which we extract clusters of 
words that have similar syntactic behaviors, and 
only one parser is needed at run-time. 

6 Conclusion 

We have presented a novel approach for deriving 
word clusters based on syntactic similarity, and 
shown how these word clusters can be applied in 
a transition-based dependency parser. 

Our experiments focused on predicate-
argument structures extracted from the HPSG 
Treebank, which demonstrates that the syntactic 
clusters are effective in leveraging cross-
framework parser representations to improve 
parsing accuracy.  However, we expect that simi-
lar accuracy improvements can be obtained in 
parsing using other frameworks and formalisms, 
and possibly in other natural language processing 
tasks. 
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