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The effect of correcting grammatical errors on parse probabilities
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Abstract

We parse the sentences in three parallel er-
ror corpora using a generative, probabilis-
tic parser and compare the parse probabil-
ities of the most likely analyses for each
grammatical sentence and its closely re-
lated ungrammatical counterpart.

1 Introduction

The syntactic analysis of a sentence provided by
a parser is used to guide the interpretation process
required, to varying extents, by applications such
as question-answering, sentiment analysis and ma-
chine translation. In theory, however, parsing also
provides a grammaticality judgement as shown in
Figure 1. Whether or not a sentence is grammati-
cal is determined by its parsability with a grammar
of the language in question.

The use of parsing to determine whether a sen-
tence is grammatical has faded into the back-
ground as hand-written grammars aiming to de-
scribe only the grammatical sequences in a lan-
guage have been largely supplanted by treebank-
derived grammars. Grammars read from treebanks
tend to overgenerate. This overgeneration is un-
problematic if a probabilistic model is used to rank
analyses and if the parser is not being used to pro-
vide a grammaticality judgement. The combina-
tion of grammar size, probabilistic parse selection
and smoothing techniques results in high robust-
ness to errors and broad language coverage, de-
sirable properties in applications requiring a syn-
tactic analysis of any input, regardless of noise.
However, for applications which rely on a parser’s
ability to distinguish grammatical sequences from
ungrammatical ones, e.g. grammar checkers, over-
generating grammars are perhaps less useful as
they fail to reject ungrammatical strings.

A naive solution might be to assume that the
probability assigned to a parse tree by its proba-
bilistic model could be leveraged in some way to

Figure 1: Grammaticality and formal languages

determine the sentence’s grammaticality. In this
paper, we explore one aspect of this question by
using three parallel error corpora to determine the
effect of common English grammatical errors on
the parse probability of the most likely parse tree
returned by a generative probabilistic parser.

2 Related Work

The probability of a parse tree has been used be-
fore in error detection systems. Sunet al. (2007)
report only a very modest improvement when they
include a parse probability feature in their system
whose features mostly consist of linear sequential
patterns. Lee and Seneff (2006) detect ungram-
matical sentences by comparing the parse proba-
bility of a possibly ill-formed input sentence to the
parse probabilities of candidate corrections which
are generated by arbitrarily deleting, inserting and
substituting articles, prepositions and auxiliaries
and changing the inflection of verbs and nouns.
Fosteret al. (2008) compare the parse probabil-
ity returned by a parser trained on a regular tree-
bank to the probability returned by the same parser
trained on a “noisy” treebank and use the differ-
ence to decide whether the sentence is ill-formed.

Research in the field of psycholinguistics has
explored the link between frequency and gram-
maticality, often focusing on borderline acceptable
sentences (see Crocker and Keller (2006) for a dis-
cussion of the literature). Koonst-Garboden and
Jaeger (2003) find a weak correlation between the
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frequency ratios of competing surface realisations
and human acceptability judgements. Hale (2003)
calculates the information-theoretic load of words
in sentences assuming that they were generated ac-
cording to a probabilistic grammar and finds that
these values are good predictors for observed read-
ing time and other measures of cognitive load.

3 Experimental Setup

The aim of this experiment is to find out to
what extent ungrammatical sentences behave dif-
ferently from correct sentences as regards their
parse probabilities. There are two types of corpora
we study: two parallel error corpora that consist
of authentic ungrammatical sentences and manual
corrections, and a parallel error corpus that con-
sists of authentic grammatical sentences and auto-
matically induced errors. Using parallel corpora
allows us to compare pairs of sentences that have
the same or very similar lexical content and dif-
fer only with respect to their grammaticality. A
corpus with automatically induced errors is in-
cluded because such a corpus is much larger and
controlled error insertion allows us to examine di-
rectly the effect of a particular error type.

The first parallel error corpus contains 1,132
sentence pairs each comprising an ungrammatical
sentence and a correction (Foster, 2005). The sen-
tences are taken from written texts and contain ei-
ther one or two grammatical errors. The errors in-
clude those made by native English speakers. We
call this the Foster corpus. The second corpus
is a learner corpus. It contains transcribed spo-
ken utterances produced by learners of English of
varying L1s and levels of experience in a class-
room setting. Wagner et al. (2009) manually cor-
rected 500 sentences of the transcribed utterances,
producing a parallel error corpus which we call
Gonzaga 500. The third parallel corpus contains
199,600 sentences taken from the British National
Corpus and ungrammatical sentences produced by
introducing errors of the following five types into
the original BNC sentences: errors involving an
extra word, errors involving a missing word, real-
word spelling errors, agreement errors and errors
involving an incorrect verbal inflection.

All sentence pairs in the three parallel cor-
pora are parsed using the June 2006 version
of the first-stage parser of Charniak and John-
son (2005), a lexicalised, generative, probabilistic
parser achieving competitive performance on Wall

Street Journal text. We compare the probability of
the highest ranked tree for the grammatical sen-
tence in the pair to the probability of the highest
ranked tree for the ungrammatical sentence.

4 Results

Figure 2 shows the results for the Foster corpus.
For ranges of 4 points on the logarithmic scale,
the bars depict how many sentence pairs have a
probability ratio within the respective range. For
example, there are 48 pairs (5th bar from left) for
which the correction has a parse probability which
is between 8 and 12 points lower than the parse
probability of its erroneous original, or, in other
words, for which the probability ratio is between
e−12 ande−8. 853 pairs show a higher probabil-
ity for the correction vs. 279 pairs which do not.
Since the probability of a tree is the product of
its rule probabilities, sentence length is a factor.
If we focus on corrections that do not change the
sentence length, the ratio sharpens to 414 vs. 90
pairs. Ungrammatical sentences do often receive
lower parse probabilities than their corrections.

Figure 3 shows the results for the Gonzaga 500.
Here we see a picture similar to the Foster cor-
pus although the peak for the range frome0 = 1
to e4 ≈ 54.6 is more pronounced. This time
there are more cases where the parse probability
drops despite a sentence being shortened and vice
versa. Overall, 348 sentence pairs show an in-
creased parse probability, 152 do not. For sen-
tences that stay the same length the ratio is 154
to 34, or 4.53:1, for this corpus which is almost
identical to the Foster corpus (4.60:1).

How do these observations translate to the artifi-
cial parallel error corpus created from BNC data?
Figure 4 shows the results for the BNC data. In
order to keep the orientation of the graph as be-
fore, we change the sign by looking at decrements
instead of increments. Also, we swap the keys
for shortened and lengthened sentences. Clearly,
the distribution is wider and moved to the right.
The peak is at the bar labelled 10. Accordingly,
the ratio of the number of sentence pairs above
and below the zero line is much higher than be-
fore (overall 32,111 to167, 489 = 5.22, for same
length only 8,537 to 111,171 = 13.02), suggest-
ing that our artificial errors might have a stronger
effect on parse probability than authentic errors.
Another possible explanation is that the BNC data
only contains five error types, whereas the range of
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Figure 2: Effect of correcting erroneous sentences (Foster corpus) on the probability of the best parse.
Each bar is broken down by whether and how the correction changed thesentence length in tokens. A
bar labelledx covers ratios fromex−2 to ex+2 (exclusive).

Figure 3: Effect of correcting erroneous sentences (Gonzaga 500corpus) on the probability of the best
parse.

Figure 4: Effect of inserting errors into BNC sentences on the probabilityof the best parse.
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errors in the Foster and Gonzaga corpus is wider.
Analysing the BNC data by error type and look-

ing firstly at those error types that do not involve a
change in sentence length, we see that:

• 96% of real-word spelling errors cause a re-
duction in parse probability.

• 91% of agreement errors cause a reduction in
parse probability. Agreement errors involving
articles most reliably decrease the probability.

• 92% of verb form errors cause a reduction.
Changing the form from present participle to
past participle1 is least likely to cause a reduc-
tion, whereas changing it from past participle
to third singular is most likely.

The effect of error types which change sentence
length is more difficult to interpret. Almost all of
the extra word errors cause a reduction in parse
probability and it is difficult to know whether this
is happening because the sentence length has in-
creased or because an error has been introduced.
The errors involving missing words do not system-
atically result in an increase in parse probability
– 41% of them cause a reduction in parse proba-
bility, and this is much more likely to occur if the
missing word is a function word (article, auxiliary,
preposition).

Since the Foster corpus is also error-annotated,
we can also examine its results by error type. This
analysis broadly agrees with that of the BNC data,
although the percentage of ill-formed sentences
for which there is a reduction in parse probability
is generally lower (see Fig. 2 vs. Fig. 4).

5 Conclusion

We have parsed the sentences in three parallel er-
ror corpora using a generative, probabilistic parser
and examined the parse probability of the most
likely analysis of each sentence. We find that
grammatical errors have some negative effect on
the probability assigned to the best parse, a find-
ing which corroborates previous evidence linking
sentence grammaticality to frequency. In our ex-
periment, we approximate sentence probability by
looking only at the most likely analysis – it might
be useful to see if the same effect holds if we sum

1This raises the issue of covert errors, resulting in gram-
matical sentence structures. Lee and Seneff (2008) give the
exampleI am prepared for the exam which was produced by
a learner of English instead ofI am preparing for the exam.
These occur in authentic error corpora and cannot be com-
pletely avoided when automatically introducing errors.

over parse trees. To fully exploit parse or sentence
probability in an error detection system, it is nec-
essary to fully account for the effect on probability
of 1) non-structural factors such as sentence length
and 2)particular error types. This study repre-
sents a contribution towards the latter.

Acknowledgements

We are grateful to James Hunter from Gonzaga
University for providing us with a learner corpus.
We thank Josef van Genabith and the reviewers for
their comments and acknowledge the Irish Cen-
tre for High-End Computing for the provision of
computational facilities. The BNC is distributed
by Oxford University Computing Services.

References
Eugene Charniak and Mark Johnson. 2005. Course-

to-fine n-best-parsing and maxent discriminative
reranking. InProceedings of ACL.

Matthew W. Crocker and Frank Keller. 2006. Prob-
abilistic grammars as models of gradience in lan-
guage processing. In Gisbert Fanselow, C. Féry,
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