
Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 69–72,
Paris, October 2009. c©2009 Association for Computational Linguistics

Synchronous Rewriting in Treebanks

Laura Kallmeyer
University of Tübingen

Tübingen, Germany
lk@sfs.uni-tuebingen.de

Wolfgang Maier
University of Tübingen

Tübingen, Germany
wo.maier@uni-tuebingen.de

Giorgio Satta
University of Padua

Padova, Italy
satta@dei.unipd.it

Abstract

Several formalisms have been proposed
for modeling trees with discontinuous
phrases. Some of these formalisms allow
for synchronous rewriting. However, it
is unclear whether synchronous rewriting
is a necessary feature. This is an impor-
tant question, since synchronous rewrit-
ing greatly increases parsing complexity.
We present a characterization of recursive
synchronous rewriting in constituent tree-
banks with discontinuous annotation. An
empirical investigation reveals that syn-
chronous rewriting is actually a neces-
sary feature. Furthermore, we transfer this
property to grammars extracted from tree-
banks.

1 Introduction

Discontinuous phrases are frequent in natural
language, particularly in languages with a rela-
tively free word order. Several formalisms have
been proposed in the literature for modeling trees
containing such phrases. These include non-
projective dependency grammar (Nivre, 2006),
discontinuous phrase structure grammar (DPSG)
(Bunt et al., 1987), as well as linear context-
free rewriting systems (LCFRS) (Vijay-Shanker et
al., 1987) and the equivalent formalism of sim-
ple range concatenation grammar (sRCG) (Boul-
lier, 2000). Kuhlmann (2007) uses LCFRS for
non-projective dependency trees. DPSG have
been used in Plaehn (2004) for data-driven pars-
ing of treebanks with discontinuous constituent
annotation. Maier and Søgaard (2008) extract
sRCGs from treebanks with discontinuous con-
stituent structures.

Both LCFRS and sRCG can model discontinu-
ities and allow for synchronous rewriting as well.
We speak of synchronous rewriting when two or

more context-free derivation processes are instan-
tiated in a synchronous way. DPSG, which has
also been proposed for modeling discontinuities,
does not allow for synchronous rewriting because
the different discontinuous parts of the yield of a
non-terminal are treated locally, i.e., their deriva-
tions are independent from each other. So far, syn-
chronous rewriting has not been empirically mo-
tivated by linguistic data from treebanks. In this
paper, we fill this gap by investigating the exis-
tence of structures indicating synchronous rewrit-
ing in treebanks with discontinuous annotations.
The question of whether we can find evidence for
synchronous rewriting has consequences for the
complexity of parsing. In fact, parsing with syn-
chronous formalisms can be carried out in time
polynomial in the length of the input string, with
a polynomial degree depending on the maximum
number of synchronous branches one can find in
derivations (Seki et al., 1991).

In this paper, we characterize synchronous
rewriting as a property of trees with crossing
branches and in an empirical evaluation, we con-
firm that treebanks do contain recursive syn-
chronous rewriting which can be linguistically
motivated. Furthermore, we show how this char-
acterization transfers to the simple RCGs describ-
ing these trees.

2 Synchronous Rewriting Trees in
German treebanks

By synchronous rewriting we indicate the syn-
chronous instantiation of two or more context-free
derivation processes. As an example, consider the
languageL = {anbncndn | n ≥ 1}. Each
of the two halves of somew ∈ L can be ob-
tained through a stand-alone context-free deriva-
tion, but forw to be inL the two derivations must
be synchronized somehow. For certain tasks, syn-
chronous rewriting is a desired property for a for-
malism. In machine translation, e.g., synchronous

69

rewriting is extensively used to model the syn-
chronous dependence between the source and tar-
get languages (Chiang, 2007). The question we
are concerned with in this paper is whether we can
find instances of recursive synchronous rewriting
in treebanks that show discontinuous phrases.

We make the assumption that, if the annota-
tion of a treebank allows to express synchronous
rewriting, then all cases of synchronous rewriting
are present in the annotation. This means that, on
the one hand, there are no cases of synchronous
rewriting that the annotator “forgot” to encode.
Therefore unrelated cases of parallel iterations in
different parts of a tree are taken to be truly unre-
lated. On the other hand, if synchronous rewrit-
ing is annotated explicitely, then we take it to be a
case of true synchronous rewriting, even if, based
on the string, it would be possible to find an anal-
ysis that does not require synchronous rewriting.
This assumption allows us to concentrate only on
explicit cases of synchronous rewriting .

We concentrate on German treebanks annotated
with trees with crossing branches. In such trees,
synchronous rewriting amounts to cases where dif-
ferent components of a non-terminal category de-
velop in parallel. In particular, we search for cases
where the parallelism can be iterated. An exam-
ple is the relative clause in (1), found in TIGER.
Fig. 1 gives the annotation. As can be seen in
the annotation, we have two VP nodes, each of
which has a discontinuous span consisting of two
parts. The two parts are separated by lexical ma-
terial not belonging to the VPs. The two com-
ponents of the second VP (Pop-Idol andwerden)
are included in the two components of the first,
higher, VP (genausogut auch Pop-Idoland wer-
den k̈onnen). In other words, the two VP compo-
nents are rewritten in parallel containing again two
smaller VP components.

(1) . . . der
. . . who

genausogut
as well

auch
also

Pop-Idol
pop-star

hätte
AUX

werden
become

können
could

“who could as well also become a pop-star”

Let us assume the following definitions: We
map the elements of a string to their positions. We
then say that the yieldΥ of a noden in a tree is
the set of all indicesi such thatn dominates the
leaf labeled with theith terminal. A yieldΥ has a
gap if there arei1 < i2 < i3 such thati1, i3 ∈ Υ
andi2 /∈ Υ. For all i, j ∈ Υ with i < j, the set
Υ〈i,j〉 = {k | i ≤ k ≤ j} is a component ofΥ if
Υ〈i,j〉 ⊆ Υ andi−1 /∈ Υ andj+1 /∈ Υ. We order

the components ofΥ such thatΥ〈i1,j1〉 < Υ〈i2,j2〉
if i1 < i2.

Trees showingrecursive synchronous rewrit-
ing can be characterized as follows: We have a
non-terminal noden1 with label A whose yield
has a gap.n1 dominates another noden2 with la-
belA such that for somei 6= j, theith component
of the yield ofn2 is contained in theith component
of the yield ofn1 and similar for thejth compo-
nent. We call the path fromn1 to n2 a recursive
synchronous rewriting segment (RSRS).

Table 1 shows the results obtained from search-
ing for recursive synchronous rewriting in the Ger-
man TIGER and NeGra treebanks. In a prepro-
cessing step, punctuation has been removed, since
it is directly attached to the root node and therefore
not included in the annotation.

TIGER NeGra
number of trees 40,013 20,597

total num. of RSRS in all trees 1476 600
av. RSRS length in all trees 2.13 2.12

max. RSRS length in all trees 5 4

Table 1: Synchronous rewriting in treebanks

Example (1) shows that we find instances of re-
cursive synchronous rewriting where each of the
rewriting steps adds something to both of the par-
allel components. (1) was not an isolated case.

The annotation of (1) in Fig. 1 could be turned
into a context-free structure if the lowest node
dominating the material in the gap while not
dominating the synchronous rewriting nodes (here
VAFIN) is attached lower, namely below the lower
VP node. (Note however that there is good linguis-
tic motivation for attaching it high.) Besides such
cases, we even encountered cases where the dis-
continuity cannot be removed this way. An exam-
ple is (2) (resp. Fig. 2) where we have a gap con-
taining an NP such that the lowest node dominat-
ing this NP while not dominating the synchronous
rewriting nodes has a daughter to the right of the
yields of the synchronous rewriting nodes, namely
the extraposed relative clause. This structure is of
the typeancbnd, wherea and b depend on each
other in a left-to-right order and can be nested,
andc andd also depend on each other and must
be generated together. This is a structure that re-
quires synchronous rewriting, even on the basis of
the string language. Note that the nesting of VPs
can be iterated, as can be seen in (3).

(2) . . . ob
. . . whether

auf
on

deren
their

Gelände
premises

der
the

Typ
type

von
of

70

S

VP

VP

PRELS ADV ADV NN VAFIN VAINF VMINF
der genausogut auch Pop-Idol hätte werden können

Figure 1: Example for recursive synchronous rewriting

Abstellanlage
parking facility

gebaut
built

werden
be

könne,
could,

der
which

. . .

. . .
“whether on their premises precisely the type of parking
facility could be built, which . . . ”

(3) . . . ob
. . . whether

auf
on

deren
their

Gelände
premises

der
the

Typ
type

von
of

Abstellanlage
parking facility

eigentlich
actually

hätte
had

schon
already

gebaut
built

werden
be

sollen,
should,

der
which

. . .

. . .
“whether on their premises precisely the type of parking
facility should actually already have been built, which
. . . ”

As a conclusion from these empirical results,
we state that to account for the data we can find in
treebanks with discontinuities, i.e., with crossing
branches, we need a formalism that can express
synchronous rewriting.

3 Synchronous Rewriting in Grammars
Extracted from Treebanks

In the following, we will use simple RCG (which
are equivalent to LCFRS) to model our treebank
annotations. We extract simple RCG rewriting
rules from NeGra and TIGER and check them for
the possibility to generate recursive synchronous
rewriting.

A simple RCG (Boullier, 2000) is a tupleG =
(N,T, V, P, S) where a)N is a finite set of pred-
icate names with an arity functiondim: N → N,
b) T andV are disjoint finite sets of terminals and
variables, c)P is a finite set of clauses of the form

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)
dim(A1))

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

for m ≥ 0 whereA,A1, . . . , Am ∈ N , X
(i)
j ∈

V for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai) andαi ∈
(T ∪ V)∗ for 1 ≤ i ≤ dim(A), and e)S ∈ N is
the start predicate name withdim(S) = 1. For all
c ∈ P , it holds that every variableX occurring in
c occurs exactly once in the left-hand side (LHS)
and exactly once in the RHS. A simple RCGG =
(N,T, V, P, S) is a simplek-RCG if for all A ∈
N, dim(A) ≤ k.

For the definition of the language of a simple

RCG, we borrow the LCFRS definitions here: Let
G = 〈N,T, V, P, S〉 be a simple RCG. For every
A ∈ N , we define the yield ofA, yield(A) as
follows:

a) For everyA(~α) → ε, ~α ∈ yield(A);

b) For every clause

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)

dim(A1)
)

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

and all ~τi ∈ yield(Ai) for 1 ≤ i ≤ m,
〈f(α1), . . . , f(αdim(A))〉 ∈ yield(A) where
f is defined as follows:

(i) f(t) = t for all t ∈ T ,

(ii) f(X(i)
j) = ~τi(j) for all 1 ≤ i ≤ m, 1 ≤

j ≤ dim(Ai) and

(iii) f(xy) = f(x)f(y) for all x, y ∈ (T ∪
V)+.

c) Nothing else is inyield(A).

The language is then{w | 〈w〉 ∈ yield(S)}.
We are using the algorithm from Maier and

Søgaard (2008) to extract simple RCGs from Ne-
Gra and TIGER. For the tree in Fig. 1, the algo-
rithm produces for instance the following clauses:

PRELS(der)→ ε
ADV(genausogut)→ ε
. . .
S(X1X2X3X4) → PRELS(X1)VP2(X1,X4) VAFIN(X3)
VP2(X1X2X3,X4X5) → ADV(X1) ADV(X2)

VP2(X3,X4) VMINF(X5)
VP2(X1,X2) → NN(X1) VAINF(X2)

We distinguish different usages of the same cat-
egory depending on their numbers of yield com-
ponents. E.g., we distinguish non-terminals VP1,
VP2, . . . depending on the arity of the VP. We de-
fine cat(A) for A ∈ N as the category ofA, inde-
pendent from the arity, e.g.,cat(VP2) =VP.

In terms of simple RCG, synchronous rewrit-
ing means that in a single clause distinct variables
occurring in two different arguments of the LHS
predicate are passed to two different arguments of
the same RHS predicate. We call thisrecursive

71

S
NP

VP
VP

VP
PP NP

ob auf dem Gelände der Typ von Abstellanlage . . . hätte . . . gebaut werden sollen, der. . .

Figure 2: Iterable treebank example for synchronous rewriting

if, by a sequence of synchronous rewriting steps,
we can reach the same two arguments of the same
predicate again. Derivations using such cycles of
synchronous rewriting lead exactly to the recursive
synchronous rewriting trees characterized in sec-
tion 2. In the following, we check to which extent
the extracted simple RCG allows for such cycles.

In order to detect synchronous rewriting in a
simple k-RCG G, we build a labeled directed
graphG = (VG , EG , l) from the grammar with
VG a set of nodes,EG a set of arcs andl :
VG → N ′ × {0, . . . , k} × {0, . . . , k} whereN ′ =
{cat(A) |A ∈ N} a labeling function.G is con-
structed as follows. For each clauseA0(~α) →
A1(~α1) . . . Am(~αm) ∈ P we consider all pairs of
variablesXs,Xt for which the following condi-
tions hold: (i)Xs andXt occur in different argu-
mentsi andj of A0, 1 ≤ i < j ≤ dim(A0); and
(ii) Xs andXt occur in different argumentsq and
r of the same occurrence of predicateAp in the
RHS,1 ≤ q < r ≤ dim(Ap) and1 ≤ p ≤ m.
For each of these pairs, two nodes with labels
[cat(A0), i, j] and[cat(Ap), q, r], respectively, are
added toVG (if they do not yet exist, otherwise we
take the already existing nodes) and a directed arc
from the first node to the second node is added to
EG . The intuition is that an arc inG represents
one or more clauses from the grammar in which
a gap between two variables in the LHS predicate
is transferred to the same RHS predicate. To de-
tect recursive synchronous rewriting, we then need
to discover all elementary cycles inG, i.e., all cy-
cles in which no vertex appears twice. In order to
accomplish this task efficiently, we exploit the al-
gorithm presented in Johnson (1975). On a gram-
mar extracted from NeGra (19,100 clauses), the
algorithm yields a graph with 28 nodes containing
206,403 cycles of an average length of 12.86 and
a maximal length of 28.

4 Conclusion

The starting point of this paper was the question
whether synchronous rewriting is a necessary fea-
ture of grammer formalisms for modelling natu-

ral languages. In order to answer this question,
we have characterized synchronous rewriting in
terms of properties of treebank trees with crossing
branches. Experiments have shown that recursive
cases of synchronous rewriting occur in treebanks
for German which leads to the conclusion that,
in order to model these data, we need formalisms
that allow for synchronous rewriting. In a second
part, we have extracted a simple RCG from these
treebanks and we have characterized the grammar
properties that are necessary to obtain recursive
synchronous rewriting. We then have investigated
the extent to which a grammar extracted from Ne-
Gra allows for recursive synchronous rewriting.

References
Pierre Boullier. 2000. Range concatenation grammars.

In Proceedings of IWPT.

Harry Bunt, Jan Thesingh, and Ko van der Sloot. 1987.
Discontinuous constituents in trees, rules and pars-
ing. In Proceedings of EACL.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics.

Donald B. Johnson. 1975. Finding all the elementary
circuits of a directed graph.SIAM Journal on Com-
puting.

Marco Kuhlmann. 2007.Dependency Structures and
Lexicalized Grammars. Dissertation, Saarland Uni-
versity.

Wolfgang Maier and Anders Søgaard. 2008. Tree-
banks and mild context-sensitivity. InProceedings
of Formal Grammar.

Joakim Nivre. 2006.Inductive Dependency Parsing.
Springer.

Oliver Plaehn. 2004. Computing the most probable
parse for a discontinuous phrase-structure grammar.
In New developments in parsing technology. Kluwer.

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. 1991.
On multiple context-free grammars.Theoretical
Computer Science.

K. Vijay-Shanker, David Weir, and Aravind Joshi.
1987. Characterising structural descriptions used by
various formalisms. InProceedings of ACL.

72

