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Abstract

Semantic space models represent the meaning of a word as a vector
in high-dimensional space. They offer a framework in which the mean-
ing representation of a word can be computed from its context, but the
question remains how they support inferences. While there has been
some work on paraphrase-based inferences in semantic space, it is not
clear how semantic space models would support inferences involving
hyponymy, like horse ran → animal moved. In this paper, we first dis-
cuss what a point in semantic space stands for, contrasting semantic
space with Gärdenforsian conceptual space. Building on this, we pro-
pose an extension of the semantic space representation from a point
to a region. We present a model for learning a region representation
for word meaning in semantic space, based on the fact that points at
close distance tend to represent similar meanings. We show that this
model can be used to predict, with high precision, when a hyponymy-
based inference rule is applicable. Moving beyond paraphrase-based
and hyponymy-based inference rules, we last discuss in what way se-
mantic space models can support inferences.

1 Introduction

Semantic space models represent the meaning of a word as a vector in a high-
dimensional space, where the dimensions stand for contexts in which the
word occurs [14, 10, 21, 20]. They have been used successfully in NLP [15],
as well as in psychology [10, 13, 16]. Semantic space models, which are
induced automatically from corpus data, can be used to characterize the
meaning of an occurrence of a word in a specific sentence [17, 3] without
recourse to dictionary senses. This is interesting especially in the light of
the recent debate about the problems of dictionary senses [9, 7]. However,
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Figure 1: Modeling hyponymy in semantic space: as subsumption between
feature structures (left) or as subregion inclusion (right)

it makes sense to characterize the meaning of words through semantic space
representations only if these representations allow for inferences.

(1) Google acquired YouTube =⇒ Google bought YouTube

(2) A horse ran =⇒ An animal moved

Ex. (1) is an example of an inference involving a paraphrase: acquire can be
substituted for buy in some contexts, but not all, for example not in con-
texts involving acquiring skills. Ex. (2) is an inference based on hyponymy :
run implies move in some contexts, but not all, for example not in the con-
text computer runs. In this paper, we concentrate on these two important
types of inferences, but return to the broader question of how inferences are
supported by semantic space models towards the end.

Semantic space models support paraphrase inferences: Lists of potential
paraphrases (for example buy and gain for acquire) and the applicability
of a paraphrase rule in context [17] can be read off semantic space repre-
sentations. The same cannot be said for hyponymy-based inferences. The
most obvious conceptualization of hyponymy in semantic space, illustrated
in Fig. 1 (left), is to view the vectors as feature structures, and hyponymy as
subsumption. However, it seems unlikely that horse would occur in a subset
of the contexts in which animal is found (though see Cimiano et al [1]).
There is another possible conceptualization of hyponymy in semantic space,
illustrated in Fig. 1 (right): If the representation of a word’s meaning in
semantic space were a region rather than a point, hyponymy could be mod-
eled as the sub-region relation. This is also the model that Gärdenfors [5]
proposes within his framework of conceptual spaces, however it is not
clear that the notion of a point in space is the same in conceptual space as
in semantic space. To better contrast the two frameworks, we will refer to
semantic space as co-occurrence space in the rest of this paper.

This paper makes two contributions. First, it discusses the notion of
a point in space in both conceptual and co-occurrence space, arguing that
they are fundamentally different, with points in co-occurrence space not
representing potential entities but mixtures of uses. Second, it introduces
a computational model for extending the representation of word meaning
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in co-occurrence space from a point to a region. In doing so, it makes use
of the property that points in co-occurrence space that are close together
represent similar meanings.

We do not assume that the subregion relation will hold between induced
hyponym and hypernym representations, no more than that the subsump-
tion relation would hold between them. Instead, we will argue that the
region representations make it possible to encode hyponymy information
collected from another source, for example WordNet [4] or a hyponymy in-
duction scheme [8, 25].
Plan of the paper. Sec. 2 gives a short overview of existing geometric mod-
els of meaning. In Sec. 3 we discuss the significance of a point in conceptual
space and in co-occurrence space, finding that the two frameworks differ
fundamentally in this respect, but that we can still represent word mean-
ings as regions in co-occurrence space. Building on this, Sec. 4 introduces
a region model of word meaning in co-occurrence space that can be learned
automatically from corpus data. Sec. 5 reports on experiments testing the
model on the task of predicting hyponymy relations between occurrences of
words. Sec. 6 looks at both paraphrase-based and hyponymy-based infer-
ences to see how their applicability can be tested in co-occurrence space and
how this generalizes to other types of inference rules. Sec. 7 concludes.

2 Related work

In this section we give a short overview of three types of geometric models of
meaning: co-occurrence space models, conceptual space models, and models
of human concept representation.
Co-occurrence space models. Co-occurrence space models (vector space
models) represent the meaning of a word as a vector in high-dimensional
space [14, 10, 21, 20]. In the simplest case, the vector for a target word
w is constructed by counting how often each other word co-occurs with w
in a given corpus, in a context window of n words around the occurrences
of w. Each potentially co-occurring word d then becomes a dimension, and
the co-occurrence counts of w with d become the value of w’s vector on
dimension d. As an example, Table 1 shows some co-occurrence counts for
the target words letter and surprise in Austen’s Pride and Prejudice. There
are many variations on co-occurrence space representations, for example
using syntactic context rather than word co-occurrence [20]. The most im-
portant property of co-occurrence space models is that similarity between
target words can be estimated as distance in space, using measures such as
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admirer all allow almost am and angry . . .
letter 1 8 1 2 2 56 1 . . .
surprise 0 7 0 0 4 22 0 . . .

Table 1: Some co-occurrence counts for letter, surprise in Austen’s Pride
and Prejudice

Euclidean distance or cosine similarity. Co-occurrence space models have
been used both in NLP [15, 25, 22] and in psychology [10, 13, 16]. They
have mostly been used to represent the meaning of a word by summing
over all its occurrences. We will call these vectors summation vectors.
A few studies have developed models that represent the meaning of an oc-
currence of a word in a specific sentence [10, 22, 17, 3]. The occurrence
vector for a word in a specific sentence is typically computed by combining
its summation vector with that of a single context word in the same sen-
tence, for example the direct object of a target verb. For Ex. (1) this would
mean computing the meaning representation of this occurrence of acquire
by combining the summation vectors of acquire and YouTube. The simplest
mechanism that has been used for the vector combination is vector addi-
tion. Models for occurrence meaning have typically been tested on a task
of judging paraphrase appropriateness: A model is given an occurrence, for
example acquire in Ex. (1), and a potential paraphrase, for example buy.
The model then estimates the appropriateness of the paraphrase in the cur-
rent context as the similarity of the occurrence vector of acquire with the
summation vector of buy.
Conceptual space. Gärdenfors [5] proposes representing concepts as re-
gions in a conceptual space, whose quality dimensions correspond to inter-
pretable features. In the simplest case, those are types of sensory perception
(color, temperature). Gärdenfors defines natural properties to be properties
that occupy convex regions in conceptual space, proposing that all proper-
ties used in human cognition are natural. Natural properties offer a solution
to the problem of induction if “undesirable” properties such as grue [6] do
not form convex regions.
Human concept representation. In psychology, feature vector based
models of human concept representation (e.g. [24, 19]) are used to model
categorization. Since many experiments on human concept representation
have been performed using verbal cues, these models represent aspects of
word meaning [18], possibly along with other types of knowledge. Nosofsky’s
Generalized Context Model (GCM) [19] models the probability of catego-
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rizing an exemplar ~e as a member of a concept C as

P (C|~e) =

∑
~η∈C w~ηsim(~η,~e)∑

concept C′
∑

~η∈C′ w~ηsim(~η,~e)

where the concept C is a set of remembered exemplars, w~η is an exemplar
weight, and the similarity sim(~η,~e) between ~η and ~e is defined as sim(~η,~e) =
exp(z ·∑dimension iwi(ηi− ei)2). z is a general sensitivity parameter, wi is a
weight for dimension i, and ηi, ei are the values of ~η and ~e on dimension i.

3 Points in co-occurrence space

Since we need to be clear about the entities about which we perform in-
ferences, it is important to understand what a point in conceptual and co-
occurrence space stands for. This is the topic of this section.

In conceptual space, a point is a potential entity, quality, or event. In
the region occupied by the concept yellow, each point denotes a hue of
yellow. In co-occurrence space, on the other hand, the representation of
yellow is a point, the summation vector. corpus occurrences of yellow, yellow
door as well as yellow pages. The summation vector is thus not a potential
percept, but a sum or mixture of uses. As vectors are computed entirely
from observed contexts, summation vectors can be computed for words like
yellow just as well as tomorrow or idea. Furthermore, the summation vector
is a representation of the word’s meaning, rather than a meaning.

An occurrence vector is also a point in co-occurrence space. It, too, does
not represent a potential entity. It is computed from two summation vec-
tors: Summation vectors are primary, and occurrence vectors are derived,
in all current co-occurrence space approaches. Computing the meaning rep-
resentation of acquire in the context of YouTube by combining ~acquire and

~Y ouTube amounts to constructing a pseudo-summation vector for a word
acquire-in-the-context-of-YouTube, making pseudo-counts for the dimensions
based on the context counts of acquire and YouTube. If the occurrence vector
is computed through addition, as ~acquire+ ~Y ouTube, we are basically taking
the contexts in which acquire-in-the-context-of-YouTube has been observed
to be the union of the contexts of acquire and YouTube. So both summation
and occurrence vectors are, in fact, summation vectors representing mixtures
of uses. They do not describe potential entities, like points in conceptual
space, but are representations of potential meanings of words.

The regions in co-occurrence space we want to identify will thus not be
regions of similar entities, but regions of similar mixtures of uses. Encoding
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external hyponymy information in a co-occurrence space, as we will do be-
low, thus means stating that any mixture of uses in which the hyponym can
occur is also a mixture of uses where the hypernym could be found. This is
plausible for pairs like horse and animal, though it stretches corpus reality
somewhat for other hypernyms of horse like vertebrate.

4 A model for regions in co-occurrence space

In this section, we develop a model for automatically inducing region repre-
sentations for word meaning in co-occurrence space. Our aim is to induce a
region representation from existing summation vectors and occurrence vec-
tors. There is existing work on inducing regions from points in a geometric
model, in psychological models of human concept representation (Sec. 2).
These models use either a single point (prototype models)1 or a set of points
(exemplar models), and induce regions of points that are sufficiently close
to the prototype or exemplars. They share two central properties, both of
which can be observed in the GCM similarity formula (Sec. 2): (P1) Di-
mensions differ in how strongly they influence classification. (P2) Similarity
decreases exponentially with distance (Shepard’s law, [23]). We adopt (P1)
and (P2) for our model in co-occurrence space. As co-occurrence space can
model conceptual phenomena like lexical priming [13], it is reasonable to
assume that its notion of similarity matches that of conceptual models. We
construct a prototype-style model, with the summation vector as the proto-
type, using the following additional assumptions: (P3) The representation
of a word’s meaning in co-occurrence space is a contiguous region surround-
ing the word’s summation vector. (P4) The region includes the occurrence
vectors of the word. Property (P4) builds on the argument from Sec. 3 that
occurrence vectors are pseudo-summation vectors. It also matches previous
work on judging paraphrase appropriateness (Sec. 2), since those studies
successfully rely on the assumption that occurrence vectors will be close to
summation vectors that represent similar meanings.

We define a model for region representations of word meaning that is
based on distance from the summation vector, and that uses the occurrence
vectors to determine the distance from the summation vector at which points
should still be considered as part of the region. For a given target word w,
we construct a log-linear model that estimates the probability P (in|~x) that
a point ~x is inside the meaning region of w, as follows:

1Some prototype models use a prototype that has a weighted list of possible values for
each feature.
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P (in|~x) =
1
Z

exp(
∑
i

βin
i fi(~x)) (1)

where the fi are features that characterize the point ~x, and the βin
i are

weights identifying the importance of the different features for the class
in. Z is a normalizing factor ensuring that the result is a probability. Let
~w = 〈w1, . . . , wn〉 be the summation vector for the word w, in a space of
n dimensions. Then we define the features fi, for 1 ≤ i ≤ n, to encode
distance from ~w in each dimension, with

fi(~x) = (wi − xi)2 (2)

This log-linear model has property (P1) through the weights βin
i . It has

property (P2) through the exponential relation between the estimated prob-
ability and the distances fi. We will use occurrence vectors of w (as positive
data) and occurrence vectors of other words (as negative data) to estimate
the βi during training, thus calibrating the weights by the distances between
the summation vector and known members of the region. In the current pa-
per, we will consider only regions with sharp boundaries, which we obtain by
placing a threshold of 0.5 on the probability P (in|~x). However, we consider
it important that this model can also be used to represent regions with soft
boundaries by using P (in|~x) without a threshold. It may thus be able to
model borderline uses of a word, and unclear boundaries between senses [2].

5 Experiments on hyponymy

In this section, we report on experiments on hyponymy in co-occurrence
space. We test whether different co-occurrence space models can predict,
given meaning representations (summation vectors, occurrence vectors, or
regions) of two words, whether one of the two words is a hypernym of the
other. In all tests, the models do not see the words, just the co-occurrence
space representations.
Experimental setting. We used a Minipar [11] dependency parse of the
British National Corpus (BNC) as the source of data for all experiments be-
low. The written portion of the BNC was split at random into two halves:
a training half and a test half. We used WordNet 3.0 as the “ground truth”
against which to evaluate models. We work with two main sets of lemmas:
first, the set of monosemous verbs according to WordNet (we refer to this
set as Mon), and second, the set of hypernyms of the verbs in Mon (we
call this set Hyp). We concentrate on monosemous words in the current
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paper since they will allow us to evaluate property (P3) most directly. Since
the model from Sec. 4 needs substantive amounts of occurrence vectors for
training, we restricted both sets Mon and Hyp to verbs that occur with at
least 50 different direct objects in the training half of the BNC. The direct
objects, in turn, were restricted to those that occurred no more than 6,500
and no less than 270 times with verbs in the BNC, to remove both uninfor-
mative and sparse objects. (The boundaries were determined heuristically
by inspection of the direct objects for this pilot study.) This resulted in a set
Mon consisting of 120 verbs, and Hyp consisting of 430 verbs. Summation
vectors for all words were computed with the dv package2 from the training
half of the BNC, using vectors of 500 dimensions with raw co-occurrence
counts as dimension values.
Experiment 1: Subsumption. Above, we have hypothesized that co-
occurrence space representations of hyponyms and hypernyms, in the form
in which they are induced from corpus data, cannot in general be assumed to
be in either a subsumption or a subregion relation. We test this hypothesis,
starting with subsumption. We define subsumption as ~x v ~y ⇐⇒ ∀i(yi >
0→ xi > 0). Now, any given verb in Mon will be the hyponym of some verbs
in Hyp and unrelated to others. So we test, for each summation vector ~v1 of
a verb in Mon and summation vector ~v2 of a verb in Hyp, whether ~v1 v ~v2.
The result is that Mon verbs subsume 5% of the Hyp verbs of which
they are hyponyms, and 1% of the Hyp verbs that are unrelated.
We conclude that subsumption between summation vectors in co-occurrence
space is not a reliable indicator of the hyponymy relation between words.
Experiment 2: Subregion relation. Next, we test whether, when we
represent a Hyp-verb as a region in co-occurrence space, occurrences of its
Mon-hyponyms fall inside that region, and occurrences of non-hypernyms
are outside. First, we compute occurrence vectors for each Hyp or Mon verb
v as described in Sec. 2: Given an occurrence of a verb v, we compute its
occurrence vector by combining the summation vector of v with the sum-
mation vector of the direct object of v in the given sentence3. We combine
two summation vectors by computing their average. In this experiment, we
use occurrences from both halves of the BNC. With those summation and
occurrence vectors in hand, we then learn a region representation for each
Hyp verb using the model from Sec. 4. We implemented the region model
using the OpenNLP maxent package4. Last, we test, for each Mon verb

2http://www.nlpado.de/~sebastian/dv.html
3Occurrences without a direct object were not used in the experiments.
4http://maxent.sourceforge.net/
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occurrence vector and each Hyp region, whether the occurrence vector is
classified as being inside the region. The result is that the region models
classified zero hyponym occurrences as being inside, resulting in precision
and recall of 0.0. These results show clearly that our earlier hypothe-
sis was correct: The co-occurrence representations that we have induced
from corpus data do not lend themselves to reading off hyponymy relations
through either subsumption or the subregion relation.
Experiment 3: Encoding hyponymy. These findings do not mean that
it is impossible to test the applicability of hyponymy-based inferences in
co-occurrence space. If we cannot induce hyponymy relations from existing
vector representations, we may still be able to encode hyponymy information
from a separate source such as WordNet. Note that this would be difficult
in a words-as-points representation: The only possibility there would be
to modify summation vectors. With a words-as-regions representation, we
can keep the summation vectors constant and modify the regions. Our aim
in this experiment is to produce a region representation for a Hyp verb v
such that occurrence vectors of v’s hyponyms will fall into the region. We
use only direct hypernyms of Mon verbs in this experiment, a 273-verb
subset of Hyp we call DHyp. For each DHyp verb v, we learn a region
representation centered on v’s summation vector, using as positive training
data all occurrences of v and v’s direct hyponyms in the training half of
the BNC. (Negative training data are occurrences of other DHyp verbs and
their children.) We then test, for each occurrence of a Mon verb in the
test half of the BNC that does not occur in the training half with the same
direct object, whether it is classified as being inside v’s region. The result
of this experiment is a precision of 95.2, recall of 43.4, and F-score of
59.6 (against a random baseline of prec=11.0, rec=50.2, and F=18.0). This
shows that it is possible to encode hyponymy information in a co-occurrence
space representation: The region model identifies hyponym occurrences with
very high precision. If anything, the region is too narrow, classifying many
actual hyponyms as negatives.

6 Inference in co-occurrence space

In this section we take a step back to ask what it means for co-occurrence
space to support inferences, taking the inferences in Ex. (1) and (2) as an
example. The inference in Ex. (1), which involves a paraphrase, is supported
in two ways: (I1) Paraphrase candidates – words that may be substituted
for acquire in some contexts – can be read off a co-occurrence space represen-
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tation [12]. They are the words whose summation vectors are closest to the
summation vector of acquire in space. In this way, co-occurrence space can
be used for the construction of context-dependent paraphrase rules. (I2)
Given an occurrence ~o of acquire, the appropriateness of applying the para-
phrase rule substituting buy for acquire is estimated based on the distance
between ~o and the summation vector ~buy of buy [17, 3]. This can be used
to select the single best paraphrase candidate for the given occurrence of
acquire, or to produce a ranking of all paraphrase candidates [3].

Concerning the hyponymy-based inference in Ex. (2), we have established
in Experiments 1 and 2 (Sec. 5) that it is at least not straightforward to
construct hyponymy-based rules from co-occurrence space representations
in analogy to (I1). However, (H2) Experiment 3 has shown that, given a
set of attested occurrences of hyponyms of move, we can construct a region
representation for move in co-occurrence space that can be used to test
applicability of hyponymy-based rules: The appropriateness of applying the
hyponymy-based rule substituting move for this specific occurrence of run
can be estimated based on whether the occurrence vector of run is located
inside the move region.

In both (I2) and (H2), an inference rule is “attached” to a point or a
region in co-occurrence space: the summation vector of buy in (I2), the
region representation of move in (H2). The inference rule is considered ap-
plicable to an occurrence if its occurrence vector is close enough in space to
the attachment point or inside the attachment region. Co-occurrence space
thus offers a natural way of determining the applicability of a (paraphrase
or hyponymy-based) inference rule to a particular occurrence, via distance
to the attachment point or inclusion in the attachment region. Applicabil-
ity can be treated as a yes/no decision, or it can be expressed through a
graded degree of confidence. In the case of attachment point, this degree
of confidence would simply be the similarity between occurrence vector and
attachment point. Concerning attachment regions, note that the model of
Sec. 4 actually estimates a probability of region inclusion for a given point
in space. In this paper, we have placed a threshold of 0.5 on the probability
to derive hard judgments, but the probability can also be used directly as a
degree of confidence.

The general principle of using co-occurrence space representation to rate
inference rule applicability, and to do this by linking rules to attachment
points or regions, could maybe be used for other kinds of inference rules as
well. The prerequisite is, of course, that it must make sense to judge rule
applicability through a single attachment point or region.
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7 Conclusion and outlook

In this paper, we have studied how semantic space representations support
inferences, focusing on hyponymy. To encode hyponymy through the sub-
region relation, we have considered word meaning representations through
regions in semantic space. We have argued that a point in semantic space
represents a mixture of uses, not a potential entity, and that the regions
in semantic space we want to identify are those that represent the same or
similar meanings. We have introduced a computational model that learns
region representations, and we have shown that this model can predict hy-
ponymy with high precision. Finally, we have suggested that semantic space
supports inferences by attaching inference rules to points or regions in space
and licensing rule application depending on distance in space. It is an open
question how far the idea of attachment points and attachment regions can
be extended beyond the paraphrase and hyponymy rules we have considered
here; this is the question we will consider next.
Acknowledgements. Many thanks to Manfred Pinkal, Jason Baldridge,
David Beaver, Graham Katz, Alexander Koller, and Ray Mooney for very
helpful discussions. (All errors are, of course, my own.)
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