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Abstract

Label Propagation, a standard algorithm
for semi-supervised classification, suffers
from scalability issues involving memory
and computation when used with large-
scale graphs from real-world datasets. In
this paper we approach Label Propagation
as solution to a system of linear equations
which can be implemented as a scalable
parallel algorithm using the map-reduce
framework. In addition to semi-supervised
classification, this approach to Label Prop-
agation allows us to adapt the algorithm to
make it usable for ranking on graphs and
derive the theoretical connection between
Label Propagation and PageRank. We pro-
vide empirical evidence to that effect using
two natural language tasks – lexical relat-
edness and polarity induction. The version
of the Label Propagation algorithm pre-
sented here scales linearly in the size of
the data with a constant main memory re-
quirement, in contrast to the quadratic cost
of both in traditional approaches.

1 Introduction

Natural language data often lend themselves to a
graph-based representation. Words can be linked
by explicit relations as in WordNet (Fellbaum,
1989), and documents can be linked to one an-
other via hyperlinks. Even in the absence of such a
straightforward representation it is possible to de-
rive meaningful graphs such as the nearest neigh-
bor graphs, as done in certain manifold learning
methods, e.g. Roweis and Saul (2000); Belkin and
Niyogi (2001). Typically, these graphs share the
following properties:

• They are edge-weighted.

• The edge weight encodes some notion of re-
latedness between the vertices.

• The relation represented by edges is at least
weakly transitive. Examples of such rela-
tions include, “is similar to”, “is more gen-
eral than”, and so on. It is important that the
relations selected are transitive for the graph-
based learning methods using random walks.

Such graphs present several possibilities for
solving natural language problems involving rank-
ing, classification, and clustering. Graphs have
been successfully employed in machine learning
in a variety of supervised, unsupervised, and semi-
supervised tasks. Graph based algorithms perform
better than their counterparts as they capture the
latent structure of the problem. Further, their ele-
gant mathematical framework allows simpler anal-
ysis to gain a deeper understanding of the prob-
lem. Despite these advantages, implementations
of most graph-based learning algorithms do not
scale well on large datasets from real world prob-
lems in natural language processing. With large
amounts of unlabeled data available, the graphs
can easily grow to millions of nodes and most ex-
isting non-parallel methods either fail to work due
to resource constraints or find the computation in-
tractable.

In this paper we describe a scalable implemen-
tation of Label Propagation, a popular random
walk based semi-supervised classification method.
We show that our framework can also be used for
ranking on graphs. Our parallel formulation shows
a theoretical connection between Label Propaga-
tion and PageRank. We also confirm this em-
pirically using the lexical relatedness task. The
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proposed Parallel Label Propagation scales up lin-
early in the data and the number of processing ele-
ments available. Also, the main memory required
by the method does not grow with the size of the
graph.

The outline of this paper is as follows: Section 2
introduces the manifold assumption and explains
why graph-based learning algorithms perform bet-
ter than their counterparts. Section 3 motivates
the random walk based approach for learning on
graphs. Section 4 introduces the Label Propaga-
tion method by Zhu et al. (2003). In Section 5 we
describe a method to scale up Label Propagation
using Map-Reduce. Section 6 shows how Label
Propagation could be used for ranking on graphs
and derives the relation between Label Propaga-
tion and PageRank. Parallel Label Propagation is
evaluated on ranking and semi-supervised classifi-
cation problems in natural language processing in
Section 8. We study scalability of this algorithm in
Section 9 and describe related work in the area of
parallel algorithms and machine learning in Sec-
tion 10.

2 Manifold Assumption

The training data D can be considered as a collec-
tion of tuples D = (X ,Y) where Y are the labels
and X are the features, and the learned modelM
is a surrogate for an underlying physical process
which generates the data D. The data D can be
considered as a sampling from a smooth surface or
a manifold which represents the physical process.
This is known as the manifold assumption (Belkin
et al., 2005). Observe that even in the simple case
of Euclidean data (X = {x : x ∈ Rd}) as shown
in Figure 1, points that lie close in the Euclidean
space might actually be far off on the manifold.
A graph, as shown in Figure 1c, approximates the
structure of the manifold which was lost in vector-
ized algorithms operating in the Euclidean space.
This explains the better performance of graph al-
gorithms for learning as seen in the literature.

3 Distance measures on graphs

Most learning tasks on graphs require some notion
of distance or similarity to be defined between the
vertices of a graph. The most obvious measure of
distance in a graph is the shortest path between the
vertices, which is defined as the minimum number
of intervening edges between two vertices. This is
also known as the geodesic distance. To convert

this distance measure to a similarity measure, we
take the reciprocal of the shortest-path length. We
refer to this as the geodesic similarity.

Figure 2: Shortest path distances on graphs ignore
the connectivity structure of the graph.

While shortest-path distances are useful in
many applications, it fails to capture the following
observation. Consider the subgraph of WordNet
shown in Figure 2. The term moon is con-
nected to the terms religious leader
and satellite.1 Observe that both
religious leader and satellite are
at the same shortest path distance from moon.
However, the connectivity structure of the graph
would suggest satellite to be more similar
than religious leader as there are multiple
senses, and hence multiple paths, connecting
satellite and moon.

Thus it is desirable to have a measure that cap-
tures not only path lengths but also the connectiv-
ity structure of the graph. This notion is elegantly
captured using random walks on graphs.

4 Label Propagation: Random Walk on
Manifold Graphs

An efficient way to combine labeled and unla-
beled data involves construction of a graph from
the data and performing a Markov random walk
on the graph. This has been utilized in Szummer
and Jaakkola (2001), Zhu et. al. (2003), and Azran
(2007). The general idea of Label Propagation in-
volves defining a probability distribution F over
the labels for each node in the graph. For labeled
nodes, this distribution reflects the true labels and
the aim is to recover this distribution for the unla-
beled nodes in the graph.

Consider a graph G(V,E,W ) with vertices V ,
edges E, and an n × n edge weight matrix W =

1The religious leader sense of moon is due to Sun
Myung Moon, a US religious leader.
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(a) (b) (c)

Figure 1: Manifold Assumption [Belkin et al., 2005]: Data lies on a manifold (a) and points along the
manifold are locally similar (b).

[wij ], where n = |V |. The Label Propagation al-
gorithm minimizes a quadratic energy function

E =
1
2

∑
(i, j) ∈ E

wij(Fi − Fj)2 (1)

The general recipe for using random walks
for classification involves constructing the graph
Laplacian and using the pseudo-inverse of the
Laplacian as a kernel (Xiao and Gutman, 2003).
Given a weighted undirected graph, G(V,E,W ),
the Laplacian is defined as follows:

Lij =


di if i = j

−wij if i is adjacent to j
0 otherwise

(2)

where di =
∑
j

wij .

It has been shown that the pseudo-inverse of the
Laplacian L is a kernel (Xiao and Gutman, 2003),
i.e., it satisfies the Mercer conditions. However,
there is a practical limitation to this approach. For
very large graphs, even if the graph Laplacians are
sparse, their pseudo-inverses are dense matrices
requiring O(n2) space. This can be prohibitive in
most computing environments.

5 Parallel Label Propagation

In developing a parallel algorithm for Label
Propagation we instead take an alternate approach
and completely avoid the use of inverse Lapla-
cians for the reasons stated above. Our approach
follows from the observation made from Zhu et
al.’s (2003) Label Propagation algorithm:

Observation: In a weighted graph G(V,E,W )
with n = |V | vertices, minimization of Equation
(1) is equivalent to solving the following system
of linear equations.

∑
(i, j) ∈ E

wijFi =
∑

(i, j) ∈ E
wijFj (3)

∑
c ∈ classes(i)

Fi(c) = 1 ∀i, j ∈ V.

We use this observation to derive an iterative
Label Propagation algorithm that we will later par-
allelize. Consider a weighted undirected graph
G(V,E,W ) with the vertex set partitioned into VL
and VU (i.e., V = VL∪VU ) such that all vertices in
VL are labeled and all vertices in VU are unlabeled.
Typically only a small set of vertices are labeled,
i.e., |VU | � |VL|. Let Fu denote the probability
distribution over the labels associated with vertex
u ∈ V . For v ∈ VL, Fv is known, and we also
add a “dummy vertex” v′ to the graph G such that
wvv′ = 1 and Fv′ = Fv. This is equivalent to the
“clamping” done in (Zhu et al., 2003). Let VD be
the set of dummy vertices.

Algorithm 1: Iterative Label Propogation

repeat
forall v ∈ (V ∪ VD) do

Fv =
∑

(v,u)∈E
wuvFv

Row normalize Fv.
end

until convergence or maxIterations

Observe that every iteration of Algorithm 1 per-
forms certain operations on each vertex of the
graph. Further, these operations only rely on
local information (from neighboring vertices of
the graph). This leads to the parallel algorithm
(Algorithm 2) implemented using the map-reduce
model. Map-Reduce (Dean and Ghemawat, 2004)
is a paradigm for implementing distributed algo-
rithms with two user supplied functions “map” and
“reduce”. The map function processes the input
key/value pairs with the key being a unique iden-
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tifier for a node in the graph and the value corre-
sponds to the data associated with the node. The
mappers run on different machines operating on
different parts of the data and the reduce function
aggregates results from various mappers.

Algorithm 2: Parallel Label Propagation
map(key, value):
begin

d = 0
neighbors = getNeighbors(value);
foreach n ∈ neighbors do

w = n.weight();
d += w ∗ n.getDistribution();

end
normalize(d);
value.setDistribution(d);
Emit(key, value);

end

reduce(key, values): Identity Reducer

Algorithm 2 represents one iteration of Algo-
rithm 1. This is run repeatedly until convergence
or for a specified number of iterations. The al-
gorithm is considered to have converged if the la-
bel distributions associated with each node do not
change significantly, i.e.,

∣∣∣∣F(i+1) − F(i)

∣∣∣∣
2
< ε

for a fixed ε > 0.

6 Label Propagation for Ranking

Graph ranking is applicable in a variety of prob-
lems in natural language processing and informa-
tion retrieval. Given a graph, we would like to
rank the vertices of a graph with respect to a node,
called the pivot node or query node. Label Prop-
agation and its variants (Szummer and Jaakkola,
2001; Zhu et al., 2003; Azran, 2007) have been
traditionally used for semi-supervised classifica-
tion. Our view of Label Propagation (via Algo-
rithm 1) suggests a way to perform ranking on
graphs.

Ranking on graphs can be performed in the Par-
allel Label Propagation framework by associating
a single point distribution with all vertices. The
pivot node has a mass fixed to the value 1 at all it-
erations. In addition, the normalization step in Al-
gorithm 2 is omitted. At the end of the algorithm,
the mass associated with each node determines its
rank.

6.1 Connection to PageRank
It is interesting to note that Algorithm 1 brings
out a connection between Label Propagation and

PageRank (Page et al., 1998). PageRank is a ran-
dom walk model that allows the random walk to
“jump” to its initial state with a nonzero proba-
bility (α). Given the probability transition matrix
P = [Prs], where Prs is the probability of jumping
from node r to node s, the weight update for any
vertex (say v) is derived as follows

vt+1 = αvtP + (1− α)v0 (4)

Notice that when α = 0.5, PageRank is reduced
to Algorithm 1, by a constant factor, with the ad-
ditional (1− α)v0 term corresponding to the con-
tribution from the “dummy vertices” VD in Algo-
rithm 1.

We can in fact show that Algorithm 1 reduces to
PageRank as follows:

vt+1 = αvtP + (1− α)v0

∝ vtP +
(1− α)
α

v0

= vtP + βv0

(5)

where β = (1−α)
α . Thus by setting the edge

weights to the dummy vertices to β, i.e., ∀(z, z′) ∈
E and z′ ∈ VD, wzz′ = β, Algorithm 1, and hence
Algorithm 2, reduces to PageRank. Observe that
when β = 1 we get the original Algorithm 1.
We’ll refer to this as the “β-correction”.

7 Graph Representation

Since Parallel Label Propagation algorithm uses
only local information, we use the adjacency list
representation (which is same as the sparse adja-
cency matrix representation) for the graph. This
representation is important for the algorithm to
have a constant main memory requirement as no
further lookups need to be done while comput-
ing the label distribution at a node. The interface
definition for the graph is listed in Appendix A.
Often graph data is available in an edge format,
as <source, destination, weight> triples. We use
another map-reduce step (Algorithm 3) to convert
that data to the form shown in Appendix A.

8 Evaluation

We evaluate the Parallel Label Propagation algo-
rithm for both ranking and semi-supervised clas-
sification. In ranking our goal is to rank the ver-
tices of a graph with respect to a given node called
the pivot/query node. In semi-supervised classi-
fication, we are given a graph with some vertices
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Algorithm 3: Graph Construction
map(key, value):
begin

edgeEntry = value;
Node n(edgeEntry);
Emit(n.id, n);

end

reduce(key, values):
begin

Emit(key, serialize(values));
end

labeled and would like to predict labels for the re-
maining vertices.

8.1 Ranking

To evaluate ranking, we consider the problem
of deriving lexical relatedness between terms.
This has been a topic of interest with applica-
tions in word sense disambiguation (Patwardhan
et al., 2005), paraphrasing (Kauchak and Barzilay,
2006), question answering (Prager et al., 2001),
and machine translation (Blatz et al., 2004), to
name a few. Following the tradition in pre-
vious literature we evaluate on the Miller and
Charles (1991) dataset. We compare our rankings
with the human judegments using the Spearman
rank correlation coefficient. The graph for this
task is derived from WordNet, an electronic lex-
ical database. We compare Algorithm 2 with re-
sults from using geodesic similarity as a baseline.

As observed in Table 1, the parallel implemen-
tation in Algorithm 2 performs better than rank-
ing using geodesic similarity derived from short-
est path lengths. This reinforces the motivation of
using random walks as described in Section 3.

Method Spearman
Correlation

Geodesic (baseline) 0.28
Parallel Label 0.36
Propagation

Table 1: Lexical-relatedness results: Comparison
with geodesic similarity.

We now empirically verify the equivalence of
the β-corrected Parallel Label Propagation and
PageRank established in Equation 4. To do this,
we use α = 0.1 in the PageRank algorithm and
set β = (1−α)

α = 9 in the β-corrected Parallel La-

bel Propagation algorithm. The results are seen in
Table 2.

Method Spearman
Correlation

PageRank (α = 0.1) 0.39
Parallel Label 0.39
Propagation (β = 9)

Table 2: Lexical-relatedness results: Comparision
of PageRank and β-corrected Parallel Label Prop-
agation

8.2 Semi-supervised Classification

Label Propagation was originally developed as a
semi-supervised classification method. Hence Al-
gorithm 2 can be applied without modification.
After execution of Algorithm 2, every node v in
the graph will have a distribution over the labels
Fv. The predicted label is set to arg max

c∈classes(v)
Fv(c).

To evaluate semi-supervised classification we
consider the problem of learning sentiment polar-
ity lexicons. We consider the polarity of a word to
be either positive or negative. For example, words
such as good, beautiful , and wonderful are consid-
ered as positive sentiment words; whereas words
such as bad, ugly, and sad are considered negative
sentiment words. Learning such lexicons has ap-
plications in sentiment detection and opinion min-
ing. We treat sentiment polarity detection as a
semi-supervised Label Propagation problem in a
graph. In the graph, each node represents a word
whose polarity is to be determined. Each weighted
edge encodes a relation that exists between two
words. Each node (word) can have two labels:
positive or negative. It is important to note that La-
bel Propagation, and hence Algorithms 1&2, sup-
port multi-class classification but for the purpose
of this task we have two labels. The graph for the
task is derived from WordNet. We use the Gen-
eral Inquirer (GI)2 data for evaluation. General
Inquirer is lexicon of English words hand-labeled
with categorical information along several dimen-
sions. One such dimension is called valence, with
1915 words labeled “Positiv” (sic) and 2291 words
labeled “Negativ” for words with positive and neg-
ative sentiments respectively. We used a random
20% of the data as our seed labels and the rest
as our unlabeled data. We compare our results

2http://www.wjh.harvard.edu/∼inquirer/
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(a) (b)

Figure 3: Scalability results: (a) Scaleup (b) Speedup

(F-scores) with another scalable previous work by
Kim and Hovy (Kim and Hovy, 2006) in Table 2
for the same seed set. Their approach starts with a
few seeds of positive and negative terms and boot-
straps the list by considering all synonyms of pos-
itive word as positive and antonyms of positive
words as negative. This procedure is repeated mu-
tatis mutandis for negative words in the seed list
until there are no more words to add.

Method Nouns Verbs Adjectives
Kim & Hovy 34.80 53.36 47.28
Parallel Label 58.53 83.40 72.95
Propagation

Table 3: Polarity induction results (F-scores)

The performance gains seen in Table 3 should
be attributed to the Label Propagation in general
as the previous work (Kim and Hovy, 2006) did
not utilize a graph based method.

9 Scalability experiments

We present some experiments to study the scala-
bility of the algorithm presented. All our experi-
ments were performed on an experimental cluster
of four machines to test the concept. The machines
were Intel Xeon 2.4 GHz with 1Gb main memory.
All performance measures were averaged over 20
runs.

Figure 3a shows scaleup of the algorithm which
measures how well the algorithm handles increas-
ing data sizes. For this experiment, we used all
nodes in the cluster. As observed, the increase in
time is at most linear in the size of the data. Fig-
ure 3b shows speedup of the algorithm. Speedup
shows how well the algorithm performs with in-
crease in resources for a fixed input size. In

this case, we progressively increase the number of
nodes in the cluster. Again, the speedup achieved
is linear in the number of processing elements
(CPUs). An appealing factor of Algorithm 2 is that
the memory used by each mapper process is fixed
regardless of the size of the graph. This makes the
algorithm feasible for use with large-scale graphs.

10 Related Work

Historically, there is an abundance of work in par-
allel and distributed algorithms for graphs. See
Grama et al. (2003) for survey chapters on the
topic. In addition, the emergence of open-source
implementations of Google’s map-reduce (Dean
and Ghemawat, 2004) such as Hadoop3 has made
parallel implementations more accessible.

Recent literature shows tremendous interest in
application of distributed computing to scale up
machine learning algorithms. Chu et al. (2006)
describe a family of learning algorithms that fit
the Statistical Query Model (Kearns, 1993). These
algorithms can be written in a special summation
form that is amenable to parallel speed-up. Exam-
ples of such algorithms include Naive Bayes, Lo-
gistic Regression, backpropagation in Neural Net-
works, Expectation Maximization (EM), Princi-
pal Component Analysis, and Support Vector Ma-
chines to name a few. The summation form can be
easily decomposed so that the mapper can com-
pute the partial sums that are then aggregated by a
reducer. Wolfe et al. (2008) describe an approach
to estimate parameters via the EM algorithm in a
setup aimed to minimize communication latency.

The k-means clustering algorithm has been an
archetype of the map-reduce framework with sev-
eral implementations available on the web. In

3http://hadoop.apache.org/core
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addition, the Netflix Million Dollar Challenge4

generated sufficient interest in large scale cluster-
ing algorithms. (McCallum et al., 2000), describe
algorithmic improvements to the k-means algo-
rithm, called canopy clustering, to enable efficient
parallel clustering of data.

While there is earlier work on scalable map-
reduce implementations of PageRank (E.g., Gle-
ich and Zhukov (2005)) there is no existing liter-
ature on parallel algorithms for graph-based semi-
supervised learning or the relationship between
PageRank and Label Propagation.

11 Conclusion

In this paper, we have described a parallel algo-
rithm for graph ranking and semi-supervised clas-
sification. We derived this by first observing that
the Label Propagation algorithm can be expressed
as a solution to a set of linear equations. This is
easily expressed as an iterative algorithm that can
be cast into the map-reduce framework. This al-
gorithm uses fixed main memory regardless of the
size of the graph. Further, our scalability study re-
veals that the algorithm scales linearly in the size
of the data and the number of processing elements
in the cluster. We also showed how Label Prop-
agation can be used for ranking on graphs and
the conditions under which it reduces to PageR-
ank. We evaluated our implementation on two
learning tasks – ranking and semi-supervised clas-
sification – using examples from natural language
processing including lexical-relatedness and senti-
ment polarity lexicon induction with a substantial
gain in performance.

A Appendix A: Interface definition for
Undirected Graphs

In order to guarantee the constant main memory
requirement of Algorithm 2, the graph represen-
tation should encode for each node, the complete
information about it’s neighbors. We represent
our undirected graphs in the Google’s Protocol
Buffer format.5 Protocol Buffers allow a compact,
portable on-disk representation that is easily ex-
tensible. This definition can be compiled into effi-
cient Java/C++ classes.

The interface definition for undirected graphs is
listed below:

4http://www.netflixprize.com
5Implementation available at

http://code.google.com/p/protobuf/

package graph;

message NodeNeighbor {
required string id = 1;
required double edgeWeight = 2;
repeated double labelDistribution = 3;

}

message UndirectedGraphNode {
required string id = 1;
repeated NodeNeighbor neighbors = 2;
repeated double labelDistribution = 3;

}

message UndirectedGraph {
repeated UndirectedGraphNode nodes = 1;

}
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