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Abstract 

 

Archaeological excavations in the sites of the 
Indus Valley civilization (2500-1900 BCE) in 
Pakistan and northwestern India have un-
earthed a large number of artifacts with in-
scriptions made up of hundreds of distinct 
signs. To date, there is no generally accepted 
decipherment of these sign sequences, and 
there have been suggestions that the signs 
could be non-linguistic. Here we apply com-
plex network analysis techniques on the data-
base of available Indus inscriptions, with the 
aim of detecting patterns indicative of syntac-
tic structure in this sign system. Our results 
show the presence of regularities, e.g., in the 
segmentation trees of the sequences, that sug-
gest the existence of a grammar underlying the 
construction of the sequences. 

1 Introduction 

The recent interest in complex networks among 
physicists over the past few years has meant that 
the graph theoretic paradigm has been applied to 
many different areas, including networks defined 
in corpora of textual units (Mehler, 2008), and 
has often revealed hitherto unsuspected patterns. 
While graph-based representation of texts had 
been used for some time in natural language 
processing tasks, such as, text parsing, disam-

biguation and clustering (Radev and Mihalcea, 
2008), the approach based on the new physics of 
complex networks often asks questions from a 
different perspective that can shed new light on 
the organization of linguistic structure. For ex-
ample, networks constructed on the basis of co-
occurrence of words in sentences have been seen 
to exhibit the small-world effect, i.e., a small av-
erage distance between any pair of arbitrarily 
chosen words, and, a scale-free distribution of 
the number of words a given word is connected 
to (i.e., its degree) (Ferrer i Cancho and Sole, 
2001). These properties have been proposed to 
reflect the evolutionary history of lexicons and 
the origin of their flexibility and combinatorial 
nature. Note that, a recent study of a lexical net-
work of words that are phonological neighbors 
has found that the degree distribution might be 
better fit by an exponential rather than a power-
law function (Vitevitch, 2008). A theoretical 
model for such word co-occurrence network, 
which treats language as a self-organizing net-
work of interacting words, has led to the sugges-
tion that languages may have a core (the “kernel 
lexicon”) that does not vary as the language 
evolves (Dorogovtsev and Mendes, 2001). How-
ever, even though text and speech are sequential, 
the local correlation between immediately con-
secutive words may not describe natural lan-
guages well – due to the presence of non-local 
relations between words that occur apart from 
each other in a sentence. Therefore, network 
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analysis has been extended to syntactic depend-
ency networks, where two words are connected if 
they have been related syntactically in a number 
of sentences (Ferrer i Cancho et al, 2003). The 
theory of complex networks has also been used 
to investigate the structure of meaningful con-
cepts in the written texts of individual authors, 
which have been seen to have small-world as 
well as scale-free characteristics (Caldeira et al, 
2006). The conceptual network of a language has 
been explored by using the semantic relatedness 
of words as defined by a thesaurus, and this net-
work too is seen to have small-world nature with 
scale-free degree distribution (Motter et al, 
2002).  
 
 
In this article, we look at a corpus of inscriptions 
obtained through archaeological excavations car-
ried out in the ruins of the Indus valley civiliza-
tion. The sequences comprise signs, of which 
there are more than four hundred unique and dis-
tinct types. Since discovery in the early part of 
the 20th century, there have been attempts at de-
ciphering them. However, to date there is no 
generally accepted method of interpreting these 
inscriptions. We analyze a representative data-
base of these sequences using techniques in-
spired by complex network theory. Our aim is to 
see whether such methods can reveal the exis-
tence of patterns suggesting syntactic organiza-

tion in the sign sequences. In the next section, we 
briefly introduce the historical context of the In-
dus inscriptions, while in Section 3, we discuss 
the dataset on which analysis has been carried 
out. Our results are reported in Section 4, and we 
finally conclude with a discussion of unresolved 
questions and further work that needs to be car-
ried out. 

2 The Indus inscriptions 

The Indus civilization, also known as the Mature 
Harappan civilization (2500-1900 BCE), was 
geographically spread over what is now Pakistan 
and northwestern India, covering approximately 
a million square kilometers (Possehl, 2002). It 
was marked by urbanization centered around 
large planned cities, as evidenced in the ruins of 
Harappa and Mohenjo-daro. Craft specialization 
and long-distance trade with Mesopotamia and 
Central Asia have been well-demonstrated. This 
civilization came to an end early in the 2nd mil-
lennium BC. There were no historical records of 
its existence until archaeological excavations in 
the late 19th and early 20th century uncovered 
artifacts, and some of the ruined urban centers 
(Marshall, 1931).  
 
Among the artifacts uncovered during these dis-
coveries were a variety of objects (especially 
seals) that were inscribed with a variety of signs 
arranged in sequences (Fig. 1). Although found 
primarily on seals and their impressions (seal-
ings), inscriptions with similar signs have also 
been discovered on miniature tablets, pottery, 
copper tablets, bronze implements, etc. Unsur-
prisingly, given the high sophistication of the 
civilization and the level of social complexity it 
implies, with the concomitant requirements of 
coordination and communication, these inscrip-
tions have been interpreted as corresponding to 
writing. However, despite periodic claims about 
decipherment of this writing system, there has as 
yet been no generally accepted interpretation of 
the signs. The failure of decipherment is partly 
due to lack of knowledge about the language 
which the signs encode and the lack of any bilin-
gual texts such as the Rosetta stone which was 
crucial in deciphering Egyptian hieroglyphs. 
While there is disagreement on the exact number 
of unique and distinct signs that occur in the in-
scriptions, there is overall agreement that they lie 
in the range of a few hundred. This rules out the 
possibility of the signs belonging either to an 
alphabetic system, which contains on average 

 
Fig. 1: A typical example of Indus sign sequence 
(having 8 distinct signs) occurring at the top of a 
seal, with the picture of a “unicorn” in the fore-
ground (i.e., the field symbol), one of the com-
mon animal motifs observed in such artifacts.  

 
Fig. 1: A typical example of Indus sign sequence 
(having 8 distinct signs) occurring at the top of a 
seal, with the picture of a “unicorn” in the fore-
ground (i.e., the field symbol), one of the com-
mon animal motifs observed in such artifacts. 
Note that, on seals, the conventional order in 
which the signs are read (right to left) is reversed. 
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about 25 letters (such as English) or an ideo-
graphic (e.g., Chinese) writing system, compris-
ing more than 50,000 characters. The brevity of 
the inscriptions (the longest that occurs on a sin-
gle line has 14 signs) and the existence of a large 
number of signs that occur with very low fre-
quency have led to some alternative suggestions 
regarding the meaning of the sign sequences. 
These include the possibilities that, e.g., (i) the 
signs correspond to a label specifying an indi-
vidual and his belongings, in the manner of he-
raldic badges (Fairservis, 1971) and (ii) the signs 
are ritual or religious symbols which do not en-
code speech nor serve as mnemonic devices, 
much as the Vinca signs or emblems in Near 
Eastern artifacts (Farmer et al, 2004). The latter 
possibility implies the absence of any syntactic 
structure in the Indus inscriptions, a possibility 
that can be tested without making any a priori 
assumptions about the meaning of the signs. 
 

3 Description of dataset  

The database for Indus sign sequences that we 
have used is based on the electronic concordance 
constructed by Mahadevan (1977), referred here 
as M77. This is based on the study of a total of 
3573 sequences recorded from 2906 distinct arti-
facts and it identifies 417 unique signs. In the 
following we identify each sign in a sign se-
quence by its corresponding identification num-
ber (1, …, 417) in M77. Most of the inscriptions 
seem to have been written from right to left. 
However, according to the convention we use, 
the sequence of numbers representing each text 
is read from left to right (i.e., the leftmost num-
ber in the sequence is read as the first sign in the 
inscription). Yadav et al (2008) have constructed 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
an Extended Basic Unique Data Set (EBUDS) by 
removing from M77 all sequences that are in-
complete, because of the presence of signs that 
are damaged, lost, illegible or not unambiguously 
identified. Further, only sequences which are 
written on a single line are retained. This is to 
remove the ambiguity regarding the interpreta-
tion of sequences with multiple lines, namely, 
whether the different lines should be considered 
as independent sequences or whether they form 
one continuous sequence. Moreover, if the same 
sequence is found in multiple artifacts, it is rep-
resented only once in EBUDS. Following these 
operations, the original number of 3573 se-
quences in M77 is reduced to 1548 sequences in 
EBUDS. Moreover, 40 of the 417 unique signs in 
M77, which occur with relatively very low fre-
quency, do not have any representation in 
EBUDS – so that latter dataset comprises 377 
unique signs. However, it has been verified by 
Yadav et al (2008) that the frequency distribu-
tions of signs in the two datasets are qualitatively 
similar. 

4 Results 

In the following sections we report the results 
of applying network analysis techniques to the 
sign sequences in EBUDS. We should note at 
this point that, the distributions of the in- and 
out- strengths of all the nodes (i.e., the sum of 
the weights of the incoming and outgoing links, 

Fig. 2: The directed network of 377 distinct Indus 
signs in EBUDS, with arrows pointing from a 
preceding sign to a sign that follows it in the cor-
pus of empirically observed sign sequences. Links 
are weighted by the frequency of occurrence of 
that particular sign pair. 

 
Fig. 3: The subnetwork of connections between 
the 10 highest frequency signs in EBUDS. Differ-
ent colors are used to represent the two different 
orientations possible for arrows between a nodal 
pair (e.g., the pairs 342-162 and 162-342 are both 
possible and are indicated by a blue and a black 
arrow, respectively). Loops indicate successive 
occurrences of the same sign. 
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respectively) do not show a scale-free distribu-
tion.  

4.1 The directed network of signs 

To have a graphical view of the entire sign sys-
tem, we first construct the directed network of 
Indus signs (Fig. 2). This has 377 nodes corre-
sponding to the distinct, uniquely identified 
signs. Node i has a directed link to node j, if sign 
j immediately follows sign i in any of the inscrip-
tions included in EBUDS. The link between i 
and j is weighted by the frequency of occurrence 
of *ij* in the corpus (“*” is a wildcard character 
that may be substituted by any of the 377 signs 
or blank space). 
 
We note immediately that only 1.5% (=2178) of 
the 377×377 possible directed pairs are seen to 
occur in the actual inscriptions. Furthermore, 
most of the signs are connected to only one or 
two other signs. The connectance (probability of 
link between any given pair) is only around 0.01, 
implying that the network is extremely sparse. 
However, if we plot the sub-network of connec-
tions between nodes corresponding to the 10 mo-
st common signs in EBUDS (i.e., the ones occur-
ring with the highest frequency), we note that 
they are strongly inter-connected (Fig. 3). There-
fore the adjacency matrix of the sign network is 
far from homogeneous, with patches of dense 
connectivity in certain regions.  
 
As the above evidence indicates that there exists 
a core set of signs which occur very frequently as 
pairs, a natural question is whether the network  

 
 
generated from EBUDS has a core-periphery 
organization. This would imply the existence of a 
densely connected central core (central in terms 
of graph distance) and a larger class of sparsely 
connected peripheral nodes, like that seen in the 
case of geographically embedded transportation 
networks (Holme, 2005). To obtain such a de-
composition of the network we use a pruning 
algorithm that successively peels away layers of 
a given core-order of the network. The k-core of 
a network is defined as the subnetwork contain-
ing all nodes that have degree at least equal to k. 
Thus, to obtain it, we have to iteratively remove 
all nodes having degree less than k. In particular, 
the 2-core of a network is obtained by eliminat-
ing all nodes that do not form part of a loop (i.e., 
a closed path through a subset of the connected 
nodes). For a k-core, there exist at least k paths 
between any pair of nodes belonging to it. It is 
obvious that for any network, there exists an in-
nermost core of maximum order which cannot 
exceed the highest degree of the network.  
 
In a directed network, one can define a k-core 
either in terms of the in-degree (number of con-
nections arriving at the node) or the out-degree 
(number of connections sent from the node). For 
the EBUDS network, the innermost core turns 
out to have order 8, regardless of the type of 
network considered (Fig. 4). Fig. 5 shows the 
innermost core for the in-degree network. Even a 
casual inspection shows that many of the com-
mon sign pairs in the database belong to this 
subnetwork. Thus, a large part of the corpus can 

 
Fig. 4: Core-decomposition of the undirected 
and directed networks of Indus signs. For the 
latter, both the in-degree (circles) and out-
degree (squares) cores are shown, while the 
undirected cores are represented with dia-
monds. All three core decompositions show an 
innermost core of order 8. 

 
Fig. 5: The innermost (order 8) in-degree core of 
the Indus sign network with 26 signs. Grayscale 
color of each link corresponds to the frequency of 
occurrence of a particular pair (e.g., 391-99 and 
336-89 are the commonest pairs). 
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be generated by using members of these “kernel 
lexicons”. 
 

4.2 Modularity of the network  

Many networks that we see in nature are modu-
lar, i.e., they comprise several subnetworks (of-
ten called communities) whose members are 
more densely connected to each other than with 
the rest of the network. In several systems, such 
structural modules are often associated with 
functional modularity, with each community be-
ing identified as being responsible for certain 
specific functions (e.g., in the protein interaction 
network). In the EBUDS network, existence of 
modules will imply that certain sets of signs oc-
cur together far more often than would be ex-
pected had their frequencies of appearance in the 
corpus been statistically independent. 
 
The unambiguous identification of communities 
in a network is a problem that still has not been 
solved to complete satisfaction. However, sev-
eral near-optimal algorithms exist. The technique 
we use was proposed in Newman and Girvan 
(2004) and involves calculating the following 
measure of modularity of a network: 
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where, L is the total number of links in the net-
work, Ls is the number of links between nodes 
within a module s and ds is the sum of the de-
grees for nodes belonging to module s. By defi-

nition, this gives a large value when the network 
has an unambiguous partition into several com-
munities. Thus, the method for finding the mod-
ules involves carrying out many trial divisions of 
the network into modules and calculating the 
corresponding Q. The partition for which Q is 
maximum will correspond to the true modular 
partition of the system. Needless to say, a brute 
force method for finding the best partition is im-
possible for modest sized networks, and we use 
an extremal optimization technique for this pur-
pose. We obtain 8 communities whose sizes 
range from 6 to 87 nodes.  
 
Having identified the communities in the sign 
network, the obvious question is whether they 
correspond to sign groups that occur in a particu-
lar context, e.g., commercial or religious. With 
this aim in view we have examined the correla-
tion between the modules and (i) artifact types, 
(ii) nature of the field symbols and (iii) site of 
excavation. None of them show any significant 
correlation with the modules, implying that the 
signs are not simple attributes of either artifact or 
symbol portrayed in a seal, nor were the use of 
certain sign subsets confined exclusively to cer-
tain regions. The latter point underlines the sur-
prising homogeneity of sign usage over the vast 
area that the Indus civilization covered. Let us 
stress that we are looking at correlation between 
groups of signs (that have a strong probability of 
co-occurrence) and specific contexts, rather than 
the significant frequency of occurrence of an in-
dividual sign in a specific context, of which there 

 
Fig. 6: Rank-frequency distribution of Indus sign 
occurrences, shown on a double logarithmic scale. 
The two lines indicate power law fits to different 
regions of the distribution, with distinct expo-
nents. The latter are calculated using Maximum 
Likelihood Estimation (MLE). Neither equal 1, as 
would have been the case for a simple Zipf distri-
bution. 

 
 
Fig. 7: The probability of occurrence of the sign 
pair 267-99 in EBUDS compared against the cor-
responding distribution for the randomized corpus 
(obtained by considering a million realizations). 
The large deviation of the empirical value of the 
pair occurrence probability from the randomized 
corpus indicates that this is a statistically signifi-
cant sign pair.
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are several examples. By focusing on correlation 
patterns at the level of groups of signs, rather 
than individual signs, we aim to arrive at results 
that are robust with respect to fluctuations in in-
dividual sign frequencies occurring as a result of 
further archaeological excavations. 
 

4.3 Network of “significant” links 

So far we had placed all sign pairs that occur in 
EBUDS on an equal footing. However, certain 
pairs may occur with high probability simply 
because the individual signs that make up the 
pair occur with high frequency. Fig. 6 shows that 
the frequency distribution of sign occurrence in 
EBUDS has an approximately power law distri-
bution. This implies that the few commonest 
signs will occur over a very large number of 
cases (the most frequent sign appearing as many 
as 715 times, which is 10% of the total of 7000 
occurrences of the 377 signs in EBUDS). By us-
ing the information about the probability of oc-
currence for individual signs in EBUDS we can 
investigate significant sign relations, i.e., sign 
combinations that occur far more frequently than 
that expected from the individual probabilities of 
the component signs. 
 
Thus, if sign i occurs with a probability p(i) and j 
with p(j), then the pair ij is significant if p(ij) >> 
p(i)p(j). To measure by how much p(ij) has to be 
larger than the product of p(i) and p(j) in order to 
be “significant”, we need to compare the empiri-
cal joint occurrence probability against the corre-
sponding value for randomized surrogates. The 

randomized corpus is generated by shuffling the 
sign sequences in the dataset so that, while the 
individual sign frequencies are unchanged, all 
pair correlations in the original inscriptions are 
lost. The shuffling can be done over either (i) the 
entire corpus, or (ii) over each individual seal.  
 
Fig. 7 shows a comparison between the empirical 
probability of a certain significant sign pair, and 
the corresponding probability distribution ob-
tained upon corpus randomization. It is evident 
that the pair would never have been observed 
with the actual EBUDS frequency had the two 
signs been independent, i.e., had there been no 
dependency relation between them. This devia-
tion can be quantified by computing the z-score, 
which is the difference between the empirical 
sign pair probability and the mean of the ran-
domized cases, divided by the standard deviation 
for the randomizations. The distribution of z-
scores for all 377×377 possible pairs are shown 
in Fig. 8. We note that there are 284 sign pairs 
with z-score larger than 10, while 46 pairs have 
z-score more than 20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As an example, using the individual seal shuffled 
randomization we obtain significant relations 
among 22 signs for a specified z-score threshold 
(Fig. 9). There are 6 isolated clusters in this sub-
network, with the longest cluster containing 8 
signs including sign 342 (the commonest sign in 
the corpus). Out of the 16 most frequently ap-
pearing signs in the database, 13 appear in this 
group, indicating that some of the common signs 
have significant relations with each other. While 
most pair relations are between such common 
signs, one exception is the cluster of signs no. 51 
(35th most common sign), no. 149 (50th most 

 
 
Fig. 8: Distribution of z-scores for all 377 × 377 
possible sign pairs. Note that many potential sign 
pairs are not observed in EBUDS at all, which are 
responsible for the negative z-score values. The 
randomization is over the entire corpus, and the 
mean and standard deviation are calculated over a 
million random realizations. 

 
Fig. 9: The network of significant sign pairs as 
obtained after comparison with the randomized 
corpus constructed by shuffling signs in each seal. 
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common sign) and no. 130 (59th most common 
sign). As the individual signs are themselves not 
very common, the observed sign relation is in-
deed quite intriguing and possibly has some 
functional significance in terms of interpreting 
the sign sequences.  
 

4.4 “Syntactic” tree generation 

We will finally attempt to reveal structure indica-
tive of syntactic trees by “parsing” the longest 
sign sequences. We do this by generating seg-
mentation trees of the sign sequences based on 
the relative frequency of sign combination occur-
rences. Given a inscription of length n, sign pairs 
are iteratively merged to form meta-signs, with 
the first merge being done for the sign pair with 
the highest z-score among all pairs in that se-
quence. This merged sign is then included as a 
meta-sign and assigned a new number. The re-
duced sequence of length n-1 is now again 
scanned for the pair of signs or meta-signs that is 
most “significant” and merged together. This 
process continues until the entire sign sequence 
reduces to a single meta-sign. In case of a tie be-
tween two or more pairs at any stage, one pair is 
randomly chosen. The resulting segmentation 
tree of the sign sequence is shown schematically 
in Fig. 10. The height of the tree is an indicator 
of the presence of significant recursive structure 

in the sign sequence. In particular, if the signs 
are all independent of each other, then the seg-
mentation tree has essentially the same height as 
the length of the sequence (Fig. 10, top). On the 
other hand, if for long sequences, there exists 
subsequences that also appear in the corpus as 
separate sequences in their own right, this is in-
dicative of recursion. The corresponding tree 
height is substantially reduced as compared to 
the sequence length (Fig. 10, bottom). 
 
We use this criterion to seek signature of recur-
sive, and hence syntactic, structure in the 
EBUDS network. For shorter length sequences, it 
becomes difficult to obtain subsequences that 
also appear as sequences in the database. We 
have thus confined our attention to inscriptions 
having 10 or more signs. Arranging the heights 
of the segmentation trees of these sequences in 
descending order (for seals of each specific 
length), we see that the average tree height is 
around 5 (Fig. 11). Such a characteristic length 
scale indicates that the longer sequences may 
actually be composed of multiple smaller se-
quences, each of which has a particular syntactic 
relation among its constituent signs. 
  

5 Discussion 

In this paper we have used complex network 
analysis techniques on the sign network con-
structed from a subset of the corpus of inscrip-
tions obtained in Indus civilization excavations. 
Our results suggest that though these sign se-
quences are yet to be deciphered, they have a 
highly structured arrangement which is sugges-
tive of the existence of syntax. The inference of a 
set of rules (i.e., the grammar) for arranging 
these signs in a particular order, so as to be able 

 
Fig. 10: Schematic segmentation trees for a sign 
sequence of length 8, representing two alternative 
possibilities. The top example is a relatively un-
structured sign sequence, with the tree height be-
ing almost identical to the sequence length. The 
bottom example shows significant recursive struc-
ture and a corresponding lower tree height. 

 
Fig. 11: Segmentation tree height for all se-
quences (of length 10 or more) in EBUDS ar-
ranged in descending order. 
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to create pseudotexts that are indistinguishable 
from the excavated ones is the eventual aim of 
the analysis described here. However, prior to 
this several open problems need to be addressed. 
One of the extensions of the present work has to 
do with looking beyond sign pairs to sign trip-
lets, quadruplets, etc. Preliminary analysis of 
networks of meta-signs by us indicates that, 
combinations beyond four signs may not have 
statistical significance. A detailed comparison 
between the sign network described here and the 
meta-sign network may provide clues about the 
possible hierarchical arrangement of subse-
quences in the longer sequences. Evidence of this 
is already seen from the construction of segmen-
tation trees of individual sequences based on 
relative pair frequencies.  
 
It is also possible that there are non-local correla-
tions between signs in a given inscription. To 
analyze this, we need to redefine the links in the 
network as being connections between all signs 
that occur in the same inscription. Again, pre-
liminary analysis seems to suggest that this does 
not provide substantially new results from those 
reported here. 
 
Based on the number of distinct signs (more than 
400) there have been several suggestions that, as 
the number is too high to be an alphabetic system 
but too small to be an ideographic system, the 
inscriptions could well be written in a logo-
syllabic system. Such a writing system combines 
both logograms (morphemic signs) and syllabic 
(or phonetic) signs without inherent meaning. In 
future work, we plan to investigate the differ-
ences that arise in the network structure of lan-
guages belonging to these very different systems, 
in order to make an inference on the nature of the 
writing system used in the Indus inscriptions. 
 
One of the most controversial aspects of Indus 
decipherment is the question of how many dis-
tinct signs are there. M77 identified 417 signs, 
but other researchers have come up with a wide 
range of different numbers. Therefore, an impor-
tant open issue that needs to be settled in the fu-
ture is the robustness of these results, with re-
spect to analysis based on another sign list, e.g., 
that created by B. K. Wells (Wells, 2006).  
 

Our analysis of correlations, or rather, the lack 
of it, between the modules of the network (i.e., 
groups of signs that have a high probability of 
co-occurrence) and contexts such as site of exca-

vation, artifact types and field symbols, indicates 
that the patterns seen in the sequence organiza-
tion are intrinsic to the sign usage system and not 
so much dependent on the context in which they 
arise. This supports the long-held belief that the 
signs encode writing, or, at least, proto-writing.  
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