
Proceedings of the Third Linguistic Annotation Workshop, ACL-IJCNLP 2009, pages 27–34,
Suntec, Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Bridging the Gaps:
Interoperability for GrAF, GATE, and UIMA

Nancy Ide
Department of Computer Science

Vassar College
Poughkeepsie, New York USA
ide@cs.vassar.edu

Keith Suderman
Department of Computer Science

Vassar College
Poughkeepsie, New York USA

suderman@anc.org

Abstract

This paper explores interoperability for
data represented using the Graph Anno-
tation Framework (GrAF) (Ide and Sud-
erman, 2007) and the data formats uti-
lized by two general-purpose annotation
systems: the General Architecture for Text
Engineering (GATE) (Cunningham, 2002)
and the Unstructured Information Man-
agement Architecture (UIMA). GrAF is
intended to serve as a “pivot” to enable
interoperability among different formats,
and both GATE and UIMA are at least im-
plicitly designed with an eye toward inter-
operability with other formats and tools.
We describe the steps required to per-
form a round-trip rendering from GrAF to
GATE and GrAF to UIMA CAS and back
again, and outline the commonalities as
well as the differences and gaps that came
to light in the process.

1 Introduction

The creation of language data and linguistic anno-
tations remains a fundamental activity in the field
of language technology, in order to develop in-
creasingly sophisticated understanding and gener-
ation capabilities for the world’s languages. Sub-
stantial effort has been devoted to the creation of
resources for major languages, and new projects
are developing similar resources for less widely-
used languages; the cost and effort of resource cre-
ation, as well as the possibilities for linking multi-
lingual and multi-modal language data, demands
that resources and tools are reusable as well as
compatible in terms of their representation. Var-
ious representation standards and annotation tools
have emerged over the past decade and have con-
tributed to some convergence in practice, but at the
same time, there has been growing recognition that

interoperability among formats and tools, rather
than universal use of a single representation for-
mat, is more suited to the needs of the community
and language technology research in general.

This paper explores interoperability for data
represented using the Graph Annotation Frame-
work (GrAF) (Ide and Suderman, 2007) and the
data formats utilized by two general-purpose an-
notation systems: the General Architecture for
Text Engineering (GATE) (Cunningham, 2002)
and the Unstructured Information Management
Architecture (UIMA)1. UIMA and GATE are sim-
ilar in design and purpose: both represent docu-
ments as text plus annotations and allow users to
define pipelines of processes that manipulate the
document. However, there are some differences
in implementation and representation format that
prohibit direct exchange of data and annotations
between the two.

The Graph Annotation Framework (GrAF) (Ide
and Suderman, 2007) is intended to serve as a
“pivot” to enable interoperability among different
formats for data and linguistics annotations and
the systems that create and exploit them. In this
paper, we describe the steps required to perform
a round-trip rendering from GrAF to GATE and
GrAF to UIMA CAS and back again, and outline
the commonalities as well as the differences and
gaps that came to light in the process. In doing
so, we hope to shed some light on the design and
implementation choices that either contribute to
or impede progress toward interoperability, which
can feed future development.

2 Background

A handful of formats for linguistic data and
annotations have been proposed as standards
over the past ten years, including Annotation
Graphs (AG) (Bird and Liberman, 2001), and,

1http://www.oasis-open.org/committees/uima/

27

most recently, the Graph Annotation Framework
(GrAF) (Ide and Suderman, 2007). UIMA’s
Common Analysis System (CAS) also provides a
”common” way to represent annotations so that
they can be shared and reused among UIMA an-
notator components.

Annotation Graphs were introduced primarily
as a means to handle time-stamped speech data, in
large part to overcome the problem of overlapping
annotations that violate the strict tree structure of
XML-based schemes. However, AGs are limited
by the inability to represent hierarchical relations
among annotations (as, for instance, in a syntax
tree). AGs are used in GATE to represent standoff
annotations.

GrAF has been developed by the International
Standards Organization (ISO)’s TC37 SC4, as a
part of the Linguistic Annotation Framework (In-
ternational Standards Organization, 2008). GrAF
provides an XML serialization of an abstract data
model for annotations that is intended to serve as
a ”pivot” for transducing among user-defined and
tool input annotation formats. GrAF is intended to
function in much the same way as an interlingua
in machine translation: a common, abstract con-
ceptual representation into and out of which user-
and tool-specific formats are transduced, so that
a transduction of any specific format into and out
of GrAF accomplishes the transduction between
it and any number of other GrAF-conformant for-
mats. GrAF is currently an ISO Candidate Draft.

The UIMA framework is a data management
system that supports pipelined applications over
unstructured data. UIMA was originally de-
veloped by IBM and is currently under further
development by an OASIS technical commit-
tee2. Apache UIMA3 is an Apache-licensed open
source implementation of the UIMA specification
being developed as an Apache incubator project.
UIMA’s Common Analysis System (CAS) is used
to describe typed objects (annotations) associated
with a given text or other media, upon which pro-
cessing modules (”annotators”) operate.

2.1 Annotation models

Each of the formats described above is based on
some model of annotations and their relation to
the data they describe. The AG model consists of
sets of arcs defined over nodes corresponding to

2http://www.oasis-open.org/committees/uima/
3http://incubator.apache.org/uima/index.html

timestamps in primary data, each of which is la-
beled with an arbitrary linguistic description that
applies to that region. Multiple annotations over
the data produce multiple arcs; there is no provi-
sion for arcs associating annotations.

GrAF defines the regions to be annotated in pri-
mary data as the area bounded by two or more an-
chors. The definition of anchor and the number
of anchors needed to define a region depends on
the medium being annotated. The only assumption
that GrAF makes is that anchors have a natural or-
dering. For textual data GrAF uses character off-
sets for anchors, and two anchors bound each re-
gion. Regions serve as the leaf nodes of a directed
acyclic graph. Annotations in the form of feature
structures are associated with nodes in the graph,
including nodes associated with both regions and
other annotations, via edges in the graph. GrAF
can represent common annotation types such as
hierarchical syntax trees by allowing, for exam-
ple, a sentence annotation to have edges to con-
stituent annotations such as NP, VP, etc. As op-
posed to AGs, annotations typically label nodes
rather than edges in GrAF, although labeled edges
are allowed, and the information comprising the
annotations is represented using feature structures
rather than simple labels.

The underlying model of UIMA CAS is simi-
lar to GrAF’s, due to its hierarchical type system
and the use of feature structures to represent anno-
tation information. In fact, the GrAF model, con-
sisting of a directed acyclic graph whose nodes are
labeled with feature structures, provides the rele-
vant abstraction underlying UIMA CAS. In prin-
ciple, then, annotations represented in GrAF and
UIMA CAS are trivially mappable to one another.
The same is not true for AGs: in GrAF, annota-
tions can be directly linked to other annotations,
but in the AG model annotations are effectively in-
dependent layers linked to the primary data. As a
result, while it is possible to ”flatten” a GrAF rep-
resentation so that it can be represented as an AG,
it is not possible to take the round trip back into
GrAF without losing information about relations
among annotations. An AG can, of course, always
be represented in GrAF, since independent graphs
layered over data (possibly with shared anchors in
the data) are valid GrAF structures.

28

3 GrAF→ UIMA→ GrAF

Conversion of a GrAF data structure into UIMA
involves generating (1) a UIMA data structure (a
CAS), (2) a UIMA type system, and a specification
of type priorities.

The CAS consists of a subject of analysis (sofa),
which is the data (in our examples here, a text) it-
self, together with its annotations. The CAS XML
representation of the annotations is very similar to
the GrAF XML representation: each annotation is
identified by its start and end location in the data
expressed in terms of virtual nodes between each
character in the data, where the position before the
first character is node 0. The conversion of GrAF
anchors to UIMA indexes is therefore trivial.

3.1 UIMA Type Systems

A UIMA type system specifies the type of data
that can be manipulated by annotator components.
A type system defines two kinds of objects; types
and features. The type defines the kinds of data
that can be manipulated in a CAS, arranged in an
inheritance hierarchy. A feature defines a field,
or slot, within a type. Each CAS type specifies
a single supertype and a list of features that may
be associated with that type. A type inherits all
of the features from its supertype, so the features
that can be associated with a type is the union of
all features defined by all supertypes in the inher-
itance tree. A feature is a name/value pair where
the value can be one of UIMA’s built in primitive
types (boolean, char, int, etc.) or a reference to
another UIMA object. UIMA also allows feature
values to be arrays of either primitive types or ar-
rays of references to other objects.

UIMA defines a top level type uima.cas.TOP
which contains no features and serves as the
root of the UIMA type system inheritance tree.
The root type uima.cas.TOP is the supertype
of uima.cas.AnnotationBase, which is the super-
type of uima.tcas.Annotation, which in turn is
the supertype for org.xces.graf.uima.Annotation.
All UIMA annotations generated by GrAF use
org.xces.graf.uima.Annotation as their supertype.
Note that the UIMA type hierarchy is strictly an is-
a hierarchy; for example, there may be an annota-
tion type pos with subtypes penn pos, claws pos,
etc., indicating that each of these annotations are
a kind of part of speech annotation. The hierar-
chy does not reflect other kinds of relations such
as the relation between a ”lemma” annotation and

a ”pos” annotation (i.e., a lemma and a pos are
typically companion parts of a morpho-syntactic
description, but neither one is a morpho-syntactic
description), or constituency relations in syntactic
annotation schemes.

The GrAF Java API provides a Java class that
generates a valid UIMA type system given one or
more GrAF objects. The type system is generated
by iterating over all the nodes in the graph and cre-
ating a new type for each kind of annotation en-
countered (e.g., token, sentence, POS, etc.). Fea-
ture descriptions are generated for each type at the
same time.

One drawback of deriving a type system auto-
matically is that some of the power of UIMA type
systems is lost in the conversion. For example,
in the process of conversion, all feature values are
assumed to be strings, even though UIMA allows
specification of the type of a feature value. Since
in GrAF, feature values have been serialized from
the contents of an XML attribute, all feature values
are represented internally as strings; to convert a
feature value to any other representation would re-
quire that GrAF have some external knowledge of
the annotation format being deserialized. There-
fore, any type checking capability for feature value
types in UIMA is lost after automatic generation
of the type system. Similarly, it is not possible
to determine a supertype for an annotation if it is
more specific than org.xces.graf.uima.Annotation
from the information in the GrAF representation
alone, so in effect, it is not possible to derive
any meaningful type hierarchy without additional
knowledge. For example, it is not possible to in-
clude the information in the type system descrip-
tion that penn pos and claws pos are subtypes of
pos since this information is not represented in the
graph. Even in cases where this kind of informa-
tion is represented in the graph, it is not retriev-
able; for example, FrameNet annotation includes
a grammaticalFunction annotation whose children
are elements such as subject, object, etc.
However, there is no way to determine what the
parent-child relation is between nodes without a
priori knowledge of the annotation scheme.

Without a source of external knowledge, GrAF
does not attempt to make any assumptions about
the annotations and features in the graph. How-
ever, all of these problems are avoided by pro-
viding an XML Schema or other source of infor-
mation about the GrAF annotations that can be

29

used when generating the type system. The XML
schema can specify the type hierarchy, data types
and restricted ranges for feature values, etc. (see,
for example, the XCES (Ide et al., 2000) schema is
used for the data and annotations in the American
National Corpus (ANC)4.)

3.2 UIMA Views and Indexes

A UIMA CAS object may contain more than one
view of the artifact being annotated; for example, a
CAS may contain an audio stream as one view and
the transcribed text as another. Each view contains
a copy of the artifact, referred to as the subject of
analysis (sofa), and a set of indexes that UIMA an-
notators (processing modules) use to access data in
the CAS. Each index is associated with one CAS
type and indexes that type by its features–that is,
the features are the keys for the index.

The indexes are the only way for UIMA annota-
tors to access annotations in the CAS. It is neces-
sary to generate these indexes, which are not pro-
vided automatically within UIMA. The GrAF Java
API provides a module that generates the indexes
at the same time the it generates the type system
description. Since we do not know, and make no
assumptions about, which annotations might be
required by other annotators, all annotations are
indexed by all of their features.

3.3 Type Priorities

Type priorities in UIMA are used to determine
nesting relations when iterating over collections of
annotations. That is, if two annotations have the
same start and end offsets, then the order in which
they will be presented by an iterator is determined
by their type priority; the annotation with the high-
est priority will be presented first. Type priorities
are specified by an ordered listing of annotation
types, where order determines priority. In GrAF,
annotation nesting is implicit in the graph itself.

To generate an explicit type priority specifica-
tion for UIMA we must first obtain a list of all
annotation types that appear in the graph and then
sort the list based on the order they are encoun-
tered during a a depth first traversal of the graph.
During the depth first traversal a N x N precedence
matrix is constructed where N is the number of an-
notation types in the graph. If precedes[A,B] ==
true then A was encountered as an ancestor of B
in the depth first traversal. If precedes[A,B] ==

4http://www.anc.org

precedes[B,A] == true then it is assumed that the
annotation types have the same priority. Once the
list of annotation types has been collected and the
precedence matrix constructed, the matrix can be
used to to sort the annotation types:

int compare(Annotation A,
Annotation B,
PrecedenceMatrix m)

{
boolean AB = m.precedes(A,B);
boolean BA = m.precedes(B,A);
if (AB && BA)
{

return 0; // equal
}
else if (AB)
{

return -1; // A first.
}
else if (BA)
{

return 1; // B first.
}
// Neither AB or BA means A and
// B are not in connected
// components.
return 0;

}

Not all nodes in the graph may be reachable
in a depth first traversal, particularly if multiple
annotations formats have been merged together.
Therefore, after the initial traversal has been com-
pleted each node is checked to determine if it
has been visited. If not, then another traversal is
started from that node. This is repeated until all
nodes/annotations in the graph have been visited
at least once.

We have found that UIMA type priorities im-
pose some limitations because they cannot repre-
sent context sensitive annotation orderings. For
example, given

<!ELEMENT E1 (A,B)>
<!ELEMENT E2 (B,A)>

The order of A and B differs depending on whether
the parent annotation is E1 or E2. This type of re-
lationship cannot be expressed by a simple order-
ing of annotations.

3.4 Naming Conflicts

The annotation type names used when generat-
ing the UIMA type system are derived automat-
ically based on the annotation names used in
the graph. Annotations in GrAF may also be
grouped into named annotation sets and the gen-

30

<as type="POS">

<fsr:fs type="PENN">
<fsr:f name="msd" fVal="NN"/>

</fsr:fs>
<fsr:fs type="CLAWS5">

<fsr:f name="msd" fVal="NN"/>
</fsr:fs>

</as>

Figure 1: GrAF representation of alternative POS
annotations

erated UIMA type name consists of a concatena-
tion of the nested annotation set names with the
annotation label appended. For example, multiple
part of speech annotations may be represented in
different annotation sets, as shown in Figure 1.5

For the above example, two types will
be generated: POS token PENN and
POS token CLAWS5. However, GrAF places
no restrictions on the names used for annotation
set names, annotation labels, or feature structure
types. Therefore, it is possible that the derived
type name is not a valid UIMA identifier, which
are required to follow Java naming conventions.
For example, Part-Of-Speech is a valid name
for an annotation label in GrAF, but because of
the hyphen it is not a valid Java identifier and
therefore not valid in UIMA.

To avoid the naming problem, a derived name
is converted into a valid UIMA identifier before
creating the UIMA type description. To permit
round trip engineering, that is, ensuring a GrAF→
UIMA→GrAF transformation results in the same
GrAF representation as the original, a NameMap
file is produced that maps a generated name to
the compatible UIMA name. NameMaps can be
used in a UIMA→ GrAF conversion to ensure the
GrAF annotations and annotation sets created are
given the same names as they had in the original
GrAF representation.

3.5 Preserving the Graph Structure

While UIMA does not have any graph-specific
functionality, the value of a UIMA feature can
be an array of annotations, or more specifically,
an array of references to other annotations. In

5The use of the fVal attribute in this example is sub-
ject to change according to revisions of ISO/DIS 24610-1
Language Resource Management - Feature Structures - Part
1: Feature Structure Representation (International Standards
Organization, 2005), to which the representation of feature
structures in GrAF adheres.

this way, annotations can effectively ”point” to
other annotations in UIMA. We exploit this ca-
pability to preserve the structure of the original
graph in the UIMA representation, by adding two
features to each annotation: graf children
and graf ancestors. This information can be
used to recreate the GrAF representation, should
that ever be desired. It can also be used by UIMA
annotators that have been designed to use and/or
manipulate this information.

Although rarely used, GrAF permits edges in
the graph to be annotated in the same way that
nodes are. For UIMA conversion, if a graph con-
tains labeled edges it must be converted into an
equivalent graph without labeled edges. A graph
with labeled edges can be converted into an equiv-
alent graph without labeled edges, where a node
replaces the original edge. To preserve the origi-
nal graph structure, an attribute indicating that the
node is represented as a a labeled edge in GrAF is
included.

4 GrAF→ GATE→ GrAF

The conversion to/from GATE is much simpler
than conversion to UIMA, since GATE is type-
less and does not require the overhead of gener-
ating a type system or type priorities list. While
GATE does support annotation schemas, they are
optional, and annotations and features can be cre-
ated at will. GATE is also much more lenient
on annotation and feature names; names automat-
ically generated by GrAF are typically valid in
GATE.

Representing the graph structure in GATE is not
as straightforward as it is in UIMA. We have de-
veloped a plugin to GATE that loads GrAF stand-
off annotations into GATE, and a parallel plugin
that generates GrAF from GATE’s internal format.
As noted above, GATE uses annotation graphs to
represent annotations, However, because annota-
tion graphs do not provide for annotations of an-
notations, to transduce from GrAF to the GATE in-
ternal format it is necessary to ”flatten” the graph
so that nodes with edges to other nodes are mod-
ified to contain edges directly into the primary
data. GATE assigns a unique id value to every an-
notation, so it is possible to link annotations by
creating a special feature and referencing the par-
ent/child annotations by their GATE id values.

The greatest difficulty in a GrAF→ GATE con-
version arises from the fact that in GATE, every

31

Figure 2: UIMA rendering of GrAF annotations

annotation is expected to have a start and end off-
set. In GrAF, a node may have multiple edges
to other nodes that cover disjoint regions of text.
For example, the FrameNet6 annotation for a given
verb typically includes edges to the associated role
fillers (e.g., agent, theme, instrument, etc.), which
are rarely contiguous in the text itself. Our current
solution to this problem is to give a start and end
offset that covers the smallest region of the text
covering the regions associated with all descen-
dants of the annotation, and recording the infor-
mation concerning the original graph structure in
attributes to enable reconversion into the original
GrAF representation.

5 Exploiting Interoperability

GrAF is intended to serve as the lingua franca for
data and annotations used in processing systems
such as GATE and UIMA. As such, it provides
a way for users to take advantage of each frame-
work’s strengths, e.g., UIMAs capabilities for de-
ploying analysis engines as services that can be
run remotely, and GATE’s wide array of process-
ing resources and capabilities for defining regu-

6http://framenet.icsi.berkeley.edu/

lar expressions over annotations (JAPE). It should
be noted that GATE provides wrappers to allow a
UIMA analysis engine to be used within GATE,
and to allow a GATE processing pipeline to be
used within UIMA. To share data and annota-
tions between the two systems, it is necessary to
construct a mapping descriptor to define how to
map annotations between the UIMA CAS and the
GATE Document, which operate similarly to the
converters from and to GrAF from data and an-
notations described above. However, one advan-
tage of using a GrAF representation as a pivot be-
tween the two systems is that when an annotation
schema is used with GrAF data, the conversion
from GATE to UIMA is more robust, reflecting the
true type description and type priority hierarchies.

Using GrAF as a pivot has more general ad-
vantages, for example, by allowing annotations
to be imported from and exported to a wide va-
riety of formats, and also enabling merging an-
notations from disparate sources into a single an-
notation graph. Figure 2 shows a rendering of
a Penn Treebank annotation (bracketed format)
and a FrameNet annotation (XML) that have been
transduced to GrAF, merged, and the transduced

32

Figure 3: GATE rendering of GrAF annotations

for use in UIMA. The same data is shown ren-
dered in GATE in Figure 3. The two ”views”
of the data consisting of overlaid annotations for
each annotation type are visible in each render-
ing. There are multiple possibilities for exploiting
and exploring merged annotations representing a
range of annotation types within these two frame-
works. For example, a UIMA analysis engine
could be developed to identify regions annotated
by both schemes, or all FrameNet elements that
are annotated as agent and also annotated with
Penn Treebank NP-OBJ, etc. In GATE, JAPE
rules could locate patterns in annotations obtained
from different sources, or named entity recogni-
tion rules could be enhanced with annotation in-
formation from data annotated in other formats.
It would also be possible to compare multiple an-
notations of the same type, such as different tok-
enizations, different POS taggings , etc.

As a final note, we point out that in addi-
tion to conversion to UIMA and GATE, annota-
tions from different sources (singly or merged in
any combination) can also be converted to sev-
eral other formats by using the GrAF Java API.
The API allows the user to select from among ex-

isting annotations and specify an output format
for their merged representation. Currently, in ad-
dition to GrAF, the following output formats are
supported: XML documents with inline annota-
tions; formats compatible with Monoconc Pro7

and Wordsmith Tools8; NLTK9; CONLL (B-I-E)
format; and UIMA CAS.10 So, for example, it is
possible to load a collection of standoff annota-
tion files and convert to XML, and then present
them to XML-aware applications as XML files
with inline annotations. As a result, we are be-
ginning to see possibilities for true interoperabil-
ity among not only major frameworks like UIMA
and GATE, but also applications with more limited
functionalities as well as in-house formats. This,
in turn, opens up the potential to mix and match
among tools for various kinds of processing as ap-
propriate to a given task. In general, the trans-
duction of ”legacy schemes” such as Penn Tree-
bank into GrAF greatly facilitates their use in ma-
jor systems such as UIMA and GATE, as well as

7http://www.athel.com/mono.html
8http://www.lexically.net/wordsmith/
9http://www.nltk.org/

10Note that to render GrAF into GATE, a plugin within the
GATE environment is used to perform the conversion.

33

Figure 4: Conversion capabilities

other applications and systems. Figure 4 shows
the conversion capabilities among a few annota-
tions schemes, GrAF, and UIMA and GATE.

All of our conversion tools and GATE plugins
are freely available for download with no restric-
tions at http://www.anc.org. The UIMA project
has received support to develop a UIMA→ GrAF
conversion module, which should be available in
the near future.

6 Conclusion

Consideration of the transduction from a generic,
relatively abstract representation scheme such as
GrAF into the formats required for widely adopted
frameworks for creating and analyzing linguisti-
cally annotated data has several ramifications for
interoperability. First, it brings to light the kinds
of implementation choices that either contribute to
or impede progress toward interoperability, which
can feed future development. Second, our work
on converting GrAF to the formats supported by
UIMA and GATE shows that while minor differ-
ences exist, the underlying data models used by
the two frameworks are essentially the same, as
well as being very similar to the data model under-
lying GrAF. This is good news for interoperability,
since it means that there is at least implicit conver-
gence on the data model best suited for data and
annotations; the differences lie primarily in the
ways in which the model is serialized internally
and as output by different tools. It also means that
transduction among the various formats is possible
without loss of information.

We have shown that a UIMA→GrAF or GATE
→ GrAF conversion is fairly straightforward; the
expressive power of GrAF can easily represent the
data models used by UIMA and GATE. On the
other hand, GrAF → UIMA or GrAF → GATE
transformations are less straightforward. Both
frameworks can represent graphs, but neither pro-
vides a standard representation that other compo-
nents are guaranteed to understand. Given that
powerful analysis algorithms for data in graphs are
well-established, there may be considerable ad-
vantage to using the graph as a general-purpose
format for use within various modules and ana-
lytic engines. In any case, the generality and flexi-
bility of the GrAF representation has already been
shown to be an effective means to exchange lin-
guistic data and annotations that exist in different
formats, as well as a model for development of an-
notation schemes in the future.

Acknowledgments

This work was supported by an IBM UIMA In-
novation Award and National Science Foundation
grant INT-0753069.

References
Steven Bird and Mark Liberman. 2001. A Formal

Framework for Linguistic Annotation. Speech Com-
munication, 33:1-2, 23-60.

Nancy Ide and Keith Suderman. 2007. GrAF:
A Graph-based Format for Linguistic Annotations.
Proceedings of the First Linguistic Annotation
Workshop, Prague, Czech Republic, June 28-29, 1-8.

International Standards Organization. 2008. Lan-
guage Resource Management - Linguistic Annota-
tion Framework. ISO Document WD 24611.

International Standards Organization. 2005. Language
Resource Management - Feature Structures - Part 1:
Feature Structure Representation. ISO Document
ISO/DIS 24610-1.

Nancy Ide, Patrice Bonhomme, and Laurent Ro-
mary. 2000. XCES: An XML-based Standard
for Linguistic Corpora. Proceedings of the Sec-
ond Language Resources and Evaluation Confer-
ence (LREC), Athens, Greece, 825-30.

Hamish Cunningham. 2002. GATE, a General Ar-
chitecture for Text Engineering. Computers and the
Humanities, 36:223-254

34

